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Current prior methods for image knowledge are difficult to generalize to fuzzy images in specific fields, dark 
channel priors still face issues such as ineffective fuzzy kernel estimation, high computational costs, low com-
putational efficiency, and obvious defects in imaging details. In order to avoid the interference of subjective 
and objective factors on image details and information quality, and to achieve image denoising, a deconvolu-
tion algorithm combining salient edges and average curvature (AC) regularization is proposed to achieve image 
deblurring processing. Firstly, the DARSE-AC algorithm combining salient edges and filtering regularization 
is proposed to improve image blur. Secondly, explicit and implicit strategy is used to solve image defects, and 
filtering processing is carried out based on considering the minimum surface and fast Fourier transform. The 
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proposed method was tested. The results showed that the success rate of image denoising was higher than other 
comparison algorithms. The repair results showed that the method effectively achieved deblurring. This opti-
mization method had good convergence during the iteration process, with peak signal-to-noise ratio, structural 
similarity index measurement value, and error ratio of 31.03, 0.96, and 1.61, respectively. The algorithm that 
considers edge information and curvature regularization processing can better preserve the quality and details 
of image information, which can effectively provide new technical means and tools for visual communication.
KEYWORDS: Salient edges, AC regularization, Peak signal-to-noise ratio, Structural similarity index, Noise.

1. Introduction
As the visual foundation for human perception of the 
world, images are an important means for humans to 
obtain, express, and transmit information. Due to lim-
itations in imaging equipment and external factors, 
the collected images are inevitably affected by noise, 
blurring, low resolution, and even contain some miss-
ing information, resulting in image distortion [10, 35]. 
Image degradation can hinder its analysis and use. 
Therefore, image restoration techniques should be 
used to restore the original clear image from degraded 
images to further improve the effectiveness and accu-
racy of subsequent image processing [19]. Traditional 
image restoration techniques typically utilize image 
filtering. However, the actual image details and noise 
have aliasing in the frequency band. This method is 
difficult to protect image edges while smoothing out 
noise. However, the subsequent application of diffu-
sion methods based on partial differential equations 
also suffers from process instability and slow con-
vergence [2]. The latest technology currently utiliz-
es variational methods based on prior knowledge to 
achieve image restoration. This method can protect 
the edge details of the image while removing image 
blur, thereby achieving high-quality visual communi-
cation effects [27]. However, at present, it is difficult 
to generalize the prior knowledge of images to fuzzy 
images in specific fields. There still exist problems in 
the dark channel prior, such as ineffective estimation 
of fuzzy kernels, high computational cost, and low 
computational efficiency. The method using salient 
edges also has high computational complexity. The 
computational cost refers to the operations and it-
erative calculations involved in the minimum value 
filtering of the entire image, which can also indirectly 
reflect the computational burden. Computational ef-
ficiency refers to the efficiency of pixel data in compu-
tation and calculation, while computational complex-
ity refers to the sequence of steps in image detection, 

including operator detection, image gradient calcu-
lation, threshold processing, edge extraction, and 
scale analysis. Therefore, a Deconvolution Algorithm 
based on Regularization of Salient Edges and Average 
Curvature (DARSE-AC) is proposed by combining 
the regularization of Average Curvature (AC) with 
salient edges. Its purpose is to improve the actual de-
blurring effect of images in high-quality visual com-
munication and broaden its application scope in the 
computer vision and digital images.
High quality image formation is crucial for visual in-
spection and industrial production technology. How-
ever, due to factors such as light, shooting angle, and 
occlusion during the imaging process, there are signif-
icant defects in the imaging details of the image. The 
main contributions of this study are as follows. Firstly, 
when processing image estimation, the average cur-
vature regularization is combined with gradient and 
edge highlighting for image fusion. Secondly, explicit 
and implicit prominent edge selection combined with 
AC regularization optimizes the blind deconvolution 
algorithm and constructs a new DARSE-AC convolu-
tion algorithm. Thirdly, a mixed segmentation strategy 
with auxiliary variables is introduced to solve the algo-
rithm equation, and an average curvature filter is used 
to calculate the function equation. Then, the Fourier 
transform is applied to obtain the closed form solu-
tion of the Equation (4). The mutual inductance im-
age filtering method estimates the fuzzy kernel in the 
equation and normalizes the calculated fuzzy kernel 
to improve image quality and perform denoising pro-
cessing. The main focus of this article is image deblur-
ring. To address the high computational cost and poor 
image quality, the research conducts on regularization 
and deconvolution algorithms for highlighting edg-
es and average curvature. The research results of the 
Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index Measurement (SSIM), and Error Ratio 
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(ER) of the image under this method were obtained, 
with values of 31.03, 0.96, and 1.61, respectively, great-
ly preserving information quality and details. Through 
the above improvement ideas, it can be ensured that 
the theme of high-quality visual images can be pre-
sented in a more comprehensive and clear manner.
This study mainly elaborates on the manuscript con-
tent from five parts. The second part reviews rele-
vant literature on image deblurring processing. The 
research has found that limited computational effi-
ciency and high dependence on external data make 
it difficult for existing algorithms to achieve satisfac-
tory results while ensuring algorithm performance. 
Therefore, in the third part of the study, the DARSE-
AC is proposed to achieve image deblurring. The the-
ory of average curvature regularization is introduced 
to achieve image processing. A new deconvolution 
algorithm is adopted to model the fused image, and 
a mixed segmentation strategy is used to solve the 
equation system for variable solving, ultimately im-
proving image quality. The fourth part tests the meth-
od and image datasets by establishing an experimen-
tal environment and deep learning framework. The 
last part summarizes and discusses the entire text, 
and explains the shortcomings.

2. Related Works
The development of deep learning technology has led to 
the widespread application of image deblurring meth-
ods based on salient edges and AC [12]. Liu et al. [20] 
proposed a fast blind image deblurring algorithm based 
on salient edges and gradient cepstral, which effective-
ly shortened the running time of traditional deblurring 
architectures. Xu et al. [34] proposed a knowledge en-
hanced adaptive deblurring algorithm based on salient 
edges and deep learning, which not only improved the 
global image deblurring effect, but also optimized the 
details of image edges. Yogananda et al. [37] proposed 
a multi-objective crawling search algorithm based on 
data edges to address image blur and high noise caused 
by object motion in actual scenes. This algorithm effec-
tively improved the performance of image deblurring 
while removing noisy pixels. In response to the image 
blurring caused by atmospheric distortion in the orig-
inal scene, Priya et al. proposed an image optimization 
algorithm using ant cuckoo search based on exponen-
tial and salient edges. This not only improved the ac-

curacy and robustness of image deblurring, but also 
strengthened its adaptability [24]. Regarding the im-
age blur in dynamic scenes, Zhang et al. [38] proposed 
a new deblurring algorithm based on recursive neural 
networks with salient edges and multi-scale spatial 
variations, which effectively improved the accuracy 
and efficiency of image deblurring.
In addition, to address the issues related to high-or-
der derivatives in image deblurring, Fairag et al. [7] 
proposed a two-level model for image denoising based 
on AC regularization, effectively improving the per-
formance of image deblurring while eliminating the 
staircase effect. In response to the image deblurring 
in image processing tasks, Wang et al. [30] proposed 
a scalar auxiliary variable scheme based on AC regu-
larization, which effectively enhanced the robustness 
of the method while improving the image deblurring 
effect. To address the related issues of the Euler elas-
tic energy model in handling image blurring, Liu et al. 
[17] proposed a fast image deblurring algorithm based 
on minimizing elastic properties and AC regulariza-
tion, which effectively enhanced the robustness of 
image deblurring. Xie et al. [33] constructed a prior 
guided variational architecture for the red channel 
based on a complete underwater imaging model and 
AC regularization, effectively improving the deblur-
ring performance of underwater images. Zhou et al. 
[15] normalized the nodes of graph convolutional 
network architecture to improve the model smooth-
ness relative to input node features. The experiment 
showed that this method had good applicability and 
generalizability. Regarding the image quality in mo-
bile imaging, Gampala et al. [9] combined deep learn-
ing algorithms with deblurring loops to improve im-
age restoration quality. Fatichah et al. [8] used deep 
multi-scale CNN networks and end-to-end genera-
tive adversarial network algorithms to achieve image 
deblurring. The results showed that this deep learn-
ing method performed well in structural similarity in-
dicators, which could effectively improve image clari-
ty. Wu et al. [32] proposed a deep convolutional neural 
network for blind image quality indicators, which 
was designed to jointly optimize multi-level feature 
extraction in an end-to-end framework while consid-
ering hierarchical degradation. The results indicated 
that this method had good superiority compared with 
benchmark data. Its parameters were implemented in 
micro-processing systems.
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From domestic and foreign research, current image 
deblurring methods still suffer from high computa-
tional costs and low computational efficiency. The 
method proposed based on salient edges has high 
computational complexity and high dependence on 
external related data. Therefore, the DARSE-AC algo-
rithm combining salient edges and AC regularization 
innovatively utilizes mutually guided image filters. 
Explicit edge selection is performed when using AC 
regularization to hide unfavorable structures. Mean-
while, the AC regularization of L0 norm fused with 
gradients effectively optimizes the model.

3. Deconvolution Algorithm 
Combining Salient Edges and Mean 
Curvature Regularization
The current deconvolution algorithm has many short-
comings. Therefore, this section optimizes the blind 
deconvolution algorithm through explicit and implicit 
salient edge selection, combined with AC regulariza-
tion. It mainly achieves explicit edge selection based 
on mutually guided image filtering, while using AC reg-
ularization to eliminate unfavorable architectures.

