
185Information Technology and Control 2025/1/54

YOLOv8-SS: A Method 
of Localizing Soldiers 
in Intricate Battlefield 
Environments

ITC 1/54
Information Technology  
and Control
Vol. 54 / No. 1/ 2025
pp. 185-197
DOI 10.5755/j01.itc.54.1.37841

YOLOv8-SS: A Method of Localizing Soldiers in Intricate Battlefield Environments

Received 2024/06/30 Accepted after revision 2024/12/16

HOW TO CITE: Gao, Y., Wang, Y. (2025). YOLOv8-SS: A Method of Localizing Soldiers in 
Intricate Battlefield Environments. Information Technology and Control, 54(1), 185-197. https://doi.
org/10.5755/j01.itc.54.1.37841

Yunlong Gao, Yongjuan Wang 
School of Mechanical Engineering, Nanjing University of Science and Technology,  
Nanjing 210094, Jiangsu, China 

Corresponding authors:  18936030961@189.cn

As combat becomes more autonomous and intelligent in the future, and effective military target localization 
techniques are essential to understanding operational military deployment and target tracking. In this paper, 
we offer an instance segmentation technique for precise soldier localization in intricate battlefield environ-
ments, called YOLOv8-SS. First, in the YOLOv8 backbone network, the C2f module is replaced by the Dual-
C2f module, which we created based on DualConv in order to minimize the amount of parameter computation 
while maintaining accuracy. Second, the feature extraction network is enhanced by import the global attention 
mechanism (GAM), which increases the cross-dimensional interaction between the channel and spatial in-
formation and boosts the model’s feature extraction performance. Lastly, the reparameterization module DBB 
is used to redesign the segmentation head of YOLOv8. Convolutional branches of various sizes and shapes are 
added to the network’s feature representation capacity during the training phase. In the inference phase, the 
convolutional branches are equivalently replaced with regular convolutional, which increases accuracy while 
maintaining inference efficiency. Additionally, a dataset for segmenting soldier instances include various bat-
tlefield situations is provided in this paper, and experimental validation is carried out using this dataset. The 
experimental results demonstrate that YOLOv8-SS improves the Box P, Box mAP50, and Box mAP50-95 mea-
sures by 2.7%, 2.9%, and 5.1%, Mask P, Mask mAP50, and Mask mAP50-95 improved by 0.7%, 1.7%, and 4.6%,. 
however, Box R and FPS decreased slightly, by 1.6% and 8.6% in comparison to the baseline model YOLOv8n. 
As a result, the YOLOv8-SS model performs more accurately when it comes to segmenting soldiers in intricate 
battlefield environments.
KEYWORDS: YOLOv8; Instance Segmentation; DualConv; Global Attention Mechanism; Diverse Branch 
Block.

mailto:obodovskiy58@gmail.com


Information Technology and Control 2025/1/54186

1. Introduction
The form of warfare is evolving towards more intel-
ligence, and unmanned intelligent weapons will play 
a significant role in the combat system of the future 
[6]. In this context, the reconnaissance of battlefield 
posture is a prerequisite for the implementation of ef-
fective fire strikes by unmanned intelligent weapons. 
Tar-get tracking, target precision guidance, and com-
bat situational analysis all depend on accurate and ef-
fective military target recognition in complicated bat-
tlefield conditions [19]. The effectiveness of firepower 
is one of the most important factors in winning mod-
ern wars. Then, a crucial technology for battlefield 
situational detection is the identification and location 
of soldiers in the combat zone [15]. The terrain of the 
battlefield is unstable and complex, and military ob-
jectives are always obstructed by smoke, fire, and oth-
er elements. Additionally, their position is constant-
ly obscured by forested areas, mountains, fields, and 
other complex backdrops [28]. It is very challenging 
to achieve accuracy in military target detection under 
the influence of these circumstances [27].
Image-based target detection techniques are being 
progressively used in the hunt for combat targets as 
computer vision technology advances. Deep learning 
has advanced significantly since the proposed of Alex-
Net [11], and methods like target detection have start-
ed to develop. Convolutional neural networks were 
first used for target identification with R-CNN [16], 
from which Fast R-CNN [12, 26] was created. A lot of 
its derivative models are employed in the field of mil-
itary target detection, such as the detection of knives 
[8] and weapons [29]. However, the above-mentioned 
algorithms still have limitations in terms of detection 
speed. Until the emergence of the series of YOLO [1, 
25, 30], deep learning has been more widely used in 
the field of real-time detection. In the field of military 
target detection, the YOLO [8] algorithm also achieved 
better results. Additionally, vision Transformers have 
become the latest method for computer vision because 
of its excellent speed performance [5, 9, 34, 35].
The main localization methods for humanoid targets 
such as soldiers are detection, pose detection [23, 24], 
and instance segmentation. The dataset for target rec-
ognition comprises more interference information 
be-cause of the variety of tactical maneuvers of the 
soldiers and the soldier’s camouflage proximity to the 

