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The Transmission Control Protocol (TCP) plays a crucial role in congestion control by adjusting packet send-
ing rates, but it falls short of addressing the buffer bloat issue in critical routers. To mitigate this, Active Queue 
Management (AQM) mechanisms like Random Early Detection (RED) have been introduced to form a TCP/
RED feedback system for congestion control. However, by analyzing the magnitude-frequency characteristic of 
TCP/RED, this paper finds it has sluggish response time and slowly stabilizes in congestion control. Therefore, 
this paper presents a novel AQM controller named RED-PID, which integrates a Proportional-Integral-De-
rivative (PID) adjustor into RED, enhancing the control structure. Furthermore, frequency domain analysis 
provides the stability criteria and parameters for TCP/RED-PID. Given the lack of a special optimization of 
control parameters for adapting to TCP/RED-PID effectively, this paper introduces a novel heuristic algorithm 
(AOMOA), which combines the global exploration strengths of the Aquila Optimizer (AO) with the local ex-
ploitation capabilities of the Math Optimizer (MO). Meanwhile, a chaotic-subpopulation strategy is proposed, 
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utilizing two subpopulations simultaneously to fasten the converging speed. Moreover, the dynamic k-worst 
shift is introduced to strike a balance between global exploration and local exploitation across both optimizers. 
The TCP/RED-PID model was analyzed and validated using the NS3 simulator. Comprehensive simulations 
demonstrate that RED-PID, optimized by AOMOA, significantly outperforms the standard RED controller, ex-
hibiting superior congestion control performance.
KEYWORDS: AQM; TCP/RED; Congestion control; PID; Aquila Optimizer; Math Optimizer.

1. Introduction
With the integration of more applications in net-
works to meet the demands of a growing number of 
web users, network congestion has become a preva-
lent issue. Despite the significance of the Transmis-
sion Control Protocol (TCP) in congestion control 
by adjusting senders and receivers, TCP focuses on 
the peer-to-peer side and overlooks the buffer bloat 
problem in critical routers. Consequently, the effec-
tiveness of TCP in resolving congestion is limited, 
as it only works from a single perspective [15, 32]. In 
response, Active Queue Management (AQM) [2, 36, 
37] has arisen and combined with TCP to construct 
a feedback system (TCP/AQM) as another solution to 
diminish buffer queue sizes in vital routers, ensuring 
that the packet queue length remains within a speci-
fied range [16]. Traditional AQM controllers use fixed 
algorithms to drop the incoming packets. They are in-
sensitive to time variations of the packet queue [14]. 
For this problem, an AQM controller, Random Ear-
ly Detection (RED), is proposed to control network 
congestion based on variations of queue length. Up to 
now, RED has been a classical and widely used AQM 
controller and plays a significant role in modern com-
puter networks, especially with high throughput and 
low latency networks emerging.
However, utilizing entirely RED to avoid congestion 
and improve transmission efficiency is very difficult. 
The main reason is that the burst microflows every-
where in networks aggravate fluctuations of the packet 
queue. In this case, RED is easily affected by instant 
variations of the packet queue and, therefore, drops 
packets inaccurately. Meanwhile, RED does not follow 
the past track of the variations to identify congestion. 
In fact, the past track of queue variations often re-
flects the trend of congestion evolution. The ignorance 
of considering the history experience of the packet 
queue degrades the RED’s function. In addition, sever-
al parameters in RED, e.g., the maximum queue length 
(lmax), the minimum queue length (lmin), and the 

maximum dropping packet probability (pmax), play an 
essential role in making the most advantage of the RED 
performance. Setting available values of these parame-
ters is blind as it depends on expertise.
According to the above analysis, the focus of taking 
advantage of RED has been to design an effective 
and new mechanism for RED to cope with constant 
variations of network communication. This paper 
proposes a high-performance RED controller incor-
porating the Proportional-Integral-Derivative (PID) 
adjustor, namely RED-PID, which controls network 
congestion effectively and steadily. Because the TCP 
peer sides and the RED-PID controller construct a 
feedback system (TCP/RED-PID), the parameters of 
RED-PID need to be optimized to balance the feed-
back system sensitivity and stability. To achieve the 
above aim, we design a new heuristic algorithm based 
on the Aquila optimization and Math optimization 
(MO) algorithms (AOMOA) for optimizing AQM/
RED.
The main contributions of this paper can be summa-
rized as follows.
 _ According to the AQM/RED fluid model and the 

feedback theory, this paper reveals an intrinsic 
drawback in RED - its lack of responsive control 
to variations in the packet queue degrades the 
effectiveness of congestion control.

 _ To address the flaw of RED’s difficulty in coping 
with constant variations of the packet queue, a 
PID adjustor is introduced into RED to improve 
its intrinsic sluggish character. To the best of our 
knowledge, although PID control is popular in 
automatic and electrical fields, RED-PID is the first 
RED controller to incorporate the PID algorithm in 
network communication.

 _ We delineate the parameter optimization model, 
which maintains the TCP/RED-PID stability and 
sensitive responsiveness to congestion control.
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 _ To optimize the constrained parameters of TCP/
RED-PID, we propose a heuristic algorithm 
(AOMOA) that combines global exploration of AO 
with local exploitation of MO. This hybrid approach 
leverages the strengths of both algorithms to 
achieve comprehensive parameter optimization.

The rest of the paper is structured as follows. The re-
lated work is introduced in Section 2. Section 3 ana-
lyzes shortcomings of RED and, therefore, offers the 
RED-PID fluid model to improve the original TCP/
RED structure. The introduction to AO is in Section 
4. In Section 5, the motivation and mathematical 
model of AOMOA are given in detail. In Section 6, 
AOMOA, with other compared algorithms, is tested. 
In addition, the performance of AOMOA-optimized 
RED-PID is also verified. A comprehensive discus-
sion about the research’s purpose, methodology, fu-
ture work, etc., is given in Section 7. Finally, this paper 
is summarized in Section 8.

2. Related Works
AQM/RED plays a crucial role in suppressing conges-
tion evolution, effectively mitigating packet loss and 
alleviating network congestion. Meanwhile, AQM/
RED would perform excellently only on the condition 
of complex parameter tuning aided by heuristic algo-
rithms. This section provides a comprehensive over-
view of existing research related to AQM/RED and 
heuristic algorithms.

2.1. AQM/RED

The AQM mechanism is deployed on intermediate 
network devices, especially critical routers. AQM as-
sists TCP in reducing packet loss and relieving net-
work congestion. RED is one of the most classical and 
popular AQM mechanisms due to its implementation 
following the evolution of the packet queue. Firstly, 
we summarize the current work related to RED.
The drop packet policy of RED is characterized by 
adopting a linear policy of dropping packets.  Hassan 
et al. [17] replace the linear policy with the amended 
method and the quadratic exponential approach, to 
combat network complex and frequent variations. 
Giménez et al. [13] present a modified Dynamic Beta 

RED (mDBetaRED), in which the parameters are dy-
namically adjusted so that the queue length remains 
stable around a predetermined reference value for 
fitting new network traffic conditions. Additionally, 
Lhamo  et al. [24] combine the RED and CoDel with 
Static Priority (SP) scheduling for quality-of-service 
differentiation to make the AQM with essentially 
parameterless priorities. These studies focus on the 
vision that changes the rigidly linear packet discard 
of RED to adapt dynamically to the variations of 
network communication. However, adjusting linear 
dropping packets is only available to limited scenar-
ios. This type of approach makes it difficult to cope 
with complex communication cases, such as hetero-
geneous networks and concurrent flows competing 
bottleneck-link bandwidth.
To get AQM strong adaptability, some studies have 
considered the dynamics of TCP transport and AQM 
as a closed-loop feedback system, referred to as TCP/
AQM. With the assistance of the feedback control 
theorem, TCP/AQM achieved good results in conges-
tion control. For instance, a robust AQM, PID-R [38], 
combines the PID adjustor with the Recursive Least 
Squares filter to resist the interference of random 
communication variations and, thus, maintain the 
high performance of the AQM controller. Khan et al. 
[23] use the nonlinear-loop control system to describe 
delay-based congestion behavior. Abd Mohammed 
et al. [1] utilize proportional-integral control to limit 
queue growth better. These researches all verify the 
AQM/RED controller requires appropriate control 
parameters [33] (e.g., link bandwidth, concurrent TCP 
flows, transmission rate, round-trip time, etc.) for op-
timal effectiveness. Therefore, the parameters of TCP/
AQM must be optimized to meet actual communica-
tion scenarios for effective congestion control.

2.2. Meta-heuristic Algorithms
It can be seen from the analysis in Section 2.1 that 
adopting available optimization algorithms is of great 
significance. In recent years, newly proposed algo-
rithms, which leverage CNN [28] or supervised learn-
ing methods, have been applied in image and vision 
processing. They have relied on plenty of training sets 
to achieve excellent performance. However, TCP/
AQM, as a feedback system, must instantly adjust ac-
cording to communication variations. Additionally, 
as far as we know, no available training set currently 
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applies to TCP/AQM due to network communication 
fluctuating. In view of this, meta-heuristic algorithms 
of animal-based or nature-based phenomena are con-
sidered when optimizing the parameters in TCP/AQM.
New heuristic algorithms combining classical algo-
rithms or creating adaptable versions have been pro-
posed recently to improve the development of rele-
vant research [18, 24, 27]. For example, Akyol et al. [7] 
propose a new hybrid approach that uses the tangent 
search algorithm (TSA) instead of the limited explo-
ration stage to improve the exploitation of Aquila opti-
mizer (AO). Tang and Wang [37] propose a whale-based 
atom-like structure differential evolution (WOAAD). 
Han et al. [10] are inspired by the behaviors of wal-
ruses and then proposed the Walrus optimizer (WO). 
The reptile search algorithm (RSA) [4], emulating the 
hunting behavior of crocodiles, is proposed to solve 
optimization problems. However, these optimization 
algorithms are often tailored to specific engineering 
problems. Acquiring available and accurate parame-
ters is still tedious and needs specific expertise [26]. 
Given the proposed RED-PID as the AQM controller in 
this paper, the PID component naturally has the merits 
of self-correction and history-experience tracking. So, 
we believe the heuristic algorithm suitable for RED-
PID should prioritize responsiveness and execution 
efficiency. Additionally, since no specific algorithms 
have been designed based on the fluid model of the 
TCP/AQM feedback system, this paper designs a new 
heuristic algorithm, AOMOA, following the Aquila and 
Math optimization optimizers [3, 5] for optimizing 
AQM mechanisms in network communication.

