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When ship targets appear in SAR images at different angles, their shapes and contours may change sig-
nificantly. At present, target box detection algorithms often match and recognize based on templates with 
fixed shapes and directions. When the angle of ship targets changes, these templates may no longer be ap-
plicable, leading to the decline of detection algorithm performance, and it is difficult to accurately identify 
and locate targets. Therefore, for the purpose of solving the problem of angle sensitivity, the method of ship 
target oblique frame detection in lightweight SAR image based on recurrent neural network is studied to 
improve the effect of ship target oblique frame detection. Using recurrent neural network, the framework 
of ship target oblique frame detection in lightweight SAR images is established to ensure the detection ac-
curacy, significantly reduce the demand for computing resources, and achieve more efficient detection. In 
this framework, SAR images are input in the input layer and transmitted to the hidden layer. The lightweight 
convolutional neural network is used as the hidden layer, and channel attention mechanism is introduced to 
improve the extraction effect of useful ship target features. The output layer processes the ship target charac-
teristics, predicts the ship target center point heat map, and calculates the oblique frame vertex coordinates 
of the center point heat map, so as to have better adaptability to the ship targets that tilt or rotate in the SAR 
image, solve the angle sensitivity problem, and complete the ship target oblique frame detection. The volume 
Kalman filter algorithm is used to train the recurrent neural network, optimize the network weight, and im-
prove the detection accuracy of ship target oblique frame. Experiments show that this method can effectively 
extract ship target features. Under different background, this method can accurately detect the slant frame of 
ship target. Under different occlusion rates, the robustness of the method is better.
KEYWORDS: Recurrent neural network, Lightweight, SAR image, Ship target, Diagonal frame detection, Con-
volutional neural network
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1. Introduction
Synthetic Aperture Radar (SAR), being a dynamic 
microwave imaging system, holds a pivotal position 
in various applications such as maritime surveil-
lance, resource prospecting, military surveillance, 
and numerous other domains [5]. SAR has all-day and 
all-weather working ability, can penetrate clouds, and 
is not limited by lighting conditions, providing a reli-
able data source for ship target detection. However, 
due to the characteristics of SAR images [1], such as 
complex background noise, diversity of target shapes 
and scales, and different orientations and attitudes of 
targets in the images, accurate detection of ship tar-
gets has become a challenging task [2]. Traditional 
ship target detection methods mainly rely on manual-
ly designed features and threshold segmentation tech-
nology. These methods may achieve certain results 
in specific scenes, but their detection performance 
and robustness are often unsatisfactory in the face of 
complex and changeable SAR images [11]. Through 
the research of ship target detection methods in SAR 
images, real-time monitoring and early warning of sea 
targets can be achieved, which provides important in-
formation support for military decision-making. At 
the same time, it is also of great significance to monitor 
and crack down on illegal activities such as smuggling 
and illegal immigration, which is conducive to safe-
guarding national security and maritime rights and 
interests. Therefore, developing an efficient and pre-
cise approach for ship target detection in SAR imagery 
is of paramount theoretical importance and practical 
value. For example, Sheikh et al. [17] realized end-to-
end target detection through YOLOv3 (You Only Look 
Once version 3). For the purpose of detecting ship tar-
gets in SAR images, YOLOv3 is optimized according to 
the characteristics of SAR image, including adjusting 
the network structure to adapt to the resolution and 
noise characteristics of SAR image, and optimizing 
the training strategy to improve the detection accura-
cy. The experimental outcomes demonstrate that the 
proposed method exhibits rapid and precise capabil-
ities in target detection [17]. The predefined anchor 
frame of YOLOv3 is usually based on the horizontal 
or vertical direction, which makes it perform poorly 
when dealing with oblique or rotating frames, limiting 
its performance in angle sensitivity. When the target 
presents oblique or rotating attitude, YOLOv3 may 
not be able to accurately predict the angle of the tar-

get frame, resulting in a large deviation between the 
detection frame and the real target. Chandrakar et al. 
[2] combined the advantages of radial basis function 
(RBF) neural network in function approximation and 
nonlinear mapping, and the characteristics of fuzzy 
dynamic learning neural network (FDLNN) in dy-
namic learning and adaptability. By introducing cell 
division propagation (CBF) algorithm, they realized 
adaptive optimization of network structure and per-
formance improvement. In the target detection task, 
this method can effectively extract the characteris-
tics of the target, and achieve fast and accurate target 
detection. The method exhibits robust performance 
across diverse scenarios, as evidenced by the exper-
imental results [3]. When optimizing the network 
structure, CBF algorithm mainly focuses on improv-
ing the generalization ability and learning efficiency of 
the network, and seldom considers the impact of angle 
changes on detection performance. Therefore, in the 
process of adaptive optimization of network structure, 
it may not be able to effectively adapt to the change of 
target angle, resulting in deviation between the detec-
tion frame and the real target. Ranjith et al. enhanced 
the robustness of the deep learning model against 
noise changes and interference factors by introducing 
robust training strategies and network structure opti-
mization, and completed target detection. Extensive 
testing reveals that the method consistently delivers 
reliable outcomes in a range of demanding scenarios 
[14]. The robust deep learning model mainly focuses 
on the overall information of the target when extract-
ing the target features, but may not be sensitive to the 
changes of the local details caused by angle changes. 
This may lead to the model being unable to accurately 
capture the boundary information of the target when 
detecting the oblique box or rotating box target, thus 
affecting the accuracy and stability of the detection 
box. Cherri et al. [4] combined the advantages of opti-
cal correlation technology and digital image process-
ing to achieve efficient and accurate target detection. 
The joint transform correlator makes use of the paral-
lel processing ability and spatial filtering characteris-
tics of the optical system to jointly transform the input 
image and the reference image, and forms correlation 
peaks on the correlation plane, so as to achieve rapid 
target detection [4]. The joint transform correlator 
mainly relies on the spatial domain features of the 
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image for matching and detection. When the angle 
of the target changes, its spatial domain characteris-
tics will change accordingly, which may lead to sig-
nificant changes in the position and intensity of the 
correlation peak. Due to the high sensitivity of joint 
transform correlator to spatial domain features, the 
change of angle may lead to the decline of detection 
performance, or even lead to false detection or missing 
detection. Yin et al. proposed an object detection and 
interpretation model based on gradient weighted class 
activation mapping and reinforcement learning to ad-
dress the complex background of RSI, the lack of inter-
pretability in existing object detection models, and the 
issues of feature extraction and object classification 
accuracy between different network structures and 
layers [23]. Firstly, using ResNet as the backbone net-
work, extract the features of RSI and generate feature 
maps. Then, a global average pooling layer is added to 
obtain the feature weight vectors corresponding to the 
feature maps. The weighted vector is superimposed 
onto the output class activation mapping. Optimize 
the generated region generation network using rein-
forcement learning methods. At the same time, we im-
proved the reward function of reinforcement learning 
and enhanced the effectiveness of the region genera-
tion network. However, this method failed to consider 
the significant changes in shape and contour that may 
occur in SAR image ship target oblique frame detec-
tion, resulting in a decrease in detection performance 
and difficulty in accurately detecting targets.
Nowadays, with the rapid development of deep learn-
ing technology, significant achievements have been 
made in its application in image processing and com-
puter vision fields [22, 19]. Especially in object de-
tection tasks, deep learning models have become the 
mainstream method. For example, Zheng et al. [24] 
developed a deep convolutional autoencoder (MR-
DCAE) model based on manifold regularization, 
which optimized a specially designed autoencoder 
(AE) through entropy stochastic gradient descent, 
and then used the reconstruction error in the test-
ing phase to determine the parameter settings of the 
model to improve its performance. Zheng et al. [25] 
introduced a pruning method called Drop path to re-
duce the model parameters of 2D deep CNNs. Given a 
trained deep CNN, different lengths of pruning paths 
can be achieved by ranking the impact of each layer 
of neurons on the model's possible approximate cor-
rect (PAC) Bayesian boundary. The results show that 

Drop path achieves significant model compression 
and acceleration, with negligible accuracy loss. These 
models are capable of automatically learning complex 
feature representations from data, achieving unprece-
dented performance in various visual tasks. However, 
although deep learning has made some progress in ob-
ject detection, there are still some challenges, namely, 
targets in SAR images often have different angles and 
scales, which require models to have strong rotation 
and scale invariance. Deep learning models have not 
considered the issue of angle sensitivity in detection, 
resulting in poor detection accuracy in ship target 
oblique frame detection in AR images. Recurrent neu-
ral network is a neural network model that can process 
sequential or hierarchical data [21]. It can maintain the 
continuity of information in the whole sequence. This 
feature enables recurrent neural network to make full 
use of context information in SAR images and improve 
the accuracy of target detection. Context information 
is very important for ship target detection, which can 
help the model better understand the shape, scale and 
orientation of the target. Because ships may present 
different orientations and attitudes in SAR images, 
the target frame may appear as a slanted frame rath-
er than a traditional vertical frame. Recurrent neural 
network can capture this sequential change [20], solve 
the problem of angle sensitivity, and improve detec-
tion performance. Based on this, in order to solve the 
problem of poor detection accuracy when ship tar-
gets appear in SAR images from different angles, this 
study proposes a lightweight SAR image ship target 
oblique frame detection method based on recurrent 
neural networks, which promotes the development of 
the SAR image ship target detection field. This method 
uses a lightweight convolutional neural network as the 
hidden layer and introduces a channel attention mech-
anism. This mechanism utilizes global information to 
enhance the extraction of useful ship target informa-
tion features and suppress useless features, thereby 
filtering out high-quality information and making the 
entire hidden layer more efficient in extracting ship 
target features. Based on this, the ship target features 
are processed through the output layer to predict the 
center point heatmap of the ship target, and the coor-
dinates of the oblique box vertices of the center point 
heatmap are calculated to have better adaptability to 
ship targets that appear tilted or rotated in SAR imag-
es, solve the problem of angle sensitivity, and complete 
ship target oblique box detection. The volume Kalman 
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filter algorithm is a Gaussian filtering method based 
on Bayesian filtering theory, which has high accuracy 
and stability when dealing with nonlinear systems. 
Therefore, in order to further improve the accuracy 
of ship target oblique frame detection, the volumetric 
Kalman filter algorithm is adopted to train a recurrent 
neural network and optimize the network weights. In 
this process, the volumetric Kalman filter algorithm 
approximates the Gaussian integral of nonlinear func-
tions by using volumetric rules, which enables it to 
provide higher estimation accuracy than traditional 
Kalman filters when dealing with nonlinear systems. 
It can more accurately estimate the network state and 
parameters, thereby improving the accuracy of ship 
target oblique frame detection. At the same time, the 
volumetric Kalman filter algorithm can effectively re-
sist the influence of errors and measurement noise. 
During the RNN training process, it helps to maintain 
the stability and generalization ability of the network, 
and can maintain good detection performance even in 
the presence of noise or uncertainty. And the volume 
Kalman filter algorithm approximates the state distri-
bution through volume points, which is more efficient 
in computation than other nonlinear filtering meth-
ods. In RNN, it can reduce the computational burden 
during the training process and accelerate the conver-
gence speed of the network. Thus, accurate and effi-
cient SAR image ship target oblique frame detection 
can be achieved. 

2. Implementation of Ship Target 
Oblique Frame Detection in 
Lightweight SAR Images Based  
on Recursive Neural Network
SAR images usually contain a large amount of data 
and information, which will face the problems of high 
computational complexity and slow processing speed 
in detection. Recurrent neural network has the ability 
to process time series data, and combined with light-
weight design, it can improve the processing speed 
and efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles in 
SAR images, especially oblique attitude. The detec-
tion framework based on recurrent neural network 
can better adapt to this angle change and accurately 
detect oblique frame targets. In addition, recurrent 

neural network has advantages in feature extraction 
and learning ability, which can automatically learn 
the deep level features. Therefore, the recurrent neu-
ral network is used to establish a lightweight SAR 
image ship target oblique frame detection framework 
to ensure the detection accuracy, significantly reduce 
the demand for computing resources, and achieve 
more efficient detection. Finally, in order to further 
improve the accuracy of ship target oblique frame de-
tection, the volume Kalman filter algorithm is used to 
train the recurrent neural network, optimize the net-
work weight, and complete accurate and efficient ship 
target oblique frame detection in SAR images.

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework
The recurrent neural network is used to detect the 
ship target slant frame in the lightweight SAR image. 
The detection framework is shown in Figure 1.
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layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 
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detection framework in Section 2.1, in order to 
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convolutional neural network is used as the 
hidden layer to replace the traditional hidden 
layer [15]. 