combat environment [17]. The instance segmentation 
target localization approach can produce more precise 
outcomes. Image instance segmentation involves not 
only instance localization but also pixel-level classi-
fication, including semantic segmentation and object 
detection. Mask RCNN [14] and subsequent YOLACT 
[2, 20, 36], SOLO [31, 32, 33], and FastInst [13] are ex-
amples of instance segmentation algorithms that have 
developed over time and have increased computing ef-
ficiency and accuracy. In recent years, the YOLO series 
has been used to improve instance segmentation algo-
rithms as a baseline model [3, 4, 16, 21]. 
To solve the shortcomings of the YOLOv8 method in 
instance segmentation, together with the features of 
soldiers in intricate battlefield environments, an im-
proved YOLOv8 algorithm (i.e., YOLOV8-SS) is pro-
vided in this paper. The algorithm’s primary contribu-
tions are as follows:
1 In the YOLOv8 network structure, the DualConv 

module is used to design the DualC2f module to 
replace the C2f module. It reduces the network 
model’s parameters and computational complexi-
ty without sacrificing accuracy, making the model 
lighter.

2 Adding the global attention mechanism (GAM) to 
the feature extraction net-work, which strength-
ens the channel and spatial information cross-di-
mensional inter-action and increases the model’s 
capacity to extract meaningful features.

3 The reparameterization module DBB was used to 
redesign the YOLOv8 seg-mentation head. Con-
volutional branches of various sizes and shapes 
are added to the network’s feature representation 
capacity during the training phase. In the infer-
ence phase, the convolutional branches are equiv-
alently replaced with regular convolutional, which 
increases accuracy while maintaining inference 
efficiency.

This paper’s outline is structured as follows: Section 2 
describes the improved YOLOv8 model, YOLOV8-SS, 
and Section 3 describes the experimental details and 
evaluation metrics. The analysis of the experimental 
data, including the ablation experiment and the ex-
periment that was compared with other models, is 
developed in Section 4. A conclusion to the paper is 
given at the end.
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2. Improvements Based on 
YOLOv8
It was discovered that Yolov8 still have potential 
to increase effectiveness for the segmentation 
task of soldiers in intricate battlefield environ-
ments. Because of this, YOLOV8-SS is suggest-
ed in this study as an improvement over Yolov8, 
and its network topology is shown in Figure 1. 
The backbone, neck, and head make up the three 
main components of the YOLOV8-SS network. 
The backbone extracts the feature information 
from the input image; the neck is used to fuse the 
features that the backbone has extracted; and 
the head outputs the segmentation results. This 
paper designs the DualC2f module to replace the 
C2f module in the backbone and neck in order to 
minimize the amount of parameter computation 
without sacrificing feature information. A GAM 
module is also added to the backbone section to 
improve the representation of the input features 
and, hence, increase the detection accuracy 
while also retaining more feature information. 
Lastly, the reparameterization module DBB in-
troduces the segment head.

2.1. DualC2f

This paper’s DualC2f module is designed based 
on the DualConv to improve the C2f module from 
the original YOLOv8 architecture [37]. The Du-
alC2f module has less parameter computation 
than the original C2f module while maintaining 
a suitable amount of feature information. The 
structure of DualC2f is shown in Figure 2.
When the feature map is input to the DualC2f 
module, it passes through a Conv module, which 
consists of a Conv2d with a kernel size of 1 × 1 
and a step size of 1, a BN layer, and a Silu acti-
vation function. These convolution operations 
help to extract features at different levels in the 
input data.
Then the input data is separated into two pro-
cessing branches. While the Dual-Bottleneck 
module processes the other branch, one branch 
is sent straight to the output. By improving the 
network’s representational and nonlinear ca-
pacities, this branching design helps the net-
work better represent complicated data. The 

Figure 1 
Network structure of YOLOV8-SS

Figure 2
Structure of DualC2f
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DualBottleneck mod-ule is composed of two succes-
sive DualConv modules. DualConv entails applying a 
1×1 point-by-point convolution and a 3×3 set of con-
volutions to the same input feature maps, followed 
by their summation. Since applying successive 1×1 
convolutions to the input feature map preserves the 
original information, it can help deeper convolutional 
layers extract information more efficiently.
Finally, the DualC2f module realizes feature fusion by 
splicing features from different branches in the chan-
nel dimension. The spliced features contain informa-
tion from different branches, enriching the expres-
siveness of the features. DualC2f fuses features from 
two dimensions, which enhances the representation 
of spatial feature information and helps to effective-
ly distinguish texture features for military targets in 
complex backgrounds.