3. TCP/RED-PID
In this section, we determine the constrained correla-
tion among the RED-PID parameters via stability and 
frequency analysis of the TCP/RED-PID fluid model. 
The parameters are subsequently characterized by both 
equality and inequality constraint conditions, forming 
an optimization model that AOMOA would address.

3.1. Fluid Model
In the TCP/AQM mechanism, AQM drops packets 
in the queue of the intermediate device with some 
probabilities. This means that an intermediate de-
vice signals congestion to the TCP receiver. The 
receiver, afterward, acknowledges the congestion 

to the TCP sender, providing feedback that adjusts 
the sender’s congestion window (cwnd) to change 
the transmitting rate. The TCP/AQM mechanism is 
shown in Figure 1.

Figure 1
TCP/AQM working mechanism
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The TCP/AQM dynamics involve various network 
parameters that affect the communication 
performance of TCP. The dynamics are 
represented as the differential equations [36], 
which are shown below. 
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where ws(t) signifies the number of cwnd in all 
TCP senders at time t, r is the compensation 
factor for ws(t), r(t) denotes the round-trip 
time, n represents the number of TCP flows, 
and p(t) represents the probability of the 
AQM controller dropping or marking the 
packets in the queue at time t. In Equation (1), 
d(t) corresponds to the queuing delay at the 
time t, c is the capacity of the bottleneck link 
connecting directly to the intermediate 
device. 

Suppose the operation point is (w0, d0, p0) in 
which the TCP/AQM system is in 
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The linearization and Laplace reformation of 
Equation (1) at the operation point can be 
deduced, as shown below. 
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Let e-sr0, which is the parameter of δw(s) and 
δd(s), be approximately equal to 1 because r0 
generally is very small and is located on the 
forward path where the output mainly 
consists of the linear parts. Finally, Equation 
(3), incorporating Equation (2) can be 
simplified as  
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The linearization and Laplace reformation of Equa-
tion (1) at the operation point can be deduced, as 
shown below.
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specific algorithms have been designed based on 
the fluid model of the TCP/AQM feedback system, 
this paper designs a new heuristic algorithm, 
AOMOA, following the Aquila and Math 
optimization optimizers [3, 5] for optimizing AQM 
mechanisms in network communication. 

3. TCP/RED-PID 
In this section, we determine the constrained 
correlation among the RED-PID parameters via 
stability and frequency analysis of the TCP/RED-
PID fluid model. The parameters are subsequently 
characterized by both equality and inequality 
constraint conditions, forming an optimization 
model that AOMOA would address. 

3.1 Fluid Model 

In the TCP/AQM mechanism, AQM drops packets 
in the queue of the intermediate device with some 
probabilities. This means that an intermediate 
device signals congestion to the TCP receiver. The 
receiver, afterward, acknowledges the congestion 
to the TCP sender, providing feedback that adjusts 
the sender’s congestion window (cwnd) to change 
the transmitting rate. The TCP/AQM mechanism 
is shown in Figure 1. 
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The TCP/AQM dynamics involve various network 
parameters that affect the communication 
performance of TCP. The dynamics are 
represented as the differential equations [36], 
which are shown below. 
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where ws(t) signifies the number of cwnd in all 
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factor for ws(t), r(t) denotes the round-trip 
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The linearization and Laplace reformation of 
Equation (1) at the operation point can be 
deduced, as shown below. 
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Let e-sr0, which is the parameter of δw(s) and 
δd(s), be approximately equal to 1 because r0 
generally is very small and is located on the 
forward path where the output mainly 
consists of the linear parts. Finally, Equation 
(3), incorporating Equation (2) can be 
simplified as  
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Let N(·)= δq(s)/δp(s) denotes the transfer function 
of a specific AQM controller. In this paper, it 
represents the transfer function of the RED 
controller [18], which is represented as 
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Accordingly, the simplified TCP/RED block 
diagram is shown in Figure 2. 
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According to Figure 2, the TCP/RED dynamic 
model forms a negative-feedback system. The 
open-loop transfer function of TCP/RED is 
expressed in the tail-one-canonical form, which is 
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According to the Maclaurin expansion for e-sr0, 
Equation (6) is expressed approximately by 
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Therefore, the open-loop transfer function of the 
TCP/RED feedback system, in frequency domain, 
is 
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In Equation (8), the feedback system is of high 
order, and the three poles’ absolute value (2nγ/r02c, 
1/r0, k) are typically large. Consequently, the 

numerator is significantly smaller than the 
denominator. This results in the very small 
magnitude-frequency characteristic, which in 
turn lags the response time and convergence. 

To overcome the shortage inherited from the 
RED controller, we add the PID adjustor to 
the TCP/RED system to improve the system 
performance. Equation (9) depicts the 
transfer function and corresponding phase 
angle for the PID adjustor in frequency 
domain. 
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At last, the open-loop transfer function of 
TCP/RED-PID derived from Equation (8) is  
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Because PID has double zero points, these 
zero points can counteract the pole points in 
Equation (11), thereby reducing the order 
level of the denominator of the TCP/RED 
system. Meanwhile, PID introduces one pole 
point to enhance the system sensitivity. The 
two improvement approaches contribute to 
enhancing the system performance, thus 
establishing the RED-PID feedback system. 

As seen from the above equations, various 
parameters constrain the performance and 
stability of the RED-PID system. The 
following section will give the optimization 
model for these parameters. 

3.2 Optimization Model 
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In Equation (8), the feedback system is of high 
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Because PID has double zero points, these 
zero points can counteract the pole points in 
Equation (11), thereby reducing the order 
level of the denominator of the TCP/RED 
system. Meanwhile, PID introduces one pole 
point to enhance the system sensitivity. The 
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enhancing the system performance, thus 
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In Equation (8), the feedback system is of high 
order, and the three poles’ absolute value (2nγ/r02c, 
1/r0, k) are typically large. Consequently, the 

numerator is significantly smaller than the 
denominator. This results in the very small 
magnitude-frequency characteristic, which in 
turn lags the response time and convergence. 

To overcome the shortage inherited from the 
RED controller, we add the PID adjustor to 
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Because PID has double zero points, these 
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At last, the open-loop transfer function of 
TCP/RED-PID derived from Equation (8) is  
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Because PID has double zero points, these 
zero points can counteract the pole points in 
Equation (11), thereby reducing the order 
level of the denominator of the TCP/RED 
system. Meanwhile, PID introduces one pole 
point to enhance the system sensitivity. The 
two improvement approaches contribute to 
enhancing the system performance, thus 
establishing the RED-PID feedback system. 

As seen from the above equations, various 
parameters constrain the performance and 
stability of the RED-PID system. The 
following section will give the optimization 
model for these parameters. 

3.2 Optimization Model 

According to the feedback theory, a high-
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its phase angle. The approach counteracting the zero 
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and the two zero points in the numerator of NPID(jω) 
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As a result, after zero-pole point cancelation, Equa-
tion (11) is furtherly deduced to
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According to the Nyquist criterion, we set the 
phase angle margin to -40˚ when the amplitude of 
Equation (12) equals 1. The angle margin (-40˚) is 
chosen to balance responsive time and vibration 
overshoot. Therefore, under the condition of 
specific values for c, n, and r0, the optimization 
problem of RED-PID is defined as follows. 
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Since the phase angle margin of TCP/RED-PID is -
40˚, angle(LRED-PID(jω)) = -140˚. Therefore, the 
optimization objective represented in (14) is most 
close to zero. In (15), ωc is the cross-frequency, and 
the amplitude of LRED-PID(jωc) is equal to 1 
according to the control theory. Thus, LRED-PID(jωc) 
is an important constraint condition. Similarly, 
based on the stable criterion of the feedback 

system, angle(LRED-PID(jω)) is in the range of 0˚ 
and 180˚. Because RED uses the 
Exponentially Weighted Moving Average 
(EWMA) filter to resist variations of the 
queue size, the parameter k represents the 
weight of EWMA in the Laplace form and is 
defined in [18]. In this paper, we use the 
AOMOA algorithm, which optimizes RED-
PID and become one part of the TCP/RED-
PID system. We give the workflow diagram 
of TCP/RED-PID with AOMOA, as shown in 
Figure 3. 

The TCP sender side, the TCP receiver side, 
and the intermediate side construct the 
TCP/RED-PID feedback system. Firstly, 
nodes on the sender side transmit packets. 
The packets enter the router’s receiving 
buffer and form a queue. Secondly, according 
to a particular policy, the RED-PID controller 
drops unnecessary packets. Thirdly, the 
packets from the queue arrive at nodes on the 
receiver side. Fourthly, the receivers 
acknowledge the received packet to the 
sender, which forms a feedback path. Finally, 
if the RED-PID fails to adjust the queue, and 
thus congestion occurs, AOMOA optimizes 
and updates the RED-PID parameters. The 
feedback system becomes stable and recovers 
good performance again because the new 
parameters adapt to the latest 
communication environment. 

4. AO optimizer  
The Aquila Optimizer is a heuristic algorithm 
that simulates the hunting behavior of Aquila 
eagles capturing squirrels and is employed to 
solve optimization problems. It has been 
successfully applied to various engineering 
problems, including image classification [8, 
12, 34], vehicle route planning [6, 19-20], risk 
prediction [30-31], and machine learning 
hyperparameter optimization [22]. 
Considering its universality, AO will be 
introduced briefly in this section. 

4.1 Search Phases 

The goal of AO is to quickly search for the 
optimal solution by simulating the hunting 
behavior of the Aquila eagles. Each 
individual in AO’s population represents a 
possible solution. 
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to zero. In (15), ωc is the cross-frequency, and the 
amplitude of LRED-PID(jωc) is equal to 1 according to 
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transmit packets. The packets enter the router’s re-
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to a particular policy, the RED-PID controller drops 
unnecessary packets. Thirdly, the packets from the 
queue arrive at nodes on the receiver side. Fourthly, 
the receivers acknowledge the received packet to the 
sender, which forms a feedback path. Finally, if the 
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tion occurs, AOMOA optimizes and updates the RED-
PID parameters. The feedback system becomes sta-
ble and recovers good performance again because the 
new parameters adapt to the latest communication 
environment.
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Workflow diagram of TCP/RED-PID and AOMOA. 
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According to hunting of Aquila eagles, AO can be 
represented in the following four phases. (1) The 
phase of expanded exploration. An eagle flies at 
high altitudes to ensure the hunting area. That is, 
one individual preliminarily searches the space of 
solutions. (2) The phase of narrowed exploration. 
Once one eagle finds the prey, it will circle the 
target to reduce the searching area. This phase, in 
essence, contracts the area of solutions, improving 
the convergence of AO. (3) The phase of expanded 
exploitation. In nature, the Aquila eagle circles the 
prey at a low altitude. This phase contributes to 
the eagle locating the center of the reduced area 
where the prey is spotted. (4) The phase of 
narrowed exploitation. After experiencing the 
above three phases, the hunting eagle has been 
much closer to the prey. Finally, it accurately 
attacks the target in this last phase. 

