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Human gait pose estimation and recognition, as an emerging biometric technology, have advantages such as no 
need for target object cooperation, difficulty in forgery, and long-distance recognition. However, compared with 
traditional biometric special recognition, it is more susceptible to the influence of target object’s arbitrary motion. 
In response to the above issues, the study introduces heterogeneous transfer learning to construct a human gait 
pose estimation and recognition method based on computer vision and Transformer, and improves it using the per-
spective gradually shift training method based on this. The research results indicated that the improved human gait 
pose estimation and recognition model had good recognition performance in 11 perspectives with intervals of 16° 
from 0° to 180°, and the corresponding change curve remained stable, with an average recognition rate of over 97%. 
The average initial validation rate of the improved model was 65.32% higher than before, and the maximum valida-
tion rate of the improved model achieved significant improvement from different angles. In comparison with oth-
er mainstream algorithms, the improved model proposed in the study had the highest average validation rate and 
average accuracy, which were 98.56% and 97.51%, respectively, and the corresponding average improvement index 
was greater than 20%. The above results confirm the performance and reliability of the research method, providing 
new solutions for the problem of human gait pose estimation and recognition in complex scenarios.
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1. Introduction
In recent years, China’s information infrastructure 
industry and artificial intelligence field have devel-
oped rapidly, and society has put forward higher de-
mands for personal information security and produc-
tion efficiency. Traditional biometric technologies 
such as facial recognition, iris recognition, and finger-
print recognition are difficult to meet people’s various 
needs in different application scenarios [15, 21, 25]. 
The estimation and recognition of human gait pos-
ture (ERHGP), as an emerging biometric method, has 
received widespread attention from many scholars. 
This method can perform long-distance non-contact 
recognition and is suitable for scenarios with fre-
quent outbreaks of influenza or infectious diseases, 
without the active participation of the target object. 
Moreover, it has a high level of anti-counterfeiting, 
because the coordinated movements of different parts 
of the human gait posture design have the character-
istic of being difficult to change [1, 22]. In addition, the 
cost of cameras used for acquisition is relatively low, 
which is suitable for large-scale deployment, and can 
also perform 360° full angle recognition [4]. However, 
the ERHGP method has the following problems: first-
ly, in terms of application, China is in the explorato-
ry stage, so there are limitations in large-scale com-
mercial applications; secondly, the target object has 
arbitrary motion and high computational complexity, 
making processing more difficult [2, 8]. Gao et al. pro-
posed a novel skeleton-based gait recognition model 
to address the issue that general contour-based gait 
recognition methods rely on binary human contours 
and are easily affected by external factors. They con-
ducted experiments on two datasets, CASIA-B and 
OUMVLP-Pose, and the results confirmed that this 
model had high recognition accuracy and significant 
robustness [6]. Yeo et al. designed a region-based 
three branch convolutional network gait recogni-
tion method to address the issue of traditional gait 
recognition methods being easily affected by covari-
ate conditions, resulting in a significant decrease in 
accuracy. The study was validated in the CASIA-B 
database, and the results showed that the method 
exhibited good performance of 72.98% under covari-
ate conditions [29]. Ozturk et al. aimed to achieve a 
reliable, easy-to-use, and high-precision gait recog-
nition method, and constructed a gait recognition 
method using millimeter wave radio. The experiment 

demonstrated the practicality of this method and 
achieved an average recognition accuracy of 79.1% 
[17]. Mathivanan et al. developed an advanced deep 
belief network algorithm based on black widow opti-
mization, and recognized it through human gait im-
ages. The method was implemented on the MATLAB 
platform and compared with mainstream methods 
such as artificial neural networks, recurrent neural 
networks, and particle swarm optimization. The re-
sults verified the superiority of this method [14]. Wen 
et al. proposed a novel multi-perspectives recogni-
tion model based on generative adversarial networks 
and conducted experiments on the CASIA-B dataset. 
The results showed that this method achieved good 
recognition performance in the sequences of luggage 
and outerwear [26]. Rahi et al. designed a human gait 
recognition architecture that combines attention 
mechanism with multi-stream Convolutional Neu-
ral Network (CNN) to achieve high accuracy in gait 
re-recognition. Compared with current advanced 
technologies, the results showed the superiority of 
this method [20]. Inturi et al. [9] proposed a visu-
al-based method for fall detection, which utilizes an 
AlphaPose pre-trained network to obtain a set of key-
points of an object, and processes the keypoints using 
a CNN layer framework. Finally, long-term dependen-
cies were ensured through long short-term memory 
structures. By comparing with OpenPose network, 
the results showed that the research method was 
more accurate in detecting keypoints [9]. Ogundokun 
et al. developed a classification model based on deep 
transfer learning, which mainly classifies four main 
actions: sitting, bending, lying, and standing. The re-
search results showed that the improved model had 
the highest testing accuracy, validation accuracy, and 
training accuracy, which were 94.72%, 93.79%, and 
97.06%, respectively [16]. Kulikajevas et al. designed 
a novel deep recursive layer network model to reduce 
or eliminate occlusion issues related to human torso 
visibility in frames. Simulation results showed that 
the research method achieved a sitting posture rec-
ognition accuracy of 91.47% at a speed of 10fps [10]. 
Elavarasi et al. proposed a deep learning algorithm to 
observe gait patterns by obtaining image frames from 
real-time environments for fall detection in elderly 
communities. The results showed that the long short-
term memory network course provided 94% accuracy 
and minimal false alarms [5].
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Based on the above content, it can be concluded 
that certain achievements have been made in the 
performance and application of human gait pose 
recognition, but there are still shortcomings in ac-
curacy. This is because visual accuracy is easily af-
fected by factors such as backpacks from different 
perspectives, resulting in lower recognition accura-
cy. Therefore, this study combines Heterogeneous 
Transfer Learning (HTL) to establish an ERHGP 
method based on Computer Vision and Transformer 
(CVT). Based on this, a Perspective Gradually Shift-
ing Training (PGST) method is designed to optimize 
and obtain a multi-perspectives recognition model 
based on improved CVT. The research aims to solve 
the problem of recognizing human gait pose infor-
mation from different perspectives in ERHGP, im-
prove the accuracy of human gait pose recognition 
in samples of different scales, and expand the ap-
plication fields of human gait pose recognition. The 
innovation of the research mainly lies in the follow-
ing two points. The first point is to establish a new 
method for converting the perspective of human 
gait pose, and combine it with HTL to design an ER-
HGP method based on CVT. The second point is to 
design the PGST method to improve the CVT model 
and propose a multi-perspectives recognition model 
based on the improved CVT.

2. Method and Materials
In response to the problem of strong randomness and 
complexity in identifying target movements in ER-
HGP, this study first selects experimental datasets 

and preprocessing methods, then proposes an ER-
HGP method based on CVT, and finally constructs a 
multi-perspectives recognition model based on im-
proved CVT.