2.2. GAM
Numerous research studies have shown how attention-
al mechanisms can im-prove performance on a range of 
computer vision tasks. Nonetheless, the conventional 
attention mechanism grounded in convolutional neu-
ral networks primarily concentrates on the examina-
tion of the channel domain, taking into account solely 
the inter-play among feature map channels. This un-
dermines the significance of augmenting cross-dimen-

Figure 3
Structure of GAM

sional interactions with respect to the preservation of 
both channel and spatial information. This work adds a 
global attention module, GAM (Global Attention Mod-
ule) [22], in the last layer of the feature extraction net-
work, as illustrated in Figure 3, to further improve the 
model’s capacity to extract valuable features. In order 
to enhance the model’s focus on significant features, 
this module attempts to take into con-sideration the 
data in both the channel and spatial dimensions. The 
addition of the GAM module improves feature repre-
sentation by enabling the model to more precisely ex-
press the correlations between various locations and 
channels. The GAM module enhances the representa-
tion of boundary information between the target and 
the environment in an image by focusing on both chan-
nel information and spatial information.
GAM contains two modules, channel attention mod-
ule and spatial attention. The whole process is shown 
in Figure 1, given the input feature map F∈RC×H×W, the 
intermediate state F2 and the output F3 are defined as 
shown in Equations (1)-(2):
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Figure 4
Structure of DBB segment

The input feature maps are first dimensionally 
transformed in the channel attention sub-module. 
After that, they are fed into the MLP (Multi-Layer 
Perceptron) to amplify the channel-space depen-
dence across dimensions. Lastly, they are trans-
formed back to their original dimensions and the 
Sigmoid function processes them for output. Two 
convolutional layers are utilized in the spatial atten-
tion sub-module to integrate the spatial information 
and focus on it. Additionally, the reduction rate (r) 
is the same as that of the BAM channel attention 
sub-module.

2.3. DBB Segment
The reparameterization module DBB [7] was used 
to redesign the YOLOv8 seg-mentation head. Con-
volutional branches of various sizes and shapes are 
added to the network’s feature representation capac-

ity during the training phase. In the inference phase, 
the convolutional branches are equivalently replaced 
with regular convolutional, which increases accuracy 
while maintaining inference efficiency. The structure 
of DBB segment is shown in Figure 4.
This paper’s DBB module employs the following four 
convolutional deformation techniques in total:
1 Convolutional kernel size 1 × 1 convolutional ker-

nel size conv2d module is connected to the BN 
module to create; 

2 Passing through a module identical to the deforma-
tion (1), and then inputs to a conv2d module with 
convolutional kernel size k × k connected to a BN 
module;

3 Passing through a module identical to deformation 
(1) and then feeding into an average pooling mod-
ule with a BN module;
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4 A conv2d module with a convolutional kernel size 
of k × k is coupled to the BN module to build the 
composition.

Following the summation of the four deformation 
outcomes and nonlinear activation, the feature map 
is the finally output. In order to improve the feature 
representation during the inference phase without 
significantly increasing the number of parameters, 
regular convolution can be utilized in place of distort-
ed convolution combinations.

3. Experimental Process
3.1. Dataset
The battlefield is always incredibly unpredictable 
and complex in armed conflict. Because military tar-
gets are constantly surrounded by a variety of intri-
cate back-grounds, it might be challenging to identify 
them quickly. Furthermore, military tar-gets can be 
concealed in a variety of landscapes, including plains 
and woodlands, and harder to locate. In order to solve 
this issue, a soldier segmentation dataset consisting 
of 820 images is created, as illustrated in the Figure 
5, by examining and evaluating various forms of com-
plex background interference in actual combat envi-
ronments, including night, jungle, mountain, and city. 
The dataset is split into a training set, a vali-dation 
set, and a test set in the ratio of 5:3:2 to guarantee an 
adequate number of samples.

3.2. Experimental Details
All experiments in this paper were conducted on a 
workstation with the Ubuntu 22.04 operating system. 
The graphics processor used is a GeForce RTX 3090, 
while the training and test data are derived from the 
soldier dataset constructed in this paper.
To ensure consistency in the training process for both 
ablation and comparison tests, we used uniform hy-
perparameters for training. Specifically, the batch 
size is 16, the maximum epoch is set to 800, and the 
patience is 60. In addition, the loss function is the 
same as the baseline model.