4.2 Mathematical Model 

AO algorithm emulates the hunting behaviors of 
Aquila eagles. The phase of expanded exploration 
is modeled and can be expressed as follow. 
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in which x(t+1) is the solution vector for the next 
iteration (t+1)th. xtbest and xtm are the optimal and 

mean solutions at the current iteration tth, 
respectively. In addition, the symbol T 
denotes the total number of iterations, and 
the variable rand is a random value within 
the interval (0, 1). At the onset of AO 
running, xtbest holds a larger proportion, 
leading individuals in the subsequent 
iterations to converge toward the current best 
value. This search way enhances the 
efficiency of pinpointing the optimal value in 
an unknown space. 

During the phase of narrowed exploration, 
the mathematical model is presented as 
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( )
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where Levy(D) is the function of Levy Flight 
Distribution [19]. xr(t) is a random solution at 
the iteration tth. The algebraic expression (y - 
x) denotes the difference in (x, y) coordinates 
of a circle radius. The circle is the site of the 
narrowed exploration for finding a solution. 

After determining the reduced searching site, 
AO is ready to exploit it and approach the 
optimal solution in the expanded 
exploitation. The equation of this phase is 

( 1) ( ( ) ( ))
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In Equation (18), the ub and lb are the upper 
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4. AO Optimizer 
The Aquila Optimizer is a heuristic algorithm that 
simulates the hunting behavior of Aquila eagles cap-
turing squirrels and is employed to solve optimization 
problems. It has been successfully applied to various 
engineering problems, including image classification 
[8, 12, 34], vehicle route planning [6, 19-20], risk pre-
diction [30-31], and machine learning hyperparam-
eter optimization [22]. Considering its universality, 
AO will be introduced briefly in this section.

4.1. Search Phases
The goal of AO is to quickly search for the optimal 
solution by simulating the hunting behavior of the 
Aquila eagles. Each individual in AO’s population rep-
resents a possible solution.
According to hunting of Aquila eagles, AO can be rep-
resented in the following four phases. (1) The phase of 
expanded exploration. An eagle flies at high altitudes 
to ensure the hunting area. That is, one individual 
preliminarily searches the space of solutions. (2) The 
phase of narrowed exploration. Once one eagle finds 
the prey, it will circle the target to reduce the search-
ing area. This phase, in essence, contracts the area of 
solutions, improving the convergence of AO. (3) The 
phase of expanded exploitation. In nature, the Aqui-
la eagle circles the prey at a low altitude. This phase 
contributes to the eagle locating the center of the re-
duced area where the prey is spotted. (4) The phase of 
narrowed exploitation. After experiencing the above 
three phases, the hunting eagle has been much closer 
to the prey. Finally, it accurately attacks the target in 
this last phase.

4.2. Mathematical Model
AO algorithm emulates the hunting behaviors of Aq-
uila eagles. The phase of expanded exploration is 
modeled and can be expressed as follow.
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in the interval (0, 1). At the onset of AO running, xt

best 
holds a larger proportion, leading individuals in the 
subsequent iterations to converge toward the current 
best value. This search way enhances the efficiency of 
pinpointing the optimal value in an unknown space.
During the phase of narrowed exploration, the mathe-
matical model is presented as
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According to hunting of Aquila eagles, AO can be 
represented in the following four phases. (1) The 
phase of expanded exploration. An eagle flies at 
high altitudes to ensure the hunting area. That is, 
one individual preliminarily searches the space of 
solutions. (2) The phase of narrowed exploration. 
Once one eagle finds the prey, it will circle the 
target to reduce the searching area. This phase, in 
essence, contracts the area of solutions, improving 
the convergence of AO. (3) The phase of expanded 
exploitation. In nature, the Aquila eagle circles the 
prey at a low altitude. This phase contributes to 
the eagle locating the center of the reduced area 
where the prey is spotted. (4) The phase of 
narrowed exploitation. After experiencing the 
above three phases, the hunting eagle has been 
much closer to the prey. Finally, it accurately 
attacks the target in this last phase. 

4.2 Mathematical Model 

AO algorithm emulates the hunting behaviors of 
Aquila eagles. The phase of expanded exploration 
is modeled and can be expressed as follow. 
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in which x(t+1) is the solution vector for the next 
iteration (t+1)th. xtbest and xtm are the optimal and 

mean solutions at the current iteration tth, 
respectively. In addition, the symbol T 
denotes the total number of iterations, and 
the variable rand is a random value within 
the interval (0, 1). At the onset of AO 
running, xtbest holds a larger proportion, 
leading individuals in the subsequent 
iterations to converge toward the current best 
value. This search way enhances the 
efficiency of pinpointing the optimal value in 
an unknown space. 

During the phase of narrowed exploration, 
the mathematical model is presented as 
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where Levy(D) is the function of Levy Flight 
Distribution [19]. xr(t) is a random solution at 
the iteration tth. The algebraic expression (y - 
x) denotes the difference in (x, y) coordinates 
of a circle radius. The circle is the site of the 
narrowed exploration for finding a solution. 

After determining the reduced searching site, 
AO is ready to exploit it and approach the 
optimal solution in the expanded 
exploitation. The equation of this phase is 
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tion [19]. xr(t) is a random solution at the iteration tth. 
The algebraic expression (y - x) denotes the difference 
in (x, y) coordinates of a circle radius. The circle is the 
site of the narrowed exploration for finding a solution.
After determining the reduced searching site, AO is 
ready to exploit it and approach the optimal solution in 
the expanded exploitation. The equation of this phase is
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According to hunting of Aquila eagles, AO can be 
represented in the following four phases. (1) The 
phase of expanded exploration. An eagle flies at 
high altitudes to ensure the hunting area. That is, 
one individual preliminarily searches the space of 
solutions. (2) The phase of narrowed exploration. 
Once one eagle finds the prey, it will circle the 
target to reduce the searching area. This phase, in 
essence, contracts the area of solutions, improving 
the convergence of AO. (3) The phase of expanded 
exploitation. In nature, the Aquila eagle circles the 
prey at a low altitude. This phase contributes to 
the eagle locating the center of the reduced area 
where the prey is spotted. (4) The phase of 
narrowed exploitation. After experiencing the 
above three phases, the hunting eagle has been 
much closer to the prey. Finally, it accurately 
attacks the target in this last phase. 

4.2 Mathematical Model 

AO algorithm emulates the hunting behaviors of 
Aquila eagles. The phase of expanded exploration 
is modeled and can be expressed as follow. 
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in which x(t+1) is the solution vector for the next 
iteration (t+1)th. xtbest and xtm are the optimal and 

mean solutions at the current iteration tth, 
respectively. In addition, the symbol T 
denotes the total number of iterations, and 
the variable rand is a random value within 
the interval (0, 1). At the onset of AO 
running, xtbest holds a larger proportion, 
leading individuals in the subsequent 
iterations to converge toward the current best 
value. This search way enhances the 
efficiency of pinpointing the optimal value in 
an unknown space. 
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where Levy(D) is the function of Levy Flight 
Distribution [19]. xr(t) is a random solution at 
the iteration tth. The algebraic expression (y - 
x) denotes the difference in (x, y) coordinates 
of a circle radius. The circle is the site of the 
narrowed exploration for finding a solution. 

After determining the reduced searching site, 
AO is ready to exploit it and approach the 
optimal solution in the expanded 
exploitation. The equation of this phase is 
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In Equation (18), the ub and lb are the upper 
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In Equation (18), the ub and lb are the upper and lower 
bounds of the problem under consideration, respec-
tively. The symbols α and δ, denoting the adjustment 
parameters, fall within the range of (0, 1).
In the fourth phase, AO aggressively grabs the opti-
mal solution in the final location while considering 
the stochastic movements of itself and the target. The 
mathematical model in this phase is
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considering the stochastic movements of itself and 
the target. The mathematical model in this phase is 
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where Q(t) is the quality function to affect the 
transfer of the searching phases, the function that 
is denoted by 
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The g1 is the parameter representing the random 
movements of the target or solution, and the g2 
denotes linear variation of each individual’s start 
and end positions. The expressions of the two 
parameters are 

1 2 1= × −g rand ,                                                       (21) 

2 2 (1 / T)= × −g t .                                                     (22) 

To explicate the process of AO, the flowchart of 
AO is shown in Figure 4. 

Given that the current optimal solution, xbest(t), 
directly engages with exploration phases, AO 
quickly searches for the next-iteration optimal 
solution and converges towards it. For the same 
reason, the individuals in AO easily fall into the 
local optimal points. That is, AO is insufficient to 
deal with the optimization of TCP/RED-PID. 
Therefore, we introduce a novel search algorithm 
in the following section. 

5. AOMOA Algorithm 
Although AO exhibits rapid convergence, which 
enables the exploration of global optimal 
solutions, its individuals easily fall into 
suboptimal solutions. Considering that MO is 
more refined than AO in exploitation phases, this 
paper employs AOMOA, a hybrid algorithm of 
Aquila and Math optimizers, to struggle to evade 
local optima. Additionally, AOMOA incorporates 
the chaotic-subpopulation strategy and the k-worst 
shift of individuals between dual subpopulations 
to enhance its whole performance. 

5.1 Chaotic-subpopulation Strategy 

Prabakeran et al. [29] highlight the crucial role of 
the initial population's quality in influencing the 

efficiency and accuracy of meta-heuristic 
algorithms. In the case of AO, the reliance on 
Random Number Generation for initial 
population might result in uneven 
distribution and inadequate diversification of 
individuals. To address the problem, 
AOMOA uses the Tent chaotic map to 
generate individuals in the two 
subpopulations. This design considers that 
chaotic maps have better ergodicity and 
unpredictability than random numbers, and 
Tent, defined by Equation (23), stands out as 
a renowned and widely used chaos map. 
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 
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The g1 is the parameter representing the random 
movements of the target or solution, and the g2 
denotes linear variation of each individual’s start 
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distribution and inadequate diversification of 
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Tent, defined by Equation (23), stands out as 
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 
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The g1 is the parameter representing the random 
movements of the target or solution, and the g2 de-
notes linear variation of each individual’s start and 
end positions. The expressions of the two parame-
ters are
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and lower bounds of the problem under 
consideration, respectively. The symbols α and δ, 
denoting the adjustment parameters, fall within 
the range of (0, 1). 