In recurrent neural network, the output of the 
input layer is: 

t t
i nm i hW X b .      (1) 
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SAR images; nmW  represents the matrix of 
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the input layer; the m  is the number of nodes 
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of which, Ŵ  is SAR image height; A  is the 
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This framework uses a lightweight convolutional neu-
ral network as the hidden layer and introduces channel 
attention mechanism to improve the feature extraction 
performance of ship targets, providing reliable support 
for subsequent detection. Then, in order to have better 
adaptability to ship targets that appear tilted or rotat-
ed in SAR images, the center point heatmap of the ship 
target is predicted, and the coordinates of the oblique 
box vertices of the center point heatmap are calculated 
to solve the angle sensitivity problem and zcomplete 
ship target oblique box detection. In the detection 
framework, the specific implementation process is de-
scribed as follows: first input SAR images in the input 
layer X = {X1, X2 ··· , Xn}, where the number of SAR im-
ages is n. Then, the lightweight convolutional neural 
network is used as the hidden layer to extract ship 
target features in the SAR image. Finally, through 
the lightweight multitask output layer, the target 
center point heat map and oblique frame parameters 
are predicted to complete the ship target oblique 
frame detection in the lightweight SAR image.
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In the lightweight SAR image oblique frame detec-
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the feature extraction effect of ship targets in SAR 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 
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SAR images usually contain a large amount of 
data and information, which will face the 
problems of high computational complexity and 
slow processing speed in detection. Recurrent 
neural network has the ability to process time 
series data, and combined with lightweight 
design, it can improve the processing speed and 
efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles 
in SAR images, especially oblique attitude. The 
detection framework based on recurrent neural 
network can better adapt to this angle change 
and accurately detect oblique frame targets. In 
addition, recurrent neural network has 
advantages in feature extraction and learning 
ability, which can automatically learn the deep 
level features. Therefore, the recurrent neural 
network is used to establish a lightweight SAR 
image ship target oblique frame detection 
framework to ensure the detection accuracy, 
significantly reduce the demand for computing 
resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
efficient ship target oblique frame detection in 
SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 

The recurrent neural network is used to detect 
the ship target slant frame in the lightweight 
SAR image. The detection framework is shown 
in Figure 1. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
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performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
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point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
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the number of SAR images is n . Then, the 
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resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
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SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 
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SAR image. The detection framework is shown 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
convolutional neural network as the hidden 
layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 
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weights that connects the input layer to the 
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convolution kernel size is set to 1×1×3, the 
number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
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The corresponding calculations is: 
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From the above formula, when the size of 
convolution kernel is 3×3, the depth separable 
convolution can reduce the parameter reduce the 
parameter count to approximately 1/9 of that of 
ordinary convolution, which greatly increases 
the operation speed of the network, so the depth 
separable convolution is used in the paper in the 
construction of hidden layer. 

Starting from the ship target feature map, the 
hidden layer of the recurrent neural network [8] 
combines ship target feature maps from different 
branches with concat function, but the features 
obtained by splicing can only be added in the 
channel, and the information flow is not smooth. 
Although it is possible to use 1×1 convolution to 
mix the information between channels, it will 
lead to the problem of a substantial increase in 
the number of parameters. However, channel 
shuffling can complete the information mixing 
between channels without increasing the 
amount of calculation and parameters, enhance 
the classification effect, and improve the 
detection accuracy of ship target oblique frame 
in lightweight SAR images [10]. Therefore, this 
paper uses channel shuffling operation to 
integrate branch information and improve the 
efficiency of hidden layer operation. 

The channel attention mechanism SE (Squeeze 
and Exception) module is a response mechanism 
to adaptively recalibrates channel features by 
understanding the correlation between channels. 
This mechanism uses global information to 
enhance the extraction of useful ship target 
information features and suppress useless 
features [7]. The compression and excitation 
steps occur prior to the summation of features 
within the same branch. 

Make Z  as the input ship target feature map of 
SE module, that is, the ship target feature map 
extracted by depth separable convolution [6], 
and the feature mapping conversion operation is 
as follows: 
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Among them, U  is the feature mapping for Z . 
F  is a mapping function; the R  is a vector 
space; the A  is the height of the ship's target 
feature map after mapping transformation; and 
H  is the number of channels after mapping 
conversion, the Ŵ  is the width of the ship 
target feature map after mapping 
transformation; Use Equation (6) to get the 
Squeeze input: 
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Among them,  denotes the convolution; the 

hv  is the h th convolutional kernels. hu  is the
h th two-dimensional matrix in U . Using 
Equation (7) global average pooling ( 1F

operation) the matrix Ŵ A H  is 
compressed to 1 1 H , whose compression 
essence is to represent all channel information 
with a uniform descriptor, statistic the h th 
elements in  (i.e. SAR image global 
information) can be calculated by Formula (7): 
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dependence, the compressed information is 
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hidden layer transformation. Finally, multiply 
the weight value obtained by expansion 
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(9) to calculate the channel weight hs  with ship 
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From the above formula, when the size of convolution 
kernel is 3×3, the depth separable convolution can 
reduce the parameter reduce the parameter count to 
approximately 1/9 of that of ordinary convolution, 
which greatly increases the operation speed of the 
network, so the depth separable convolution is used 
in the paper in the construction of hidden layer.
Starting from the ship target feature map, the hidden 
layer of the recurrent neural network [8] combines 
ship target feature maps from different branches with 
concat function, but the features obtained by splic-
ing can only be added in the channel, and the infor-
mation flow is not smooth. Although it is possible to 
use 1×1 convolution to mix the information between 
channels, it will lead to the problem of a substan-
tial increase in the number of parameters. However, 
channel shuffling can complete the information mix-
ing between channels without increasing the amount 
of calculation and parameters, enhance the classifi-
cation effect, and improve the detection accuracy of 
ship target oblique frame in lightweight SAR images 
[10]. Therefore, this paper uses channel shuffling op-
eration to integrate branch information and improve 
the efficiency of hidden layer operation.
The channel attention mechanism SE (Squeeze and 
Exception) module is a response mechanism to adap-
tively recalibrates channel features by understanding 
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the correlation between channels. This mechanism 
uses global information to enhance the extraction of 
useful ship target information features and suppress 
useless features [7]. The compression and excitation 
steps occur prior to the summation of features within 
the same branch.
Make Z as the input ship target feature map of SE 
module, that is, the ship target feature map extracted 
by depth separable convolution [6], and the feature 
mapping conversion operation is as follows:
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is similar to normal convolution [16], and the 
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number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
map. 
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Among them, U is the feature mapping for Z. F is a 
mapping function; the R is a vector space; the A' is the 
height of the ship's target feature map after mapping 
transformation; and H' is the number of channels af-
ter mapping conversion, the 

SAR images usually contain a large amount of 
data and information, which will face the 
problems of high computational complexity and 
slow processing speed in detection. Recurrent 
neural network has the ability to process time 
series data, and combined with lightweight 
design, it can improve the processing speed and 
efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles 
in SAR images, especially oblique attitude. The 
detection framework based on recurrent neural 
network can better adapt to this angle change 
and accurately detect oblique frame targets. In 
addition, recurrent neural network has 
advantages in feature extraction and learning 
ability, which can automatically learn the deep 
level features. Therefore, the recurrent neural 
network is used to establish a lightweight SAR 
image ship target oblique frame detection 
framework to ensure the detection accuracy, 
significantly reduce the demand for computing 
resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
efficient ship target oblique frame detection in 
SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 

The recurrent neural network is used to detect 
the ship target slant frame in the lightweight 
SAR image. The detection framework is shown 
in Figure 1. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
convolutional neural network as the hidden 
layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 

2.2 Hidden Layer of Ship Target Oblique Frame 
Detection in Lightweight SAR Image 

In the lightweight SAR image oblique frame 
detection framework in Section 2.1, in order to 
improve the feature extraction effect of ship 
targets in SAR images, the lightweight 
convolutional neural network is used as the 
hidden layer to replace the traditional hidden 
layer [15]. 

In recurrent neural network, the output of the 
input layer is: 

t t
i nm i hW X b .      (1) 

Among them, t
iX  is for t moment, the i th 

SAR images; nmW  represents the matrix of 
weights that connects the input layer to the 
hidden layer; the n  is the number of nodes in 
the input layer; the m  is the number of nodes 
in the implicit layer; the hb  is the implicit layer 
bias. 

Perform deep convolution operations to SAR 
image output of input layer t

i

t
i  is set to Ŵ A H , 

of which, Ŵ  is SAR image height; A  is the 
width of SAR image; H

H  convolution 

' is the width of the ship 
target feature map after mapping transformation; Use 
Equation (6) to get the Squeeze input:

operation, we get number of H Ŵ A  ship 
target feature map. Point-by-point convolution 
is similar to normal convolution [16], and the 
number of channels can be adjusted. The 
convolution kernel size is set to 1×1×3, the 
number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
map. 

The corresponding calculations is: 

ˆ ˆ3 3 H W A H N W A .  (2) 

The standard convolution corresponds to the 
computation is: 

ˆ3 3 H N W A .     (3) 

Comparing the computational effort of deeply 
separable convolution with that of ordinary 
convolution, the following ratio is obtained: 

2

ˆ ˆ3 3 1 1
ˆ 33 3

H W A H N W A
NH N W A

. 

(4) 

From the above formula, when the size of 
convolution kernel is 3×3, the depth separable 
convolution can reduce the parameter reduce the 
parameter count to approximately 1/9 of that of 
ordinary convolution, which greatly increases 
the operation speed of the network, so the depth 
separable convolution is used in the paper in the 
construction of hidden layer. 

Starting from the ship target feature map, the 
hidden layer of the recurrent neural network [8] 
combines ship target feature maps from different 
branches with concat function, but the features 
obtained by splicing can only be added in the 
channel, and the information flow is not smooth. 
Although it is possible to use 1×1 convolution to 
mix the information between channels, it will 
lead to the problem of a substantial increase in 
the number of parameters. However, channel 
shuffling can complete the information mixing 
between channels without increasing the 
amount of calculation and parameters, enhance 
the classification effect, and improve the 
detection accuracy of ship target oblique frame 
in lightweight SAR images [10]. Therefore, this 
paper uses channel shuffling operation to 
integrate branch information and improve the 
efficiency of hidden layer operation. 

The channel attention mechanism SE (Squeeze 
and Exception) module is a response mechanism 
to adaptively recalibrates channel features by 
understanding the correlation between channels. 
This mechanism uses global information to 
enhance the extraction of useful ship target 
information features and suppress useless 
features [7]. The compression and excitation 
steps occur prior to the summation of features 
within the same branch. 

Make Z  as the input ship target feature map of 
SE module, that is, the ship target feature map 
extracted by depth separable convolution [6], 
and the feature mapping conversion operation is 
as follows: 

ˆ ˆ: ; ,W A H W A HF Z U Z R U R . (5) 

Among them, U  is the feature mapping for Z . 
F  is a mapping function; the R  is a vector 
space; the A  is the height of the ship's target 
feature map after mapping transformation; and 
H  is the number of channels after mapping 
conversion, the Ŵ  is the width of the ship 
target feature map after mapping 
transformation; Use Equation (6) to get the 
Squeeze input: 

h hu v Z .       (6) 

Among them,  denotes the convolution; the 

hv  is the h th convolutional kernels. hu  is the
h th two-dimensional matrix in U . Using 
Equation (7) global average pooling ( 1F

operation) the matrix Ŵ A H  is 
compressed to 1 1 H , whose compression 
essence is to represent all channel information 
with a uniform descriptor, statistic the h th 
elements in  (i.e. SAR image global 
information) can be calculated by Formula (7): 

ˆ

1 1
,

ˆ

W K

h
i j

h

u i j

W A
,     (7) 

where, ,hu i j
 

is the ship target feature map 
whose converted height is j  and the width is 
i . 

Based on the inter-channel correlation 
dependence, the compressed information is 
modeled as an expansion of the channel 
relationship through Equation (8): 

hs .     (8) 

Among them,  is the weights.  is a ReLU 
(Rectified Linear Unit) function, which is a 
special gating function. When modeling, the full 
connection layer is used to maintain a high 
degree of nonlinearity and flexibility, to achieve 
a low parameter high fitting restoration of 
hidden layer transformation. Finally, multiply 
the weight value obtained by expansion 
processing by the original matrix to obtain the 
recalibrated network output, that is, use Formula 
(9) to calculate the channel weight hs  with ship 

target characterization maps hu  by channel 
multiply. 

ˆh h hz s u .       (9) 

. (6)

Among them, * denotes the convolution; the νh is the 
h th convolutional kernels. uh is the h th two-dimen-
sional matrix in U. Using Equation (7) global average 
pooling (F1(·) operation) the matrix 

SAR images usually contain a large amount of 
data and information, which will face the 
problems of high computational complexity and 
slow processing speed in detection. Recurrent 
neural network has the ability to process time 
series data, and combined with lightweight 
design, it can improve the processing speed and 
efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles 
in SAR images, especially oblique attitude. The 
detection framework based on recurrent neural 
network can better adapt to this angle change 
and accurately detect oblique frame targets. In 
addition, recurrent neural network has 
advantages in feature extraction and learning 
ability, which can automatically learn the deep 
level features. Therefore, the recurrent neural 
network is used to establish a lightweight SAR 
image ship target oblique frame detection 
framework to ensure the detection accuracy, 
significantly reduce the demand for computing 
resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
efficient ship target oblique frame detection in 
SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 

The recurrent neural network is used to detect 
the ship target slant frame in the lightweight 
SAR image. The detection framework is shown 
in Figure 1. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
convolutional neural network as the hidden 
layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 

2.2 Hidden Layer of Ship Target Oblique Frame 
Detection in Lightweight SAR Image 

In the lightweight SAR image oblique frame 
detection framework in Section 2.1, in order to 
improve the feature extraction effect of ship 
targets in SAR images, the lightweight 
convolutional neural network is used as the 
hidden layer to replace the traditional hidden 
layer [15]. 

In recurrent neural network, the output of the 
input layer is: 

t t
i nm i hW X b .      (1) 

Among them, t
iX  is for t moment, the i th 

SAR images; nmW  represents the matrix of 
weights that connects the input layer to the 
hidden layer; the n  is the number of nodes in 
the input layer; the m  is the number of nodes 
in the implicit layer; the hb  is the implicit layer 
bias. 