2.1. Human Gait Pose Estimation and 
Recognition Dataset and Preprocessing
The dataset used in the study is from the public ER-
HGP dataset, and the ERHGP dataset is selected 
based on single and multiple angles. The Gait of In-
stitute of Automation, Chinese Academy of Sciences 
(GIACAS) is selected as the data set for experiment. 
The data set has different perspectives and scales. De-
tails are denoted in Table 1.
In dataset C, a single angle infrared human gait pose 
estimation and recognition experiment is conducted. 
A fixed 90° shooting angle is used with an infrared 
camera to capture 153 pedestrians in a single angle. 
Simultaneously, four gait conditions: Normal Walk-
ing (NE), Slow Walking (SW), Fast Walking (SW), and 
Carrying A Backpack for Walking (CBW) are collect-
ed. In dataset B, a multi-perspectives human gait pose 
estimation and recognition experiment is conducted, 
including 31 females and 93 males, respectively. In 
addition, the study collects images of participants un-
der three conditions: NE, CBW, and Wearing A Coat 
to Walk (WCW) from 11 different viewing angles 
ranging from 0° to 180° with an 18° angle interval. The 
images are also collected indoors in the same environ-
ment to avoid the influence of outdoor natural light 
noise. Dataset A is a small-scale library with a total 
of 20 people conducting experiments. Four image se-
quences are collected in the directions of 0°, 45°, and 
90° from the image plane, respectively. The length of 

Table 1 
The specific content of the GIACAS dataset

Dataset Dataset A Dataset B Dataset C

Environment Outdoor Indoor Outdoor and Nighttime

Sample size 20 124 153

Is it an infrared image? No No Yes

Number of perspectives 3 11 1

Walking conditions
The speed variation varies, and 
the frame rate of each sequence 

ranges from 37 to 127

Normal conditions, wearing a 
coat and carrying a package

Normal walking, fast 
walking, slow walking, 
and walking with bags

Outline data memory size/M 16 628 66
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each sequence varies with the walking speed of the 
subjects, and a total of 13139 images are collected. 
Three examples of datasets are illustrated in Figure 1.

Figure 1 
Example diagrams of three datasets

Because both dataset B and dataset C are used to ob-
tain human contour features during walking through 
binarization and other operations, only unnecessary 
background cropping and other steps are needed to 
reduce the adverse effects caused by large differenc-
es in data quality. Then, all gait feature images are 
unified to 128 * 128 pixels in size. Due to the fact that 
most previous studies only considered the instanta-
neous features corresponding to human gait posture, 
they often overlook the temporal correlation and con-
tinuity of human walking. Therefore, by introducing 
time domain features and dividing human gait data 
based on the maximum walking cycle, several gait 
cycle groups can be obtained. This operation not 
only preserves the focus of conventional human gait 
pose estimation and recognition on instantaneous 
features, but also fuses temporal correlated features 
in time periods, thereby enhancing the robustness of 
human gait recognition. The commonly used meth-
ods for calculating gait cycle include Absolute Dif-
ference Sum Algorithm (ADSA), Normalized Cross 
Correlation Coefficient (NCCC), and Zero Mean Nor-
malized Cross Correlation Coefficient (ZMNC) [24]. 

(a) Dataset A

(b) Dataset B

(c) Dataset C

 

Figure 1  

Example diagrams of three datasets 

Because both dataset B and dataset C are used 
to obtain human contour features during 
walking through binarization and other 
operations, only unnecessary background 
cropping and other steps are needed to reduce 
the adverse effects caused by large differences 
in data quality. Then, all gait feature images 
are unified to 128 * 128 pixels in size. Due to 
the fact that most previous studies only 
considered the instantaneous features 
corresponding to human gait posture, they 
often overlook the temporal correlation and 
continuity of human walking. Therefore, by 
introducing time domain features and 
dividing human gait data based on the 
maximum walking cycle, several gait cycle 
groups can be obtained. This operation not 
only preserves the focus of conventional 
human gait pose estimation and recognition 
on instantaneous features, but also fuses 
temporal correlated features in time periods, 
thereby enhancing the robustness of human 
gait recognition. The commonly used 
methods for calculating gait cycle include 
Absolute Difference Sum Algorithm (ADSA), 
Normalized Cross Correlation Coefficient 
(NCCC), and Zero Mean Normalized Cross 
Correlation Coefficient (ZMNC) [24]. In the 
ADSA, it is necessary to calculate the partial 
or overall similarity between the template 
graph and the search degree, and then search 
for the search graph that is most similar to the 
template graph to obtain the final matching 

result. The expression is shown in Equation 
(1). 

( ) ( ) ( )1 1
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In Equation (1), ( ),T m t  and M  represent 
the template graph and search graph, 
respectively, while ( ),i j  represents the 
Manhattan distance 1L  at the corresponding 
positions in ( ),T m t  and M . Assuming 

there are two points ( )1 1,C x y  and 

( )1 1,C x y , the distance 1L  between the two 
points can be calculated using Equation (2). 

1 2 1 21L x x y y= − + − .    (2) 

The principle of this method is simple, and 
the matching accuracy between images is also 
high. However, the corresponding 
computational load will rapidly increase with 
the increase of image size, and it is also very 
sensitive to possible noise. In the NCCC 
method, it is necessary to calculate the 
correlation between ( ),T m t  and M , as 
expressed in Equation (3). 
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In Equation (3), G  and ,x yM  correspond to 

the grayscale mean of ( ),T m t  and M , 
respectively. Due to the high sensitivity 
requirements for human gait posture features 
in infrared human gait images, and to avoid 
possible pattern matching errors in the above 
two methods, ZMNC is chosen to estimate the 
human gait cycle in the study, as shown in 
Equation (4). 

( ) ( ) ( ),

1 1, , ,f tx y
ZMNC x y f x y t x y

n f t
μ μ

σ σ
 = − −    .(4) 

In Equation (4), ( ),f x y  and ( ),t x y  
represent the pixel values corresponding to 
the original image and image template, n  
represents the number of pixels in the 
template, fσ  and tσ , fμ  and tμ  
correspond to the standard deviation and 
pixel mean of the original image and template 
image, respectively. Finally, the human gait 
images with temporal order are input into the 
ZMNC function, and the correlation 
coefficient with the initial state image is 
calculated. By comparing and obtaining the 

In the ADSA, it is necessary to calculate the partial or 
overall similarity between the template graph and the 
search degree, and then search for the search graph 
that is most similar to the template graph to obtain 
the final matching result. The expression is shown in 
Equation (1).
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In Equation (1), ( ),T m t  and M  represent the tem-
plate graph and search graph, respectively, while 
( ),i j  represents the Manhattan distance 1L  at the 
corresponding positions in ( ),T m t  and M . Assum-
ing there are two points ( )1 1,C x y  and ( )1 1,C x y , the 
distance 1L  between the two points can be calculated 
using Equation (2).
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The principle of this method is simple, and the match-
ing accuracy between images is also high. However, 
the corresponding computational load will rapidly 
increase with the increase of image size, and it is also 
very sensitive to possible noise. In the NCCC method, 
it is necessary to calculate the correlation between 
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In Equation (3), G  and ,x yM  correspond to the gray-
scale mean of ( ),T m t  and M , respectively. Due to the 
high sensitivity requirements for human gait posture 
features in infrared human gait images, and to avoid 
possible pattern matching errors in the above two 
methods, ZMNC is chosen to estimate the human gait 
cycle in the study, as shown in Equation (4).

( ) ( ) ( ),

1 1, , ,f tx y
ZMNC x y f x y t x y

n f t
µ µ

σ σ
 = − −   ∑ . (4)

In Equation (4), ( ),f x y  and ( ),t x y  represent the 
pixel values corresponding to the original image and 
image template, n  represents the number of pixels 
in the template, fσ  and tσ , fµ  and tµ  correspond 
to the standard deviation and pixel mean of the orig-
inal image and template image, respectively. Finally, 
the human gait images with temporal order are input 



119Information Technology and Control 2025/1/54

into the ZMNC function, and the correlation coef-
ficient with the initial state image is calculated. By 
comparing and obtaining the feature repetition pe-
riod, the maximum value is selected to estimate the 
gait cycle for subsequent experiments. In addition, 
the study also introduces mathematical morphology, 
which uses certain structural elements to measure 
and extract corresponding shapes in images. This not 
only simplifies image data and removes unimportant 
structures, but also preserves the basic shape charac-
teristics of the image. The study mainly used the open 
operation method in morphological image processing 
to break narrow necks, eliminate fine protrusions, 
and make the contours of the image smoother.