In the fourth phase, AO aggressively grabs the 
optimal solution in the final location while 
considering the stochastic movements of itself and 
the target. The mathematical model in this phase is 
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Given that the current optimal solution, xbest(t), 
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reason, the individuals in AO easily fall into the 
local optimal points. That is, AO is insufficient to 
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suboptimal solutions. Considering that MO is 
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Aquila and Math optimizers, to struggle to evade 
local optima. Additionally, AOMOA incorporates 
the chaotic-subpopulation strategy and the k-worst 
shift of individuals between dual subpopulations 
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Random Number Generation for initial 
population might result in uneven 
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unpredictability than random numbers, and 
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 

(21)

  

and lower bounds of the problem under 
consideration, respectively. The symbols α and δ, 
denoting the adjustment parameters, fall within 
the range of (0, 1). 
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and end positions. The expressions of the two 
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To explicate the process of AO, the flowchart of 
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Given that the current optimal solution, xbest(t), 
directly engages with exploration phases, AO 
quickly searches for the next-iteration optimal 
solution and converges towards it. For the same 
reason, the individuals in AO easily fall into the 
local optimal points. That is, AO is insufficient to 
deal with the optimization of TCP/RED-PID. 
Therefore, we introduce a novel search algorithm 
in the following section. 
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Although AO exhibits rapid convergence, which 
enables the exploration of global optimal 
solutions, its individuals easily fall into 
suboptimal solutions. Considering that MO is 
more refined than AO in exploitation phases, this 
paper employs AOMOA, a hybrid algorithm of 
Aquila and Math optimizers, to struggle to evade 
local optima. Additionally, AOMOA incorporates 
the chaotic-subpopulation strategy and the k-worst 
shift of individuals between dual subpopulations 
to enhance its whole performance. 

5.1 Chaotic-subpopulation Strategy 
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the initial population's quality in influencing the 

efficiency and accuracy of meta-heuristic 
algorithms. In the case of AO, the reliance on 
Random Number Generation for initial 
population might result in uneven 
distribution and inadequate diversification of 
individuals. To address the problem, 
AOMOA uses the Tent chaotic map to 
generate individuals in the two 
subpopulations. This design considers that 
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unpredictability than random numbers, and 
Tent, defined by Equation (23), stands out as 
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 
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To explicate the process of AO, the flowchart of AO is 
shown in Figure 4.
Given that the current optimal solution, xbest(t), di-
rectly engages with exploration phases, AO quickly 
searches for the next-iteration optimal solution and 
converges towards it. For the same reason, the indi-
viduals in AO easily fall into the local optimal points. 
That is, AO is insufficient to deal with the optimiza-
tion of TCP/RED-PID. Therefore, we introduce a nov-
el search algorithm in the following section.

5. AOMOA Algorithm
Although AO exhibits rapid convergence, which en-
ables the exploration of global optimal solutions, its 
individuals easily fall into suboptimal solutions. Con-
sidering that MO is more refined than AO in exploita-
tion phases, this paper employs AOMOA, a hybrid 
algorithm of Aquila and Math optimizers, to struggle 
to evade local optima. Additionally, AOMOA incor-
porates the chaotic-subpopulation strategy and the 
k-worst shift of individuals between dual subpopula-
tions to enhance its whole performance.

5.1. Chaotic-subpopulation Strategy
Prabakeran et al. [29] highlight the crucial role of the 
initial population’s quality in influencing the efficien-
cy and accuracy of meta-heuristic algorithms. In the 
case of AO, the reliance on Random Number Gener-
ation for initial population might result in uneven 
distribution and inadequate diversification of indi-
viduals. To address the problem, AOMOA uses the 
Tent chaotic map to generate individuals in the two 
subpopulations. This design considers that chaotic 
maps have better ergodicity and unpredictability than 
random numbers, and Tent, defined by Equation (23), 
stands out as a renowned and widely used chaos map.
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 
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The strategy of dual subpopulations incorporates the 
exploration of AO and the hybrid exploitation of AO 
and MO in each subpopulation, forming the AO sub-
population and the hybrid subpopulation. This strat-
egy leverages the advantages of the two optimizers. In 
detail, the strategy, on one hand, advantages the pow-
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 

In the hybrid subpopulation set, a chaotic 
acceleration function, Amo(t), is first defined to 
switch exploitation methods between MO and AO 
optimizers. The function is 
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In Equation (26), ωmax and ωmin  are equal to 0.9 and 
0.5 respectively. xt is a chaotic number in Equation 
(23). 

During the hybrid exploitation, each individual 
selects the exploitation searches of AO or MO 
according to Equation (26). If an individual opts 
for MO subtraction or addition searches for the 
current solution, the method could shorten the 
length of exploiting steps, thereby contributing to 
finding the optimal solution. On the other hand, if 
an individual implements the AO’s exploitation, 
this method could responsibly navigate the space 
of solutions. 

5.2 Dynamic k-worst Shift of Individuals 

Since AO regularly shifts its exploration to the 
exploitation phase at 2/3 of the total iterations, this 
rigid setting deteriorates the performance of AO in 
exploiting solutions and makes AO fall into 
suboptimal conditions. Therefore, we propose a k-
worst shift strategy between the dual 
subpopulations. The strategy is illustrated in 
Figure 5. 

The k-worst shift strategy includes four phases. In 
the first initial phase, the number of individuals 
for AO exploration is more than that of the hybrid 
subpopulation for exploitation. This design 
focuses on contracting the resolution spaces. With 
AOMOA iteration, the focus should transfer to 
searching unknown resolution spaces. That is, the 

algorithm tends to find the resolution as 
quickly as possible. Guided by the design 
idea, the uneven number of individuals in 
the two subpopulations exchange places with 
each other in the mid- and late-iteration 
phases. More individuals enter the hybrid 
sub-population from the AO sub-population. 
However, only a few individuals in the 
hybrid population transfer to the AO 
subpopulation. The trend will continue until 
the iteration of AOMOA finishes its iteration. 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
emphasizes the role of exploitation in the 
later phase of iterations. To realize the 
proportion of individuals executing 
exploration to decrease as the iterations 
evolve, the decay rate of the individuals in 
the AO subpopulation is defined as 
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and lower bounds of the problem under 
consideration, respectively. The symbols α and δ, 
denoting the adjustment parameters, fall within 
the range of (0, 1). 

In the fourth phase, AO aggressively grabs the 
optimal solution in the final location while 
considering the stochastic movements of itself and 
the target. The mathematical model in this phase is 
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where Q(t) is the quality function to affect the 
transfer of the searching phases, the function that 
is denoted by 
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The g1 is the parameter representing the random 
movements of the target or solution, and the g2 
denotes linear variation of each individual’s start 
and end positions. The expressions of the two 
parameters are 

1 2 1= × −g rand ,                                                       (21) 

2 2 (1 / T)= × −g t .                                                     (22) 

To explicate the process of AO, the flowchart of 
AO is shown in Figure 4. 

Given that the current optimal solution, xbest(t), 
directly engages with exploration phases, AO 
quickly searches for the next-iteration optimal 
solution and converges towards it. For the same 
reason, the individuals in AO easily fall into the 
local optimal points. That is, AO is insufficient to 
deal with the optimization of TCP/RED-PID. 
Therefore, we introduce a novel search algorithm 
in the following section. 

5. AOMOA Algorithm 
Although AO exhibits rapid convergence, which 
enables the exploration of global optimal 
solutions, its individuals easily fall into 
suboptimal solutions. Considering that MO is 
more refined than AO in exploitation phases, this 
paper employs AOMOA, a hybrid algorithm of 
Aquila and Math optimizers, to struggle to evade 
local optima. Additionally, AOMOA incorporates 
the chaotic-subpopulation strategy and the k-worst 
shift of individuals between dual subpopulations 
to enhance its whole performance. 

5.1 Chaotic-subpopulation Strategy 

Prabakeran et al. [29] highlight the crucial role of 
the initial population's quality in influencing the 

efficiency and accuracy of meta-heuristic 
algorithms. In the case of AO, the reliance on 
Random Number Generation for initial 
population might result in uneven 
distribution and inadequate diversification of 
individuals. To address the problem, 
AOMOA uses the Tent chaotic map to 
generate individuals in the two 
subpopulations. This design considers that 
chaotic maps have better ergodicity and 
unpredictability than random numbers, and 
Tent, defined by Equation (23), stands out as 
a renowned and widely used chaos map. 
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The strategy of dual subpopulations 
incorporates the exploration of AO and the 
hybrid exploitation of AO and MO in each 
subpopulation, forming the AO 
subpopulation and the hybrid 
subpopulation. This strategy leverages the 
advantages of the two optimizers. In detail, 
the strategy, on one hand, advantages the 
powerful convergence of the exploration 
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 

In the hybrid subpopulation set, a chaotic 
acceleration function, Amo(t), is first defined to 
switch exploitation methods between MO and AO 
optimizers. The function is 
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In Equation (26), ωmax and ωmin  are equal to 0.9 and 
0.5 respectively. xt is a chaotic number in Equation 
(23). 

During the hybrid exploitation, each individual 
selects the exploitation searches of AO or MO 
according to Equation (26). If an individual opts 
for MO subtraction or addition searches for the 
current solution, the method could shorten the 
length of exploiting steps, thereby contributing to 
finding the optimal solution. On the other hand, if 
an individual implements the AO’s exploitation, 
this method could responsibly navigate the space 
of solutions. 

5.2 Dynamic k-worst Shift of Individuals 

Since AO regularly shifts its exploration to the 
exploitation phase at 2/3 of the total iterations, this 
rigid setting deteriorates the performance of AO in 
exploiting solutions and makes AO fall into 
suboptimal conditions. Therefore, we propose a k-
worst shift strategy between the dual 
subpopulations. The strategy is illustrated in 
Figure 5. 