Perform deep convolution operations to SAR 
image output of input layer t

i

t
i  is set to Ŵ A H , 

of which, Ŵ  is SAR image height; A  is the 
width of SAR image; H

H  convolution 

' × A' × H'  is com-
pressed to 1× 1× H', whose compression essence is to 
represent all channel information with a uniform de-
scriptor, statistic the h th elements in ξ (i.e. SAR image 
global information) can be calculated by Formula (7):

operation, we get number of H Ŵ A  ship 
target feature map. Point-by-point convolution 
is similar to normal convolution [16], and the 
number of channels can be adjusted. The 
convolution kernel size is set to 1×1×3, the 
number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
map. 

The corresponding calculations is: 

ˆ ˆ3 3 H W A H N W A .  (2) 

The standard convolution corresponds to the 
computation is: 

ˆ3 3 H N W A .     (3) 

Comparing the computational effort of deeply 
separable convolution with that of ordinary 
convolution, the following ratio is obtained: 

2

ˆ ˆ3 3 1 1
ˆ 33 3

H W A H N W A
NH N W A

. 

(4) 

From the above formula, when the size of 
convolution kernel is 3×3, the depth separable 
convolution can reduce the parameter reduce the 
parameter count to approximately 1/9 of that of 
ordinary convolution, which greatly increases 
the operation speed of the network, so the depth 
separable convolution is used in the paper in the 
construction of hidden layer. 

Starting from the ship target feature map, the 
hidden layer of the recurrent neural network [8] 
combines ship target feature maps from different 
branches with concat function, but the features 
obtained by splicing can only be added in the 
channel, and the information flow is not smooth. 
Although it is possible to use 1×1 convolution to 
mix the information between channels, it will 
lead to the problem of a substantial increase in 
the number of parameters. However, channel 
shuffling can complete the information mixing 
between channels without increasing the 
amount of calculation and parameters, enhance 
the classification effect, and improve the 
detection accuracy of ship target oblique frame 
in lightweight SAR images [10]. Therefore, this 
paper uses channel shuffling operation to 
integrate branch information and improve the 
efficiency of hidden layer operation. 

The channel attention mechanism SE (Squeeze 
and Exception) module is a response mechanism 
to adaptively recalibrates channel features by 
understanding the correlation between channels. 
This mechanism uses global information to 
enhance the extraction of useful ship target 
information features and suppress useless 
features [7]. The compression and excitation 
steps occur prior to the summation of features 
within the same branch. 

Make Z  as the input ship target feature map of 
SE module, that is, the ship target feature map 
extracted by depth separable convolution [6], 
and the feature mapping conversion operation is 
as follows: 

ˆ ˆ: ; ,W A H W A HF Z U Z R U R . (5) 

Among them, U  is the feature mapping for Z . 
F  is a mapping function; the R  is a vector 
space; the A  is the height of the ship's target 
feature map after mapping transformation; and 
H  is the number of channels after mapping 
conversion, the Ŵ  is the width of the ship 
target feature map after mapping 
transformation; Use Equation (6) to get the 
Squeeze input: 

h hu v Z .       (6) 

Among them,  denotes the convolution; the 

hv  is the h th convolutional kernels. hu  is the
h th two-dimensional matrix in U . Using 
Equation (7) global average pooling ( 1F

operation) the matrix Ŵ A H  is 
compressed to 1 1 H , whose compression 
essence is to represent all channel information 
with a uniform descriptor, statistic the h th 
elements in  (i.e. SAR image global 
information) can be calculated by Formula (7): 
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where, ,hu i j
 

is the ship target feature map 
whose converted height is j  and the width is 
i . 

Based on the inter-channel correlation 
dependence, the compressed information is 
modeled as an expansion of the channel 
relationship through Equation (8): 

hs .     (8) 

Among them,  is the weights.  is a ReLU 
(Rectified Linear Unit) function, which is a 
special gating function. When modeling, the full 
connection layer is used to maintain a high 
degree of nonlinearity and flexibility, to achieve 
a low parameter high fitting restoration of 
hidden layer transformation. Finally, multiply 
the weight value obtained by expansion 
processing by the original matrix to obtain the 
recalibrated network output, that is, use Formula 
(9) to calculate the channel weight hs  with ship 

target characterization maps hu  by channel 
multiply. 

ˆh h hz s u .       (9) 

,
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where, uh(i', j') is the ship target feature map whose 
converted height is j' and the width is i'.
Based on the inter-channel correlation dependence, 
the compressed information is modeled as an expan-
sion of the channel relationship through Equation (8):

operation, we get number of H Ŵ A  ship 
target feature map. Point-by-point convolution 
is similar to normal convolution [16], and the 
number of channels can be adjusted. The 
convolution kernel size is set to 1×1×3, the 
number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
map. 

The corresponding calculations is: 

ˆ ˆ3 3 H W A H N W A .  (2) 

The standard convolution corresponds to the 
computation is: 

ˆ3 3 H N W A .     (3) 

Comparing the computational effort of deeply 
separable convolution with that of ordinary 
convolution, the following ratio is obtained: 
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From the above formula, when the size of 
convolution kernel is 3×3, the depth separable 
convolution can reduce the parameter reduce the 
parameter count to approximately 1/9 of that of 
ordinary convolution, which greatly increases 
the operation speed of the network, so the depth 
separable convolution is used in the paper in the 
construction of hidden layer. 

Starting from the ship target feature map, the 
hidden layer of the recurrent neural network [8] 
combines ship target feature maps from different 
branches with concat function, but the features 
obtained by splicing can only be added in the 
channel, and the information flow is not smooth. 
Although it is possible to use 1×1 convolution to 
mix the information between channels, it will 
lead to the problem of a substantial increase in 
the number of parameters. However, channel 
shuffling can complete the information mixing 
between channels without increasing the 
amount of calculation and parameters, enhance 
the classification effect, and improve the 
detection accuracy of ship target oblique frame 
in lightweight SAR images [10]. Therefore, this 
paper uses channel shuffling operation to 
integrate branch information and improve the 
efficiency of hidden layer operation. 

The channel attention mechanism SE (Squeeze 
and Exception) module is a response mechanism 
to adaptively recalibrates channel features by 
understanding the correlation between channels. 
This mechanism uses global information to 
enhance the extraction of useful ship target 
information features and suppress useless 
features [7]. The compression and excitation 
steps occur prior to the summation of features 
within the same branch. 

Make Z  as the input ship target feature map of 
SE module, that is, the ship target feature map 
extracted by depth separable convolution [6], 
and the feature mapping conversion operation is 
as follows: 

ˆ ˆ: ; ,W A H W A HF Z U Z R U R . (5) 

Among them, U  is the feature mapping for Z . 
F  is a mapping function; the R  is a vector 
space; the A  is the height of the ship's target 
feature map after mapping transformation; and 
H  is the number of channels after mapping 
conversion, the Ŵ  is the width of the ship 
target feature map after mapping 
transformation; Use Equation (6) to get the 
Squeeze input: 

h hu v Z .       (6) 

Among them,  denotes the convolution; the 

hv  is the h th convolutional kernels. hu  is the
h th two-dimensional matrix in U . Using 
Equation (7) global average pooling ( 1F

operation) the matrix Ŵ A H  is 
compressed to 1 1 H , whose compression 
essence is to represent all channel information 
with a uniform descriptor, statistic the h th 
elements in  (i.e. SAR image global 
information) can be calculated by Formula (7): 
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where, ,hu i j
 

is the ship target feature map 
whose converted height is j  and the width is 
i . 

Based on the inter-channel correlation 
dependence, the compressed information is 
modeled as an expansion of the channel 
relationship through Equation (8): 

hs .     (8) 

Among them,  is the weights.  is a ReLU 
(Rectified Linear Unit) function, which is a 
special gating function. When modeling, the full 
connection layer is used to maintain a high 
degree of nonlinearity and flexibility, to achieve 
a low parameter high fitting restoration of 
hidden layer transformation. Finally, multiply 
the weight value obtained by expansion 
processing by the original matrix to obtain the 
recalibrated network output, that is, use Formula 
(9) to calculate the channel weight hs  with ship 

target characterization maps hu  by channel 
multiply. 

ˆh h hz s u .       (9) 

. (8)

Among them, ω is the weights. ϕ is a ReLU (Rectified 
Linear Unit) function, which is a special gating func-
tion. When modeling, the full connection layer is used 
to maintain a high degree of nonlinearity and flexibil-

ity, to achieve a low parameter high fitting restoration 
of hidden layer transformation. Finally, multiply the 
weight value obtained by expansion processing by 
the original matrix to obtain the recalibrated network 
output, that is, use Formula (9) to calculate the chan-
nel weight sh with ship target characterization maps 
uh by channel multiply.

operation, we get number of H Ŵ A  ship 
target feature map. Point-by-point convolution 
is similar to normal convolution [16], and the 
number of channels can be adjusted. The 
convolution kernel size is set to 1×1×3, the 
number is set to N , then you end up with size 
of Ŵ A H  ship target characterization 
map. 

The corresponding calculations is: 

ˆ ˆ3 3 H W A H N W A .  (2) 

The standard convolution corresponds to the 
computation is: 

ˆ3 3 H N W A .     (3) 

Comparing the computational effort of deeply 
separable convolution with that of ordinary 
convolution, the following ratio is obtained: 
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From the above formula, when the size of 
convolution kernel is 3×3, the depth separable 
convolution can reduce the parameter reduce the 
parameter count to approximately 1/9 of that of 
ordinary convolution, which greatly increases 
the operation speed of the network, so the depth 
separable convolution is used in the paper in the 
construction of hidden layer. 

Starting from the ship target feature map, the 
hidden layer of the recurrent neural network [8] 
combines ship target feature maps from different 
branches with concat function, but the features 
obtained by splicing can only be added in the 
channel, and the information flow is not smooth. 
Although it is possible to use 1×1 convolution to 
mix the information between channels, it will 
lead to the problem of a substantial increase in 
the number of parameters. However, channel 
shuffling can complete the information mixing 
between channels without increasing the 
amount of calculation and parameters, enhance 
the classification effect, and improve the 
detection accuracy of ship target oblique frame 
in lightweight SAR images [10]. Therefore, this 
paper uses channel shuffling operation to 
integrate branch information and improve the 
efficiency of hidden layer operation. 

The channel attention mechanism SE (Squeeze 
and Exception) module is a response mechanism 
to adaptively recalibrates channel features by 
understanding the correlation between channels. 
This mechanism uses global information to 
enhance the extraction of useful ship target 
information features and suppress useless 
features [7]. The compression and excitation 
steps occur prior to the summation of features 
within the same branch. 

Make Z  as the input ship target feature map of 
SE module, that is, the ship target feature map 
extracted by depth separable convolution [6], 
and the feature mapping conversion operation is 
as follows: 

ˆ ˆ: ; ,W A H W A HF Z U Z R U R . (5) 

Among them, U  is the feature mapping for Z . 
F  is a mapping function; the R  is a vector 
space; the A  is the height of the ship's target 
feature map after mapping transformation; and 
H  is the number of channels after mapping 
conversion, the Ŵ  is the width of the ship 
target feature map after mapping 
transformation; Use Equation (6) to get the 
Squeeze input: 

h hu v Z .       (6) 

Among them,  denotes the convolution; the 

hv  is the h th convolutional kernels. hu  is the
h th two-dimensional matrix in U . Using 
Equation (7) global average pooling ( 1F

operation) the matrix Ŵ A H  is 
compressed to 1 1 H , whose compression 
essence is to represent all channel information 
with a uniform descriptor, statistic the h th 
elements in  (i.e. SAR image global 
information) can be calculated by Formula (7): 
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is the ship target feature map 
whose converted height is j  and the width is 
i . 

Based on the inter-channel correlation 
dependence, the compressed information is 
modeled as an expansion of the channel 
relationship through Equation (8): 
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Among them,  is the weights.  is a ReLU 
(Rectified Linear Unit) function, which is a 
special gating function. When modeling, the full 
connection layer is used to maintain a high 
degree of nonlinearity and flexibility, to achieve 
a low parameter high fitting restoration of 
hidden layer transformation. Finally, multiply 
the weight value obtained by expansion 
processing by the original matrix to obtain the 
recalibrated network output, that is, use Formula 
(9) to calculate the channel weight hs  with ship 

target characterization maps hu  by channel 
multiply. 

ˆh h hz s u .       (9) . (9)

The channel attention mechanism SE module is used 
to filter out high-quality information, so that the 
whole hidden layer can extract ship target features 
more efficiently, 

The channel attention mechanism SE module is 
used to filter out high-quality information, so 
that the whole hidden layer can extract ship 
target features more efficiently, ˆhz  is the ship 
target feature map obtained from high-quality 
SAR images. 

To achieve the lightweight of convolutional 
neural network, it is necessary to maximize the 
network efficiency in a simpler way [12]. The 
ConcatNet proposed in this paper is mainly 
implemented by feature splicing 1 , 2  and 

3  weighting factors for each of the 3 branches, 
respectively. 

For the purpose of enriching the dimension of 
feature input, the SAR image output from the 
input layer is divided into two channels in this 
paper: one channel inputs the SAR image after 
pseudo color processing to obtain its color map 
features, three channels input directly, two 
channels are processed in parallel separately, 
after a convolution layer, the output ship target 
feature maps are spliced together to form two 
channels, and feature stitching is completed 
using Concat function. However, Concat 
function can only complete the superposition of 
channel numbers, and cannot complete the 
integration of the information of the two 
branches. Therefore, channel shuffling is used to 
process the ship target feature map after splicing. 