3.1. Salient Edges and Mean Curvature 
Regularization Theoretical Analysis
At present, in the actual imaging process under visual 
communication, many factors lead to image blurring 
and high noise. As the grayscale change rate increas-

es, boundaries are more likely to become boundary 
edges. When the edge has a clear boundary, it can be 
called an explicit convex edge type. The edge type that 
can only be obtained through computer boundary de-
tection is called an implicit convex edge [28]. Figure 1 
shows a comparison of image, contour, first deriva-
tive, and second derivative in salient edge detection.
From Figure 1, salient edge detection of images can 
be roughly divided into four types, named a, b, c, and d 
respectively in the study. The position where the edge 
appears is the boundary point between two parts in 
the image, which can be represented and described by 
the derivative of the function change rate. Edge points 
usually appear in the part where the first derivative 
reaches its maximum value or the second derivative 
reaches zero. Type A and Type B are similar, with edge 
points always appearing at the zero point of the posi-
tive negative transition. The situation of C-type and 
D-type is similar. After reaching a certain value, the 
trend of C-type remains unchanged. The D-type first 
rises until a platform is formed, and then falls back.
The second-order derivative method of edge detec-
tion is prone to being overly sensitive to noise, even 
though higher-order derivatives can be used to find 
edges in principle. The salient edge detection method 
mainly considers the presence of blur kernels, which 
requires removing detailed information of hidden 
images during the iterative process [21, 13]. Regular-
ization is a method of adding additional information 
to a model to prevent over-fitting and help improve 
model performance. The selection of regularization 
parameters in the cost function of image deconvolu-

When the edge has a clear boundary, it can be 
called an explicit convex edge type. The edge 
type that can only be obtained through 
computer boundary detection is called an 

implicit convex edge [28]. Figure 1 shows a 
comparison of image, contour, first derivative, 
and second derivative in salient edge 
detection. 
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Figure 1 

Comparison results of prominent edge detection 

From Figure 1, salient edge detection of 
images can be roughly divided into four types, 
named a, b, c, and d respectively in the study. 
The position where the edge appears is the 
boundary point between two parts in the 
image, which can be represented and 
described by the derivative of the function 
change rate. Edge points usually appear in the 
part where the first derivative reaches its 
maximum value or the second derivative 
reaches zero. Type A and Type B are similar, 
with edge points always appearing at the zero 
point of the positive negative transition. The 
situation of C-type and D-type is similar. 
After reaching a certain value, the trend of 
C-type remains unchanged. The D-type first 
rises until a platform is formed, and then falls 
back. 

The second-order derivative method of edge 
detection is prone to being overly sensitive to 
noise, even though higher-order derivatives 
can be used to find edges in principle. The 
salient edge detection method mainly 
considers the presence of blur kernels, which 
requires removing detailed information of 
hidden images during the iterative process [21, 
13]. Regularization is a method of adding 
additional information to a model to prevent 
over-fitting and help improve model 
performance. The selection of regularization 
parameters in the cost function of image 
deconvolution involves empirical adjustment, 
and its accuracy is difficult to guarantee. 
Therefore, Rajora et al. [25] proposed an 
image deconvolution framework based on 
average gradient descent, which can 
effectively perform uniform deconvolution on 
data with different levels of noise. The 
traditional regularization term for solving 
image problems relies on partial derivatives, 
while optimizing the average curvature to 
partition the image into extremely small 
surfaces can effectively handle this set until 
the model reaches convergence. Therefore, a 

blind convolution method combining implicit 
convex edge selection with explicit convex 
edge selection is proposed. Generally 
speaking, most implicit salient edge selection 
methods are similar to the calculation 
methods of latent clear images and blur 
kernels in image deblurring frameworks, as 
shown in Equation (1). 

( ) ( )

( ) ( )
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2 2

arg min

arg min
I

k

I A I k I

k A I k k
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γ ψ
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.      (1) 

In Equation (1), I  represents a potentially 
clear image. A  represents the actual 
observed blurred image. 1γ  and 2γ  
represent regularization terms. 1ψ  and 2ψ  
represent corresponding non-negative 
parameters. k  represents a fuzzy kernel. 
( )Θ ⋅  represents the data fitting function. The 

explicit salient edge method obtains the 
calculated correlation expression, as shown in 
Equation (2). 
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In Equation (2), zϖ  represents a 
non-negative parameter. z  represents the 
main structure of the potentially clear image 
I . ∇  represents the gradient operator. 
Overall, there are issues with the selection of 

( )1 Iψ  and z∇  when using salient edges. 
The former is usually carefully designed in 
implicit salient edge methods. However, it is 
easily overlooked in explicit salient edge 
methods. Therefore, the explicit and implicit 
edge selection strategies proposed in the 
study are beneficial for fuzzy kernels to 
estimate more reliable edges. In addition, they 
continuously approximate segmented 
minimal surfaces through AC regularization. 
For the latter calculation, the impulse filtering 
operation is not applied in z . Previous 

Figure 1
Comparison results of prominent edge detection
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tion involves empirical adjustment, and its accuracy 
is difficult to guarantee. Therefore, Rajora et al. [25] 
proposed an image deconvolution framework based 
on average gradient descent, which can effectively 
perform uniform deconvolution on data with dif-
ferent levels of noise. The traditional regularization 
term for solving image problems relies on partial 
derivatives, while optimizing the average curvature 
to partition the image into extremely small surfaces 
can effectively handle this set until the model reaches 
convergence. Therefore, a blind convolution method 
combining implicit convex edge selection with ex-
plicit convex edge selection is proposed. Generally 
speaking, most implicit salient edge selection meth-
ods are similar to the calculation methods of latent 
clear images and blur kernels in image deblurring 
frameworks, as shown in Equation (1).

( ) ( )

( ) ( )
1 1

2 2

arg min

arg min
I

k

I A I k I

k A I k k

γ ψ

γ ψ

= Θ − ⊗ +



= Θ − ⊗ +
. (1)

In Equation (1), I  represents a potentially clear image. 
A  represents the actual observed blurred image. 1γ  and 

2γ  represent regularization terms. 1ψ  and 2ψ  represent 
corresponding non-negative parameters. k  represents a 
fuzzy kernel. ( )Θ ⋅  represents the data fitting function. 
The explicit salient edge method obtains the calculated 
correlation expression, as shown in Equation (2).
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2
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min
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A I k I z I

A z k k

π γ ψ
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Θ ∇ − ∇ ⊗ +
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In Equation (2), zπ  represents a non-negative param-
eter. z  represents the main structure of the potential-
ly clear image I . ∇  represents the gradient operator. 
Overall, there are issues with the selection of ( )1 Iψ  
and z∇  when using salient edges. The former is usu-
ally carefully designed in implicit salient edge meth-
ods. However, it is easily overlooked in explicit salient 
edge methods. Therefore, the explicit and implicit 
edge selection strategies proposed in the study are 
beneficial for fuzzy kernels to estimate more reliable 
edges. In addition, they continuously approximate 
segmented minimal surfaces through AC regulariza-
tion. For the latter calculation, the impulse filtering 
operation is not applied in z . Previous high-order 
regularization models can overcome the staircase ef-

fect while preserving the main structure of the image. 
However, due to the lack of critical geometric prior in-
formation, some important geometric features of the 
image cannot be preserved. Therefore, AC is proposed 
as a constraint regularization term for image surface 
processing, which is first introduced as an AC driven 
diffusion method into noise removal. Based on this, an 
AC minimization model for image denoising is con-
structed, which is expressed as Equation (3).

( )
( )

2

2

2
min

21v L

v dx v e dx
v

ϕ
Ω Ω∈ Ω

∇
∇ ⋅ + −

+ ∇
∫ ∫ . (3)

In Equation (3), v  represents a potentially clean im-
age. Ω  represents a bounded open set with continuous 
boundaries, i.e. the image domain. 2L  represents the L2 
norm. x  represents the pixels belonging to Ω . ϕ  rep-
resents the Lagrange multiplier related to constraints. 
e  represents the observation image defined on Ω . The 
L1 norm of average curvature has been proven to be 
an ideal regularization method for image denoising. It 
not only preserves image contrast and sharp edges of 
objects, but also eliminates the staircase effect. There-
fore, the AC regularization in this study is based on 
the regularization method and explicit method used 
in Equation (3). Then, it is combined with the L0 norm 
of gradients as ( )1 Iψ . To understand this process, the 
relationship between AC and minimal surfaces needs 
to be analyzed. In the geometric architecture of actual 
image processing, grayscale image ( ),I p q  is embed-
ded into three-dimensional space to form a surface 
of the image. The AC expression of the image surface 
and its surface area definition are shown in Equation 
(4). This content is similar to the method proposed by 
Coeurjolly [5] to reconstruct the surface of digital im-
ages using variational methods. The regularization tool 
proposed by Coeurjolly [5] to process digital data can 
effectively provide technical means for material art 
modeling.

high-order regularization models can 
overcome the staircase effect while preserving 
the main structure of the image. However, 
due to the lack of critical geometric prior 
information, some important geometric 
features of the image cannot be preserved. 
Therefore, AC is proposed as a constraint 
regularization term for image surface 
processing, which is first introduced as an AC 
driven diffusion method into noise removal. 
Based on this, an AC minimization model for 
image denoising is constructed, which is 
expressed as Equation (3). 