The k-worst shift strategy includes four phases. In 
the first initial phase, the number of individuals 
for AO exploration is more than that of the hybrid 
subpopulation for exploitation. This design 
focuses on contracting the resolution spaces. With 
AOMOA iteration, the focus should transfer to 
searching unknown resolution spaces. That is, the 

algorithm tends to find the resolution as 
quickly as possible. Guided by the design 
idea, the uneven number of individuals in 
the two subpopulations exchange places with 
each other in the mid- and late-iteration 
phases. More individuals enter the hybrid 
sub-population from the AO sub-population. 
However, only a few individuals in the 
hybrid population transfer to the AO 
subpopulation. The trend will continue until 
the iteration of AOMOA finishes its iteration. 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
emphasizes the role of exploitation in the 
later phase of iterations. To realize the 
proportion of individuals executing 
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 

In the hybrid subpopulation set, a chaotic 
acceleration function, Amo(t), is first defined to 
switch exploitation methods between MO and AO 
optimizers. The function is 
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this method could responsibly navigate the space 
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rigid setting deteriorates the performance of AO in 
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worst shift strategy between the dual 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
emphasizes the role of exploitation in the 
later phase of iterations. To realize the 
proportion of individuals executing 
exploration to decrease as the iterations 
evolve, the decay rate of the individuals in 
the AO subpopulation is defined as 
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In Equation (26), ωmax and ωmin  are equal to 0.9 and 0.5 
respectively. xt is a chaotic number in Equation (23).
During the hybrid exploitation, each individual se-
lects the exploitation searches of AO or MO according 
to Equation (26). If an individual opts for MO subtrac-
tion or addition searches for the current solution, the 
method could shorten the length of exploiting steps, 
thereby contributing to finding the optimal solution. 
On the other hand, if an individual implements the 
AO’s exploitation, this method could responsibly nav-
igate the space of solutions.

5.2. Dynamic k-worst Shift of Individuals
Since AO regularly shifts its exploration to the ex-
ploitation phase at 2/3 of the total iterations, this 
rigid setting deteriorates the performance of AO in 
exploiting solutions and makes AO fall into subopti-
mal conditions. Therefore, we propose a k-worst shift 
strategy between the dual subpopulations. The strat-
egy is illustrated in Figure 5.
The k-worst shift strategy includes four phases. In 
the first initial phase, the number of individuals for 
AO exploration is more than that of the hybrid sub-
population for exploitation. This design focuses on 
contracting the resolution spaces. With AOMOA 
iteration, the focus should transfer to searching un-
known resolution spaces. That is, the algorithm tends 
to find the resolution as quickly as possible. Guided 
by the design idea, the uneven number of individuals 
in the two subpopulations exchange places with each 
other in the mid- and late-iteration phases. More in-
dividuals enter the hybrid sub-population from the 
AO sub-population. However, only a few individuals 

in the hybrid population transfer to the AO subpop-
ulation. The trend will continue until the iteration of 
AOMOA finishes its iteration.
In the shift strategy, AO conducts the exploration 
searches in one subpopulation, while the k-worst indi-
viduals shift to the hybrid subpopulation to engage in 
exploitation. The change in proportion emphasizes the 
role of exploitation in the later phase of iterations. To 
realize the proportion of individuals executing explora-
tion to decrease as the iterations evolve, the decay rate 
of the individuals in the AO subpopulation is defined as
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 
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optimizers. The function is 
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the first initial phase, the number of individuals 
for AO exploration is more than that of the hybrid 
subpopulation for exploitation. This design 
focuses on contracting the resolution spaces. With 
AOMOA iteration, the focus should transfer to 
searching unknown resolution spaces. That is, the 

algorithm tends to find the resolution as 
quickly as possible. Guided by the design 
idea, the uneven number of individuals in 
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each other in the mid- and late-iteration 
phases. More individuals enter the hybrid 
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However, only a few individuals in the 
hybrid population transfer to the AO 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
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later phase of iterations. To realize the 
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 

In the hybrid subpopulation set, a chaotic 
acceleration function, Amo(t), is first defined to 
switch exploitation methods between MO and AO 
optimizers. The function is 
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In Equation (26), ωmax and ωmin  are equal to 0.9 and 
0.5 respectively. xt is a chaotic number in Equation 
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During the hybrid exploitation, each individual 
selects the exploitation searches of AO or MO 
according to Equation (26). If an individual opts 
for MO subtraction or addition searches for the 
current solution, the method could shorten the 
length of exploiting steps, thereby contributing to 
finding the optimal solution. On the other hand, if 
an individual implements the AO’s exploitation, 
this method could responsibly navigate the space 
of solutions. 

5.2 Dynamic k-worst Shift of Individuals 

Since AO regularly shifts its exploration to the 
exploitation phase at 2/3 of the total iterations, this 
rigid setting deteriorates the performance of AO in 
exploiting solutions and makes AO fall into 
suboptimal conditions. Therefore, we propose a k-
worst shift strategy between the dual 
subpopulations. The strategy is illustrated in 
Figure 5. 

The k-worst shift strategy includes four phases. In 
the first initial phase, the number of individuals 
for AO exploration is more than that of the hybrid 
subpopulation for exploitation. This design 
focuses on contracting the resolution spaces. With 
AOMOA iteration, the focus should transfer to 
searching unknown resolution spaces. That is, the 

algorithm tends to find the resolution as 
quickly as possible. Guided by the design 
idea, the uneven number of individuals in 
the two subpopulations exchange places with 
each other in the mid- and late-iteration 
phases. More individuals enter the hybrid 
sub-population from the AO sub-population. 
However, only a few individuals in the 
hybrid population transfer to the AO 
subpopulation. The trend will continue until 
the iteration of AOMOA finishes its iteration. 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
emphasizes the role of exploitation in the 
later phase of iterations. To realize the 
proportion of individuals executing 
exploration to decrease as the iterations 
evolve, the decay rate of the individuals in 
the AO subpopulation is defined as 
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Supposed the initial individuals of the AO 
subpopulation is termed as initial AO, the 
number of individuals of the AO 
subpopulation at current iteration, N(t), is  
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From Equation (28), the individuals involved in AO ex-
ploitation are reduced in a negative-exponential man-
ner. Meanwhile, the same number of worst-performing 
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where, rand is a random number, and u is the 
parameter that is a constant equal to 0.499 and 
controls the step length of exploitation phases. In 
Equation (25), Pmo is the probability of MO, and α = 
5. 

In the hybrid subpopulation set, a chaotic 
acceleration function, Amo(t), is first defined to 
switch exploitation methods between MO and AO 
optimizers. The function is 
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In Equation (26), ωmax and ωmin  are equal to 0.9 and 
0.5 respectively. xt is a chaotic number in Equation 
(23). 

During the hybrid exploitation, each individual 
selects the exploitation searches of AO or MO 
according to Equation (26). If an individual opts 
for MO subtraction or addition searches for the 
current solution, the method could shorten the 
length of exploiting steps, thereby contributing to 
finding the optimal solution. On the other hand, if 
an individual implements the AO’s exploitation, 
this method could responsibly navigate the space 
of solutions. 

5.2 Dynamic k-worst Shift of Individuals 

Since AO regularly shifts its exploration to the 
exploitation phase at 2/3 of the total iterations, this 
rigid setting deteriorates the performance of AO in 
exploiting solutions and makes AO fall into 
suboptimal conditions. Therefore, we propose a k-
worst shift strategy between the dual 
subpopulations. The strategy is illustrated in 
Figure 5. 
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Figure 5  

Schematic diagram of k-worst shift of individuals 
in dual subpopulations. 
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In the shift strategy, AO conducts the 
exploration searches in one subpopulation, 
while the k-worst individuals shift to the 
hybrid subpopulation to engage in 
exploitation. The change in proportion 
emphasizes the role of exploitation in the 
later phase of iterations. To realize the 
proportion of individuals executing 
exploration to decrease as the iterations 
evolve, the decay rate of the individuals in 
the AO subpopulation is defined as 

( )=exp(- )
T
tD t .                                                 (27) 

Supposed the initial individuals of the AO 
subpopulation is termed as initial AO, the 
number of individuals of the AO 
subpopulation at current iteration, N(t), is  

( )= ( ) _N t D t initial AO× .                                 (28) 

From Equation (28), the individuals involved 
in AO exploitation are reduced in a negative-
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individuals from the hybrid population migrate to the 
AO subpopulation to ensure that the number of AO in-
dividuals remains equal to N(t). Consequently, the AO 
subpopulation consists of smaller individuals, while 
the hybrid subpopulation comprises more individuals 
during the later stages of AOMOA execution.
The values of k-best are computed as Equation (29).
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In which, final_per is the percentage of the 
population to shift from the exploration phase 
towards the exploiting phase, and is set at 10%. 
The symbol ξt is the chaotic number of Logistic 
Mapping, which is defined as 

1 1= (1 )ξ ξ ξ− −× × −t t tu ,                                                (30) 

where, u is termed as biotic potential constant 
being equal to 4. 

In summary, the dynamic k-worst shift strategy 
shifts more individuals derived from the chaotic 
map to search for the best solution elaborately, 
consequently minimizing the risk of premature 
convergence. Figure 6 details the flowchart of 
AOMOA. 
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In addition, Algorithm 1 provides the 
pseudo-code of AOMOA. 
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now analyze the time complexity of 
AOMOA. The time complexity depends on 
various steps performed during each 
iteration and the number of iterations needed 
for convergence. In the subpopulation 
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each individual, the evaluation cost is 
denoted as O(E). Therefore, the fitness 
evaluation complexity is O((N1 + N2)·E). As 
shown in Figure 6, the dimension of search 
methods, denoted as k, equals 2. So, the 
complexity of selecting a specific search is 
O(2·(N1 + N2)). As to updating the AO 
exploration and the Hybrid exploitation, the 
complexity is O((N1 + N2)·D). Because the k-
worst shift strategy affects only k individuals, 

ALGORITHM 1 AOMOA 
Input: 
AO subpopulation size N1; Hybrid subpopulation size 
N2; Maximum iterations MaxIter; Flow number n; 
Trunk link bandwidth c; Expected delay ro 
Output: 
Optimized nine-dimension parameters [ωc, k, Pmax, 
lmax, lmin, γ, KP, KD, KI] 
/* refer to Equation (8)-(11) for the parameter 
meaning */ 
 
1. Chaotically initialize AO subpopulation S1 with N1 
individuals; 
2. Chaotically initialize hybrid subpopulation S2 with 
N2 individuals; 
3. Evaluate fitness of each individual in {S1, S2}; 
4. Set the best solution G_best from {S1, S2}; 
5. FOR iter = 1 to MaxIter DO 
6.    FOR each individual i in {S1, S2} DO 
7.       Update position using Aquila Optimizer 
(AO) strategy if i in S1; 