The convolution layer of 1, 2 and 3 branches of 
the hidden layer of recurrent neural network for 
feature extraction of ship targets is composed of 
4 3 × 3 convolution layers, the difference is the 
number of convolution cores.  The number of 
branch 1 convolution cores is 32, 32, 64, and 128, 
the number of branch 2 convolution cores is 96, 
192, 384, and 384, the number of branch 
3convolution cores is 64, 64, 128, and 256, 
respectively. A maximum pooling is added after 
the first three convolution layers of the branch to 
remove redundant information [18]. Due to the 
fact that fully connected layers typically contain 
a large number of parameters, not only does it 
increase the complexity of the model, but it may 
also lead to overfitting. Global average pooling 
simplifies the model structure by directly 
operating on the feature map, reducing the 
number of parameters. And global average 
pooling performs an average operation on the 
entire feature map, which helps to have stronger 
robustness to spatial transformations (such as 
translation and rotation) of the input image, 
preserving the spatial structural information of 
the feature map. Therefore, a global average 
pooling is added after the fourth convolution 
layer to replace the full connection layer, the 
feature map of ship target is reduced to one 
dimension. For the purpose of reducing the 
parameters of the network and complete the 
lightweight of the convolutional neural network 

[9], the hidden layer adopts depth separable 
convolution. In order to enhance the ship target 
feature extraction ability of branches, the limited 
computing power is used on important ship 
target features. Considering that the convolution 
operation itself contains spatial attention [13], it 
is proposed to add two channel attention 
mechanism SE modules on each branch to 
suppress useless information in the channel 
domain. 

The process of establishing the hidden layer 
involves distinct and precise steps outlined 
below: first, the output values of the three 
branches are concatenated with Concat function 
and the ship target features are combined. The 
three channels are superimposed, and the 
channel attention mechanism SE module is 
added. Before the characteristics of the 
concatenated ship target are input, screening is 
performed to amplify the features of the useful 
branches. Then, the utilization of channel mixing 
techniques is employed to augment the 
exchange of informational flow across various 
channels. Finally, 1×1 convolutional layer is used 
to replace the full connection layer for 
classification to avoid destroying the spatial 
structure of SAR images, and the size of the input 
SAR images will not be limited. So far, the 
hidden layer has been constructed. 

2.3 Output Layer of Ship Target Oblique Frame 
Detection in Lightweight SAR Image 

In the detection framework of Subsection 2.1, the 
lightweight multitasking output layer, including 
the centroid heat map prediction branch and the 
slant frame parameter prediction branch, only 
adds two layers of convolution on the 4-fold 
downsampled ship target feature map output 
from the implicit layer in Subsection 2.2, and the 
output channels of the second layer of 
convolution correspond to the number of 
predicted parameters. Among them, the number 
of output channels of the centroid heat map 
prediction branch is 1, and the number of output 
channels of the diagonal frame parameter 
prediction branch is 8. 

The slant frame is represented by the center 
point and the slant frame parameters. Next, in 
order to have better adaptability to the ship 
target with tilt or rotation in the SAR image and 
solve the angle sensitivity problem, the center 
point heat map and the slant frame parameter 
prediction branch in the lightweight multitask 
output layer are respectively corresponding to 
predict the ship target center point heat map, 
and calculate the slant frame vertex coordinates 
of the center point heat map, complete effective 
ship target oblique frame detection. 

The centroid heatmap of the lightweight 
multitasking output layer output is: 
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 is the ship target feature map ob-
tained from high-quality SAR images.
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network, it is necessary to maximize the network effi-
ciency in a simpler way [12]. The ConcatNet proposed 
in this paper is mainly implemented by feature splic-
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For the purpose of enriching the dimension of feature 
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put directly, two channels are processed in parallel 
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cannot complete the integration of the information of 
the two branches. Therefore, channel shuffling is used 
to process the ship target feature map after splicing.
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redundant information [18]. Due to the fact that fully 
connected layers typically contain a large number of 
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the model, but it may also lead to overfitting. Global av-
erage pooling simplifies the model structure by direct-
ly operating on the feature map, reducing the number 
of parameters. And global average pooling performs 
an average operation on the entire feature map, which 
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image, preserving the spatial structural information of 
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reduced to one dimension. For the purpose of reducing 
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weight of the convolutional neural network [9], the hid-
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to enhance the ship target feature extraction ability 
of branches, the limited computing power is used on 
important ship target features. Considering that the 
convolution operation itself contains spatial attention 
[13], it is proposed to add two channel attention mech-
anism SE modules on each branch to suppress useless 
information in the channel domain.
The process of establishing the hidden layer in-
volves distinct and precise steps outlined below: 
first, the output values of the three branches are con-
catenated with Concat function and the ship target 
features are combined. The three channels are su-
perimposed, and the channel attention mechanism 
SE module is added. Before the characteristics of 
the concatenated ship target are input, screening 
is performed to amplify the features of the useful 
branches. Then, the utilization of channel mixing 
techniques is employed to augment the exchange of 
informational flow across various channels. Final-
ly, 1×1 convolutional layer is used to replace the full 
connection layer for classification to avoid destroy-
ing the spatial structure of SAR images, and the size 
of the input SAR images will not be limited. So far, 
the hidden layer has been constructed.

2.3 Output Layer of Ship Target Oblique 
Frame Detection in Lightweight SAR Image

In the detection framework of Subsection 2.1, the 
lightweight multitasking output layer, including the 
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Among them, ψ is the activation function from the im-
plicit layer to the output layer.
Center point heat map gt make the coordinates of the 
center point of the ship target rounded by 4 times 
downsampling are taken as positive samples. Since 
the number of positive samples is small, to ensure 
a balanced representation of positive and negative 
samples, the center point of the ship target is taken as 
the origin, the central point heat map gt remaining po-
sition (x, y) is treated using a Gaussian kernel:
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coordinate after four times down sampling of the 
center point in the ship target feature map 
extracted from the SAR image in Section 2.2;  
is the adaptive scale factor. 

Given the distinct feature of high aspect ratios 
exhibited by ship targets in SAR imagery, the 
direct use of angle regression slant frame has 
angle sensitivity, which results in unstable 
training process and low detection accuracy. 
When there is a slight deviation in the angle, the 
intersection of Union (IoU) drops sharply. The 
larger the aspect ratio, the sharper the decline. 

To solve the problem of angular sensitivity, the 
diagonal frame is represented in the form of a 
rotation vector. With the short side as the width 
and the long side as the height, around the y  
axis rotated counterclockwise as positive, the 
angle is noted as , clockwise rotation is 
negative, and the angle range is [ -90°,90°). 

The oblique box is represented by the rotation 
vector , , ,p r d l

 
from 4 edges to the center 

point q . First, the coordinate q  of q  in the 
vertical border is obtained according to the 
coordinate rotation matrix: 
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ˆ ˆˆ ˆ, , ,p r d l , of which p̂  is the vertical vector 

from the top edge to q , r̂  is the vertical 
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The calculation formula for the vertex 
coordinates of the slanted frame of the ship 
target in SAR image is: 
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The slant frame is directly represented by a 
rotation vector whose coordinates are rounded 
from four edges to the center point, and the 
center point offset is reflected in the rotation 
vector, without the center point offset prediction 
branch, which simplifies the process of ship 
target slant frame detection in lightweight SAR 
images and reduces the detection frame 
parameters. Employing oblique box labeling 
offers a more precise depiction of the ship 
target's shape and orientation, minimizing 
unnecessary interference and facilitating the 
acquisition of crucial attribute information, 
including heading and aspect ratio. In SAR 
images, because ships may appear in different 
angles and postures, slant frame detection can be 
more flexible to adapt to these changes, and 
enhance the precision and dependability in the 
detection process. 

2.4 Recurrent Neural Network Training 
Method for Ship Target Oblique Frame 
Detection in Lightweight SAR Image 
Cubature Kalman filter (CKF) is a Gaussian 
filtering method based on Bayesian filtering 
theory, particularly suitable for state estimation 
of nonlinear systems. The core idea of CKF is to 
use a set of cubic points to approximate the 
Gaussian integral of the state distribution. These 
volume points are generated through symmetric 
volume rules, which are uniformly distributed in 
the state space and can accurately approximate 
the mean and covariance of a Gaussian 
distribution. CKF has a wide range of 
applications in the field of target tracking, 
especially in dealing with nonlinear motion 
models and Gaussian noise. For example, in 
radar or sonar systems, CKF can be used to track 
the position and velocity of moving targets. In 
inertial navigation systems (INS), CKF can be 
used to fuse measurement data from 
accelerometers and gyroscopes to estimate the 
attitude, velocity, and position of the carrier. In 
summary, the volume Kalman filter is a 

. (11)

Among them, Yxy is the value at the coordinates (x, y). 
(qx, qy) is the rounding coordinate after four times 
down sampling of the center point in the ship target 
feature map extracted from the SAR image in Section 
2.2; λ is the adaptive scale factor.
Given the distinct feature of high aspect ratios exhibit-
ed by ship targets in SAR imagery, the direct use of an-
gle regression slant frame has angle sensitivity, which 
results in unstable training process and low detection 
accuracy. When there is a slight deviation in the an-
gle, the intersection of Union (IoU) drops sharply. The 
larger the aspect ratio, the sharper the decline.
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To solve the problem of angular sensitivity, the diago-
nal frame is represented in the form of a rotation vec-
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as the height, around the y axis rotated counterclock-
wise as positive, the angle is noted as α, clockwise ro-
tation is negative, and the angle range is [ -90°,90°).
The oblique box is represented by the rotation vector   
(p, r, d, l) from 4 edges to the center point q. First, the 
coordinate q' of q in the vertical border is obtained ac-
cording to the coordinate rotation matrix:
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coordinates of the slanted frame of the ship 
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1

2

3

4

o p l q
o p r q
o d r q
o d l q

.      (14) 

The slant frame is directly represented by a 
rotation vector whose coordinates are rounded 
from four edges to the center point, and the 
center point offset is reflected in the rotation 
vector, without the center point offset prediction 
branch, which simplifies the process of ship 
target slant frame detection in lightweight SAR 
images and reduces the detection frame 
parameters. Employing oblique box labeling 
offers a more precise depiction of the ship 
target's shape and orientation, minimizing 
unnecessary interference and facilitating the 
acquisition of crucial attribute information, 
including heading and aspect ratio. In SAR 
images, because ships may appear in different 
angles and postures, slant frame detection can be 
more flexible to adapt to these changes, and 
enhance the precision and dependability in the 
detection process. 

2.4 Recurrent Neural Network Training 
Method for Ship Target Oblique Frame 
Detection in Lightweight SAR Image 
Cubature Kalman filter (CKF) is a Gaussian 
filtering method based on Bayesian filtering 
theory, particularly suitable for state estimation 
of nonlinear systems. The core idea of CKF is to 
use a set of cubic points to approximate the 
Gaussian integral of the state distribution. These 
volume points are generated through symmetric 
volume rules, which are uniformly distributed in 
the state space and can accurately approximate 
the mean and covariance of a Gaussian 
distribution. CKF has a wide range of 
applications in the field of target tracking, 
especially in dealing with nonlinear motion 
models and Gaussian noise. For example, in 
radar or sonar systems, CKF can be used to track 
the position and velocity of moving targets. In 
inertial navigation systems (INS), CKF can be 
used to fuse measurement data from 
accelerometers and gyroscopes to estimate the 
attitude, velocity, and position of the carrier. In 
summary, the volume Kalman filter is a 

. (14)

The slant frame is directly represented by a rotation 
vector whose coordinates are rounded from four edg-
es to the center point, and the center point offset is 
reflected in the rotation vector, without the center 
point offset prediction branch, which simplifies the 
process of ship target slant frame detection in light-
weight SAR images and reduces the detection frame 
parameters. Employing oblique box labeling offers a 
more precise depiction of the ship target's shape and 

orientation, minimizing unnecessary interference 
and facilitating the acquisition of crucial attribute in-
formation, including heading and aspect ratio. In SAR 
images, because ships may appear in different angles 
and postures, slant frame detection can be more flex-
ible to adapt to these changes, and enhance the preci-
sion and dependability in the detection process.

2.4 Recurrent Neural Network Training 
Method for Ship Target Oblique Frame 
Detection in Lightweight SAR Image
Cubature Kalman filter (CKF) is a Gaussian filter-
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ticularly suitable for state estimation of nonlinear 
systems. The core idea of CKF is to use a set of cubic 
points to approximate the Gaussian integral of the 
state distribution. These volume points are generated 
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approximate the mean and covariance of a Gaussian 
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the field of target tracking, especially in dealing with 
nonlinear motion models and Gaussian noise. For ex-
ample, in radar or sonar systems, CKF can be used to 
track the position and velocity of moving targets. In 
inertial navigation systems (INS), CKF can be used 
to fuse measurement data from accelerometers and 
gyroscopes to estimate the attitude, velocity, and 
position of the carrier. In summary, the volume Kal-
man filter is a powerful nonlinear state estimation 
tool that has a wide range of applications in multiple 
fields. In SAR image ship target oblique frame de-
tection, based on the advantages of CKF processing 
nonlinear systems, effectively resisting the influence 
of errors and measurement noise, and reducing the 
computational burden during training, in order to 
further improve the accuracy of ship target oblique 
frame detection, CKF is used to train the recurrent 
neural network detection framework constructed in 
Section 2.1, optimizing the weights of the input layer 
and the weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship target 
oblique frame detection.
Taking the weights of the input layer,and the weights 
of the 3 branches of the implicit layer in Subsection 
2.2  ϖ1, ϖ2 and ϖ3  as the state variable of the ω, the out-
put of the recurrent neural network gt as observations 
to model the state space of recurrent neural networks.
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The number of node layers of the recurrent neural net-
work is L layers, with each layer labeled, respectively, 
as 1, 2, ... , L, then the number of layers of weights is 
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as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 
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of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
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(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 
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(5) Each of the measured volumetric 
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(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 
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of which, the weights of the network at time t+1 are 
determined by the weights at time t together with the 
process noise, the σt is the transfer noise with zero 
mean. δt is the measurement noise with zero mean.
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neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

, the implementation process of using CKF to 
train recurrent neural network is as follows:
1 Generate the volume transformation points of the 

state vector of the recurrent neural network ac-
cording to the principle of volume transformation.