2.2. Human Gait Pose Estimation and 
Recognition Method Based on CVT

In the past, convolutional modules (Conv Blocks) and 
other methods are used for image recognition in hu-
man gait pose estimation and recognition. The human 
gait feature maps are processed as a whole, which 
ignore the differences in human gait pose during dy-
namic walking, resulting in many useful human gait 
features being discarded, leading to problems such 
as easy saturation of recognition accuracy [19, 7, 3]. 
Therefore, based on CVT, this study proposes a meth-
od that can grid segment the human gait contour map, 
use independent feature subspaces to fit feature de-
construction, and finally refine the extraction of hu-
man gait features from spatiotemporal dimensions to 
improve the accuracy of human gait recognition. The 
images in the training set are optimized gait maps 
with only one target, so adding attention mechanisms 
and other methods cannot improve the recognition 
rate under occlusion conditions. In this case, increas-
ing the number of convolutional layers for optimiza-
tion is the most effective method, but it can also lead 
to low training efficiency. Therefore, additional light-
weight methods were used in the study. Due to the 
reduction in the number of minimum data units used 
in pediatrics caused by the division of human gait cy-
cle groups in the above section, a sliding window hu-
man gait cycle division method is used to expand the 
number of minimum data units. The specific process 
is as follows. The capacity of the human gait cycle is 
set to T , and the human gait characteristics up to the 

1N T− +  th time can be used as the starting time of 
the human gait characteristics at each moment in the 

time period. This not only ensures the spatiotemporal 
characteristics of the human gait, but also maximizes 
the approach to complex environmental applications, 
making the experimental results more reliable. Con-
sidering the fitting features of human gait recognition 
models in small sample datasets, a shallow dual path 
residual network is designed based on the Resnet net-
work for comparison with subsequent CVT human 
gait pose recognition models. The schematic dia-
gram of the Dual Path Convolutional Neural Network 
(DPCNN) model for human gait pose recognition is 
shown in Figure 2.
In Figure 2, firstly, it is necessary to parallelize the 
shallow convolutional block groups of Block1 and 
Conv1 Block, and at the same time, process the 
strengthened human gait features through a homoge-
nization fusion module. Next, it needs to input it into 
Block2-4 to fit high-level human walking posture fea-
tures. Then, it will input the binary adaptive average 
pooling layer to adjust the data format. Finally, it will 
output the results through the fully connected layer. 
For human gait pose recognition, the CVT method 
can distinguish the feature fitting methods of dif-
ferent positions, and to achieve a feature processing 
mode close to the Transformer, small blocks are con-
verted into one-dimensional spatial tensors of equal 
size. This can achieve the effect of fitting human gait 
poses at different positions through independent 
feature weight space within a certain range. Howev-
er, the above operations can cause spatial disorder. 
Therefore, this study uses position encoding to add 
position embedding values to the spatial tensor, and 
then adds a value that identifies the position at a fixed 
position of the spatial tensor to calibrate the relative 
position of the small block. There are currently two 
methods for adding positional embeddings, and the 
first expression is shown in Equation (5).

( ),2 2sin , 0,..., , 512
2

10000 l

l
lps i i

d

dpsP i d
 
 = = =
  
 

. (5)

In Equation (5), ps represents the position sequence 
number of the token globally. The second expression 
is shown in equation (6).

( ),2 1 2cos , 0,..., , 512
2

10000 l

l
lps i i

d

dpsP i d+

 
 = = =
  
 

. (6)
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Figure 2 
Structural diagram of DPCNN model
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Figure 2  

Structural diagram of DPCNN model 

In Figure 2, firstly, it is necessary to parallelize 
the shallow convolutional block groups of 
Block1 and Conv1 Block, and at the same time, 
process the strengthened human gait features 
through a homogenization fusion module. 
Next, it needs to input it into Block2-4 to fit 
high-level human walking posture features. 
Then, it will input the binary adaptive 
average pooling layer to adjust the data 
format. Finally, it will output the results 
through the fully connected layer. For human 
gait pose recognition, the CVT method can 
distinguish the feature fitting methods of 
different positions, and to achieve a feature 
processing mode close to the Transformer, 
small blocks are converted into 
one-dimensional spatial tensors of equal size. 
This can achieve the effect of fitting human 
gait poses at different positions through 
independent feature weight space within a 
certain range. However, the above operations 
can cause spatial disorder. Therefore, this 
study uses position encoding to add position 
embedding values to the spatial tensor, and 
then adds a value that identifies the position 
at a fixed position of the spatial tensor to 
calibrate the relative position of the small 
block. There are currently two methods for 
adding positional embeddings, and the first 

expression is shown in Equation (5). 
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In Equation (5), ps  represents the position 
sequence number of the token globally. The 
second expression is shown in equation (6). 
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According to the size of the segmentation 
blocks, the above position embedding 
methods have good applicability. The CVT 
model with the above key points has certain 
methodological advantages in human gait 
recognition, but it has the problem of poor 
data fitting performance in small sample 
datasets. This is due to the independent 
subspace feature processing method 
constructed by the CVT method, which slows 
down its convergence speed in small sample 
data and enhances the dependence on model 
data enhancement and regularization [23, 11, 
13]. Therefore, the study introduces the HTL 
method to pre-train large non-human gait 
datasets, and then transfers the training 
weight parameters to the dataset used in the 
study. In addition, to address the limitations 

According to the size of the segmentation blocks, the 
above position embedding methods have good appli-
cability. The CVT model with the above key points 
has certain methodological advantages in human gait 
recognition, but it has the problem of poor data fitting 
performance in small sample datasets. This is due to 
the independent subspace feature processing method 
constructed by the CVT method, which slows down its 
convergence speed in small sample data and enhances 
the dependence on model data enhancement and reg-
ularization [23, 11, 13]. Therefore, the study introduc-
es the HTL method to pre-train large non-human gait 
datasets, and then transfers the training weight param-
eters to the dataset used in the study. In addition, to ad-

dress the limitations of the CVT method, a symmetri-
cal dual attention mechanism human gait model based 
on CVT is studied and designed, as shown in Figure 3.
In Figure 3, it is necessary to first extend the image 
segmentation method based on CVT to the segmen-
tation of human gait contour maps. The independent 
feature subspace is used to fit the independent human 
gait feature weights corresponding to the segmenta-
tion blocks of human gait contour maps at different 
times. Then, a dual channel multi-head attention 
module is established to enhance the feature process-
ing ability. Finally, the human gait pose cycle group is 
input to provide more diverse factors for extracting 
human gait features.



121Information Technology and Control 2025/1/54

Figure 3 
A symmetrical dual attention mechanism human gait model based on CVT

of the CVT method, a symmetrical dual 
attention mechanism human gait model based 

on CVT is studied and designed, as shown in 
Figure 3. 
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Figure 3  

A symmetrical dual attention mechanism human gait model based on CVT 

In Figure 3, it is necessary to first extend the 
image segmentation method based on CVT to 
the segmentation of human gait contour maps. 
The independent feature subspace is used to 
fit the independent human gait feature 
weights corresponding to the segmentation 
blocks of human gait contour maps at 
different times. Then, a dual channel 
multi-head attention module is established to 
enhance the feature processing ability. Finally, 
the human gait pose cycle group is input to 
provide more diverse factors for extracting 
human gait features. 