/* refer to Equation (16)-(17) */ 
8.       Update position using Aquila Optimizer 
(AO) strategy if i in S2; 

/* refer to Equation (18), (19) and (24) */ 
9.       Evaluate new fitness of individual i;  
/*refer to Equation (14)-(15)*/ 
10.  END FOR 
11.  Identify the k worst-performing individuals from 
S1 and S2; 
12.  Swap the positions of these k individuals between 
S1 and S2; 
13.  FOR each subpopulation S in {S1, S2} DO 
14.        FOR each individual j in S DO 
15.            Update position according to the step 
length; 
16.        END FOR 
17.  END FOR 
18.  Update G_best with the best solution found in 
current iteration; 
19. END FOR 

20. Return G_best as the optimized parameters; 

 

(29)

In which, final_per is the percentage of the population 
to shift from the exploration phase towards the exploit-
ing phase, and is set at 10%. The symbol ξt is the chaotic 
number of Logistic Mapping, which is defined as
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where, u is termed as biotic potential constant being 
equal to 4.
In summary, the dynamic k-worst shift strategy shifts 
more individuals derived from the chaotic map to 
search for the best solution elaborately, consequently 
minimizing the risk of premature convergence. Fig-
ure 6 details the flowchart of AOMOA.
In addition, Algorithm 1 provides the pseudo-code of 
AOMOA.
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According to the above pseudo codes, we now analyze 
the time complexity of AOMOA. The time complex-
ity depends on various steps performed during each 
iteration and the number of iterations needed for 
convergence. In the subpopulation initializing step, 
the time complexity is O((N1 + N2)·D) due to the two 
subpopulations. For each individual, the evaluation 
cost is denoted as O(E). Therefore, the fitness evalu-
ation complexity is O((N1 + N2)·E). As shown in Fig-
ure 6, the dimension of search methods, denoted as 
k, equals 2. So, the complexity of selecting a specific 
search is O(2·(N1 + N2)). As to updating the AO explo-
ration and the Hybrid exploitation, the complexity 
is O((N1 + N2)·D). Because the k-worst shift strategy 
affects only k individuals, the complexity of this step 
is O(k). To sum up, the total time complexity for each 
iteration is approximately O((N1 + N2)·E)+ O((N1 

+ N2)·D)+ O(2·(N1 + N2)). Since the algorithm runs 
for T iterations, the overall time complexity of AO-
MOA is O(T(N1+N2)·(D+E+2)) if we ignore the initial 
phase. On the condition of the same total individuals 
(N=N1+N2), the overall time complexity of AO and 
MO is equal to O(T·N·(D+E)) and O(T·N·(D+E+2)), 
respectively. As a result, the complexity of AOMOA 
is equal to that of MO and is a little more that of AO. 
The promotion in complexity is not significant.

6. Results and Evaluation
In this section, the performance of AOMOA is as-
sessed using ten classic benchmark functions sourced 
from the CEC-2017 test suite [9, 11] because CEC-
2017 is widely recognized and frequently employed 
for performance evaluations. Additionally, extensive 
simulation experiments are implemented to verify 
that RED-PID effectively improves congestion con-
trol after being optimized by AOMOA.

6.1. Performance Evaluation of AOMOA
The selected benchmark functions offer a compre-
hensive basis for evaluating the effectiveness of vari-
ous heuristic algorithms. These benchmark functions 
include the simple function set (F1, F2, F5, and F8), 
the hybrid function set (F12, F15, F16, F17 and F19), 
and the composited function set (F21 and F23). In 
the performance test, AOMOA and the other nine 
state-of-the-art heuristic algorithms run 50 times to 

solve the benchmark functions, respectively. For each 
benchmark function, the best result is highlighted 
in boldface. The symbol “==” denotes the non-sig-
nificant difference in the value compared to the best 
solution. On the contrary, the significant difference is 
indicated by “++”.
Table 1 shows that AOMOA, compared to other algo-
rithms, achieves competitive results for these bench-
mark functions with 30 dimensions. AOMOA gets the 
best performance in the test of the simple function 
set. Additionally, AOMOA approaches the best value 
in the hybrid function set. Although AOMOA obtains 
an inferior optimal solution than DevBBO and DevS-
MA, the significant difference is not apparent at a 
significance level of 0.05. The test results confirm the 
overall best performance of AOMOA. 
Table 2 presents the outcomes of various algorithms 
for solving the optimal solution of the 50-dimension 
benchmark functions. Similarly to the results of 
30-dimension tests, AOMOA continues to demon-
strate the best performance in the simple function 
set. Notably, while none dominates over other algo-
rithms as the dimensionality of the hybrid and com-
posited function sets increases, AOMOA consistent-
ly performs better, followed by MFO and BaseGA.
From the performance evaluation, we can see that 
AOMOA simultaneously searches the optimal resolu-
tion in two different spaces where the exploration and 
exploitation modes of AO and MO are running, re-
spectively. The hybrid modes help AOMOA converge 
the optimal states because they leverage the strength 
of the two kinds of search methods. On the other hand, 
individuals in the two subpopulations disproportion-
ately swap each search method and space to help the 
proposed algorithm search unknown resolution spac-
es, which improves the accuracy. The superior per-
formance of AOMOA shows that its chaotic subpop-
ulations and the dynamic k-worst shift of individuals 
significantly improve its exploration and exploitation 
capabilities.

6.2. Simulation Topology
We utilize a testbed created by the NS3 simulator to 
construct a typical parking-lot topology, the topology 
that is popular in real network communication and 
contains various flows with different workloads. In 
this testbed, as shown in Figure 7, communication 
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Table 1
Test results of 10 benchmark functions with 30 dimensions