( )
( )

2

2

2
min

21v L

v dx v e dx
v

ϕ
Ω Ω∈ Ω

∇
∇ ⋅ + −

+ ∇
∫ ∫ .   (3) 

In Equation (3), v  represents a potentially 
clean image. Ω  represents a bounded open 
set with continuous boundaries, i.e. the image 
domain. 2L  represents the L2 norm. x  
represents the pixels belonging to Ω . ϕ  
represents the Lagrange multiplier related to 
constraints. e  represents the observation 
image defined on Ω . The L1 norm of average 
curvature has been proven to be an ideal 
regularization method for image denoising. It 
not only preserves image contrast and sharp 
edges of objects, but also eliminates the 
staircase effect. Therefore, the AC 
regularization in this study is based on the 
regularization method and explicit method 
used in Equation (3). Then, it is combined 
with the L0 norm of gradients as ( )1 Iψ . To 
understand this process, the relationship 
between AC and minimal surfaces needs to be 
analyzed. In the geometric architecture of 
actual image processing, grayscale image 
( ),I p q  is embedded into three-dimensional 

space to form a surface of the image. The AC 
expression of the image surface and its 
surface area definition are shown in Equation 
(4). This content is similar to the method 
proposed by Coeurjolly [5] to reconstruct the 
surface of digital images using variational 
methods. The regularization tool proposed by 
Coeurjolly [5] to process digital data can 
effectively provide technical means for 
material art modeling. 
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In Equation (4), ( )ℜ ℑ  represents the AC 
regularization of the image surface ℑ . p  
and q  represent the horizontal and vertical 
coordinate points belonging to the spatial 
coordinates of Ω . ( )ℑ  represents the 
surface area of the image surface ℑ . When it 

is minimized, it can be called a minimum 
surface. In addition, when the area of the 
potential image is small, it is more conducive 
to estimating the blur kernel. At this point, the 
corresponding minimization problem can be 
constrained through the AC regularization 
expression of image I .  

3.2. Deconvolutional Models 
and Image Estimation 

A fuzzy kernel estimation deconvolution 
algorithm model is constructed based on 
salient edge and AC regularization theory. 
Significance detection and edge detection are 
based on the frequency of each part of the 
image in the time domain. Prior knowledge 
related to positional variables and 
constraining the solution space can obtain 
clear image restoration results [18]. Yin et al. 
applied the two-dimensional Hessian sparse 
deconvolution algorithm based on image 
processing technology to digital beamforming 
technology. The results showed that the 
improved method effectively improved the 
detection resolution of acoustic processing 
under low signal-to-noise ratio [36]. 
Considering the impact of noise interference 
on blind deconvolution algorithms and the 
drawbacks of manually mining images using 
regularized image priors, this study combines 
L0 norm AC regularization with fused 
gradients and convex edges to construct a 
new deconvolution algorithm model, namely 
the DARSE-AC algorithm model. The 
deconvolution model can restore clear images 
through iterative operations. The 
corresponding calculation expression is 
shown in Equation (5). 
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In Equation (5), λ , ξ , θ , and τ  represent 
penalty parameters. The estimation for image 
I  and blur kernel k  is particularly 
important. The actual regularization term of 
the gradient L0 norm is non-convex. 
Regularization, as one of the important 
contents in explaining high variance problems, 
is one of the methods to overcome over-fitting 
problems. Among them, Xu et al. [34] utilized 
the sparsity effect and denoising 
characteristics of sparse dictionaries to 
propose a norm-based sparse dictionary 
encoding regularization term for feature 
extraction of bi-adjacency graphs. The 
auxiliary function was constructed to generate 
solutions. The results show that this method 
can effectively achieve the separability of 
heterogeneous data and is robust to noise. 
Therefore, the study introduces auxiliary 
variables to replace I∇  and I  based on the 

.

(4)

In Equation (4), ( )ℜ ℑ  represents the AC regulariza-
tion of the image surface ℑ . p  and q  represent the 
horizontal and vertical coordinate points belonging 
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to the spatial coordinates of Ω . 

high-order regularization models can 
overcome the staircase effect while preserving 
the main structure of the image. However, 
due to the lack of critical geometric prior 
information, some important geometric 
features of the image cannot be preserved. 
Therefore, AC is proposed as a constraint 
regularization term for image surface 
processing, which is first introduced as an AC 
driven diffusion method into noise removal. 
Based on this, an AC minimization model for 
image denoising is constructed, which is 
expressed as Equation (3). 
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In Equation (3), v  represents a potentially 
clean image. Ω  represents a bounded open 
set with continuous boundaries, i.e. the image 
domain. 2L  represents the L2 norm. x  
represents the pixels belonging to Ω . ϕ  
represents the Lagrange multiplier related to 
constraints. e  represents the observation 
image defined on Ω . The L1 norm of average 
curvature has been proven to be an ideal 
regularization method for image denoising. It 
not only preserves image contrast and sharp 
edges of objects, but also eliminates the 
staircase effect. Therefore, the AC 
regularization in this study is based on the 
regularization method and explicit method 
used in Equation (3). Then, it is combined 
with the L0 norm of gradients as ( )1 Iψ . To 
understand this process, the relationship 
between AC and minimal surfaces needs to be 
analyzed. In the geometric architecture of 
actual image processing, grayscale image 
( ),I p q  is embedded into three-dimensional 

space to form a surface of the image. The AC 
expression of the image surface and its 
surface area definition are shown in Equation 
(4). This content is similar to the method 
proposed by Coeurjolly [5] to reconstruct the 
surface of digital images using variational 
methods. The regularization tool proposed by 
Coeurjolly [5] to process digital data can 
effectively provide technical means for 
material art modeling. 
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In Equation (4), ( )ℜ ℑ  represents the AC 
regularization of the image surface ℑ . p  
and q  represent the horizontal and vertical 
coordinate points belonging to the spatial 
coordinates of Ω . ( )ℑ  represents the 
surface area of the image surface ℑ . When it 

is minimized, it can be called a minimum 
surface. In addition, when the area of the 
potential image is small, it is more conducive 
to estimating the blur kernel. At this point, the 
corresponding minimization problem can be 
constrained through the AC regularization 
expression of image I .  

3.2. Deconvolutional Models 
and Image Estimation 

A fuzzy kernel estimation deconvolution 
algorithm model is constructed based on 
salient edge and AC regularization theory. 
Significance detection and edge detection are 
based on the frequency of each part of the 
image in the time domain. Prior knowledge 
related to positional variables and 
constraining the solution space can obtain 
clear image restoration results [18]. Yin et al. 
applied the two-dimensional Hessian sparse 
deconvolution algorithm based on image 
processing technology to digital beamforming 
technology. The results showed that the 
improved method effectively improved the 
detection resolution of acoustic processing 
under low signal-to-noise ratio [36]. 
Considering the impact of noise interference 
on blind deconvolution algorithms and the 
drawbacks of manually mining images using 
regularized image priors, this study combines 
L0 norm AC regularization with fused 
gradients and convex edges to construct a 
new deconvolution algorithm model, namely 
the DARSE-AC algorithm model. The 
deconvolution model can restore clear images 
through iterative operations. The 
corresponding calculation expression is 
shown in Equation (5). 
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In Equation (5), λ , ξ , θ , and τ  represent 
penalty parameters. The estimation for image 
I  and blur kernel k  is particularly 
important. The actual regularization term of 
the gradient L0 norm is non-convex. 
Regularization, as one of the important 
contents in explaining high variance problems, 
is one of the methods to overcome over-fitting 
problems. Among them, Xu et al. [34] utilized 
the sparsity effect and denoising 
characteristics of sparse dictionaries to 
propose a norm-based sparse dictionary 
encoding regularization term for feature 
extraction of bi-adjacency graphs. The 
auxiliary function was constructed to generate 
solutions. The results show that this method 
can effectively achieve the separability of 
heterogeneous data and is robust to noise. 
Therefore, the study introduces auxiliary 
variables to replace I∇  and I  based on the 
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for feature extraction of bi-adjacency graphs. The 
auxiliary function was constructed to generate solu-
tions. The results show that this method can effec-
tively achieve the separability of heterogeneous data 
and is robust to noise. Therefore, the study introduces 
auxiliary variables to replace I∇  and I  based on the 
semi-quadratic splitting strategy solution equation 
(i.e. Equation (5)). The optimized expression of the 
minimization problem is shown in Equation (6).
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In Equation (6), 1ξ  and 1θ  represent 
non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
shown in Equation (7). 
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In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 
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In Equation (8), ( )Iℜ  represents the AC 
regularization of the image surface I . 
Therefore, for the minimization problem of 
AC, the AC filter first performs operations on 
the kernel of Equation (8) in four half edge 
windows, namely the projection distance. 
Next, a value with the minimum absolute 
projection distance is selected to update the 
central pixel. To ensure that the total energy 
in the solution equation for the first row α  
of Equation (6) does not increase, 
corresponding additional condition is 
introduced. It is expressed as Equation (9). 
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In Equation (9), m  represents the number of 
pixels. When α  and β  are given, the 
solution expression for image I  is shown in 

Equation (10). 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
2. 
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In Equation (6), 1ξ  and 1θ  represent non-negative 
penalty parameters. α  and β  represent two auxilia-
ry variables. When the non-negative penalty is suffi-
ciently large, the solution in Equation (6) is equivalent 
to the solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately optimiz-
ing the two auxiliary variables and I . When the I  
value is given, the auxiliary variables α  and β  are 
expressed, as shown in Equation (7).
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the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1 1 1z

z g g u u

g g u u

g g u u

I k A Y Y k k Y

z z

Y

Y

β

β

λ ξ θ α λ ξ θ

α α

−
∇

∇

 = Ψ Ψ Ψ + + + Ψ Ψ Ψ + + +



= Ψ ∇ Ψ ∇ +Ψ ∇ Ψ ∇

 = Ψ ∇ Ψ +Ψ ∇ Ψ

 = Ψ ∇ Ψ ∇ +Ψ ∇ Ψ ∇

 

 

 

 

(11) 

In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
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In Equation (7), the second row of equations is essen-
tially a minimizing pixel problem. The existing gradient 
descent algorithms have low computational efficiency, 
high dependence on display computation AC, and com-
plex derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the study to 
address it. The main idea is to minimize AC regulariza-
tion. Bernstein’s theorem states that applying AC reg-
ularization is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the piece-wise 
linearization method for linear functions. The numer-
ical approximation of AC can be obtained through sim-
ple convolution operations, as shown in Equation (8).

semi-quadratic splitting strategy solution 
equation (i.e. Equation (5)). The optimized 
expression of the minimization problem is 
shown in Equation (6). 