3.3. Performance Metrics
In this paper, the segmentation performance of the 
YOLOv8-SS model is evaluated using generalized 

Figure 5
Dataset of soldiers: (a) Forest; (b) Mountain and field;  
(c) City; (d) Night vision; (5) clean back-ground

(a)

(b)

(b)

(d)

(e)

evaluation criteria. In the evaluation, recall shows the 
percentage of correctly identified targets, whereas 
precision measures the model’s accuracy in identify-
ing and segmenting targets. Furthermore, we employ 
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FSP to gauge the model’s inference efficiency and 
mAP to assess target recognition and segmentation 
precision in a comprehensive manner. Equations 
(3)-(6) below illustrate how they are calculated. The 
performance of the YOLOv8-SS model in the soldier 
segmentation task can be more thoroughly evaluated 
by thoroughly examining these assessment measures.
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4.1. Ablation Experiment
To verify the validity of each improvement point, we 
performed ablation experiments on a self-construct-
ed soldier segmentation dataset to complete the eval-
uation. To ensure the fairness of the assessment, we 
set the same parameters for each variable.
As can be seen in Table 1, compared to the baseline 
model YOLOv8n, YOLOV8-SS improved by 2.7%, 2.9%, 
and 5.1% in Box P, Box mAP50, and Box mAP50-95 
metrics. mask P, Mask mAP50, and Mask mAP50-95 

improved by 0.7%, 1.7%, and 4.6%. However, Box R and 
FPS decreased slightly, by 1.6% and 8.6%, respectively.
The DBB module mainly improved the accuracy and 
confidence of the model. After removing the DBB 
module, Box mAP50-95 and Mask mAP50-95 signifi-
cantly decreased by 1.9% and 2%, respectively, along 
with a decrease in recall. The GAM module had the 
greatest impact on mAP, but had a smaller impact 
on precision and recall. If the DualC2f module is re-
moved, there is a significant decrease in model preci-
sion with a value of 5.2%, but there is a 3.3% increase 
in recall. This shows that the decrease in recall of YO-
LO-SS is mainly caused by the DualC2f module.
Figure 6 shows a comparison of the results of the ab-
lation experiment of the im-proved model by test on 
the soldier dataset. The results include Box PR curve, 
Box F1 curve, Mask PR curve, and Mask F1 curve. As 
Figure 6 shows, the improved approach completely 
encircles the curve of the baseline model and is nu-
merically closer to the point (1,1). This illustrates 
how the improved algorithm performs better than the 
base-line model and provides several significant ad-
vantages.
To provide a more understandable demonstration of 
the improved model’s effectiveness, Figures 7-9 pres-
ent the processing outcomes of multiple common 
scenario situations. As demonstrated in Figure 7, the 
improved model has a higher accuracy and can detect 
occluded targets, but the baseline model experiences 
leaky detection when dealing with obscured soldier 
targets. The soldier is camouflaged to approximate the 
surroundings in the mountainous setting depicted in 
Figure 8. The improved model is able to recognize the 
target, while the baseline model is unable to do so due 

Table 1
Results of ablation experiment

Model Box
P

Box
R

Box
mAP50

Box
mAP50-95

Mask
P

Mask
R

Mask
mAP50

Maks
mAP50-95 Parameters Gfloats FPS

DualC2f GAM DBB

× × × 0.892 0.811 0.869 0.616 0.885 0.768 0.841 0.543 3258259 12.0 116

√ √ × 0.891 0.806 0.89 0.638 0.898 0.771 0.863 0.569 4337011 12.0 107

√ × √ 0.917 0.801 0.879 0.626 0.896 0.773 0.845 0.555 4703155 53.9 103

× √ √ 0.867 0.828 0.889 0.641 0.874 0.78 0.845 0.568 6642483 56.0 110

√ √ √ 0.919 0.795 0.898 0.657 0.892 0.77 0.859 0.589 4533427 54.7 106
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Figure 6
Results of ablation experiment: (a) Box PR curve; (b) Box F1 curve; (c) Mask PR curve; (d) Mask F1 curve

Figure 7
The results of the improved model in scene 1: (a) The original image; (b) YOLOv8n; (c) YOLOv8n+DualC2f+GAM;  
(d) YOLOv8n+DualC2f+DBB; (e) YOLOv8n+GAM+DBB; (f ) YOLOv8n+DualC2f+GAM+DBB

(a)

(c) (d)

(b)

(a)

(d)

(b)

(e)

(c)

(f )
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Figure 8
The results of the improved model in scene 2: (a) The original image; (b) YOLOv8n; (c) YOLOv8n+DualC2f+GAM;  
(d) YOLOv8n+DualC2f+DBB; (e) YOLOv8n+GAM+DBB; (f ) YOLOv8n+DualC2f+GAM+DBB