 
2.3 Construction of a 

Multi-Perspectives 
Recognition Model Based on 
Improved CVT 

At present, human gait pose recognition 
generally revolves around the adverse effects 
of extreme weather on recognition 
performance, as well as the more complex 
issue of human gait pose from 
multi-perspectives. Compared with biological 
features such as iris and face, human gait pose 
has non-coordination and difficulty in 

camouflage, among which non-coordination 
is the advantage of CVT method [27, 30, 18]. 
For the multi-perspectives problem for human 
gait pose recognition, an improved CVT 
model is constructed based on 
multi-perspectives human gait pose feature 
tensor transformation. By transforming 
viewpoint features into high-dimensional 
human gait pose features, the relationship 
between high-dimensional features between 
viewpoints can be searched, and concise 
viewpoint feature transformation is 
completed. In response to the problem of loss 
and low accuracy of human gait pose contour 
features caused by perspective deviation in 
multi-perspectives scenarios, this study uses a 
Siamese neural network as the architecture to 
calculate the correlation between 
multi-perspectives human gait pose features, 
and uses it as the basis for view feature 
transformation to perform transformation 
enhancement processing. Based on the 
features of human gait pose contour from 
multi-perspectives, a dual channel Siamese 
module of CVT and convolution is studied 
and established. The specific structural 
diagram is shown in Figure 4. 

2.3. Construction of a Multi-Perspectives 
Recognition Model Based on Improved CVT

At present, human gait pose recognition generally re-
volves around the adverse effects of extreme weath-
er on recognition performance, as well as the more 
complex issue of human gait pose from multi-per-
spectives. Compared with biological features such 
as iris and face, human gait pose has non-coordi-
nation and difficulty in camouflage, among which 
non-coordination is the advantage of CVT method 
[27, 30, 18]. For the multi-perspectives problem 
for human gait pose recognition, an improved CVT 
model is constructed based on multi-perspectives 
human gait pose feature tensor transformation. By 
transforming viewpoint features into high-dimen-
sional human gait pose features, the relationship 
between high-dimensional features between view-
points can be searched, and concise viewpoint fea-
ture transformation is completed. In response to the 
problem of loss and low accuracy of human gait pose 
contour features caused by perspective deviation in 
multi-perspectives scenarios, this study uses a Sia-
mese neural network as the architecture to calculate 
the correlation between multi-perspectives human 

gait pose features, and uses it as the basis for view 
feature transformation to perform transformation 
enhancement processing. Based on the features of 
human gait pose contour from multi-perspectives, 
a dual channel Siamese module of CVT and convo-
lution is studied and established. The specific struc-
tural diagram is shown in Figure 4.
In Figure 4, the Siamese network module is composed 
of two feature extraction networks for extracting 
multi-perspectives human gait pose information. In 
different modules, high-dimensional local features of 
human gait pose contours are extracted through con-
volutional channels, and global and local high-dimen-
sional information is obtained through Mobile CVT 
(MCVT) channels. Finally, the above information is 
homogenized and fused for use in the current view of 
high-dimensional human gait pose feature tensors. 
In addition, the view set waiting for transformation 
is extracted using the MCVT module to extract the 
view feature tensor, which is based on the MCVT 
model, combined with Transformer and Conv Block, 
and replaces the local processing of convolution with 
deeper global processing. The internal details of the 
MCVT module are shown in Figure 5.
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In Figure 5, Conv Block has two types: N * N and 
pointwise convolution, consisting of one convolu-
tional layer and one batch normalization layer each. 
At the same time, the activation functions of different 
modules use Sigmoid Linear Unit (Silu), as expressed 
in Equation (7).

( ) ( )Silu x x Sigmoid x= � . (7)

In Equation (7), x  is the input matrix and ( )Sigmoid �  
is the Sigmoid function. The pooling layer uses glob-
al average pooling for calculation, as shown in Equa-
tion (8).

( ) ( )w wPL x Avg x= . (8)

In Equation (8), wx  represents the calculation area of 
the pooling layer, and ( )Avg �  represents the average 
value calculation function. To make the model more 
lightweight, some convolutional attributes are added 
to the Transformer module, while retaining the at-
tributes that can be processed globally. A large global 
receptive field is divided into different image blocks 
through non overlapping methods, and the relation-
ship between image blocks is encoded using Trans-
former. In addition, research proposes a Perspective 

Figure 6 
Structural diagram of PFC and ITN modules
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In Figure 6, the PFC module is used to 
calculate the relationship between the 
perspective feature tensors obtained through 
the Siamese network, while treating the 
corresponding relationship tensor as the 
perspective conversion factor. The calculation 
is shown in Equation (9). 

( ) ( )'

1
,

,
'

N
i ii

a b
PFC a b

N
==  .    (9) 

In Equation (9), a  and b  represent the 
tensors of human gait pose feature from two 
perspectives, and 'N  represents the scale of 
the target perspective set that meets the 
conversion criteria. The ITN module is used 
for converting two high-dimensional 
perspective features, as expressed in Equation 
(10). 

( ) ( ), ,ITN a b a PFC a b= + .   (10) 

Finally, a more scientifically appropriate PGST 
is designed for the multi-perspectives 
recognition model based on improved CVT. 
To better calculate the difference in human 
gait pose features between 90° and other 
perspectives, the study uses the same 
pre-training weights in the perspective feature 

relationship calculation module for 
calculation. Since the purpose of this module 
is not classification, the study will remove the 
pre-training weights of the last two layers of 
the extracted network module. In the training 
of the classification module, the study uses a 
more accurate 90° weight as the starting point, 
and then trains towards 0° and 180°, 
respectively. At the same time, the cross 
entropy loss function is used to calculate the 
loss, as shown in Equation (11) [12]. 

( ) ( ), log jOP
CS CS j

LOSS OP CS OP eω  = − +
  .(11) 

In Equation (11), CS  and OP  represent 
the actual labels and predicted results of the 
samples, CSOP  represents the corresponding 
elements of CS  in OP , and CSω  
represents the weight parameters. Based on 
the above content, a multi-perspectives 
recognition model based on improved CVT 
can be obtained. 
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is used for converting two high-dimensional perspec-
tive features, as expressed in Equation (10).
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Finally, a more scientifically appropriate PGST is 
designed for the multi-perspectives recognition 
model based on improved CVT. To better calculate 
the difference in human gait pose features between 
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90° and other perspectives, the study uses the same 
pre-training weights in the perspective feature rela-
tionship calculation module for calculation. Since 
the purpose of this module is not classification, the 
study will remove the pre-training weights of the last 
two layers of the extracted network module. In the 
training of the classification module, the study uses 
a more accurate 90° weight as the starting point, and 
then trains towards 0° and 180°, respectively. At the 
same time, the cross entropy loss function is used to 
calculate the loss, as shown in Equation (11) [12].

( ) ( ), log jOP
CS CS j

LOSS OP CS OP eω  = − +
 ∑ . (11)

In Equation (11), CS  and OP  represent the actual 
labels and predicted results of the samples, CSOP  rep-
resents the corresponding elements of CS  in OP, and 

CSω  represents the weight parameters. Based on the 
above content, a multi-perspectives recognition mod-
el based on improved CVT can be obtained.

3. Results and Discussion
To verify the effectiveness and feasibility of the pro-
posed method, the study first obtained estimation 
and comparison results of different human gait pose 
through ZMNC. Secondly, the performance of the ER-
HGP method based on CVT was analyzed. Then, the 
effectiveness and feasibility of the multi view ERHGP 
method based on improved CVT were analyzed. Fi-
nally, the results obtained from the research method 
were discussed.