( )2 2 2 2
1 12 2 0 2 2, ,

min
I

I k A I z I I
α β

λ ξ β θ α ξ β θ α⊗ − + ∇ −∇ + + + −∇ + −

. (6) 

In Equation (6), 1ξ  and 1θ  represent 
non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
shown in Equation (7). 

( ) 2
1 2

2
10 2

min

min

I

I
α

β

θ α θ α

ξ β ξ β

 + −


+ −∇



.               (7) 

In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
2. 
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edge windows, namely the projection distance. Next, 
a value with the minimum absolute projection dis-
tance is selected to update the central pixel. To ensure 
that the total energy in the solution equation for the 
first row α  of Equation (6) does not increase, corre-
sponding additional condition is introduced. It is ex-
pressed as Equation (9).

semi-quadratic splitting strategy solution 
equation (i.e. Equation (5)). The optimized 
expression of the minimization problem is 
shown in Equation (6). 
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In Equation (6), 1ξ  and 1θ  represent 
non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
shown in Equation (7). 
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In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
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blur kernel k  in the study is shown in Figure 
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non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
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When the I  value is given, the auxiliary 
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In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 
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In Equation (8), ( )Iℜ  represents the AC 
regularization of the image surface I . 
Therefore, for the minimization problem of 
AC, the AC filter first performs operations on 
the kernel of Equation (8) in four half edge 
windows, namely the projection distance. 
Next, a value with the minimum absolute 
projection distance is selected to update the 
central pixel. To ensure that the total energy 
in the solution equation for the first row α  
of Equation (6) does not increase, 
corresponding additional condition is 
introduced. It is expressed as Equation (9). 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
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tion problem. It can effectively obtain the closed form 
solution of I  using Fourier transform, as expressed 
in Equation (11).
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expression of the minimization problem is 
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In Equation (6), 1ξ  and 1θ  represent 
non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
shown in Equation (7). 
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In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 
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In Equation (8), ( )Iℜ  represents the AC 
regularization of the image surface I . 
Therefore, for the minimization problem of 
AC, the AC filter first performs operations on 
the kernel of Equation (8) in four half edge 
windows, namely the projection distance. 
Next, a value with the minimum absolute 
projection distance is selected to update the 
central pixel. To ensure that the total energy 
in the solution equation for the first row α  
of Equation (6) does not increase, 
corresponding additional condition is 
introduced. It is expressed as Equation (9). 
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In Equation (9), m  represents the number of 
pixels. When α  and β  are given, the 
solution expression for image I  is shown in 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
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In Equation (6), 1ξ  and 1θ  represent 
non-negative penalty parameters. α  and β  
represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
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In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 
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In Equation (8), ( )Iℜ  represents the AC 
regularization of the image surface I . 
Therefore, for the minimization problem of 
AC, the AC filter first performs operations on 
the kernel of Equation (8) in four half edge 
windows, namely the projection distance. 
Next, a value with the minimum absolute 
projection distance is selected to update the 
central pixel. To ensure that the total energy 
in the solution equation for the first row α  
of Equation (6) does not increase, 
corresponding additional condition is 
introduced. It is expressed as Equation (9). 
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In Equation (9), m  represents the number of 
pixels. When α  and β  are given, the 
solution expression for image I  is shown in 
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Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1 1 1z

z g g u u

g g u u

g g u u

I k A Y Y k k Y

z z

Y

Y

β

β

λ ξ θ α λ ξ θ

α α

−
∇

∇

 = Ψ Ψ Ψ + + + Ψ Ψ Ψ + + +



= Ψ ∇ Ψ ∇ +Ψ ∇ Ψ ∇

 = Ψ ∇ Ψ +Ψ ∇ Ψ

 = Ψ ∇ Ψ ∇ +Ψ ∇ Ψ ∇

 

 

 

 

(11) 

In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 

( )( )
( )( )( ){ }( )

2
2

2
, ,

,
min ''

max , ,
c

z p q c g u c

z p q
z I

z p q
ς

µ∈

∇
− +

∇
∑ ∑ .   (12) 

In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
2. 
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In Equation (6), 1ξ  and 1θ  represent 
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represent two auxiliary variables. When the 
non-negative penalty is sufficiently large, the 
solution in Equation (6) is equivalent to the 
solution obtained in Equation (5). Therefore, 
the study solves Equation (6) by alternately 
optimizing the two auxiliary variables and I . 
When the I  value is given, the auxiliary 
variables α  and β  are expressed, as 
shown in Equation (7). 

( ) 2
1 2

2
10 2

min

min

I

I
α

β

θ α θ α

ξ β ξ β

 + −


+ −∇



.               (7) 

In Equation (7), the second row of equations is 
essentially a minimizing pixel problem. The 
existing gradient descent algorithms have low 
computational efficiency, high dependence on 
display computation AC, and complex 
derivation formats. Therefore, in order to avoid 
this problem, the AC filter is introduced in the 
study to address it. The main idea is to 
minimize AC regularization. Bernstein's 
theorem states that applying AC regularization 
is equivalent to assuming that the signal is 
piece-wise linear, which can minimize the 
piece-wise linearization method for linear 
functions. The numerical approximation of AC 
can be obtained through simple convolution 
operations, as shown in Equation (8). 

( )
1 16 5 16 1 16

5 16 1 5 16
1 16 5 16 1 16

I I
− − 
 ℜ ≈ − ⊗ 
 − − 

.        (8) 

In Equation (8), ( )Iℜ  represents the AC 
regularization of the image surface I . 
Therefore, for the minimization problem of 
AC, the AC filter first performs operations on 
the kernel of Equation (8) in four half edge 
windows, namely the projection distance. 
Next, a value with the minimum absolute 
projection distance is selected to update the 
central pixel. To ensure that the total energy 
in the solution equation for the first row α  
of Equation (6) does not increase, 
corresponding additional condition is 
introduced. It is expressed as Equation (9). 

( ) ( ) ( )( )2 2
1 1 12 2m m mI I αθ α α θ α α+ +− − − < − 

.(9) 

In Equation (9), m  represents the number of 
pixels. When α  and β  are given, the 
solution expression for image I  is shown in 

Equation (10). 
2 2 2

12 2 0 2
min

I
I k A I z I Iλ ξ β θ α⊗ − + ∇ −∇ + −∇ + −

.              (10) 

Equation (10) is a minimizing quadratic 
optimization problem. It can effectively obtain 
the closed form solution of I  using Fourier 
transform, as expressed in Equation (11). 
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∇
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
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 

 
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In Equation (11), ( )1−Ψ ⋅  represents the Fast 

Fourier Transform (FFT) operation. ( )Ψ   
represents the complex conjugate operation. 

( )Ψ ⋅  represents the FFT operation. Y  
represents the matrix composed of p∇  
complex conjugate operation and FFT 
operation, and the q∇  complex conjugate 
operation and FFT operation.   represents 
pixel multiplication. g∇  represents the 
gradient in the horizontal direction. u∇  
represents the gradient in the vertical 
direction. In the estimation of fuzzy kernel k , 
after obtaining the actual image I , it is 
necessary to further extract the main structure 
z  from I  to better estimate the fuzzy kernel. 
The latest mutual guidance image filtering 
method is used to achieve this process. The 
reason is that there are no other reference 
images in the image. The study utilizes 
Fourier transform to solve the closed form 
solution of the equation, effectively 
optimizing the solving equation, which can 
reduce computational complexity to a certain 
extent. Meanwhile, due to the optimization of 
auxiliary variables and the introduction of 
additional conditions during filtering 
processing, the integrity of information data 
can be well ensured. Therefore, the 
self-guided mode in this method is applied to 
estimate the fuzzy kernel. The computational 
expression is shown in Equation (12). 
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( )( )( ){ }( )
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z p q
z I
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ς

µ∈

∇
− +
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In Equation (12), ''ς  represents a 
non-negative weight parameter. u  
represents the auxiliary variable of the 
non-linear channel denominator. c  
represents the number of color channels. µ  
represents a smaller non-negative constant to 
avoid divisor 0, which is 0.01. Therefore, the 
estimation method flow for image I  and 
blur kernel k  in the study is shown in Figure 
2. 

(12)

In Equation (12), ''ς  represents a non-negative 
weight parameter. u  represents the auxiliary variable 
of the non-linear channel denominator. c  represents 
the number of color channels. µ  represents a small-
er non-negative constant to avoid divisor 0, which is 
0.01. Therefore, the estimation method flow for image 
I  and blur kernel k  in the study is shown in Figure 2.
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Schematic diagram of the estimation method flow for image I  and fuzzy kernel k . 