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

. (17)

Among them, χτ is a volumetric transformation point; the 
τ is the dimensionality of the state space of the recurrent 
neural network; the chol(·) is decompose for Cholesky.
2 The individual volume points obtained from 

the transformation are transferred according to 
Equation (15), to obtain the state estimation for 
t+1 moment.

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 

1 ,
1

ˆ
ˆ

2
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G
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ˆ ˆ
ˆ ˆ

2 t

T

Tt t t t

t t t t t t

G G
Q G G (23) 

1 , 1 ,

1 1 1

ˆ
ˆ

2

T

Tt t t t

t t t t t t

G
Q G (24) 

Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

. (18)

Among them, η is the total number of dimensions of 
the state space of the recurrent neural network.
3 Calculate the state estimation covariance matrices 

for t+1 moment:

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1, 2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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G
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

. (19)

Among them, 

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

 is the covariance array for σt.

4 Generate measured volume transformation points 
for t+1 moment:

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

. (20)

5 Each of the measured volumetric transformation 
points will be measured and predicted according to 
Equation (16):

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
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(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

. (21)

6 Solve measurement predictions and correspond-
ing covariances for t+1 moment:

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

(22)

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

(23)

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 

1 ,
1

ˆ
ˆ

2
t t

t t

G
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

(24)

Among them, 

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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G
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
1

1

t t
t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

 is the covariance array for δt; the T is 
a transpose symbol; the 

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1, 2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 

1
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t

t t

Q

Q
.       (25) 

(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

 is the covariance of the 
residuals; the 

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 
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Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 
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(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 

11 1 1 1
ˆ

t tt t t t t tg G .  (26) 

 is the reciprocal covariance.
7 Calculate filter gain for t+1 moment:

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 

,t t t t t tchol Q .    (17) 

Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 

neural network; the chol
 

is decompose for 
Cholesky. 

(2) The individual volume points obtained from 
the transformation are transferred according to 
Equation (15), to obtain the state estimation for 

1t  moment. 

,
1 2

t t
t t .      (18) 

Among them,   is the total number of 
dimensions of the state space of the recurrent 
neural network. 

(3) Calculate the state estimation covariance 
matrices for 1t  moment: 

2
1 tt t t tQ Q .      (19) 

Among them, 
t   

is the covariance array for 

t . 

(4) Generate measured volume transformation 
points for 1t  moment: 

1 , 1 1t t t t t tchol Q .   (20) 

(5) Each of the measured volumetric 
transformation points will be measured and 
predicted according to Equation (16): 

1 ,1 ,
ˆ ˆ,t t ht tG z .    (21) 

(6) Solve measurement predictions and 
corresponding covariances for 1t  moment: 

1 ,
1

ˆ
ˆ

2
t t

t t

G
G (22) 

1 , 1 , 2
1 1 1

ˆ ˆ
ˆ ˆ

2 t

T

Tt t t t

t t t t t t

G G
Q G G (23) 

1 , 1 ,

1 1 1

ˆ
ˆ

2

T

Tt t t t

t t t t t t

G
Q G (24) 

Among them, 
t   

is the covariance array for 

t ; the T  is a transpose symbol; the 1t tQ
 

is 

the covariance of the residuals; the 1t tQ
 

is the 

reciprocal covariance. 

(7) Calculate filter gain for 1t  moment: 
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(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 
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8 Complete updates of state vectors of recurrent 
neural networks for t+1 moment:

powerful nonlinear state estimation tool that has 
a wide range of applications in multiple fields. In 
SAR image ship target oblique frame detection, 
based on the advantages of CKF processing 
nonlinear systems, effectively resisting the 
influence of errors and measurement noise, and 
reducing the computational burden during 
training, in order to further improve the 
accuracy of ship target oblique frame detection, 
CKF is used to train the recurrent neural network 
detection framework constructed in Section 2.1, 
optimizing the weights of the input layer and the 
weights in the hidden layer of Section 2.2, to 
achieve accurate and efficient SAR image ship 
target oblique frame detection. 

Taking the weights of the input layer,and the 
weights of the 3 branches of the implicit layer in 
Subsection 2.2 1 , 2  and 3  as the state 
variable of the  , the output of the recurrent 
neural network tg  as observations to model the 
state space of recurrent neural networks. 

The number of node layers of the recurrent 
neural network is L   layers, with each layer 
labeled, respectively, as 1,2, , L  , then the 

number of layers of weights is 1L , make ˆ ˆ,i j

as the connection weights for   layer nodes 
ˆ ˆ,i j  . In order to introduce Kalman filtering 

into the training of recurrent neural networks, 
the recurrent neural network structure is 
abstracted into state space vectors . The state 
space model of a recurrent neural network is 
represented as follows: 

1t t t       (15) 

ˆ,t t h tg z ,     (16) 

of which, the weights of the network at time 
1t  are determined by the weights at time t  

together with the process noise, the t   is the 

transfer noise with zero mean. t   is the 
measurement noise with zero mean. 

Let the initial state as well as the initial 
covariance of the recurrent neural network be, 
respectively, the t t   

and t tQ  , the 
implementation process of using CKF to train 
recurrent neural network is as follows: 

(1) Generate the volume transformation points of 
the state vector of the recurrent neural network 
according to the principle of volume 
transformation. 
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Among them,   is a volumetric 
transformation point; the   is the 
dimensionality of the state space of the recurrent 
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1t  moment. 
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(8) Complete updates of state vectors of 
recurrent neural networks for 1t  moment: 
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1 1t t  
in Equation (26), is the state vector of the 

recurrent neural network after optimization, i.e., 
the optimized recurrent neural network weights.  

To sum up, finalize the training of the recurrent 
neural network detection framework by fine-
tuning the weights in both the input and hidden 
layers, replace the optimized weights back to the 
recurrent neural network, and complete accurate 
and efficient ship target oblique frame detection 

in SAR images. 

 

3. Experimental Analysis 
3.1. Experimental Setup 

To verify the effectiveness of the proposed 
method, experimental testing is now conducted. 
The experimental platform scene is shown in 
Figure 2. 

 

The experimental object is the SAR image dataset 
in the SARShip dataset, which is a multi-source 
SAR ship detection dataset. It uses domestically 
produced Gaofen-3 SAR images and Sentinel-1 
images, covers multiple resolutions and 

polarization modes, and contains a large number 
of ship samples. It is very suitable for ship 
detection tasks in SAR images. The relevant 
parameters of the SAR image dataset are shown 
in Table 1. 

Table 1 Data set parameters. 

Parameter name Numerical range 

Pulse repetition rate 100-10000 Hz 

Pulse width 1-100 µs 

Azimuth sampling rate 100-10000 Hz 

Range resolution 1-10 m 

Azimuth resolution 1-10 m 

Imaging mode UFS, FSI, QPSI, QPSII, FSII 

Polarization mode HH, VV, HV, VH 

Frequency band X-band, C-band, L-band 

Image size 30× 30-120 ×120 pixels 

Randomly select 1000 SAR image data from this 
dataset, and divide the SAR image data into 
training and testing sets in a 1:2 ratio. Randomly 
select two SAR images with complex and simple 
backgrounds in the test dataset, as shown in 
Figure 3. 

(a) Complex background (b) Simple background  
Figure 3 SAR images. 

3.2. Indicator Setting 
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3. Experimental Analysis

3.1. Experimental Setup
To verify the effectiveness of the proposed method, 
experimental testing is now conducted. The experi-
mental platform scene is shown in Figure 2.
The experimental object is the SAR image dataset in 
the SARShip dataset, which is a multi-source SAR 
ship detection dataset. It uses domestically pro-

duced Gaofen-3 SAR images and Sentinel-1 images, 
covers multiple resolutions and polarization modes, 
and contains a large number of ship samples. It is 
very suitable for ship detection tasks in SAR images. 
The relevant parameters of the SAR image dataset 
are shown in Table 1.

Figure 2  
Schematic diagram of experimental platform scene.

Parameter name Numerical range

Pulse repetition rate 100-10000 Hz

Pulse width 1-100 μs

Azimuth sampling rate 100-10000 Hz

Range resolution 1-10 m

Azimuth resolution 1-10 m

Imaging mode UFS, FSI, QPSI, QPSII, FSII

Polarization mode HH, VV, HV, VH

Frequency band X-band, C-band, L-band

Image size 30× 30-120 ×120 pixels

Table 1 
Data set parameters.

Figure 3
SAR images.

(a) Complex background (b) Simple background
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3.2. Indicator Setting
Since the feature extraction effect has a moderate 
impact on the subsequent detection, to assess the 
effectiveness of our proposed method, analyzing its 
feature extraction performance as a critical evalua-
tion metric.
Matthews Correlation Coefficient (MCC) is an eval-
uation metric used to measure the performance of 
binary classification models. It considers the effects 
of true positives, true negatives, false positives, and 
false negatives, and can effectively evaluate the ro-
bustness of methods in the face of occlusion inter-
ference. In ship target detection, there may be a large 
number of background areas and a small number of 
ship target areas, resulting in class imbalance. MCC 
is insensitive to class imbalance and can fairly eval-
uate the performance of the model on different cat-
egories, making it particularly suitable for class im-
balance situations and providing a comprehensive 
performance evaluation. Therefore, MCC is selected 
as the evaluation index to verify the strong robust-
ness of the proposed method to interference such as 
occlusion, and to measure the accuracy of ship target 
oblique frame detection of the method. Its value is 
close to 1, indicating that the accuracy of ship target 
oblique frame detection is high. The MCC calcula-
tion formula is as follows.

Since the feature extraction effect has a moderate 
impact on the subsequent detection, to assess the 
effectiveness of our proposed method, analyzing 
its feature extraction performance as a critical 
evaluation metric. 

Matthews Correlation Coefficient (MCC) is an 
evaluation metric used to measure the 
performance of binary classification models. It 
considers the effects of true positives, true 
negatives, false positives, and false negatives, 
and can effectively evaluate the robustness of 
methods in the face of occlusion interference. In 
ship target detection, there may be a large 
number of background areas and a small 

number of ship target areas, resulting in class 
imbalance. MCC is insensitive to class imbalance 
and can fairly evaluate the performance of the 
model on different categories, making it 
particularly suitable for class imbalance 
situations and providing a comprehensive 
performance evaluation. Therefore, MCC is 
selected as the evaluation index to verify the 
strong robustness of the proposed method to 
interference such as occlusion, and to measure 
the accuracy of ship target oblique frame 
detection of the method. Its value is close to 1, 
indicating that the accuracy of ship target 
oblique frame detection is high. The MCC 
calculation formula is as follows. 

FNTNFPTNFNTPFPTP
FNFPTNTPMCC .       (27) 

In the formula, TP stands for true positives, 
referring to the count of samples accurately 
identified as positive cases. TN stands for true 
negatives, indicating the number of samples 
correctly classified as negative cases. FP 
represents false positives, the count of samples 
incorrectly labeled as positive despite being 
negative. FN represents false negatives, where 
positive samples are wrongly predicted as 
negative. 

To further demonstrate the merits of our 
proposed method, we validate its target 
detection performance visually, examining the 
presence of missed detections and false positives 
in ship target detection within SAR images. 

To verify the real-time processing capability of 
the proposed method in practical applications, 
the detection efficiency is measured by the 
detection time. Using the tic toc function in 
MATLAB software to record the running time of 
the detection method is equal to the detection 
time of the method. The shorter it is, the higher 
the efficiency of the method in performing 
detection tasks. 

3.3 Analysis of Results 

3.3.1 Validity Analysis 

Utilizing the technique presented in this paper, 
the SAR image depicted in Figure 3 is processed 
in pseudocolor, and the resulting output is 
displayed in Figure 4. 

 
(a) Complex background      (b) Simple 

background 

Figure 4 Pseudo-color processing results of SAR 
images with complex background and simple 

background. 

 

It can be seen from the analysis of Figure 4 that 
this method can effectively perform pseudo 
color processing on SAR images with complex 
background and simple background to obtain 
color SAR images. 