3.1. Prediction Results of Different Human 
Gait Pose Based on Preprocessing
Firstly, the correlation coefficients of SW, FW, NW, 
and CBW human gait poses were calculated using 
ZMNC preprocessing operations, and the estimat-
ed comparison results were obtained. At the same 
time, the study also introduced simple step data for 
performance testing, such as cross step, stride, left 
step, and right step. Moreover, to better explore the 
application effect of research methods, the trained 
model was applied on both the MPII dataset and the 
COCO dataset. The former consists of approximate-
ly 25000 images, annotated with 16 joint point infor-

mation of human targets, and includes data for sin-
gle frame single person, single frame multi person, 
and multi person poses. The latter is a dataset used 
for image recognition, with 80 object categories and 
different scene types. To more scientifically validate 
the performance of research methods, the study also 
compared the current mainstream methods, namely 
Gait ViT-based gait recognition method using visu-
al transformers, Gait CNN ViT-based multimodal 
gait recognition using CNNs combined with visual 
transformers, and Gait AViT based on automatic gait 
analysis using visual transformers. The experimen-
tal mathematical equipment selected was a comput-
er with an operating system of Windows 10 and 16GB 
of memory, and the software selected was Python 3.8 
to build the model. The hyperparameters in the ex-
periment are set as follows: the number of encoders 
and kenaf was 6, the number of attention heads was 
10, the optimizer was Adam, and the number of node 
queries was 150. The model parameters are set as 
follows: the initialization learning rate and weight 
decay of the feature extraction network were set 
to 1-5 and 1-4, respectively, the number of iterations 
was set to 200, and the number of data in each batch 
was 16. In addition, the study evaluated the accura-
cy, precision, and mean accuracy of commonly used 
methods. In the COCO dataset, the Object Keypoint 
Similarity (OKS) metric was used to measure the 
accuracy of the research method, while in the MPII 
dataset, the Percentage of Correct Keypoints (PCK) 
was used to evaluate the detection results, which 
actually calculated the percentage of predicted val-
ues within the normalized distance. The results are 
shown in Figure 7.
Figures 7(a)-(d) correspond to the correlation coeffi-
cient variation curves of SW, FW, NW, and CBW pos-
es, respectively. The correlation coefficients of SW, 
FW, NW and CBW mainly fluctuated in the range of 
0.54-0.92, 0.50-0.90, 0.51-0.93, and 0.57-0.93, respec-
tively. Among them, the adjacent peaks represented a 
single legged human gait pose cycle, while there were 
differences in the gait pose cycles of different bipedal 
human postures. The corresponding periods for SW, 
FW, NW, and CBW were 27, 22, 24, and 23, respec-
tively. Based on the above results, the cycle capacity 
corresponding to different human gait poses can be 
determined.
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Figure 7
Comparison results of different human gait estimations 
based on preprocessed ZMNC operations
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estimation and comparison results of different 
human gait pose through ZMNC. Secondly, 
the performance of the ERHGP method based 
on CVT was analyzed. Then, the effectiveness 
and feasibility of the multi view ERHGP 
method based on improved CVT were 
analyzed. Finally, the results obtained from 
the research method were discussed. 
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human gait pose through ZMNC. Secondly, 
the performance of the ERHGP method based 
on CVT was analyzed. Then, the effectiveness 
and feasibility of the multi view ERHGP 
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encoders and kenaf was 6, the number of 
attention heads was 10, the optimizer was 
Adam, and the number of node queries was 
150. The model parameters are set as follows: 
the initialization learning rate and weight 
decay of the feature extraction network were 
set to 1-5 and 1-4, respectively, the number of 
iterations was set to 200, and the number of 
data in each batch was 16. In addition, the 
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Similarity (OKS) metric was used to measure 
the accuracy of the research method, while in 
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Keypoints (PCK) was used to evaluate the 
detection results, which actually calculated 
the percentage of predicted values within the 
normalized distance. The results are shown in 
Figure 7. 
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with a total of 100346 infrared images, and was divid-
ed into training and validation sets in an 8:2 ratio. The 
experimental parameters were set as follows: learn-
ing rate, batch size, number of iterations, and embed-
ding size were set to 0.001, 14, 20, and 32, respectively. 
The study compared the classification accuracy of 
CVT models and CVT basic models of the same size, 
and conducted 10 experiments with the average value 
as the final result. In addition, the study also conduct-
ed comparative experiments on CVT models without 
HTL and DPCNN models, as shown in Figure 8.
Figures 8(a)-(c) show the comparison results be-
tween the CVT model and the same size CVT basic 
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them, the adjacent peaks represented a single 
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were differences in the gait pose cycles of 
different bipedal human postures. The 
corresponding periods for SW, FW, NW, and 
CBW were 27, 22, 24, and 23, respectively. 
Based on the above results, the cycle capacity 
corresponding to different human gait poses 
can be determined. 
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Figures 8(a)-(c) show the comparison results 
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After this, the convergence acceleration of the 
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corresponded to 95.5% and 79.2%, 
respectively. The classification accuracy of the 
CVT model using HTL was significantly 
better than that of the CVT model without 

HTL, indicating that adding HTL can 
effectively improve the recognition 
performance of the CVT model. In the 8th 
iteration alone, the recognition accuracy of the 
CVT model exceeded 90%. In the 12th 
iteration, the recognition accuracy of the 
DPCNN model reached saturation, while the 
recognition accuracy of the CVT model 
continued to steadily increase, reaching 98.6% 
in the 20th iteration. The above results 
indicated that the CVT model proposed in the 
study performs better in terms of data fitting 
speed, stability, and accuracy. 
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indicated that the CVT model proposed in the 
study performs better in terms of data fitting 
speed, stability, and accuracy. 
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model, the CVT model without HTL, and the DPCNN 
model, respectively. Figure 8 shows that both the CVT 
model and the same size CVT basic model had a fast 
convergence speed before the 10th iteration. After 
this, the convergence acceleration of the two models 
continued to slow down, and the final average classi-
fication accuracy corresponded to 95.5% and 79.2%, 
respectively. The classification accuracy of the CVT 
model using HTL was significantly better than that of 
the CVT model without HTL, indicating that adding 
HTL can effectively improve the recognition perfor-
mance of the CVT model. In the 8th iteration alone, 
the recognition accuracy of the CVT model exceeded 
90%. In the 12th iteration, the recognition accuracy 
of the DPCNN model reached saturation, while the 
recognition accuracy of the CVT model continued to 
steadily increase, reaching 98.6% in the 20th itera-
tion. The above results indicated that the CVT model 
proposed in the study performs better in terms of data 
fitting speed, stability, and accuracy.

3.3. Result Analysis of Multi-Perspectives 
ERHGP Method Based on Improved CVT
To verify the effectiveness and feasibility of the 
multi-perspectives ERHGP method based on im-
proved CVT proposed in the study, 90° was set as the 
baseline perspective, and the human gait pose data 
from the other 10 perspectives were converted based 
on this perspective. In addition, due to the fact that 
the human gait pose data obtained in practical ap-
plications may not have the entire cycle of gait pose, 
and the corresponding features have strong random-
ness. Therefore, the study randomly dispersed the 
human gait pose groups to make the experimental 
results more in line with the complex scenarios of 

Figure 9 
Training loss variation curve of multi-perspectives ERHGP method based on improved CVT from different perspectives

practical applications. To evaluate the effectiveness 
of the improved CVT model and PGST method, ex-
periments were conducted at angles, namely 55 in-
termediate° and 125°, where there was significant 
feature loss due to perspective shift. The structure is 
shown in Figure 9.
Figures 9(a)-(b) show the training loss variation 
curves of the multi-perspectives ERHGP method 
based on improved CVT under 55° and 125° view an-
gles, respectively. From Figure 9, it can be observed 
that the improved CVT-based multi-perspectives 
recognition model trained by the PGST method only 
needed 526 and 275 iterations to reach a stable state 
under 55° and 125° perspectives. Compared with the 
improved CVT model without PGST method train-
ing, the loss jump situation of this method was signifi-
cantly improved, and the rate of loss reduction was 
significantly increased. The study was based on data-
set B and trained on five angles with angles less than 
90 °. The results are shown in Figure 10.
Figures 10(a)-(e) show the comparison of training 
effects of the improved CVT method before and after 
the PGST method from 0°, 18°, 36°, 54°, and 72° per-
spectives, respectively. From Figure 10, under only 
54° and 72° perspectives, the recognition rate of the 
improved CVT basic model showed a continuous in-
creasing trend with the increase of iteration times. 
Under 0°, 18°, and 36° perspectives, the model exhib-
ited significant fluctuations to varying degrees. The 
improved CVT model trained by the PGST method 
showed stable recognition rates in all angles below 
90°, with an average recognition rate exceeding 98%. 
The study trained five angles with angles greater than 
90°, as shown in Figure 11.
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Figure 9  