 

From Figure 2, for the estimation of image I , 
the relevant parameters are first inputted and 
I  is initialized to be equal to A . Secondly, 
when 1θ  is less than maxθ , Equation (8) is 
used to solve α . When 1ξ  is less than maxξ , 
equation (9) is used to solve β . Equation (13) 
is used to solve I . Next, 1ξ  is set to 12ξ . If 
it is less than maxξ , the relevant parameter is 
solved again. If it is not, 1θ  is set to be equal 
to 12θ . If it is less than maxθ , α  is solved 
again and the process is repeated. If it is not, 
the process is ended and the image I  is 
output. When estimating the blur kernel k , 
the relevant parameters are input and z∇  is 

initialized to A∇ . The index values t of the 
camera pose samples are 1 and k . Equation 
(13) is used to solve I , Equation (14) is used 
to solve z , and relevant equations are used to 
solve k . Next, t is set to t+1 until t equals 5 
and the fuzzy kernel k  is output. In addition, 
the fuzzy kernel performs necessary 
normalization operations on negative 
elements after setting them to 0. It is worth 
noting that the study also constructs a 
pyramid for images, implementing fuzzy 
kernel estimation processing from coarse to 
fine. The process of this method is shown in 
Figure 3. 
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Figure 3 

DARSE-AC process diagram. 

From Figure 3, the proposed DARSE-AC 
process first inputs a blurred color image. The 
input image is subjected to grayscale 
processing to obtain grayscale blurred images 
and gradient maps. Secondly, the main 
structure of the image is extracted, and 
prominent edges are depicted. Next, it is 
restored to a clear black and white image and 
the main structure of the image is extracted. 

Then, this process provides clear salient edges 
and estimates the blur kernel k  until a clear 
color image is obtained before ending the 
process. Otherwise, it is restored to a clear 
black and white image and the process is 
repeated. The image description of the 
deconvolution model and image estimation 
steps in this chapter is shown in Figure 4. 
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(13) is used to solve I , Equation (14) is used 
to solve z , and relevant equations are used to 
solve k . Next, t is set to t+1 until t equals 5 
and the fuzzy kernel k  is output. In addition, 
the fuzzy kernel performs necessary 
normalization operations on negative 
elements after setting them to 0. It is worth 
noting that the study also constructs a 
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DARSE-AC process diagram. 

From Figure 3, the proposed DARSE-AC 
process first inputs a blurred color image. The 
input image is subjected to grayscale 
processing to obtain grayscale blurred images 
and gradient maps. Secondly, the main 
structure of the image is extracted, and 
prominent edges are depicted. Next, it is 
restored to a clear black and white image and 
the main structure of the image is extracted. 

Then, this process provides clear salient edges 
and estimates the blur kernel k  until a clear 
color image is obtained before ending the 
process. Otherwise, it is restored to a clear 
black and white image and the process is 
repeated. The image description of the 
deconvolution model and image estimation 
steps in this chapter is shown in Figure 4. 

From Figure 2, for the estimation of image I , the 
relevant parameters are first inputted and I  is ini-
tialized to be equal to A . Secondly, when 1θ  is less 
than maxθ , Equation (8) is used to solve α . When 

1ξ  is less than maxξ , equation (9) is used to solve  
β . Equation (13) is used to solve I . Next, 1ξ  is set 

to 12ξ . If it is less than maxξ , the relevant parame-
ter is solved again. If it is not, 1θ  is set to be equal to 

12θ . If it is less than maxθ , α  is solved again and the 
process is repeated. If it is not, the process is ended 
and the image I  is output. When estimating the blur 
kernel k , the relevant parameters are input and z∇  
is initialized to A∇ . The index values t of the camera 
pose samples are 1 and k . Equation (13) is used to 
solve I , Equation (14) is used to solve z , and rele-
vant equations are used to solve k . Next, t is set to 
t+1 until t equals 5 and the fuzzy kernel k  is output. 
In addition, the fuzzy kernel performs necessary 
normalization operations on negative elements af-
ter setting them to 0. It is worth noting that the study 
also constructs a pyramid for images, implementing 
fuzzy kernel estimation processing from coarse to 
fine. The process of this method is shown in Figure 3.
From Figure 3, the proposed DARSE-AC process 
first inputs a blurred color image. The input image is 
subjected to grayscale processing to obtain grayscale 
blurred images and gradient maps. Secondly, the main 
structure of the image is extracted, and prominent 
edges are depicted. Next, it is restored to a clear black 
and white image and the main structure of the image 
is extracted. Then, this process provides clear salient 
edges and estimates the blur kernel k  until a clear col-
or image is obtained before ending the process. Oth-

erwise, it is restored to a clear black and white image 
and the process is repeated. The image description of 
the deconvolution model and image estimation steps 
in this chapter is shown in Figure 4.
In Figure 4, when processing the image estimation, 
firstly, the average curvature regularization is com-
bined with gradient and edge highlighting for image 
fusion. Subsequently, a new deconvolution algorithm 
is modeled and the equations are solved based on a 
hybrid segmentation strategy with the introduction 
of auxiliary variables. For the solution part of the 
equation, the mean curvature filter is used to compute 
the functional equation and the Fourier transform is 
used to obtain a closed-form solution of the equation. 
The fuzzy kernel in the equation is estimated using 
the mutual sensing image filtering method, and the 
calculated fuzzy kernel is subjected to the normaliza-
tion operation. Finally, the construction of the image 
pyramid is completed.

Figure 4
Schematic diagram of deconvolution model and image estimation steps
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Schematic diagram of deconvolution model and image estimation steps. 

 

In Figure 4, when processing the image 
estimation, firstly, the average curvature 
regularization is combined with gradient and 
edge highlighting for image fusion. 
Subsequently, a new deconvolution algorithm 
is modeled and the equations are solved 
based on a hybrid segmentation strategy with 
the introduction of auxiliary variables. For the 
solution part of the equation, the mean 
curvature filter is used to compute the 
functional equation and the Fourier transform 
is used to obtain a closed-form solution of the 
equation. The fuzzy kernel in the equation is 
estimated using the mutual sensing image 
filtering method, and the calculated fuzzy 
kernel is subjected to the normalization 
operation. Finally, the construction of the 
image pyramid is completed. 

 
4. Performance Analysis of 

Image Deblurring Based on 
Darse-Ac Model 

The experiment is conducted on an Intel (R) 
Core (TM) i5-1135G7 @ 2.40GHz 2.40GHz 
processor, 16.0GB of memory, Windows 10 64 
bit operating system, and MATLAB 2016b 
operating environment. The deep learning 
framework is Pytorch, with the activation 
function parameter set to 0.2. During the 
training process, the image batch size is 48*48, 
the initial learning rate is 10, the training 
batch is 1000, the multi-scale layers are 4, and 
the number of alternating iterations for each 
layer of the image is set to 10. The parameters 
α and β are 0.5 and 10, and the γ  is set to 

3*103. The number of repeated experiments is 
10. To verify the performance of the 
DARSE-AC model, a comprehensive analysis 
is conducted on its convergence, parameter 
sensitivity, effectiveness, and limitations. At 
the same time, it is applied to actual datasets 
to verify its image deblurring performance. 
The International Conference on Document 
Analysis and Recognition (ICDAR2019) text 
dataset, iNaturalist 2021 dataset, and low light 
level dataset (GLADNet) are analyzed, with 
approximately 1000 images. INat2021 
contains over 2.7 million images from 10000 
different species, each with 50 examples and 
10 validation images, totaling 100000 
validation images and 500000 test images. In 
low light environments, images often 
encounter problems such as blurring and 
noise, which pose challenges for object 
detection and recognition. The GLADNet 
dataset contains a large number of images 
under low light conditions, which can help 
researchers develop robust algorithms for low 
light object recognition and segmentation. The 
GLADNet dataset typically contains 
hundreds to thousands of images. The image 
size in the dataset (600*600) is standardized, 
unnecessary background parts are cropped, 
and contrast and brightness are adjusted to 
improve image quality. 

4.1. Performance Analysis of 
DARSE-AC Model 

Firstly, the sensitivity of the model parameters 
is analyzed, mainly focusing on the important 
parameters λ , ξ , θ , τ , and γ . The results 
are shown in Figure 5. 
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4. Performance Analysis of  
Image Deblurring Based on  
Darse-Ac Model
The experiment is conducted on an Intel (R) Core 
(TM) i5-1135G7 @ 2.40GHz 2.40GHz processor, 
16.0GB of memory, Windows 10 64 bit operating sys-
tem, and MATLAB 2016b operating environment. 
The deep learning framework is Pytorch, with the 
activation function parameter set to 0.2. During the 
training process, the image batch size is 48*48, the 
initial learning rate is 10, the training batch is 1000, 
the multi-scale layers are 4, and the number of alter-
nating iterations for each layer of the image is set to 
10. The parameters α and β are 0.5 and 10, and the γ  
is set to 3*103. The number of repeated experiments 
is 10. To verify the performance of the DARSE-AC 
model, a comprehensive analysis is conducted on its 
convergence, parameter sensitivity, effectiveness, 
and limitations. At the same time, it is applied to ac-
tual datasets to verify its image deblurring perfor-
mance. The International Conference on Document 
Analysis and Recognition (ICDAR2019) text dataset, 
iNaturalist 2021 dataset, and low light level dataset 
(GLADNet) are analyzed, with approximately 1000 
images. INat2021 contains over 2.7 million images 
from 10000 different species, each with 50 examples 
and 10 validation images, totaling 100000 validation 
images and 500000 test images. In low light envi-
ronments, images often encounter problems such as 

blurring and noise, which pose challenges for object 
detection and recognition. The GLADNet dataset 
contains a large number of images under low light 
conditions, which can help researchers develop ro-
bust algorithms for low light object recognition and 
segmentation. The GLADNet dataset typically con-
tains hundreds to thousands of images. The image 
size in the dataset (600*600) is standardized, unnec-
essary background parts are cropped, and contrast 
and brightness are adjusted to improve image quality.