Using Figure 3(b) as an illustrative case, the 
methodology presented in this paper is 
employed to extract ship target features from 
this SAR image, and the extracted ship target 
features are subject to t-SNE dimension 
reduction visualization processing. The effect of 
ship target feature extraction in this method is 
analyzed, and the visualization processing 
results are shown in Figure 5. 
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(a) Visual results of ship target features of 

traditional hidden layer 

. (27)

In the formula, TP stands for true positives, referring 
to the count of samples accurately identified as pos-
itive cases. TN stands for true negatives, indicating 
the number of samples correctly classified as nega-
tive cases. FP represents false positives, the count of 
samples incorrectly labeled as positive despite being 
negative. FN represents false negatives, where posi-
tive samples are wrongly predicted as negative.
To further demonstrate the merits of our proposed 
method, we validate its target detection perfor-
mance visually, examining the presence of missed 
detections and false positives in ship target detec-
tion within SAR images.
To verify the real-time processing capability of the 
proposed method in practical applications, the de-
tection efficiency is measured by the detection time. 
Using the tic toc function in MATLAB software to 

record the running time of the detection method is 
equal to the detection time of the method. The short-
er it is, the higher the efficiency of the method in per-
forming detection tasks.

3.3 Analysis of Results

3.3.1 Validity Analysis
Utilizing the technique presented in this paper, the 
SAR image depicted in Figure 3 is processed in pseudo-
color, and the resulting output is displayed in Figure 4.

It can be seen from the analysis of Figure 4 that this 
method can effectively perform pseudo color pro-
cessing on SAR images with complex background 
and simple background to obtain color SAR images.
Using Figure 3(b) as an illustrative case, the method-
ology presented in this paper is employed to extract 
ship target features from this SAR image, and the 
extracted ship target features are subject to t-SNE 
dimension reduction visualization processing. The 
effect of ship target feature extraction in this method 
is analyzed, and the visualization processing results 
are shown in Figure 5.
Analyzing the situation of extracting ship target fea-
tures from SAR images in the traditional hidden lay-
er in Figure 5(a), we can see that there are some ob-
vious limitations. First, the boundary between shape 
features and size features is blurred, which is mainly 
because the traditional hidden layer may not fully 
capture the subtle differences of ship targets when 
processing complex SAR images. In SAR images, the 
shape and size of a ship is an important feature for 
identifying its type, and the confusion of the bound-

Figure 4
Pseudo-color processing results of SAR images with 
complex background and simple background.

(a) Complex background (b) Simple background

Since the feature extraction effect has a moderate 
impact on the subsequent detection, to assess the 
effectiveness of our proposed method, analyzing 
its feature extraction performance as a critical 
evaluation metric. 

Matthews Correlation Coefficient (MCC) is an 
evaluation metric used to measure the 
performance of binary classification models. It 
considers the effects of true positives, true 
negatives, false positives, and false negatives, 
and can effectively evaluate the robustness of 
methods in the face of occlusion interference. In 
ship target detection, there may be a large 
number of background areas and a small 

number of ship target areas, resulting in class 
imbalance. MCC is insensitive to class imbalance 
and can fairly evaluate the performance of the 
model on different categories, making it 
particularly suitable for class imbalance 
situations and providing a comprehensive 
performance evaluation. Therefore, MCC is 
selected as the evaluation index to verify the 
strong robustness of the proposed method to 
interference such as occlusion, and to measure 
the accuracy of ship target oblique frame 
detection of the method. Its value is close to 1, 
indicating that the accuracy of ship target 
oblique frame detection is high. The MCC 
calculation formula is as follows. 
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In the formula, TP stands for true positives, 
referring to the count of samples accurately 
identified as positive cases. TN stands for true 
negatives, indicating the number of samples 
correctly classified as negative cases. FP 
represents false positives, the count of samples 
incorrectly labeled as positive despite being 
negative. FN represents false negatives, where 
positive samples are wrongly predicted as 
negative. 

To further demonstrate the merits of our 
proposed method, we validate its target 
detection performance visually, examining the 
presence of missed detections and false positives 
in ship target detection within SAR images. 

To verify the real-time processing capability of 
the proposed method in practical applications, 
the detection efficiency is measured by the 
detection time. Using the tic toc function in 
MATLAB software to record the running time of 
the detection method is equal to the detection 
time of the method. The shorter it is, the higher 
the efficiency of the method in performing 
detection tasks. 

3.3 Analysis of Results 

3.3.1 Validity Analysis 

Utilizing the technique presented in this paper, 
the SAR image depicted in Figure 3 is processed 
in pseudocolor, and the resulting output is 
displayed in Figure 4. 
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images with complex background and simple 

background. 

 

It can be seen from the analysis of Figure 4 that 
this method can effectively perform pseudo 
color processing on SAR images with complex 
background and simple background to obtain 
color SAR images. 

Using Figure 3(b) as an illustrative case, the 
methodology presented in this paper is 
employed to extract ship target features from 
this SAR image, and the extracted ship target 
features are subject to t-SNE dimension 
reduction visualization processing. The effect of 
ship target feature extraction in this method is 
analyzed, and the visualization processing 
results are shown in Figure 5. 
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ary will make it difficult to accurately detect the ship 
target in the output layer. Diagonal frame detection 
usually depends on the accurate extraction and clas-
sification of target features. If inaccuracies occur 
during feature extraction, the precision of oblique 
frame detection will be significantly compromised. 
Consequently, the traditional hidden layer may fall 
short of fulfilling the demands for high-accuracy 
oblique frame detection when it comes to process-
ing ship target feature extraction in SAR images. An-
alyzing Figure 5(b), we can clearly see the advantag-
es of this method after improving the hidden layer 
by using lightweight convolutional neural network. 
The boundary between the three types of ship target 
features becomes very clear without any confusion. 
This is due to the powerful feature extraction ability 
of lightweight convolutional neural network, which 
can more deeply mine the information in SAR imag-
es and capture the subtle differences of ship targets. 
This improvement not only improves the accuracy 
of ship target feature extraction, but also provides 
more powerful support for subsequent oblique frame 
detection. Because the boundary between features is 
clear, the output layer can detect ship targets more 
accurately, thus improving the accuracy of oblique 
frame detection. In addition, the introduction of 
lightweight convolutional neural network may also 

Figure 5
Visual results of ship target features.

(a) Visual results of ship target features 
of traditional hidden layer

(b) Improve the visualization results of ship 
target features in the hidden layer

Since the feature extraction effect has a moderate 
impact on the subsequent detection, to assess the 
effectiveness of our proposed method, analyzing 
its feature extraction performance as a critical 
evaluation metric. 

Matthews Correlation Coefficient (MCC) is an 
evaluation metric used to measure the 
performance of binary classification models. It 
considers the effects of true positives, true 
negatives, false positives, and false negatives, 
and can effectively evaluate the robustness of 
methods in the face of occlusion interference. In 
ship target detection, there may be a large 
number of background areas and a small 

number of ship target areas, resulting in class 
imbalance. MCC is insensitive to class imbalance 
and can fairly evaluate the performance of the 
model on different categories, making it 
particularly suitable for class imbalance 
situations and providing a comprehensive 
performance evaluation. Therefore, MCC is 
selected as the evaluation index to verify the 
strong robustness of the proposed method to 
interference such as occlusion, and to measure 
the accuracy of ship target oblique frame 
detection of the method. Its value is close to 1, 
indicating that the accuracy of ship target 
oblique frame detection is high. The MCC 
calculation formula is as follows. 
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identified as positive cases. TN stands for true 
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correctly classified as negative cases. FP 
represents false positives, the count of samples 
incorrectly labeled as positive despite being 
negative. FN represents false negatives, where 
positive samples are wrongly predicted as 
negative. 

To further demonstrate the merits of our 
proposed method, we validate its target 
detection performance visually, examining the 
presence of missed detections and false positives 
in ship target detection within SAR images. 

To verify the real-time processing capability of 
the proposed method in practical applications, 
the detection efficiency is measured by the 
detection time. Using the tic toc function in 
MATLAB software to record the running time of 
the detection method is equal to the detection 
time of the method. The shorter it is, the higher 
the efficiency of the method in performing 
detection tasks. 

3.3 Analysis of Results 

3.3.1 Validity Analysis 

Utilizing the technique presented in this paper, 
the SAR image depicted in Figure 3 is processed 
in pseudocolor, and the resulting output is 
displayed in Figure 4. 
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It can be seen from the analysis of Figure 4 that 
this method can effectively perform pseudo 
color processing on SAR images with complex 
background and simple background to obtain 
color SAR images. 

Using Figure 3(b) as an illustrative case, the 
methodology presented in this paper is 
employed to extract ship target features from 
this SAR image, and the extracted ship target 
features are subject to t-SNE dimension 
reduction visualization processing. The effect of 
ship target feature extraction in this method is 
analyzed, and the visualization processing 
results are shown in Figure 5. 
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(b) Improve the visualization results of ship 

target features in the hidden layer 

Figure 5 Visual results of ship target features. 

 

Analyzing the situation of extracting ship target 
features from SAR images in the traditional 
hidden layer in Figure 5(a), we can see that there 
are some obvious limitations. First, the boundary 
between shape features and size features is 
blurred, which is mainly because the traditional 
hidden layer may not fully capture the subtle 
differences of ship targets when processing 
complex SAR images. In SAR images, the shape 
and size of a ship is an important feature for 
identifying its type, and the confusion of the 
boundary will make it difficult to accurately 
detect the ship target in the output layer. 
Diagonal frame detection usually depends on 
the accurate extraction and classification of 
target features. If inaccuracies occur during 
feature extraction, the precision of oblique frame 
detection will be significantly compromised. 
Consequently, the traditional hidden layer may 
fall short of fulfilling the demands for high-
accuracy oblique frame detection when it comes 
to processing ship target feature extraction in 
SAR images. Analyzing Figure 5(b), we can 
clearly see the advantages of this method after 
improving the hidden layer by using lightweight 

convolutional neural network. The boundary 
between the three types of ship target features 
becomes very clear without any confusion. This 
is due to the powerful feature extraction ability 
of lightweight convolutional neural network, 
which can more deeply mine the information in 
SAR images and capture the subtle differences of 
ship targets. This improvement not only 
improves the accuracy of ship target feature 
extraction, but also provides more powerful 
support for subsequent oblique frame detection. 
Because the boundary between features is clear, 
the output layer can detect ship targets more 
accurately, thus improving the accuracy of 
oblique frame detection. In addition, the 
introduction of lightweight convolutional neural 
network may also bring advantages in 
computing efficiency, making the whole process 
more efficient. 

3.3.2. Anti-jamming Robustness Analysis 

For the purpose of verifying the robustness of 
this method to occlusion and other interferences, 
an artificial occlusion is created on a single image 
in the SAR image data set to test, and Matthews 
coefficient is used to measure the detection 
accuracy of ship target oblique frame in this 
method. For the real detection frame of each 
target in the image, according to the occlusion 
rate of the target 0,1p

 
to design artificial 

shading. For target real detection frame with 
sizes of Ŵ A  , in which a piece of randomly 
selected dimensions of ˆpW pA   region, all 
the pixel values in the region are taken to be 0, 
which constitutes artificial occlusion, and the 
target occlusion rate is taken to be 0.1, 0.2, 0.3, 
0.4, 0.5, respectively, to analyze the robustness of 
the ship target slanting frame detection under 
the occlusion interference with the introduction 
of different network layers within the method in 
this paper, and the outcomes of the testing are 
presented in Table 2. 

Network layer 
Shading ratio 

0.1 0.2 0.3 0.4 0.5 

Conventional hidden 
layer 0.85 0.81 0.74 0.69 0.62 

Lightweight 
convolutional neural 
network (Common 
Convolutional) 

0.88 0.84 0.77 0.72 0.65 

Deep separable 
Convolutions 0.92 0.88 0.81 0.76 0.69 

Deep separable 
convolutions + channel 
attention mechanisms 

0.94 0.91 0.83 0.78 0.75 

bring advantages in computing efficiency, making 
the whole process more efficient.

3.3.2. Anti-jamming Robustness Analysis
For the purpose of verifying the robustness of this 
method to occlusion and other interferences, an 
artificial occlusion is created on a single image in 
the SAR image data set to test, and Matthews co-
efficient is used to measure the detection accuracy 
of ship target oblique frame in this method. For the 
real detection frame of each target in the image, ac-
cording to the occlusion rate of the target p ϵ (0,1] 
to design artificial shading. For target real detec-
tion frame with sizes of 

SAR images usually contain a large amount of 
data and information, which will face the 
problems of high computational complexity and 
slow processing speed in detection. Recurrent 
neural network has the ability to process time 
series data, and combined with lightweight 
design, it can improve the processing speed and 
efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles 
in SAR images, especially oblique attitude. The 
detection framework based on recurrent neural 
network can better adapt to this angle change 
and accurately detect oblique frame targets. In 
addition, recurrent neural network has 
advantages in feature extraction and learning 
ability, which can automatically learn the deep 
level features. Therefore, the recurrent neural 
network is used to establish a lightweight SAR 
image ship target oblique frame detection 
framework to ensure the detection accuracy, 
significantly reduce the demand for computing 
resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
efficient ship target oblique frame detection in 
SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 

The recurrent neural network is used to detect 
the ship target slant frame in the lightweight 
SAR image. The detection framework is shown 
in Figure 1. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
convolutional neural network as the hidden 
layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 

2.2 Hidden Layer of Ship Target Oblique Frame 
Detection in Lightweight SAR Image 

In the lightweight SAR image oblique frame 
detection framework in Section 2.1, in order to 
improve the feature extraction effect of ship 
targets in SAR images, the lightweight 
convolutional neural network is used as the 
hidden layer to replace the traditional hidden 
layer [15]. 

In recurrent neural network, the output of the 
input layer is: 

t t
i nm i hW X b .      (1) 

Among them, t
iX  is for t moment, the i th 

SAR images; nmW  represents the matrix of 
weights that connects the input layer to the 
hidden layer; the n  is the number of nodes in 
the input layer; the m  is the number of nodes 
in the implicit layer; the hb  is the implicit layer 
bias. 