Training loss variation curve of multi-perspectives ERHGP method based on improved CVT from different 
perspectives 

Figures 9(a)-(b) show the training loss 
variation curves of the multi-perspectives 
ERHGP method based on improved CVT 
under 55° and 125° view angles, respectively. 
From Figure 9, it can be observed that the 
improved CVT-based multi-perspectives 
recognition model trained by the PGST 
method only needed 526 and 275 iterations to 
reach a stable state under 55° and 125° 

perspectives. Compared with the improved 
CVT model without PGST method training, 
the loss jump situation of this method was 
significantly improved, and the rate of loss 
reduction was significantly increased. The 
study was based on dataset B and trained on 
five angles with angles less than 90 °. The 
results are shown in Figure 10. 
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Figure 10  

Comparison of the training effect of the improved CVT method before and after the gradual training of the 
viewing Angle under a viewing Angle of less than 90° 

Figures 10(a)-(e) show the comparison of 
training effects of the improved CVT method 
before and after the PGST method from 0°, 18°, 
36°, 54°, and 72° perspectives, respectively. 
From Figure 10, under only 54° and 72° 
perspectives, the recognition rate of the 
improved CVT basic model showed a 
continuous increasing trend with the increase 
of iteration times. Under 0°, 18°, and 36° 

perspectives, the model exhibited significant 
fluctuations to varying degrees. The improved 
CVT model trained by the PGST method 
showed stable recognition rates in all angles 
below 90°, with an average recognition rate 
exceeding 98%. The study trained five angles 
with angles greater than 90°, as shown in 
Figure 11. 
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exceeding 98%. The study trained five angles 
with angles greater than 90°, as shown in 
Figure 11. 
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Figure 11  

Comparison of the training effect of the improved CVT method before and after the gradual training of the 
angle of view at an angle greater than 90° 

Figures 11(a)-(e) correspond to the training 
results of the improved CVT method before 
and after the PGST method from 108°, 126°, 
144°, 162°, and 180° perspectives, respectively. 
From Figure 11, the change curve of the 
improved CVT basic model showed a 
continuous growth trend under five different 
perspectives greater than 90°, while the 
improved CVT model after PGST algorithm 
only showed slight fluctuations in recognition 

rate under two perspectives of 108° and 180°, 
with corresponding average recognition rates 
exceeding 97%. To more intuitively evaluate 
the improvement and stability effects of the 
PGST method on the model, a set of ablation 
experiments were conducted, and a 
comparison experiment was conducted 
between the initial and maximum validation 
rates of the improved CVT model. The results 
are shown in Figure 12. 
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Figures 11(a)-(e) correspond to the training 
results of the improved CVT method before 
and after the PGST method from 108°, 126°, 
144°, 162°, and 180° perspectives, respectively. 
From Figure 11, the change curve of the 
improved CVT basic model showed a 
continuous growth trend under five different 
perspectives greater than 90°, while the 
improved CVT model after PGST algorithm 
only showed slight fluctuations in recognition 

rate under two perspectives of 108° and 180°, 
with corresponding average recognition rates 
exceeding 97%. To more intuitively evaluate 
the improvement and stability effects of the 
PGST method on the model, a set of ablation 
experiments were conducted, and a 
comparison experiment was conducted 
between the initial and maximum validation 
rates of the improved CVT model. The results 
are shown in Figure 12. 

Figure 10 
Comparison of the training effect of the improved CVT 
method before and after the gradual training of the viewing 
Angle under a viewing Angle of less than 90°
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method before and after the gradual training of the angle of 
view at an angle greater than 90°
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Figures 11(a)-(e) correspond to the training results of 
the improved CVT method before and after the PGST 
method from 108°, 126°, 144°, 162°, and 180° perspec-
tives, respectively. From Figure 11, the change curve of 
the improved CVT basic model showed a continuous 
growth trend under five different perspectives greater 
than 90°, while the improved CVT model after PGST 
algorithm only showed slight fluctuations in recogni-
tion rate under two perspectives of 108° and 180°, with 
corresponding average recognition rates exceeding 
97%. To more intuitively evaluate the improvement 
and stability effects of the PGST method on the mod-
el, a set of ablation experiments were conducted, and 
a comparison experiment was conducted between the 
initial and maximum validation rates of the improved 
CVT model. The results are shown in Figure 12.
Figures 12(a)-(b) show the comparison of the initial 
and maximum validation rate results of the improved 
CVT-based multi-perspectives recognition model 
with and without the PGST method, respectively. Fig-
ure 12 shows that the improved CVT model trained 
with PGST achieved high recognition rates in all 10 
perspectives except for the 90°perspective, with an 
average initial recognition rate of 97.65%, which was 
65.32% higher than the improved CVT initial model. 
The maximum validation rate of the improved CVT 
model trained by PGST was improved to a certain ex-
tent from different angles, indicating that the model 
has better robustness. To further validate the feasi-
bility of the proposed model, the study compared it 
with current mainstream recognition models, namely 
Continuous Density Hidden Markov (CHM), Bessel 
Curve Fitting (BCF), CNN, and Deep Convolution-
al Constrained Boltzmann Machine (DCCBM). The 
corresponding average validation rate results and the 
reliability test results of the PGST method from a 36° 
perspective are shown in Figure 13.
Figures 13(a)-(b) show the average validation rate re-
sults of different recognition models from multi-per-
spectives and the reliability test results of the PGST 
method from a 36° perspective, respectively. The 
average validation rate of the improved CVT model 
reached 98.56%, while the average validation rates 
of the CHM, BCF, CNN, and DCCBM models were 
72.51%, 73.45%, 74.62%, and 78.65%, respectively. In 
addition, the overall fluctuation of the change curve of 
the improved CVT basic model was significant, while 
the improved CVT model could achieve a stable rec-

Figure 12 
Initial and maximum validation rate results of a multi-
perspectives recognition model based on improved CVT 
with and without PGST method

ognition accuracy only in the third iteration, with an 
average recognition accuracy of 99.13%. In dataset B, 
different recognition models were used to compare 
accuracy from different angles, and the results are 
shown in Table 2.
According to Table 2, among the 11 non-cross perspec-
tive offset perspectives, the average accuracy of the 
CHM, BCF, CNN, DCCBM, and improved CVT mod-
els were 74.18%, 74.13%, 73.47%, 75.83%, and 97.51%, 
respectively. Compared with other recognition mod-
els, the average improvement index of the improved 
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Figure 13  

The average validation rate of different recognition models from multi-perspectives and the reliability test 
results of PGST method from a 36° perspective 

Figures 13(a)-(b) show the average validation 
rate results of different recognition models 
from multi-perspectives and the reliability test 
results of the PGST method from a 36° 
perspective, respectively. The average 
validation rate of the improved CVT model 
reached 98.56%, while the average validation 
rates of the CHM, BCF, CNN, and DCCBM 
models were 72.51%, 73.45%, 74.62%, and 
78.65%, respectively. In addition, the overall 

fluctuation of the change curve of the 
improved CVT basic model was significant, 
while the improved CVT model could achieve 
a stable recognition accuracy only in the third 
iteration, with an average recognition 
accuracy of 99.13%. In dataset B, different 
recognition models were used to compare 
accuracy from different angles, and the results 
are shown in Table 2. 