4.1. Performance Analysis of  
DARSE-AC Model

Firstly, the sensitivity of the model parameters is an-
alyzed, mainly focusing on the important parameters 
λ , ξ , θ , τ , and γ . The results are shown in Figure 5.
In Figure 5, parameters λ  and γ  were mainly used 
to explicitly select convex edges. Therefore, its rea-
sonable range was set at 10-4. The reasonable range of 
parameters ξ  and θ  was between 10-3 and 10-2. The 
reasonable range of parameter τ  was between 1~10. 
From Figure 5(a), under the influence of parameters 
λ  and γ , the kernel similarity value was within 0.8, 
with little variation. Under the influence of param-
eters ξ  and θ , the kernel similarity value was also 
within 0.8. The curve under the influence of param-
eter ξ  showed a downward trend. From Figure 5(b), 
the curve under the influence of parameter τ  showed 
a more significant change compared with other pa-
rameters, but still maintained around 0.8. Overall, 

Figure 5 
Parameter sensitivity analysis results of the DARSE-AC model
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Parameter sensitivity analysis results of the DARSE-AC model. 

 

In Figure 5, parameters λ  and γ  were 
mainly used to explicitly select convex edges. 
Therefore, its reasonable range was set at 10-4. 
The reasonable range of parameters ξ  and 
θ  was between 10-3 and 10-2. The reasonable 
range of parameter τ  was between 1~10. 
From Figure 5(a), under the influence of 
parameters λ  and γ , the kernel similarity 
value was within 0.8, with little variation. 
Under the influence of parameters ξ  and θ , 
the kernel similarity value was also within 0.8. 

The curve under the influence of parameter 
ξ  showed a downward trend. From Figure 
5(b), the curve under the influence of 
parameter τ  showed a more significant 
change compared with other parameters, but 
still maintained around 0.8. Overall, the 
method proposed in the study is not sensitive 
to changes in five important parameters. The 
performance analysis of the regularization 
improvement ideas proposed in the study is 
shown in Figure 6. 
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Objective function iteration curve. 

In Figure 6, the results indicated that the 
regularization improvement approach 
proposed in the study exhibited a more rapid 
iterative trend in the curve direction when 
solving the objective function value. 
Approximately after more than 10 iterations, 
the curve tended to converge and was less 
affected by the noise environment. There was 
a significant difference in the iteration curve 
of the objective function before and after the 

improvement of the deconvolution algorithm 
proposed in the study. The curve before the 
improvement tended to converge when the 
number of iterations was greater than 20, with 
an objective function value of 1.5, and the 
overall fluctuation was more obvious. The 
improved deconvolution algorithm had fast 
convergence and tended to flatten out when 
the number of iterations was greater than 9. 
The image enhancement test results under 
different methods are shown in Table 1. 
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In Figure 5, parameters λ  and γ  were 
mainly used to explicitly select convex edges. 
Therefore, its reasonable range was set at 10-4. 
The reasonable range of parameters ξ  and 
θ  was between 10-3 and 10-2. The reasonable 
range of parameter τ  was between 1~10. 
From Figure 5(a), under the influence of 
parameters λ  and γ , the kernel similarity 
value was within 0.8, with little variation. 
Under the influence of parameters ξ  and θ , 
the kernel similarity value was also within 0.8. 

The curve under the influence of parameter 
ξ  showed a downward trend. From Figure 
5(b), the curve under the influence of 
parameter τ  showed a more significant 
change compared with other parameters, but 
still maintained around 0.8. Overall, the 
method proposed in the study is not sensitive 
to changes in five important parameters. The 
performance analysis of the regularization 
improvement ideas proposed in the study is 
shown in Figure 6. 
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Objective function iteration curve. 

In Figure 6, the results indicated that the 
regularization improvement approach 
proposed in the study exhibited a more rapid 
iterative trend in the curve direction when 
solving the objective function value. 
Approximately after more than 10 iterations, 
the curve tended to converge and was less 
affected by the noise environment. There was 
a significant difference in the iteration curve 
of the objective function before and after the 

improvement of the deconvolution algorithm 
proposed in the study. The curve before the 
improvement tended to converge when the 
number of iterations was greater than 20, with 
an objective function value of 1.5, and the 
overall fluctuation was more obvious. The 
improved deconvolution algorithm had fast 
convergence and tended to flatten out when 
the number of iterations was greater than 9. 
The image enhancement test results under 
different methods are shown in Table 1. 
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Figure 6
Objective function iteration curve

the method proposed in the study is not sensitive to 
changes in five important parameters. The perfor-
mance analysis of the regularization improvement 
ideas proposed in the study is shown in Figure 6.
In Figure 6, the results indicated that the regulariza-
tion improvement approach proposed in the study 
exhibited a more rapid iterative trend in the curve 
direction when solving the objective function val-
ue. Approximately after more than 10 iterations, the 
curve tended to converge and was less affected by the 
noise environment. There was a significant difference 

in the iteration curve of the objective function before 
and after the improvement of the deconvolution al-
gorithm proposed in the study. The curve before the 
improvement tended to converge when the number of 
iterations was greater than 20, with an objective func-
tion value of 1.5, and the overall fluctuation was more 
obvious. The improved deconvolution algorithm had 
fast convergence and tended to flatten out when the 
number of iterations was greater than 9. The image 
enhancement test results under different methods 
are shown in Table 1.

Table 1
The analysis of image enhancement test results under different methods

- Time complexity Actual time spent (milliseconds) Model parameter quantity (M)

Deconvolution model O(nlog(n) 162 10.5

FFT O(m+n) 2171 16.3
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The results in Table 1 indicated that after the appli-
cation of FFT, it effectively improved computational 
efficiency and achieve fast image enhancement. The 
actual application time (162 milliseconds) was sig-
nificantly smaller than the model before the appli-
cation (2171 milliseconds), and its model parameter 
count was smaller, indicating that it had good compu-
tational performance. The traditional Fourier trans-
form method still faces computational burden when 
processing large-scale or high-resolution images, 
while the deconvolution model can directly operate 
in the spatial domain, avoiding complex transfor-
mations in the frequency domain and reducing time 
consumption. The parameters in the deconvolution 
model can be processed for distorted images, and au-
tomatic adjustment of parameters can reduce manual 
settings, so the number of parameters involved is rel-
atively small. The quality evaluation of reconstruct-
ed images based on regularization processing is ana-
lyzed, and the results are shown in Table 2.
Table 2 showed that different algorithms had signif-
icant differences in PSNR values and SSIM values 
in quality processed frame results. Among them, the 
PSNR values for non-regularization, gradient prior, 
second-order generalized total variation, and sin-
gle frame deconvolution methods were 18.27, 20.18, 
23.44, 32.15, and SSIM values were 0.6819, 0.7334, 
0.8167, and 0.8529, respectively. The values on both 
evaluations were smaller than the algorithm pro-
posed in the study. The regularization modified con-
volution algorithm based on prominent edges and 
average curvature proposed in the study showed good 
image quality, with a SSIM value of 0.9546 between 
images. In image quality reconstruction, regulariza-
tion and edge highlighting in the research method can 
effectively maintain the structural integrity and edge 

Table 2
Quality evaluation of reconstructed images based on regularization processing

Algorithm
The frame with the 

best overall quality in 
the input sequence

No regular 
term

Deconvolution 
algorithm based 
on gradient prior

Deconvolution algorithm 
based on second order gen-

eralized total variations

Single frame 
blind deconvo-

lution algorithm

DARSE-AC
Model

PSNR 3300 18.27 20.18 23.44 32.15 36.22

SSIM 0.9085 0.6819 0.7334 0.8167 0.8529 0.9546

clarity of the image. The average curvature can effec-
tively smooth the non-edge areas of the image, reduce 
artifacts, and thus improve image quality. However, 
the input sequence frame processing method may 
result in information loss due to inconsistencies be-
tween sequence frames, and non-regularization can 
lead to excessively smooth or noisy images. Although 
gradient prior and second-order generalized total 
variation processing can preserve image edges to a 
certain extent, they may not be sufficient to handle 
highly non-linear image distortion. Single frame de-
convolution cannot guarantee the integrity of image 
information details. Therefore, the above comparison 
methods are difficult to perform well in PSNR and 
SSIM indicators, and it is difficult to suppress noise 
and balance image details. Subsequently, the evalu-
ation results of different algorithms under different 
image types are analyzed, and the results are shown 
in Table 3.
In Table 3, the DARSE-AC model exhibited signifi-
cantly better overall image quality processing perfor-
mance than other algorithms in terms of information 
entropy, average SSIM, root mean square error, mean 
contrast, brightness relationship factor, and mutual 
information, with values of 7.442, 6.927, 1.305, 1.674, 
0.924, and 8.672, respectively. The DRN algorithm 
performed better, and the information entropy results 
of VDSR algorithm and SRCNN algorithm were rel-
atively small, with values of 7.138 and 7.171, respec-
tively, indicating that the quality information data 
in their image processing is damaged. Secondly, the 
effectiveness of the model is analyzed. The proposed 
regularized convolution processing can optimize the 
visual quality of images by highlighting edge details 
and adjusting local curvature. It can achieve explicit 
edge selection through mutually guided image filter-
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Table 3
The analysis of image enhancement test results under different methods