Perform deep convolution operations to SAR 
image output of input layer t

i

t
i  is set to Ŵ A H , 

of which, Ŵ  is SAR image height; A  is the 
width of SAR image; H

H  convolution 

×A, in which a piece of 
randomly selected dimensions of p

SAR images usually contain a large amount of 
data and information, which will face the 
problems of high computational complexity and 
slow processing speed in detection. Recurrent 
neural network has the ability to process time 
series data, and combined with lightweight 
design, it can improve the processing speed and 
efficiency while ensuring the detection accuracy. 
At the same time, ships may show various angles 
in SAR images, especially oblique attitude. The 
detection framework based on recurrent neural 
network can better adapt to this angle change 
and accurately detect oblique frame targets. In 
addition, recurrent neural network has 
advantages in feature extraction and learning 
ability, which can automatically learn the deep 
level features. Therefore, the recurrent neural 
network is used to establish a lightweight SAR 
image ship target oblique frame detection 
framework to ensure the detection accuracy, 
significantly reduce the demand for computing 
resources, and achieve more efficient detection. 
Finally, in order to further improve the accuracy 
of ship target oblique frame detection, the 
volume Kalman filter algorithm is used to train 
the recurrent neural network, optimize the 
network weight, and complete accurate and 
efficient ship target oblique frame detection in 
SAR images. 

2.1. Lightweight SAR Image Ship Target 
Oblique Frame Detection Framework 

The recurrent neural network is used to detect 
the ship target slant frame in the lightweight 
SAR image. The detection framework is shown 
in Figure 1. 
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Figure 1 Skew frame detection frame of ship 
target in lightweight SAR image. 

 

This framework uses a lightweight 
convolutional neural network as the hidden 
layer and introduces channel attention 
mechanism to improve the feature extraction 
performance of ship targets, providing reliable 
support for subsequent detection. Then, in order 
to have better adaptability to ship targets that 
appear tilted or rotated in SAR images, the center 
point heatmap of the ship target is predicted, and 
the coordinates of the oblique box vertices of the 
center point heatmap are calculated to solve the 
angle sensitivity problem and complete ship 
target oblique box detection. In the detection 
framework, the specific implementation process 
is described as follows: first input SAR images in 
the input layer 1 2, , , nX X X X , where 
the number of SAR images is n . Then, the 
lightweight convolutional neural network is 
used as the hidden layer to extract ship target 
features in the SAR image. Finally, through the 
lightweight multitask output layer, the target 
center point heat map and oblique frame 
parameters are predicted to complete the ship 
target oblique frame detection in the lightweight 
SAR image. 

2.2 Hidden Layer of Ship Target Oblique Frame 
Detection in Lightweight SAR Image 

In the lightweight SAR image oblique frame 
detection framework in Section 2.1, in order to 
improve the feature extraction effect of ship 
targets in SAR images, the lightweight 
convolutional neural network is used as the 
hidden layer to replace the traditional hidden 
layer [15]. 

In recurrent neural network, the output of the 
input layer is: 

t t
i nm i hW X b .      (1) 

Among them, t
iX  is for t moment, the i th 

SAR images; nmW  represents the matrix of 
weights that connects the input layer to the 
hidden layer; the n  is the number of nodes in 
the input layer; the m  is the number of nodes 
in the implicit layer; the hb  is the implicit layer 
bias. 

Perform deep convolution operations to SAR 
image output of input layer t

i

t
i  is set to Ŵ A H , 

of which, Ŵ  is SAR image height; A  is the 
width of SAR image; H

H  convolution 

×pA region, 
all the pixel values in the region are taken to be 0, 
which constitutes artificial occlusion, and the tar-
get occlusion rate is taken to be 0.1, 0.2, 0.3, 0.4, 0.5, 
respectively, to analyze the robustness of the ship 
target slanting frame detection under the occlusion 
interference with the introduction of different net-
work layers within the method in this paper, and the 
outcomes of the testing are presented in Table 2.
Analyzing Table 2, it can be seen that when using 
different network layers for ship target oblique 
frame detection, the difficulty of ship target detec-
tion gradually increases with the increase of the 
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occlusion rate, resulting in a decreasing trend of 
the Mathews coefficient. This is because the occlu-
sion will lead to the loss of feature information of 
the ship target, which increases the difficulty of the 
detection method to distinguish the target from the 
background. However, when the traditional hid-
den layer is replaced by a lightweight convolutional 
neural network, the Mathews coefficient increases 
under different occlusion rates. This is attributed 
to the efficient feature extraction capability of light-
weight convolutional neural networks, which can 
reduce the computation amount while retaining or 
even improving the feature expressiveness. This im-
provement allows the detection algorithm to main-
tain high detection accuracy in complex situations 
such as occlusion. Further, when depth-separable 
convolution is employed as a substitute for standard 
convolution, the Matthews correlation coefficient 
exhibits a consistent enhancement. By separating 
the spatial convolution and channel convolution, 
the depth-separable convolution not only reduces 
the computational complexity, but also improves the 
generalization ability of the model. This improve-
ment enables the detection algorithm to extract key 
features more accurately when dealing with ship 
targets with different occlusion rates, thus improv-
ing the detection accuracy. In addition, the introduc-
tion of the channel attention mechanism leads to a 
further augmentation in the Mathews coefficient. 
The channel attention mechanism can adaptive-
ly adjust the weights between different channels, 
which makes the recurrent neural network pay more 
attention to the feature channels that are favorable 
to the detection task. This helps to detect ship tar-

Table 2 
Robustness test results of the proposed method for different target occlusion ratios.

Network layer
Shading ratio

0.1 0.2 0.3 0.4 0.5

Conventional hidden layer 0.85 0.81 0.74 0.69 0.62

Lightweight convolutional neural network (Common Convolutional) 0.88 0.84 0.77 0.72 0.65

Deep separable Convolutions 0.92 0.88 0.81 0.76 0.69

Deep separable convolutions + channel attention mechanisms 0.94 0.91 0.83 0.78 0.75

Deep separable convolutions + channel attention mechanism + Angle regression 0.97 0.94 0.86 0.83 0.79

Lightweight convolutional neural networks (depth separable convolutions) + 
channel attention mechanism + slant frame representation 0.99 0.96 0.94 0.93 0.92

gets more accurately in complex backgrounds, es-
pecially in the case of high occlusion rate, and can 
effectively suppress the influence of background 
noise and interferences. Finally, after the angular re-
gression is replaced by the oblique frame represen-
tation, the Matthews coefficient of the oblique frame 
detection of ship targets is further improved. This is 
because the oblique frame representation can more 
accurately describe the tilt angle and position infor-
mation of the ship target, which solves the angular 
sensitivity problem in angular regression. This im-
provement makes the detection method more accu-
rate in detecting the ship target, which improves the 
detection accuracy. The above analysis shows that 
the improvement of the network layer in this paper 
effectively improves the Mathews coefficient of the 
ship target slant frame detection, and has better ro-
bustness of the ship target slant frame detection.

3.3.3 Analysis of the Effectiveness of Target 
Diagonal Frame Detection
Taking the target detection method in literature 
[17] YOLOv3, the target detection method using 
RBF-FDLNN and CBF algorithm in literature [3], the 
target detection method using robust depth learning 
in literature [14], and the target detection method us-
ing joint transform correlator in literature [4] as the 
comparison methods of the methods in this paper, the 
ship target oblique frame detection is carried out on 
the SAR image in Figure 3 using the above five meth-
ods, and the detection results of the target oblique 
frame are shown in Figures 6-7. As shown in Figures 
8-10, the red box in the figure is the correct detected 
ship target, and the green box is the missed target.
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image. From the analysis of Figures 8(a)-(b), we 
can see that in the SAR image with complex back-
ground, the method in literature [3] has a missed de-
tection, and the detection result of the target in the 
SAR image with simple background is completely 
correct. From the analysis of Figures 9 (a)-(b), we 
can see that in the complex background SAR image, 
there are two missed detection cases in the litera-
ture [14] method, and the detection result of the 
target in the simple background SAR image is com-
pletely correct. Considering the analysis presented 
in Figures 10(a)-(b), in the complex background 
SAR image, there are three missed cases in the liter-
ature [4] method, and one missed case in the simple 
background SAR image. The comprehensive analy-
sis shows that the ship target detection accuracy of 
this method is the highest.
Based on the above tests, in order to further verify 
the detection performance of the proposed meth-
od, target occlusion rates of 0.1, 0.2, 0.3, 0.4, and 0.5 
were taken in complex and simple backgrounds, re-
spectively. The YOLOv3 object detection method in 

Figure 6 
Ship target detection results of the proposed method.

(a) Complex background (b) Simple background

Table 2 Robustness test results of the proposed method for different target occlusion ratios. 

Analyzing Table 2, it can be seen that when using 
different network layers for ship target oblique 
frame detection, the difficulty of ship target 
detection gradually increases with the increase 
of the occlusion rate, resulting in a decreasing 
trend of the Mathews coefficient. This is because 
the occlusion will lead to the loss of feature 
information of the ship target, which increases 
the difficulty of the detection method to 
distinguish the target from the background. 
However, when the traditional hidden layer is 
replaced by a lightweight convolutional neural 
network, the Mathews coefficient increases 
under different occlusion rates. This is attributed 
to the efficient feature extraction capability of 
lightweight convolutional neural networks, 
which can reduce the computation amount while 
retaining or even improving the feature 
expressiveness. This improvement allows the 
detection algorithm to maintain high detection 
accuracy in complex situations such as occlusion. 
Further, when depth-separable convolution is 
employed as a substitute for standard 
convolution, the Matthews correlation 
coefficient exhibits a consistent enhancement. By 
separating the spatial convolution and channel 
convolution, the depth-separable convolution 
not only reduces the computational complexity, 
but also improves the generalization ability of 
the model. This improvement enables the 
detection algorithm to extract key features more 
accurately when dealing with ship targets with 
different occlusion rates, thus improving the 
detection accuracy. In addition, the introduction 
of the channel attention mechanism leads to a 
further augmentation in the Mathews 
coefficient. The channel attention mechanism 
can adaptively adjust the weights between 
different channels, which makes the recurrent 
neural network pay more attention to the feature 
channels that are favorable to the detection task. 
This helps to detect ship targets more accurately 
in complex backgrounds, especially in the case of 
high occlusion rate, and can effectively suppress 
the influence of background noise and 
interferences. Finally, after the angular 
regression is replaced by the oblique frame 
representation, the Matthews coefficient of the 
oblique frame detection of ship targets is further 

improved. This is because the oblique frame 
representation can more accurately describe the 
tilt angle and position information of the ship 
target, which solves the angular sensitivity 
problem in angular regression. This 
improvement makes the detection method more 
accurate in detecting the ship target, which 
improves the detection accuracy. The above 
analysis shows that the improvement of the 
network layer in this paper effectively improves 
the Mathews coefficient of the ship target slant 
frame detection, and has better robustness of the 
ship target slant frame detection. 

3.3.3 Analysis of the Effectiveness of Target 
Diagonal Frame Detection 

Taking the target detection method in literature 
[17] YOLOv3, the target detection method using 
RBF-FDLNN and CBF algorithm in literature [3], 
the target detection method using robust depth 
learning in literature [14], and the target 
detection method using joint transform 
correlator in literature [4] as the comparison 
methods of the methods in this paper, the ship 
target oblique frame detection is carried out on 
the SAR image in Figure 3 using the above five 
methods, and the detection results of the target 
oblique frame are shown in Figures 6-7. As 
shown in Figures 8-10, the red box in the figure 
is the correct detected ship target, and the green 
box is the missed target. 
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Ship target detection results of the method in reference [17].
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method in reference [14]. 
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Considering the analysis presented in Figures 
6(a)-(b), for SAR images with complex 
background and simple background, this 
method can effectively complete ship target 
oblique frame detection, and the detection 
results are completely correct. Considering the 
analysis presented in Figures 7(a)-(b), in the 
complex background SAR image, there are two 
missing cases in the literature [17] method, and 
one missing case in the simple background SAR 
image. From the analysis of Figures 8(a)-(b), we 
can see that in the SAR image with complex 
background, the method in literature [3] has a 
missed detection, and the detection result of the 
target in the SAR image with simple background 
is completely correct. From the analysis of 
Figures 9 (a)-(b), we can see that in the complex 
background SAR image, there are two missed 
detection cases in the literature [14] method, and 
the detection result of the target in the simple 
background SAR image is completely correct. 
Considering the analysis presented in Figures 
10(a)-(b), in the complex background SAR 
image, there are three missed cases in the 
literature [4] method, and one missed case in the 
simple background SAR image. The 
comprehensive analysis shows that the ship 
target detection accuracy of this method is the 
highest. 

Based on the above tests, in order to further 
verify the detection performance of the proposed 
method, target occlusion rates of 0.1, 0.2, 0.3, 0.4, 
and 0.5 were taken in complex and simple 
backgrounds, respectively. The YOLOv3 object 
detection method in reference [17], the RBF-
FDLNN and CBF algorithm object detection 
method in reference [3], the robust deep learning 
object detection method in reference [14], the 
joint transform correlator object detection 
method in reference [4], and the proposed 
method were used for ship object detection. 
Measure the detection effectiveness of each 
method using detection accuracy. Therefore, the 
accuracy of ship target detection under different 
occlusion rates using various methods is shown 
in Table 3. 

Table 3 Results of ship target detection accuracy under different occlusion rates. 