Functions Index DevBBO OriginalDE DevSMA GWO AOMOA

F1

Best 5.9340E-01 3.1699E+00 1.9025E-01 6.5416E-01 4.7559E-01

Mean 6.3613E+00 1.8524E+01 6.3693E+00 1.2538E+01 3.6716E+00

Std 2.4242E+00 1.6588E+01 2.8078E+00 9.3639E+00 1.3679E+00

z value 1.9663E+00 1.0858E+01 1.9721E+00 6.4816E+00 --

p value 2.4629E-02 0.0000E+00 2.4296E-02 4.5375E-11 --

Significance ++ ++ ++ ++ --

F2

Best 1.9917E+01 1.1985E+01 5.3449E+00 6.9525E+01 1.9899E+00

Mean 3.8558E+01 1.1034E+02 1.9682E+01 1.0760E+02 8.9879E+00

Std 1.1656E+01 1.3550E+02 8.0884E+00 1.6098E+01 4.8709E+00

z value 6.0708E+00 2.0809E+01 2.1955E+00 2.0245E+01 --

p value 6.3620E-10 0.0000E+00 1.4062E-02 0.0000E+00 --

significance ++ ++ ++ ++ --

F5

Best 4.4489E+01 1.0364E+02 1.8032E+01 5.2971E+02 1.3291E+01

Mean 8.8403E+01 3.0021E+03 3.0219E+01 1.4425E+03 1.9777E+01

Std 2.1480E+01 5.4648E+03 8.6494E+00 1.0684E+03 4.2828E+00

z value 1.6024E+01 6.9635E+02 2.4380E+00 3.3219E+02 --

p value 0.0000E+00 0.0000E+00 7.3843E-03 0.0000E+00 --

significance ++ ++ ++ ++ --

F8

Best 2.5393E-04 1.5180E-03 1.7528E-01 1.6241E-02 1.4998E-32

Mean 6.7000E-02 1.7540E-01 4.4751E-01 1.6944E-01 3.1465E-32

Std 9.0371E-02 2.1386E-01 3.1984E-01 3.0711E-01 5.1502E-32

z value 1.3009E+30 3.4057E+30 8.6892E+30 3.2900E+30 --

p value 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 --

significance ++ ++ ++ ++ --

F12

Best -4.1600E+03 -4.2993E+03 -4.1323E+03 -2.8541E+03 -4.0864E+03

Mean -4.1600E+03 -4.2993E+03 -4.1323E+03 -2.8541E+03 -4.0864E+03

Std -3.5198E+03 -3.4930E+03 -3.1012E+03 -1.8250E+03 -3.4693E+03

z value 3.4394E+02 4.0894E+02 5.1356E+02 4.8420E+02 4.1250E+02

p value -- 7.7884E-02 1.2171E+00 4.9277E+00 1.4693E-01

significance -- 4.6896E-01 1.1179E-01 4.1591E-07 4.4159E-01

F15

Best 7.6486E+01 1.5024E+02 5.1892E+00 1.0573E+02 1.0483E+00

Mean 2.0496E+03 3.0076E+03 4.3516E+01 3.6008E+02 1.6956E+01

Std 2.1179E+03 2.7222E+03 3.7926E+01 3.7866E+02 1.5658E+01

z value 1.2982E+02 1.9100E+02 1.6962E+00 2.1914E+01 --

p value 0.0000E+00 0.0000E+00 4.4919E-02 0.0000E+00 --

significance ++ ++ ++ ++ --



Information Technology and Control 2025/1/54320

Functions Index DevBBO OriginalDE DevSMA GWO AOMOA

F16

Best 1.3664E+04 7.9616E+02 3.3318E+03 3.6707E+05 1.2603E+03

Mean 9.2287E+04 2.5812E+06 3.6455E+04 3.2712E+06 4.5342E+04

Std 1.7606E+05 1.0610E+07 2.0160E+04 1.9898E+06 1.7573E+04

z value 2.7694E+00 1.2622E+02 -- 1.6045E+02 4.4080E-01

p value 2.8078E-03 0.0000E+00 -- 0.0000E+00 3.2968E-01

significance ++ ++ -- ++ ==

F17

Best 4.1371E+01 2.7107E+01 2.5220E+01 1.7042E+02 2.8830E+01

Mean 1.0047E+04 1.2505E+03 6.2168E+02 7.3424E+02 5.5794E+02

Std 8.1457E+03 2.3262E+03 1.4546E+03 1.0381E+03 5.1251E+02

z value 1.8515E+01 1.3512E+00 1.2436E-01 3.4400E-01 --

p value 0.0000E+00 8.8315E-02 4.5051E-01 3.6542E-01 --

significance ++ == == == --

F21

Best 1.9690E+02 1.8825E+03 7.8939E+02 7.7948E+03 1.2536E+03

Mean 1.0522E+04 1.3629E+05 7.1947E+03 2.7229E+04 7.9089E+03

Std 8.3130E+03 2.8320E+05 5.7917E+03 2.4994E+04 7.5197E+03

z value 5.7453E-01 2.2290E+01 -- 3.4591E+00 1.2332E-01

p value 2.8280E-01 0.0000E+00 -- 2.7096E-04 4.5093E-01

significance == ++ -- ++ ==

F23

Best 2.4488E+02 5.7171E+00 9.5283E+01 2.1608E+03 1.4516E+01

Mean 1.7672E+04 6.7703E+03 5.8715E+03 9.6208E+03 2.4911E+02

Std 1.7061E+04 6.1974E+03 5.9393E+03 6.9277E+03 2.9390E+02

z value 6.9938E+01 2.6177E+01 2.2570E+01 3.7620E+01 --

p value 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 --

significance ++ ++ ++ ++ --

Table 2
Test results of 10 benchmark functions with 50 dimensions

Functions Index BaseGA GaussianSA AO MFO AOMOA

F1

Best 4.9154E+07 8.3139E+10 5.1559E+10 2.7319E+02 6.2365E+00

Mean 9.1318E+07 1.4974E+11 6.7068E+10 5.6059E+07 3.9434E+03

Std 2.5697E+07 3.0767E+10 7.4123E+09 2.1490E+08 5.5183E+03

z value 1.6548E+04 2.7135E+07 1.2154E+07 1.0158E+04 --

p value 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 --

Significance ++ ++ ++ ++ --

Table 1 (continuation)
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Functions Index BaseGA GaussianSA AO MFO AOMOA

F2

Best 1.9348E+03 1.4417E+05 7.8900E+04 1.7467E-09 6.7225E-07

Mean 7.4550E+03 9.0686E+08 1.1594E+05 1.2253E+03 1.1219E-01

Std 3.8376E+03 4.5504E+09 2.0913E+04 1.2518E+03 6.0377E-01

z value 1.2347E+04 1.5020E+09 1.9203E+05 2.0292E+03 --

p value 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 --

significance ++ ++ ++ ++ --

F5

Best 3.4202E-05 7.4680E-02 3.4159E-02 2.7224E-06 4.9445E-07

Mean 2.2123E-04 2.5553E-01 6.1533E-02 4.6078E-04 1.6838E-04

Std 2.1163E-04 9.0514E-02 1.4592E-02 6.7429E-04 3.9988E-04

z value 1.3216E-01 6.3860E+02 1.5346E+02 7.3122E-01 --

p value 4.4743E-01 0.0000E+00 0.0000E+00 2.3232E-01 --

significance == ++ ++ == --

F8

Best 3.5875E-01 6.9415E+01 3.2073E+01 1.2668E+00 2.3579E+00

Mean 2.1499E+00 1.1136E+02 5.1032E+01 4.3668E+00 9.2424E+00

Std 2.0137E+00 2.8967E+01 7.4501E+00 2.2146E+00 3.9762E+00

z value -- 5.4235E+01 2.4275E+01 1.1009E+00 3.5222E+00

p value -- 0.0000E+00 0.0000E+00 1.3546E-01 2.1400E-04

significance -- ++ ++ == ++

F12

Best 5.7126E+04 1.9348E+10 3.1607E+09 1.0089E+04 3.6584E+03

Mean 1.9594E+05 5.2701E+10 1.6203E+10 4.8125E+05 8.6571E+04

Std 9.9742E+04 1.7338E+10 6.2515E+09 2.3793E+06 1.2315E+05

z value 8.8806E-01 4.2794E+05 1.3157E+05 3.2048E+00 --

p value 1.8725E-01 0.0000E+00 0.0000E+00 6.7568E-04 --

significance == ++ ++ ++ --

F15

Best 7.9654E+01 4.0228E+08 1.1454E+07 3.4126E+01 3.5616E+01

Mean 5.9981E+05 8.6971E+10 2.3096E+09 3.8640E+03 6.2391E+03

Std 9.5800E+05 1.2862E+11 2.1697E+09 5.8848E+03 1.7132E+03

z value 1.0127E+02 1.4779E+07 3.9246E+05 -- 4.0361E-01

p value 0.0000E+00 0.0000E+00 0.0000E+00 -- 3.4325E-01

significance ++ ++ ++ -- ==

F16

Best 5.0599E+02 2.3737E+14 1.0418E+09 9.4436E+02 5.1249E+02

Mean 1.5850E+03 3.3073E+17 8.7237E+13 7.2520E+03 1.5985E+03

Std 5.8796E+02 5.9568E+17 2.5859E+14 1.1968E+04 6.6070E+02

z value -- 5.6251E+14 1.4837E+11 9.6383E+00 2.2964E-02

p value -- 0.0000E+00 0.0000E+00 0.0000E+00 4.9084E-01

significance -- ++ ++ ++ ==

Table 2 (continuation)
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Functions Index BaseGA GaussianSA AO MFO AOMOA

F17

Best 2.8258E+04 1.4408E+05 1.2807E+05 4.8088E+04 4.4203E+04

Mean 9.3093E+05 1.5339E+09 4.9844E+06 1.1731E+05 9.4505E+04

Std 9.6876E+05 1.7527E+09 4.3544E+06 6.2858E+04 3.4035E+04

z value 2.4575E+01 4.5066E+04 1.4367E+02 6.6994E-01 --

p value 0.0000E+00 0.0000E+00 0.0000E+00 2.5145E-01 --

significance ++ ++ ++ == --

F21

Best -3.4219E+02 -1.3015E+02 -3.4220E+02 -3.4220E+02 -3.4220E+02

Mean -2.0823E+02 1.2760E+02 -2.7059E+02 -1.3584E+02 -3.2963E+02

Std 2.0236E+02 1.1666E+02 9.1438E+01 2.2061E+02 6.7682E+01

z value 1.7937E+00 6.7556E+00 8.7232E-01 2.8633E+00 --

p value 3.6429E-02 7.1133E-12 1.9152E-01 2.0964E-03 --

significance ++ ++ == ++ --

F23

Best 3.6567E+00 1.0012E+02 9.9420E+00 4.4409E-15 4.4409E-15

Mean 1.6550E+02 5.6271E+02 1.1060E+02 4.0000E+01 9.6667E+01

Std 6.3666E+01 4.7299E+02 5.0302E+01 8.0000E+01 1.7951E+01

z value 1.5688E+00 6.5339E+00 8.8256E-01 -- 7.0833E-01

p value 5.8348E-02 3.2036E-11 1.8874E-01 -- 2.3937E-01

significance == ++ == -- ==

Table 2 (continuation)

Figure 7
Parking lot topology

 
 

 

In the slow communication scenario, we first set 
the trunk capacity to 100Mbps, the delay to 30ms, 
and the number of flows to 900. This configuration 
simulates the web search workload characterized 
by slow communication and small latency. Figure 
8(a) illustrates the variation in the two queue sizes 
between RED and RED-PID. Facing concurrent 
flows, RED makes it challenging to control the 
increase in queue size, which is very close to the 
upper limit of 1000 packets. However, RED-PID 
maintains its queue size near 700 packets 
throughout the simulation. Compared to the 
higher queue size of RED, RED-PID limits the 
queue variation and, therefore, keeps the system 
stable. In Figure 8(b), the cumulated probability 
density function (CDF) for 500 short flows (each 
flow less than 100K) serves as the criteria for 
evaluating transmission efficiency. RED-PID 
accomplishes the transmission of 500 short flows 
in no more than 20s, compared to RED, which 
takes approximately 23s. The reason is that the 
stability of RED-PID avoids congestion and, thus, 
reduces packet losses and retransmissions, 
ensuring transmission efficiency. Figure 8(c) 
shows the average sojourn times of packets for 
RED and RED-PID. Due to the optimization of 
parameters to enhance the agility of RED-PID, the 
controller qualifies for low sojourn times. Next, 
the latency of the trunk link is set to 120ms, and 
the number of concurrent flows is set to 1200. This 
case emulates the congestion derived from 
microburst flows. Like the previous simulation, 
RED-PID still controls the queue size under 800 
packets, as illustrated in Figure 9(a). RED, 

however, lacking stability in the face of 
increased latency, has reached the upper 
limit of the queue size. Figure 9(b) illustrates 
the compared CDFs for 800 short flows 
between the two controllers. RED-PID 
outperforms RED in completing the number 
of microburst flows, although it lags slightly 
in the first 38s. RED-PID performs better as 
cumulative microburst flows increase over 
time. Figure 9(c) depicts the consistently 
good performance of RED-PID in the average 
sojourn time. 

Finally, to assess the performance of RED-
PID in the context of high-speed 
communication, high capacity of trunk links 
(1Gbps) and low latency (60ms) are 
configured, and the number of flows is set to 
900. In this scenario, the queue of RED-PID 
only cumulates in just under 20s, while the 
queue of RED consistently stays at 800 
packets, as shown in Figure 10(a). 
Considering the communication with high 
bandwidth, CDF for 400 long flows (each 
flow size exceeding 100K) evaluates the 
performance of the two controllers. The 
results are illustrated in Figure 10(b), wherein 
RED-PID finishes the long flows faster than 
RED. This outcome also elucidates that RED-
PID can appropriately control the queue 
evolution and exhibit the shorter sojourn 
time of packets, as shown in Figure 10(c). 
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nodes are organized into groups 1 to 3. Each group 
delivers several TCP streams to the corresponding 
servers, emulating the widespread Incast communi-
cation. In detail, the nodes in Group 1 are divided into 
two parts: the sender group and the receiver group. 
Thus, the flows in Group 1 from senders to receivers 
compose the bulk-lived flows, emulating the work-
loads of edge computing and file download. 
Additionally, Groups 1-3 send flows simultaneously 
to one web server. The sending mode results in a com-
petition scenario composing multiple data flows on 
the R1-R4 trunk link. At the same time, Group 4 and 
Group 5 each consist of 20 nodes and send reverse 
flows within their respective groups as background 
flows. All nodes connect to leaf routers via 100 Mbps 
links. The trunk link’s bandwidth is set to 100Mbps 
and 1Gbps, which corresponds to the slow and fast 
communication scenarios, respectively. In addition, 
five bulk-lived flows in Group 4 traverse the trunk 
link to saturate the available bandwidth. In the down-
stream of the R1-R4 trunk, Router3 will undertake all 
flows, and traffic congestion will most likely occur. So, 
the RED and RED-PID controllers are deployed in 
Router 3 to control its queue evolution, respectively.