- Information 
entropy

Average struc-
tural similarity

Root mean 
square error Mean contrast Brightness relation-

ship factor (%)
Mutual 

information

VDSR [1] 7.138 5.831 3.537 1.027 0.798 5.508

SRCNN [31] 7.171 6.271 3.711 1.231 0.827 6.574

SRFBN-S [26] 7.285 6.333 3.861 0.549 0.888 5.916

DRN [29] 7.196 6.169 4.129 0.975 0.901 6.865

DARSE-AC 
model 7.442 6.927 2.322 1.305 0.924 8.672

ing, which can effectively improve indicators such as 
information entropy, average contrast, and mutual 
information of images, especially when dealing with 
images with complex texture and edge information. 
Other deep convolutional neural network comparison 
methods (VDSR method and SRCNN method) may 
lack sufficient flexibility when dealing with specific 
types of image distortion, especially without sufficient 
training data. However, SRFBN-S and DRN methods 
are unable to achieve timely and effective image res-
toration for specific details, such as edge sharpening 
and local contrast adjustment. The indicators such as 
information entropy and average structural similarity 
mainly involve the overall feature difference informa-
tion of the image. Although other comparison meth-
ods are slightly less efficient and effective than the 
proposed method, there is not a significant difference 
in their overall grasp of image quality. Mutual infor-
mation measures the statistical correlation between 
two images, which is an important measure of image 
similarity. The significant deviation of the DARSE-AC 
model from other methods in this metric may be due 
to its particular emphasis on handling edges and lo-
cal curvature. Compared with methods based on deep 
learning, it may exhibit greater variability in specific 
image content, especially when the information dis-
tribution in the image is extremely uneven and less 
affected by image noise and details. ICDAR2019 text 
dataset (set as datasets M and I) is selected for the ex-
periment. Ablation experiments are conducted on two 
datasets. The parameter λ  is 0, and the θ  is 0. Mutual 
guidance image filtering is replaced by impulse filter-
ing and research method, set to A~E, respectively. The 
results are shown in Figure 7.

Figure 7
Results of ablation experiments on the research method
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the DARSE-AC model from other methods in 
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curvature. Compared with methods based on 
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especially when the information distribution 
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affected by image noise and details. 
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From Figure 7(a), as the ER increased, the 
success rate of image denoising for all five 
methods showed a stepwise increase. The 
highest success rate of method A was 93.5%. 
The methods B and C were 90%. The highest 
success rate for methods D and E was 100%. 
Method E reached its highest value when the 
ER was 2. Method D reached its highest value 
at an ER of 2.75. From Figure 7(b), as the ER 
increased, the success rate of image denoising 

for all five methods showed a smooth growth. 
The success rate of the research method was 
higher than that of comparative methods, 
reaching a maximum of 81.2%. Overall, both 
explicit edge selection and AC regularization 
can effectively improve the image denoising 
effect. The research method combines these 
two modules to achieve the best performance 
in different combinations. To visualize the 
contribution of each module, a restoration 
image of a randomly selected blurred image 
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From Figure 7(a), as the ER increased, the 
success rate of image denoising for all five 
methods showed a stepwise increase. The 
highest success rate of method A was 93.5%. 
The methods B and C were 90%. The highest 
success rate for methods D and E was 100%. 
Method E reached its highest value when the 
ER was 2. Method D reached its highest value 
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effect. The research method combines these 
two modules to achieve the best performance 
in different combinations. To visualize the 
contribution of each module, a restoration 
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From Figure 7(a), as the ER increased, the success 
rate of image denoising for all five methods showed a 
stepwise increase. The highest success rate of meth-
od A was 93.5%. The methods B and C were 90%. The 
highest success rate for methods D and E was 100%. 
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Method E reached its highest value when the ER was 
2. Method D reached its highest value at an ER of 2.75. 
From Figure 7(b), as the ER increased, the success 
rate of image denoising for all five methods showed 
a smooth growth. The success rate of the research 
method was higher than that of comparative methods, 
reaching a maximum of 81.2%. Overall, both explicit 
edge selection and AC regularization can effective-
ly improve the image denoising effect. The research 
method combines these two modules to achieve the 
best performance in different combinations. To visu-
alize the contribution of each module, a restoration 
image of a randomly selected blurred image in the 
ICDAR2019 text dataset is analyzed separately. The 
results are shown in Figure 8.
Figure 8 shows the processing result of the blurred 
image. From Figure 8(a), the restoration results were 
not ideal when the parameter λ  was 0. The resto-
ration results tended to deteriorate. The restoration 
results were improved compared with λ  was 0 when 
the parameter θ  was 0. Some fonts could be seen 
clearly, but there were still blurry fields. The DARSE-
AC model with convex edges and AC regularization 

Figure 8
Image blur processing results

has higher deblurring effect and effectiveness. In Fig-
ure 8(b), parameter λ was 0, which essentially indi-
cated that there was no significant edge extraction 
in the intermediate results. The parameter θ was 0, 
which essentially showed that there was no AC reg-
ularization in the intermediate result. The research 
method included these two modules. From Figure 
8(b), when parameter λ  was 0, the restoration pro-
cess initially tended to clearer. Some fonts could be 
seen clearly, but the final result became increasingly 
blurry. When parameter θ was 0, the restoration re-
sults showed the same trend, the image blurring un-
der the influence of the research method continuous-
ly decreased, ultimately showing clear results. From 
Figure 8(a)-(b), the DARSE-AC model with salient 
edges and AC regularization has higher deblurring ef-
fect and effectiveness.
Finally, the convergence and limitations of the mod-
el are analyzed. In the convergence analysis of the 
DARSE-AC model, the iterations are 50. The conver-
gence is verified from two aspects: the change in aver-
age energy function value and the change in average 
kernel similarity. In the limitation verification, the 

in the ICDAR2019 text dataset is analyzed separately. The results are shown in Figure 8. 
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Image blur processing results 

Figure 8 shows the processing result of the 
blurred image. From Figure 8(a), the 
restoration results were not ideal when the 
parameter λ  was 0. The restoration results 
tended to deteriorate. The restoration results 
were improved compared with λ  was 0 
when the parameter θ  was 0. Some fonts 
could be seen clearly, but there were still 
blurry fields. The DARSE-AC model with 
convex edges and AC regularization has 
higher deblurring effect and effectiveness. In 
Figure 8(b), parameter λ was 0, which 
essentially indicated that there was no 
significant edge extraction in the intermediate 
results. The parameter θ was 0, which 

essentially showed that there was no AC 
regularization in the intermediate result. The 
research method included these two modules. 
From Figure 8(b), when parameter λ  was 0, 
the restoration process initially tended to 
clearer. Some fonts could be seen clearly, but 
the final result became increasingly blurry. 
When parameter θ was 0, the restoration 
results showed the same trend, the image 
blurring under the influence of the research 
method continuously decreased, ultimately 
showing clear results. From Figure 8(a)-(b), 
the DARSE-AC model with salient edges and 
AC regularization has higher deblurring 
effect and effectiveness.

Finally, the convergence and limitations of the 
model are analyzed. In the convergence 
analysis of the DARSE-AC model, the 
iterations are 50. The convergence is verified 
from two aspects: the change in average 
energy function value and the change in 

average kernel similarity. In the limitation 
verification, the research method on blurred 
images with Gaussian noise level and salt and 
pepper noise level are evaluated. The 
evaluation index is PSNR. The results are 
shown in Figure 9. 
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research method on blurred images with Gaussian 
noise level and salt and pepper noise level are evalu-
ated. The evaluation index is PSNR. The results are 
shown in Figure 9.
In Figure 9(a), as the number of iterations increased, 
the average energy function value continued to de-
crease. After approximately 18 iterations, it reached 
8 and stabilized. It fluctuated between 20 and 27 it-
erations, but overall remained stable. The reason for 
fluctuations is that the selection of penalty parame-
ters during image deblurring can affect the conver-
gence speed and stability of the algorithm. Calculat-
ing the surface curvature of the image based on the 
curvature of each pixel in the approximate image 
domain can lead to certain errors. As the number of 
iterations increases, the average kernel similarity val-
ue continues to increase. In Figure 9(b), the increase 
in noise led to a continuous decrease in the PSNR of 
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in the ICDAR2019 text dataset is analyzed separately. The results are shown in Figure 8. 
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the iNaturalist 2021 dataset, fast motion deblurring 
method, two-stage kernel estimation deblurring meth-
od, normalized blind deconvolution deblurring meth-
od, and significant kernel estimation deblurring meth-
od (represented by 1-4) are introduced. The edge fuzzy 
kernel estimation, extreme channel prior deblurring 
method, depth discrimination prior deblurring meth-
od, and surface perception deblurring method (repre-
sented by 5-8) are analyzed. The specific content of the 
comparison method is shown in Table 4.
They were compared with the DARSE-AC model. The 
hyper-parameters λ , ξ , θ , τ  and γ  are set as 4e-4, 
4e-3, 4e-3, 2, and 8e-4 respectively in the experiment. 
The experimental environment is matrix laboratory. 
The quantitative results are shown in Table 5.
In Table 5, O, P, Q, and R represent the evaluation 
metrics PSNR, Structure Similarity Index Measure 
(SSIM), ER, and success rate, respectively. From Ta-
ble 4, the PSNR, SSIM, and ER values of the DARSE-
AC model were 31.03, 0.96, and 1.61, respectively, 
which were higher than comparative methods. The 
success rate was as high as 99.54%, significantly bet-
ter than comparative methods. Overall, the research 
method has the best deblurring performance on the 
iNaturalist 2021 dataset. To further validate the supe-
riority of the research method, different methods are 
compared for PSNR and SSIM values on the GLAD-
Net dataset and the ICDAR2019 dataset. The success 
rates of different methods under different ERs are 
shown in Figure 10.
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Table 4
Comparison Methods on iNaturalist 2021 Dataset

Serial 
number Method Design concept Reference

1 Fast motion deblurring 
method

Using local fuzzy perception gating network and fuzzy perception patch 
pruning strategy to locate fuzzy regions in local motion blur dataset. [16]

2 Two-stage kernel estima-
tion deblurring method

Implementing motion image deblurring using a two-stage convolutional 
neural network (CNN) to jointly learn the U-Net architecture strategy. [22]

3 Normalized blind deconvo-
lution deblurring method

Developed a benchmark for validating non blind deconvolution 
methods. [3]

4 Significant kernel estima-
tion deblurring method

Propose a fractional order (spatial and temporal) total variation regular-
ization model to improve model efficiency through fuzzy membership 
degrees with regular changes.