Background 
Target 

occlusion 
rate/% 

Accuracy 
of 

YOLOv3 
object 

detection 
method/% 

Accuracy of 
Object 

Detection 
Methods for 

RBF-FDLNN 
and CBF 

Algorithms/% 

Accuracy 
of robust 

deep 
learning 
object 

detection 
methods/% 

Accuracy of 
object 

detection 
method 

using joint 
transform 

correlators/% 

Accuracy 
of the 

proposed 
method/% 

Simple 
Background 

0.1 93.3 96.5 94.2 92.4 99.7 
0.2 90.0 93.1 91.8 89.0 96.5 
0.3 86.9 90.5 87.3 86.6 94.2 
0.4 83.1 87.8 83.7 82.1 93.9 

Figure 8 
Ship target detection results of the method in reference [3].
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Considering the analysis presented in Figures 
6(a)-(b), for SAR images with complex 
background and simple background, this 
method can effectively complete ship target 
oblique frame detection, and the detection 
results are completely correct. Considering the 
analysis presented in Figures 7(a)-(b), in the 
complex background SAR image, there are two 
missing cases in the literature [17] method, and 
one missing case in the simple background SAR 
image. From the analysis of Figures 8(a)-(b), we 
can see that in the SAR image with complex 
background, the method in literature [3] has a 
missed detection, and the detection result of the 
target in the SAR image with simple background 
is completely correct. From the analysis of 
Figures 9 (a)-(b), we can see that in the complex 
background SAR image, there are two missed 
detection cases in the literature [14] method, and 
the detection result of the target in the simple 
background SAR image is completely correct. 
Considering the analysis presented in Figures 
10(a)-(b), in the complex background SAR 
image, there are three missed cases in the 
literature [4] method, and one missed case in the 
simple background SAR image. The 
comprehensive analysis shows that the ship 
target detection accuracy of this method is the 
highest. 

Based on the above tests, in order to further 
verify the detection performance of the proposed 
method, target occlusion rates of 0.1, 0.2, 0.3, 0.4, 
and 0.5 were taken in complex and simple 
backgrounds, respectively. The YOLOv3 object 
detection method in reference [17], the RBF-
FDLNN and CBF algorithm object detection 
method in reference [3], the robust deep learning 
object detection method in reference [14], the 
joint transform correlator object detection 
method in reference [4], and the proposed 
method were used for ship object detection. 
Measure the detection effectiveness of each 
method using detection accuracy. Therefore, the 
accuracy of ship target detection under different 
occlusion rates using various methods is shown 
in Table 3. 

Table 3 Results of ship target detection accuracy under different occlusion rates. 
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Figure 9 
Ship target detection results of the method in reference [14].
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Considering the analysis presented in Figures 
6(a)-(b), for SAR images with complex 
background and simple background, this 
method can effectively complete ship target 
oblique frame detection, and the detection 
results are completely correct. Considering the 
analysis presented in Figures 7(a)-(b), in the 
complex background SAR image, there are two 
missing cases in the literature [17] method, and 
one missing case in the simple background SAR 
image. From the analysis of Figures 8(a)-(b), we 
can see that in the SAR image with complex 
background, the method in literature [3] has a 
missed detection, and the detection result of the 
target in the SAR image with simple background 
is completely correct. From the analysis of 
Figures 9 (a)-(b), we can see that in the complex 
background SAR image, there are two missed 
detection cases in the literature [14] method, and 
the detection result of the target in the simple 
background SAR image is completely correct. 
Considering the analysis presented in Figures 
10(a)-(b), in the complex background SAR 
image, there are three missed cases in the 
literature [4] method, and one missed case in the 
simple background SAR image. The 
comprehensive analysis shows that the ship 
target detection accuracy of this method is the 
highest. 

Based on the above tests, in order to further 
verify the detection performance of the proposed 
method, target occlusion rates of 0.1, 0.2, 0.3, 0.4, 
and 0.5 were taken in complex and simple 
backgrounds, respectively. The YOLOv3 object 
detection method in reference [17], the RBF-
FDLNN and CBF algorithm object detection 
method in reference [3], the robust deep learning 
object detection method in reference [14], the 
joint transform correlator object detection 
method in reference [4], and the proposed 
method were used for ship object detection. 
Measure the detection effectiveness of each 
method using detection accuracy. Therefore, the 
accuracy of ship target detection under different 
occlusion rates using various methods is shown 
in Table 3. 
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Figure 10 
Ship target detection results of the method in reference [4].
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Considering the analysis presented in Figures 
6(a)-(b), for SAR images with complex 
background and simple background, this 
method can effectively complete ship target 
oblique frame detection, and the detection 
results are completely correct. Considering the 
analysis presented in Figures 7(a)-(b), in the 
complex background SAR image, there are two 
missing cases in the literature [17] method, and 
one missing case in the simple background SAR 
image. From the analysis of Figures 8(a)-(b), we 
can see that in the SAR image with complex 
background, the method in literature [3] has a 
missed detection, and the detection result of the 
target in the SAR image with simple background 
is completely correct. From the analysis of 
Figures 9 (a)-(b), we can see that in the complex 
background SAR image, there are two missed 
detection cases in the literature [14] method, and 
the detection result of the target in the simple 
background SAR image is completely correct. 
Considering the analysis presented in Figures 
10(a)-(b), in the complex background SAR 
image, there are three missed cases in the 
literature [4] method, and one missed case in the 
simple background SAR image. The 
comprehensive analysis shows that the ship 
target detection accuracy of this method is the 
highest. 

Based on the above tests, in order to further 
verify the detection performance of the proposed 
method, target occlusion rates of 0.1, 0.2, 0.3, 0.4, 
and 0.5 were taken in complex and simple 
backgrounds, respectively. The YOLOv3 object 
detection method in reference [17], the RBF-
FDLNN and CBF algorithm object detection 
method in reference [3], the robust deep learning 
object detection method in reference [14], the 
joint transform correlator object detection 
method in reference [4], and the proposed 
method were used for ship object detection. 
Measure the detection effectiveness of each 
method using detection accuracy. Therefore, the 
accuracy of ship target detection under different 
occlusion rates using various methods is shown 
in Table 3. 

Table 3 Results of ship target detection accuracy under different occlusion rates. 

Background 
Target 

occlusion 
rate/% 

Accuracy 
of 

YOLOv3 
object 

detection 
method/% 

Accuracy of 
Object 

Detection 
Methods for 

RBF-FDLNN 
and CBF 

Algorithms/% 

Accuracy 
of robust 

deep 
learning 
object 

detection 
methods/% 

Accuracy of 
object 

detection 
method 

using joint 
transform 

correlators/% 

Accuracy 
of the 

proposed 
method/% 

Simple 
Background 

0.1 93.3 96.5 94.2 92.4 99.7 
0.2 90.0 93.1 91.8 89.0 96.5 
0.3 86.9 90.5 87.3 86.6 94.2 
0.4 83.1 87.8 83.7 82.1 93.9 

Considering the analysis presented in Figures 6(a)-
(b), for SAR images with complex background and 
simple background, this method can effectively 
complete ship target oblique frame detection, and 
the detection results are completely correct. Con-
sidering the analysis presented in Figures 7(a)-(b), 
in the complex background SAR image, there are 
two missing cases in the literature [17] method, and 
one missing case in the simple background SAR 
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reference [17], the RBF-FDLNN and CBF algorithm 
object detection method in reference [3], the robust 
deep learning object detection method in reference 
[14], the joint transform correlator object detection 
method in reference [4], and the proposed method 

According to the results in Table 3, it can be seen 
that there is a certain gap in the detection results 
when using the above five methods without back-
ground. The detection accuracy in simple back-
grounds is always higher than that in complex 
backgrounds for ship target detection. And as the 
target occlusion rate increases, the accuracy of de-
tection shows a decreasing trend regardless of the 
background used for detection. By comparing the 
results presented in Table 3, it can be concluded 
that the proposed method has higher detection ac-
curacy than the other four comparison methods in 
different backgrounds as the target occlusion rate 
increases. In a simple background, when the target 
occlusion rate reaches a maximum of 0.5, the de-
tection accuracy of the proposed method is 92.6%. 
However, the detection accuracy of YOLOv3's ob-
ject detection method in reference [17], the object 
detection method using RBF-FDLNN and CBF 
algorithms in reference [3], the object detection 
method using robust deep learning in reference 
[14], and the object detection method using joint 

Table 3 
Results of ship target detection accuracy under different occlusion rates.

Background
Target  

occlusion 
rate/%

Accuracy of 
YOLOv3 object 

detection  
method/%

Accuracy of Object 
Detection Methods 

for RBF-FDLNN and 
CBF Algorithms/%

Accuracy of robust 
deep learning 

object detection 
methods/%

Accuracy of object 
detection method 
using joint trans-

form correlators/%

Accuracy of 
the proposed 

method/%

Simple 
Background

0.1 93.3 96.5 94.2 92.4 99.7

0.2 90.0 93.1 91.8 89.0 96.5

0.3 86.9 90.5 87.3 86.6 94.2

0.4 83.1 87.8 83.7 82.1 93.9

0.5 77.9 85.2 78.1 77.6 92.6

Complex 
Background

0.1 92.1 95.3 92.8 90.5 98.4

0.2 88.6 92.7 89.4 86.0 95.1

0.3 84.0 88.1 85.7 81.4 93.8

0.4 75.4 83.5 80.0 74.7 92.4

0.5 70.7 77.7 75.1 67.1 91.0

were used for ship object detection. Measure the de-
tection effectiveness of each method using detection 
accuracy. Therefore, the accuracy of ship target de-
tection under different occlusion rates using various 
methods is shown in Table 3.

transform correlators in reference [4] are 77.9%, 
85.2%, 78.1%, and 77.6%, respectively; In complex 
backgrounds, when the target occlusion rate reach-
es a maximum of 0.5, the detection accuracy of the 
proposed method is 91.0%. However, the detection 
accuracy of YOLOv3's object detection method 
in reference [17], the object detection method us-
ing RBF-FDLNN and CBF algorithms in reference 
[3], the object detection method using robust deep 
learning in reference [14], and the object detection 
method using joint transform correlators in ref-
erence [4] are 70.7%, 77.7%, 75.1%, and 67.1%, re-
spectively. By comparison, it can be seen that the 
detection accuracy of the proposed method can 
consistently maintain above 90%, indicating good 
detection performance.

3.3.4 Efficiency Analysis of Target Oblique  
Frame Detection
To verify the detection efficiency of various meth-
ods in processing large amounts of SAR data and 
demonstrate the real-time processing capability 
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According to the results in Table 4, it can be seen that 
when using the above five methods for large-scale 
SAR data sample detection tasks, the detection time 
shows an upward trend with the increase of sample 
size. However, compared with the object detection 
method of YOLOv3 in reference [17], the object detec-
tion method using RBF-FDLNN and CBF algorithms 
in reference [3], the object detection method using 
robust deep learning in reference [14], and the object 
detection method using joint transform correlators 

Number of SAR 
data samples

Detection time/s

Proposed 
method

Object detection 
method for 

YOLOv3

Object detection methods 
using RBF-FDLNN and 

CBF algorithms

Robust deep  
learning based object  

detection method

Object detection method 
using joint transformation 

correlators

500 3.32 5.87 4.76 5.44 5.98

1000 5.28 9.28 7.35 8.97 10.76

1500 8.67 13.92 11.84 12.95 14.95

2000 10.95 17.98 15.18 16.73 18.87

2500 13.42 22.15 19.94 21.32 23.53

3000 16.17 26.84 23.25 25.47 27.96

Table 4 
Time consumption results of each method for detection.

in reference [4] have lower detection time. When the 
number of SAR data samples reaches 3000, the detec-
tion time of the proposed method is less than 17 sec-
onds, while the detection time of the four literature 
methods is all over 23 seconds. The comparison of the 
detection time results obtained from the five methods 
shows that the proposed method has high detection 
efficiency, low detection time when processing large 
amounts of SAR data, and strong real-time processing 
capability in practical applications.

4. Conclusion
After thorough research and experimentation, the 
lightweight SAR image-based approach for ship target 
slant frame detection utilizing recurrent neural net-
works has yielded outstanding outcomes. This meth-
odology effectively captures sequential information 
through recurrent neural networks, leveraging the 
contextual details within SAR images to enhance the 
precision of ship target detection. Especially when 
dealing with complex situations such as occlusion, re-
current neural network can effectively detect the con-
tinuity and integrity of ship targets, providing an effi-
cient and accurate solution for ship target detection in 

SAR images, indicating its broad application prospects 
and significant practical value in a wide range of fields. 
However, in extremely complex or heavily occluded 
scenes, the detection performance of the proposed 
method may decrease. Therefore, in order to further 
improve and optimize the detection performance of 
the proposed method, multimodal fusion technology 
will be explored in the future, combining SAR images 
and other sensor data (such as optical images) to pro-
vide richer information, improve detection accuracy, 
and make it more suitable for ship target oblique frame 
detection tasks in practical applications.

of detection methods in practical applications, an 
analysis of detection efficiency is now conducted 
based on the results of detection time consumption. 
Then, the proposed method, YOLOv3's object detec-
tion method from reference [17], RBF-FDLNN and 
CBF algorithm's object detection method from ref-

erence [3], robust deep learning's object detection 
method from reference [14], and joint transform 
correlator's object detection method from reference 
[4] were used to detect a large number of SAR data 
samples. The detection time results of each method 
are shown in Table 4.
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