Table 2  
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Figure 13 
The average validation rate of different recognition models from multi-perspectives and the reliability test results of 
PGST method from a 36° perspective
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Figures 13(a)-(b) show the average validation 
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fluctuation of the change curve of the 
improved CVT basic model was significant, 
while the improved CVT model could achieve 
a stable recognition accuracy only in the third 
iteration, with an average recognition 
accuracy of 99.13%. In dataset B, different 
recognition models were used to compare 
accuracy from different angles, and the results 
are shown in Table 2. 

Table 2  

Table 2 
The accuracy results of different recognition models in dataset B at different angles

Angle/°
Recognition model accuracy/%

Improved CVT CHM BCF CNN DCCBM

0 98.04 75.21 73.47 75.23 73.26

18 97.24 96.72 76.46 73.12 74.21

36 95.28 72.62 72.35 73.12 77.95

54 98.07 70.21 83.46 72.62 79.26

72 97.73 74.23 76.53 71.56 75.62

90 97.52 69.19 71.82 76.12 75.45

108 97.86 69.72 70.26 74.26 75.958

126 97.26 73.69 74.03 70.86 77.26

144 96.95 71.27 72.32 74.68 73.92

162 97.83 69.92 74.36 73.35 76.25

180 98.79 73.25 70.42 73.26 74.95

CVT model was greater than 20%. In summary, the 
research proposed a multi-perspectives recognition 
model based on improved CVT, which can balance 
high-precision and human gait pose angle recognition 
extension, and enhance the possibility of human gait 
pose estimation and recognition in multi-perspectives 
application scenarios. To further analyze the robust-
ness of the research method, different gait recognition 
methods were tested on the COCO dataset and MPII 
dataset, and the results are shown in Figure 14.

Figures 14(a)-(b) correspond to the OSK results of 
gait recognition algorithms on the COCO dataset 
and MPII dataset, respectively. Among them, OSK50 
and OSK75 were the prediction accuracies of OSK 
under the conditions of 0.5 and 0.75, respectively. 
OSK-M and OSK-L were the prediction accuracies of 
medium-sized and large-sized targets, respectively. 
OSK-O was the average recall rate of the model pre-
diction results. From Figure 14(a), the OSK result of 
the research method was 86.2%, and it showed the 
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Figure 14 
Robustness results of different gait recognition methods 
based on COCO dataset and MPII dataset

The accuracy results of different recognition models in dataset B at different angles 

Angle/° 
Recognition model accuracy/% 

Improved CVT CHM BCF CNN DCCBM 
0 98.04 75.21 73.47 75.23 73.26 

18 97.24 96.72 76.46 73.12 74.21 
36 95.28 72.62 72.35 73.12 77.95 
54 98.07 70.21 83.46 72.62 79.26 
72 97.73 74.23 76.53 71.56 75.62 
90 97.52 69.19 71.82 76.12 75.45 
108 97.86 69.72 70.26 74.26 75.958 
126 97.26 73.69 74.03 70.86 77.26 
144 96.95 71.27 72.32 74.68 73.92 
162 97.83 69.92 74.36 73.35 76.25 
180 98.79 73.25 70.42 73.26 74.95 

According to Table 2, among the 11 non-cross 
perspective offset perspectives, the average 
accuracy of the CHM, BCF, CNN, DCCBM, 
and improved CVT models were 74.18%, 
74.13%, 73.47%, 75.83%, and 97.51%, 
respectively. Compared with other 
recognition models, the average improvement 
index of the improved CVT model was 
greater than 20%. In summary, the research 
proposed a multi-perspectives recognition 

model based on improved CVT, which can 
balance high-precision and human gait pose 
angle recognition extension, and enhance the 
possibility of human gait pose estimation and 
recognition in multi-perspectives application 
scenarios. To further analyze the robustness of 
the research method, different gait recognition 
methods were tested on the COCO dataset 
and MPII dataset, and the results are shown 
in Figure 14. 
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Figure 14  

Robustness results of different gait recognition 
methods based on COCO dataset and MPII 
dataset 

Figures 14(a)-(b) correspond to the OSK 
results of gait recognition algorithms on the 

COCO dataset and MPII dataset, respectively. 
Among them, OSK50 and OSK75 were the 
prediction accuracies of OSK under the 
conditions of 0.5 and 0.75, respectively. 
OSK-M and OSK-L were the prediction 
accuracies of medium-sized and large-sized 
targets, respectively. OSK-O was the average 
recall rate of the model prediction results. 
From Figure 14(a), the OSK result of the 
research method was 86.2%, and it showed 
the best performance among other indicators. 
From Figure 14(b), both the research method 
and Gait CNN-ViT had convolutional 
modules that can correct erroneous results 
through feedback prediction variation. The 
Gait-AViT method had a better effect on ankle 
joint detection, with a rate of 84.6%. Overall, 
the improvement effect of the research 
method was better, with an increase of about 
2.2% compared to the mainstream Gait ViT 
method. Finally, to quantify the accuracy 
statistical results of the research method on 
different datasets, paired sample t-tests were 
used for analysis, and the results are shown in 
Table 3. 

Table 3  

Paired sample testing results of recognition accuracy of research methods on different datasets 
Paired samples Pairing difference t-value Significance (dual 

best performance among other indicators. From Fig-
ure 14(b), both the research method and Gait CNN-
ViT had convolutional modules that can correct erro-
neous results through feedback prediction variation. 
The Gait-AViT method had a better effect on ankle 
joint detection, with a rate of 84.6%. Overall, the im-
provement effect of the research method was better, 
with an increase of about 2.2% compared to the main-
stream Gait ViT method. Finally, to quantify the ac-
curacy statistical results of the research method on 
different datasets, paired sample t-tests were used for 
analysis, and the results are shown in Table 3.
According to Table 3, there was no statistically signif-
icant difference in the recognition accuracy results of 
the research method between the two datasets, indi-
cating that the research method is suitable for gait rec-
ognition of different scales and types and has excellent 
application effects. To analyze the computational effi-
ciency of various gait recognition algorithms, the study 

Table 3 
Paired sample testing results of recognition accuracy of research methods on different datasets

Paired samples
Pairing difference

t-value Significance (dual tailed)
Average value Standard deviation Mean standard error

COCO-MPII 0.034411 0.11249 0.03389 1.00700 0.41200

introduced task completion time, Central Process-
ing Unit (CPU) utilization, Random Access Memory 
(RAM) utilization, and RAM average load for evalua-
tion. Each algorithm underwent 20 simulation experi-
ments to ensure fairness of the experiments. The com-
parison of computational efficiency results of different 
gait recognition algorithms is shown in Figure 15.
Figure 15(a) shows a comparison of task completion 
times for different gait recognition algorithms. It can 
be seen that compared to Gait CNN ViT, the research 
method reduces the average task completion time by 
12%, greatly improving the computational efficiency 
of task completion. Figure 15(b) shows the CPU uti-
lization, RAM utilization, and average RAM load re-
sults of different gait recognition algorithms. It can 
be observed that the research method corresponds to 
CPU utilization, RAM utilization, and average RAM 

Figure 15 
Comparison of computational efficiency results of 
different gait recognition algorithms

Average value Standard 
deviation 

Mean standard 
error 

tailed) 

COCO-MPII 0.034411 0.11249 0.03389 1.00700 0.41200 

According to Table 3, there was no statistically significant difference in the recognition accuracy results of 
the research method between the two datasets, indicating that the research method is suitable for gait 
recognition of different scales and types and has excellent application effects. To analyze the 
computational efficiency of various gait recognition algorithms, the study introduced task completion 
time, Central Processing Unit (CPU) utilization, Random Access Memory (RAM) utilization, and RAM 
average load for evaluation. Each algorithm underwent 20 simulation experiments to ensure fairness of 
the experiments. The comparison of computational efficiency results of different gait recognition 
algorithms is shown in Figure 15. 
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Figure 15  

Comparison of computational efficiency results of different gait recognition algorithms 

Figure 15(a) shows a comparison of task completion times for different gait recognition algorithms. It can 
be seen that compared to Gait CNN ViT, the research method reduces the average task completion time by 
12%, greatly improving the computational efficiency of task completion. Figure 15(b) shows the CPU 
utilization, RAM utilization, and average RAM load results of different gait recognition algorithms. It can 
be observed that the research method corresponds to CPU utilization, RAM utilization, and average RAM 
load of 55%, 66%, and 72%, respectively, while Gait ViT's various indicators correspond to 60%, 75%, and 
80%. The above results confirm that the research method enables full utilization of resources and 
effectively reduces the average RAM load. 