6.3. Results and Analysis
The optimization aims at aligning the phase angle of 
Equation (12) with -140 degrees when its open-loop 
amplitude is 1, i.e., minimizes Equation (14). The 
optimization of RED-PID strikes a balance between 
congestion avoidance and transmission efficiency by 
controlling the appropriate queue size in the interme-
diate device.

In the slow communication scenario, we first set the 
trunk capacity to 100Mbps, the delay to 30ms, and the 
number of flows to 900. This configuration simulates 
the web search workload characterized by slow com-
munication and small latency. Figure 8(a) illustrates 
the variation in the two queue sizes between RED 
and RED-PID. Facing concurrent flows, RED makes 
it challenging to control the increase in queue size, 
which is very close to the upper limit of 1000 packets. 
However, RED-PID maintains its queue size near 700 
packets throughout the simulation. Compared to the 
higher queue size of RED, RED-PID limits the queue 
variation and, therefore, keeps the system stable. In 
Figure 8(b), the cumulated probability density func-
tion (CDF) for 500 short flows (each flow less than 
100K) serves as the criteria for evaluating transmis-
sion efficiency. RED-PID accomplishes the transmis-
sion of 500 short flows in no more than 20s, compared 
to RED, which takes approximately 23s. The reason is 
that the stability of RED-PID avoids congestion and, 
thus, reduces packet losses and retransmissions, en-
suring transmission efficiency. Figure 8(c) shows the 
average sojourn times of packets for RED and RED-
PID. Due to the optimization of parameters to enhance 
the agility of RED-PID, the controller qualifies for low 
sojourn times. Next, the latency of the trunk link is set 
to 120ms, and the number of concurrent flows is set to 
1200. This case emulates the congestion derived from 
microburst flows. Like the previous simulation, RED-
PID still controls the queue size under 800 packets, as 
illustrated in Figure 9(a). RED, however, lacking sta-
bility in the face of increased latency, has reached the 
upper limit of the queue size. Figure 9(b) illustrates 
the compared CDFs for 800 short flows between the 
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7. Discussion 
RED-PID highlighted the RED controller design 
from the viewpoint that the TCP peer-to-peer 
sides and the AQM controller construct a feedback 
system. Previous studies about RED have only 
focused on adjusting the queue length in 
intermediated devices because the accumulation 
of the packet queue may result in buffer overflow 
and network congestion. However, solely 
suppressing the queue length overlooks the 
interaction between peer-to-peer nodes and flows, 
degrading the RED performance. In this paper, the 
experiments further confirm this conclusion. This 
study improves the TCP/RED dynamic model 
from a feedback system perspective by 
introducing the PID adjustor. In detail, the 
proportion component enhances the response of 

the entire feedback control system, and the 
integral-differential forms counteract the 
intrinsic poles that could lower performance 
in RED. The integral form, meanwhile, 
utilizes past experience to control congestion. 
Ultimately, PID ensures the entire feedback 
control system stabilizes within an expected 
bandwidth. The experiment results have also 
proven the proposed method is correct. 

The feedback system of TCP/RED-PID 
involves many parameters, which 
profoundly affect its congestion control 
function. Therefore, which optimization 
algorithm is used is crucial. In recent years, 
new heuristic optimizers from animal-based 
or nature-based phenomena, which combine 
current algorithms or create adaptable 
versions [24-25, 29], have been widely 
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two controllers. RED-PID outperforms RED in com-
pleting the number of microburst flows, although it 
lags slightly in the first 38s. RED-PID performs better 
as cumulative microburst flows increase over time. 
Figure 9(c) depicts the consistently good perfor-
mance of RED-PID in the average sojourn time.
Finally, to assess the performance of RED-PID in the 
context of high-speed communication, high capacity 
of trunk links (1Gbps) and low latency (60ms) are con-
figured, and the number of flows is set to 900. In this 
scenario, the queue of RED-PID only cumulates in just 
under 20s, while the queue of RED consistently stays 
at 800 packets, as shown in Figure 10(a). Considering 
the communication with high bandwidth, CDF for 400 
long flows (each flow size exceeding 100K) evaluates 
the performance of the two controllers. The results are 
illustrated in Figure 10(b), wherein RED-PID finishes 
the long flows faster than RED. This outcome also elu-
cidates that RED-PID can appropriately control the 
queue evolution and exhibit the shorter sojourn time 
of packets, as shown in Figure 10(c).
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7. Discussion 
RED-PID highlighted the RED controller design 
from the viewpoint that the TCP peer-to-peer 
sides and the AQM controller construct a feedback 
system. Previous studies about RED have only 
focused on adjusting the queue length in 
intermediated devices because the accumulation 
of the packet queue may result in buffer overflow 
and network congestion. However, solely 
suppressing the queue length overlooks the 
interaction between peer-to-peer nodes and flows, 
degrading the RED performance. In this paper, the 
experiments further confirm this conclusion. This 
study improves the TCP/RED dynamic model 
from a feedback system perspective by 
introducing the PID adjustor. In detail, the 
proportion component enhances the response of 

the entire feedback control system, and the 
integral-differential forms counteract the 
intrinsic poles that could lower performance 
in RED. The integral form, meanwhile, 
utilizes past experience to control congestion. 
Ultimately, PID ensures the entire feedback 
control system stabilizes within an expected 
bandwidth. The experiment results have also 
proven the proposed method is correct. 

The feedback system of TCP/RED-PID 
involves many parameters, which 
profoundly affect its congestion control 
function. Therefore, which optimization 
algorithm is used is crucial. In recent years, 
new heuristic optimizers from animal-based 
or nature-based phenomena, which combine 
current algorithms or create adaptable 
versions [24-25, 29], have been widely 
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Ultimately, PID ensures the entire feedback 
control system stabilizes within an expected 
bandwidth. The experiment results have also 
proven the proposed method is correct. 

The feedback system of TCP/RED-PID 
involves many parameters, which 
profoundly affect its congestion control 
function. Therefore, which optimization 
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congestion. Ultimately, PID ensures the entire feed-
back control system stabilizes within an expected 
bandwidth. The experiment results have also proven 
the proposed method is correct.
The feedback system of TCP/RED-PID involves 
many parameters, which profoundly affect its con-
gestion control function. Therefore, which optimi-
zation algorithm is used is crucial. In recent years, 
new heuristic optimizers from animal-based or na-
ture-based phenomena, which combine current al-
gorithms or create adaptable versions [24-25, 29], 
have been widely applied in various industry areas. 
Although these heuristic optimizers perform well 
in some areas, they must often be modified and tai-
lored for specific engineering problems. The best 
optimizer for solving one problem would not nec-
essarily perform excellently for another issue. As 
to the TCP/RED-PID feedback system, no existing 
heuristic algorithms can obtain the most appropri-
ate parameters because analyzing TCP/RED-PID 
implementation requires relevant expertise. Given 
that the PID element has the functions of self-cor-
rection and experience utilization and that there are 
no practicable data sets, the optimizer available in 
this study does not require popular neural networks. 
The optimization target mainly focuses on improv-
ing real-time response and preventing the algorithm 
from falling into suboptimal solutions. While AO 
provides rapid convergence by simulating the hunt-
ing behavior of Aquila eagles, it is prone to trapping 
into suboptimal states due to its limited exploita-
tion capabilities. To mitigate this, we incorporate 
MO, known for its refined exploitation processes, 
allowing for more accurate optimization during lat-
er stages of the algorithm’s execution. Additionally, 
we introduce chaotic-subpopulation and dynamic 
k-worst shift strategies to maintain the balance be-
tween exploration and exploitation throughout the 
optimization process. This combination not only 
enhances AOMOA’s performance but also makes it 
more robust in adapting to the dynamic and complex 
nature of TCP/AQM systems. Of course, AOMOA, in 
nature, is a heuristic algorithm. It can be utilized in 
other areas. i.e., inputs of the control system, if it sets 
some special criteria or control models. The evalu-
ation in the CEC-2017 test suit has demonstrated 
AOMOA’s efficacy compared to nine other popular 
algorithms. In addition, the network simulation also 

verifies that the algorithm can better optimize com-
plex RED-PID parameters that improve the control-
ler performance significantly.
In this study, RED-PID is implemented successfully 
in NS3 simulation, thanks to NS3 providing imple-
mentation codes for RED, Codel, and other popular 
AQM controllers. And these source codes are almost 
compatible with Linux platforms. We supplement 
the PID component in the RED source code. To im-
plement the AOMOA algorithm, an open-source and 
cross-platform Python library for nature-inspired op-
timization, Mealpy [39], is used. The library provides 
many classical and state-of-the-art meta-heuristic al-
gorithms, including the AO and MO optimizers. Based 
on the open-source platform, developers can conve-
niently design new algorithms.
In future research, we intend to deploy the RED-PID 
controller in soft-define devices based on the Linux 
platform, and will use the controller for areas of 
network congestion control. Since AOMOA is spe-
cially designed to optimize the TCP/AQM feedback 
system, this research could be extended to optimize 
other AQM controllers in emerging network tech-
nologies such as 5G and beyond. The integration 
of heuristic algorithms like AOMOA into network 
control systems could pave the way for more adap-
tive and intelligent network management solutions. 
Moreover, the insights gained from this study may 
contribute to advancements in autonomous network 
systems, where real-time adaptability and optimiza-
tion are critical.

8. Conclusion
This study aimed to enhance the effectiveness of con-
gestion control in the TCP/RED system by address-
ing the limitations of the traditional RED controller, 
particularly its sluggish response to dynamic net-
work conditions. By integrating a Proportional-Inte-
gral-Derivative (PID) adjustor into the RED structure, 
we develop the RED-PID controller, which improves 
the system’s responsiveness and stability. To opti-
mize the performance of the RED-PID controller, we 
develop a novel heuristic algorithm, AOMOA, which 
combines the strengths of the Aquila Optimizer and 
Math Optimizer. Adding chaotic-subpopulation and 
dynamic k-worst shift strategies further enhances 
the algorithm’s ability to avoid premature conver-
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gence and balance global exploration with local ex-
ploitation. Through extensive simulations using the 
NS3 platform, we demonstrated that the RED-PID 
controller, optimized by AOMOA, significantly out-
performs the standard RED controller, providing su-
perior congestion control. This research contributes 
valuable insights into designing more responsive and 
stable AQM mechanisms, with implications for im-
proving network performance and robustness.
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