[14]

5 Edge fuzzy kernel 
estimation

Propose a blind image restoration method combining fuzzy kernel 
estimation and CNN, and use fuzzy support parameter estimation to 
achieve automatic feature line detection.

[11]

6 Extreme channel prior 
deblurring method

Using specific region priors and image deblurring techniques to enhance 
the true edges of images. [23]

7 Depth discrimination prior 
deblurring method

Designed a dual fusion neural network consisting of a deep generative 
network and a discriminative network. [6]

8 Surface perception deblur-
ring method

Restoration of Blurred Images Using Modified Fuzzy Generative 
Adversarial Networks. [4]

Table 4
Comparison results of indicator performance among different methods on the same dataset

- 1 2 3 4 5

PSNR 26.22 28.29 23.20 23.91 29.51

SSIM 0.87 0.92 0.81 0.83 0.93

ER 8.69 3.62 11.64 9.19 2.36

Success rate (%) 78.90 94.98 67.13 68.67 97.32

- 6 7 8 DARSE-AC

-

PSNR 30.82 30.67 30.72 31.03

SSIM 0.94 0.94 0.94 0.96

ER 1.70 1.82 1.82 1.61

Success rate (%) 98.34 98.34 98.22 99.54

In Figure 10, the blur kernel size is set to 51×51. 
The same non-blind deblurring algorithm is used 
to obtain the final clear image (using the non-blind 
deblurring algorithm of natural image blocks). In 
Figure 10 (a), an increase in ER value led to an in-
crease in the success rate of deblurring for different 
methods, with Method 1 and Method 2 having rela-
tively faster growth rates. The highest success rate 

of Method 1 was about 78%. Method 2 achieved a 
maximum value of approximately 95%. In Figure 10 
(b), the research method reached the highest value, 
about 99%, with an error rate of about 4 compared 
with other methods. 
Figure 11 shows a comparison of PSNR and SSIM 
values using different methods on the GLADNet 
dataset and ICDAR2019 dataset.
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Figure 10
Comparison of success rates of different methods under different ERs
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superiority of the research method, different 
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the SSIM value was 0.96, both higher than compara-
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Figure 12
Comparison results of different methods for removing blurry low light images

Among them, Method 1 and Method 4 are selected as 
comparative methods on the dataset GLADNet. The 
results of removing blurred low light images using dif-
ferent methods are shown in Figure 12.
From Figures 12(c)-(d), methods 1 and 2 improved 
clarity compared with the original blurred image, 
i.e. Figure 12(a). However, compared with the orig-
inal clear image and blur kernel, there still existed 
blurriness. From Figure 12(e), the research method 
achieved the best results among the three methods. 
The actual restoration results show that generated 
images are clearer and have less residual blur, which 
are closer to Figure 12(b).
On this basis, different methods are compared for 
true fuzziness in the dataset RESID through random 
screening. The visual effect of the restoration results 
on low light images is shown in Figure 13.
In Figure 13, to avoid repetition, methods 3 and 9 were 
selected for comparison. They used the same non-
blind deconvolution algorithm to achieve better visu-
alization (using the non-linear non blind deconvolu-
tion algorithm of light fringes). From Figure 13(a), the 
original blurred image of the license plate number and 

Figure 13
Visual effects of different methods on restoration results of realistic blurred low light images in the RESID dataset

In Figure 11, methods 5 and 8 were not 
suitable for these two datasets, so they were 
removed. A deblurring method using L0 
normal form combined with regularization is 
synchronously introduced, namely Equation 
(9). From Figure 11(a), the PSNR value of the 
research method in dataset ICDAR2019 was 
30.29, and the SSIM value was 0.96, both 
higher than comparative methods. From 
Figure 11(b), the PSNR value of the research 
method in the dataset GLADNet was 25.16, 
and the SSIM value was 0.90, which was also 
higher than comparative methods. Overall, in 
the quantitative comparison between the two 
datasets, the research method shows the best 

performance, indicating that the research 
method has higher applicability and 
generalization ability. To further validate the 
performance of the DARSE-AC model, images 
are randomly selected on the dataset 
GLADNet to compare the deblurring visual 
effects of different methods. A more 
challenging Realistic Single Image Dehazing 
(RESID) dataset is introduced to validate the 
performance. 
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In Figure 13, to avoid repetition, methods 3 
and 9 were selected for comparison. They 
used the same non-blind deconvolution 
algorithm to achieve better visualization 
(using the non-linear non blind deconvolution 
algorithm of light fringes). From Figure 13(a), 
the original blurred image of the license plate 
number and the locally enlarged image were 
completely unclear. From Figure 13(b), 
method 3 improved the image clarity, but 
there was still noise and blurred lines. From 

Figure 13(c), method 9 improved compared 
with method 3, but there was still ambiguity. 
From Figure 13(d), the fuzzy kernel of the 
research method contained less noise. The 
restored image had better visual quality. The 
DARSE-AC model has better performance 
and stronger image restoration ability on 
different datasets. Finally, the study compares 
the average PNSR quantitative evaluation 
results of different methods in the dataset 
RESID, as shown in Table 6. 
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research method contained less noise. The 
restored image had better visual quality. The 
DARSE-AC model has better performance 
and stronger image restoration ability on 
different datasets. Finally, the study compares 
the average PNSR quantitative evaluation 
results of different methods in the dataset 
RESID, as shown in Table 6. 

the locally enlarged image were completely unclear. 
From Figure 13(b), method 3 improved the image clar-
ity, but there was still noise and blurred lines. From 
Figure 13(c), method 9 improved compared with meth-
od 3, but there was still ambiguity. From Figure 13(d), 
the fuzzy kernel of the research method contained less 
noise. The restored image had better visual quality. 
The DARSE-AC model has better performance and 
stronger image restoration ability on different data-
sets. Finally, the study compares the average PNSR 
quantitative evaluation results of different methods in 
the dataset RESID, as shown in Table 6.
In Table 6, the study screened five types (represent-
ed by e~i) from the RESID dataset, including artificial 
images, natural images, humans, saturated solutions, 
and text. From Table 5, the research method had ad-
vantages in the PSNR values for artificial and natural 
images in the dataset RESID, with values of 19.24 and 
23.61, respectively. Method 7 had advantages in hu-
mans, saturated solutions, and texts, with values of 
25.77, 16.61, and 17.98, respectively. Overall, the PNSR 
value of DARSE-AC was 20.56, which was superior to 
comparative methods, indicating its superiority.
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Table 6
Average PNSR quantitative results demonstrated by different methods

- 1 2 3 4 9 6 7 8 DARSE-AC

e 16.34 19.21 15.72 15.05 16.91 18.31 18.84 18.76 19.24

f 20.12 13.01 19.42 20.05 20.90 22.96 23.35 23.11 23.61

g 19.88 25.30 21.48 20.34 23.34 25.70 25.77 25.53 25.37

h 14.04 14.78 14.07 15.34 14.60 16.56 16.61 16.52 16.50

i 14.85 18.54 15.39 14.88 16.85 17.64 17.98 17.68 17.96

Total 17.05 20.17 17.22 17.14 18.52 20.24 20.51 20.32 20.56

5. Conclusions
At present, in the actual imaging process of visual 
communication, many factors lead to image blurring 
and high noise. This study combined convex edges 
with AC regularization to propose DARSE-AC. The 
effectiveness was verified. From the experimental 
results, in the parameter sensitivity analysis, the val-
ues of the five parameters remained around 0.8, indi-
cating that the parameter sensitivity of the research 
method was not high. As the error rate increased, the 
success rate of deblurring for all five methods showed 
a gradually increasing trend. The highest success rate 
of method A was 93.5%. The highest success rate of 
methods B and C was 90%. The highest success rate 
of methods D and E was 100%. In addition, the PSNR, 
SSIM, and ER values of the DARSE-AC model were 
31.03, 0.96, and 1.61, respectively, with a success rate 
of 99.54%, which was higher than comparative meth-
ods. The research method generated clearer images 
with less residual blur. Meanwhile, the overall PNSR 
value of the research method in the RESID dataset 
was 20.56, which was better than comparative meth-
ods. Based on the current research status of poor im-
age deblurring quality, this paper designs an improved 

algorithm based on regularization and deconvolution, 
highlighting edges and average curvature. Regular-
ization processing can overcome the disadvantages 
of geometric features that cannot be saved, high com-
putational costs, and difficult parameter selection in 
image restoration methods. After improving the mod-
el to a spatially adaptive mixed variation model, the 
design of spatially adaptive parameters can suppress 
noise, highlight edges, and improve smoothness. The 
salient edge selection method can remove noise and 
texture from intermediate images while preserving 
salient edges, which is beneficial for fuzzy kernel es-
timation. Calculating the curvature of an image sur-
face by approximating each pixel in the image domain 
inevitably leads to certain errors. Therefore, in future 
research, it is necessary to more accurately find the 
tangent planes of the center point in different direc-
tions and calculate the arc length between the center 
point and adjacent points to reduce errors. However, 
in actual imaging, blur degradation is mostly spatially 
variable, and existing spatially variable degradation 
models still cannot well describe the real degradation 
process. Therefore, establishing a realistic and effec-
tive fuzzy degradation model is one of the key focuses 
of future work.
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