 
3.4 Discussion 
As an emerging method in the field of biometric technology, human gait pose estimation and recognition 
are gradually entering industries such as transportation, security, and industry for related applications 
due to their advantages of not requiring hard coordination, supporting long-distance recognition, and 
strong environmental adaptability. It has a very broad development prospect. However, due to the 
dynamic nature of the ERHGP method, its recognition process is more complex compared to traditional 
static biometric recognition. At present, the application of this method in China is still in the exploratory 
stage. Therefore, the study first selected publicly available datasets for introduction and proposed a 
ZMNC preprocessing method for estimating the gait attitude period. Then, the HLT method was 
introduced, and a human gait pose periodic group containing continuous time features was considered, 
and an ERHGP method based on CVT was designed. Finally, based on this, the PGST method and feature 
tensor transformation were optimized to obtain a multi-perspectives recognition model based on 
improved CVT. 
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load of 55%, 66%, and 72%, respectively, while Gait 
ViT’s various indicators correspond to 60%, 75%, 
and 80%. The above results confirm that the research 
method enables full utilization of resources and effec-
tively reduces the average RAM load.

3.4. Discussion
As an emerging method in the field of biometric tech-
nology, human gait pose estimation and recognition 
are gradually entering industries such as transpor-
tation, security, and industry for related applications 
due to their advantages of not requiring hard coor-
dination, supporting long-distance recognition, and 
strong environmental adaptability. It has a very broad 
development prospect. However, due to the dynamic 
nature of the ERHGP method, its recognition pro-
cess is more complex compared to traditional static 
biometric recognition. At present, the application of 
this method in China is still in the exploratory stage. 
Therefore, the study first selected publicly available 
datasets for introduction and proposed a ZMNC pre-
processing method for estimating the gait attitude pe-
riod. Then, the HLT method was introduced, and a hu-
man gait pose periodic group containing continuous 
time features was considered, and an ERHGP method 
based on CVT was designed. Finally, based on this, 
the PGST method and feature tensor transformation 
were optimized to obtain a multi-perspectives recog-
nition model based on improved CVT.
The study first calculated the correlation coefficients 
between the four poses of SW, FW, NW, and CBW, and 
obtained the corresponding change curves to deter-
mine the cycle capacities corresponding to different 
human gait poses, which were 27, 22, 24, and 23, respec-
tively. Secondly, the study compared the performance 
of the ERHGP method based on CVT with the same 
size CVT basic model, the CVT model without using 
HTL method, and the DPCNN model. The results are as 
follows: firstly, the CVT model and the same size CVT 
basic model both had a fast convergence rate before 
the 10th iteration. Afterwards, the convergence accel-
eration of the two models continued to slow down, and 
the final average classification accuracy corresponded 
to 95.5% and 79.2%, respectively. The second is that 
the classification accuracy of the CVT model using 
the THL method was significantly improved, indicat-
ing that the HTL method can effectively improve the 
network’s accuracy and convergence speed. The third 

issue is that the DPCNN model experienced oversatu-
ration during the 12th iteration, while the CVT model 
continued to grow, achieving a recognition accuracy of 
98.6% in the 20th iteration. The above results confirm 
the effectiveness and feasibility of the CVT model, and 
its performance is significantly better than traditional 
methods, providing a new solution for the application 
of small sample datasets.
Finally, experiments were conducted to improve the 
performance, reliability, and scientificity of the CVT 
model, and the following results were obtained. The 
first was that in the other 10 perspectives except for 
90°, the improved CVT model only showed slight fluc-
tuations in recognition rate in 0°, 18°, 36°, 108°, and 
180° perspectives, but the average recognition rate in 
each perspective exceeded 97%. The recognition rate 
variation curves of the CVT model before improve-
ment showed significant fluctuations in various per-
spectives, indicating that the model’s performance 
was unstable. The second was the comparison of the 
initial and maximum validation rates before and af-
ter the improvement of the CVT model. However, the 
improved CVT model could still achieve high recogni-
tion rates in various perspectives, with an average ini-
tial recognition rate of 97.65%, which is 65.32% high-
er than before the improvement. This means that the 
improved CVT model has stronger robustness. The 
third was the average validation rate of different rec-
ognition models from multiple perspectives and the 
reliability test results of the PGST method from a 36° 
perspective. The highest average validation rate of the 
improved CVT model was 98.56%, while the average 
validation rates of the CHM, BCF, CNN, and DCCBM 
models were 72.51%, 73.45%, 74.62%, and 78.65%, re-
spectively. The improved CVT model could achieve a 
stationary recognition accuracy of 99.13% only in the 
third iteration, while the variation of the improved 
CVT basic model was significant. The fourth was the 
internal recognition accuracy results of multiple off-
set perspectives without cross view. The average ac-
curacy of CHM, BCF, CNN, DCCBM, and improved 
CVT models were 74.18%, 74.13%, 7347%, 75.83%, 
and 97.51%, respectively. Based on the above results, 
it can be concluded that the proposed method has 
good accuracy, robustness, and convergence speed, 
expanding the possibility of efficient recognition of 
human gait pose from multi-perspectives in complex 
application scenarios.
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4. Conclusions
In response to the high difficulty and strong random-
ness of human gait pose estimation and recognition, 
a series of preprocessing operations were first car-
ried out to obtain the correlation feature changes of 
asynchronous gait posture estimation. Then, the HTL 
method was introduced to design the ERHGP method 
based on CVT. Finally, the PGST method was used to 
optimize and obtain a multi-perspectives recognition 
model based on improved CVT. The experimental re-
sults showed that the classification accuracy of the 
CVT model using HTL was significantly better than 
that of the CVT model without HTL, indicating that 
incorporating HTL can effectively improve the recog-
nition performance of the CVT model. The recogni-
tion accuracy of the CVT model exceeded 90% in the 
8th iteration alone, and reached 98.6% in the 20th it-
eration, while the recognition accuracy of the DPCNN 
model reached saturation in the 12th iteration.  In 
comparison experiments with current mainstream 
algorithms, the average validation rate and accura-
cy of the improved CVT model reached 98.56% and 
97.51%, respectively, while the average validation rate 
and accuracy of the CHM, BCF, CNN, and DCCBM 
models corresponded to 72.51% and 74.18%, 73.45% 
and 74.13%, 74.62% and 73.47%, 78.65% and 75.83%, 
respectively. The above results are due to the integra-
tion of the twin neural network idea into the research 
method and the improvement achieved through the 
PGST method, which effectively obtains information 
from different perspectives and greatly improves the 

recognition accuracy and robustness of the model ap-
plication in various environments. In summary, the 
research method innovatively designs a multi-scale 
aggregation module to ensure the acquisition of more 
features while effectively analyzing and reducing the 
existing information redundancy problem. Howev-
er, there are still limitations in the research, and in 
practical applications, research methods may still en-
counter missed detection problems. Therefore, tar-
geted network repair missed detection targets can be 
designed in further research in the future.
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