(a)

(d)

(b)

(e)

(c)

(f )

Figure 9
The results of the improved model in scene 3: (a) The original image; (b) YOLOv8n; (c) YOLOv8n+DualC2f+GAM;  
(d) YOLOv8n+DualC2f+DBB; (e) YOLOv8n+GAM+DBB; (f ) YOLOv8n+DualC2f+GAM+DBB

(a) (b) (c)

(d) (e) (f )
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to camouflage. In the forested battlefield environment 
illustrated in Figure 9, the baseline model was able to 
detect the target but mistook the military backpack 
with the loaded helmet as the target; in contrast, the 
improved model avoided this misdetection situation.

4.2. Comparison with Other Models
To further confirm the overall detection effectiveness 
of the improved YOLOv8 model in the soldier data-
set, the proposed YOLOV8-SS is compared with three 
state-of-art instance segmentation algorithms. The 
comparison algorithms are (1) YOLOv5-seg, (2) Yolact, 
and (3) YOLOv8n. In order to effectively compare the 

Table 2
Results of comparison with other models

Model Box
P

Box
R

Box
mAP50

Box
mAP50-95

Mask
P

Mask
R

Mask
mAP50

Maks
mAP50-95 FPS

Yolact 0.841 0.630 0.844 0.562 0.815 0.599 0.827 0.525 31

Yolov5-seg 0.822 0.781 0.83 0.507 0.822 0.734 0.778 0.473 103

Yolov6-seg 0.884 0.812 0.891 0.644 0.904 0.76 0.867 0.557 108

RTDETR-seg 0.852 0.776 0.832 0.548 0.828 0.761 0.801 0.488 89

Yolov8n 0.892 0.811 0.869 0.616 0.885 0.768 0.841 0.543 116

YOLOv8-SS 0.919 0.795 0.898 0.657 0.892 0.77 0.859 0.589 106

Figure 10
Comparison results of different models in scene 1: (a) The original image; (b) Yolact; (c) YOLOv5-seg; (d) YOLOv6-seg;  
(e) REDETR-seg; (f ) YOLOv8n; (g) YOLOv8n-SS

performance of YOLOV8-SS, the training environ-
ments and datasets of the four algorithms are identical.
Table 2 shows that the YOLOv8-SS proposed in this 
paper outperforms the models under comparison in 
every accuracy-related performance indicator, with 
just a minor decrease in inference speed.
In order to fully illustrate the adaptability of our 
model in different scenarios, Figures 10–12 show the 
processing results of several typical scene examples. 
Two camouflaged soldiers in forested terrain are seen 
in Figure 10. While YOLOv8-SS obtains very strong 
segmentation results, the baseline model suffers from 
misidentification in a scene with severe interference, 

(a) (b) (c)

(d) (e) (f ) (g)
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and the YOLOv5-seg algorithm suffers from inad-
equate masking, which leads to less accurate local-
ization. Figure 11 shows the situation in a nighttime 
battlefield environment, where Yolact is unable to 
localize the target and the baseline model incorrect-
ly identifies the tank target as a soldier, and both YO-

LO-SS and YOLOv5-seg identify two soldier targets, 
but YOLO-SS has a higher confidence. The scene in 
Figure 12 shows a soldier operating a machine gun, 
and all other models recognize the machine gun and 
sandbags as soldier targets, but only YOLO-SS accu-
rately locates the soldier target.

Figure 11
Comparison results of different models in scene 2: (a) The original image; (b) Yolact; (c) YOLOv5-seg; (d) YOLOv6-seg;  
(e) REDETR-seg; (f ) YOLOv8n; (g) YOLOv8n-SS

(a) (b) (c)

(d) (e) (f ) (g)

Figure 12
Comparison results of different models in scene 3: (a) The original image; (b) Yolact; (c) YOLOv5-seg; (d) YOLOv6-seg;  
(e) REDETR-seg; (f ) YOLOv8n; (g) YOLOv8n-SS

(a) (b) (c)

(d) (e) (f ) (g)
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5. Conclusion
For the detecting and locating of soldiers in com-
plex battlefield environments, this paper proposes 
a soldier target instance segmentation algorithm, 
called YOLOV8-SS, based on the improved YOLOv8 
algorithm. In this method, the main improvements 
include three parts: firstly, the DualC2f module is de-
signed based on DualConv to re-place the C2f module 
in the backbone and neck of YOLOv8; secondly, the 
global attention module GAM is imported into the 
feature extraction network; and finally, the reparam-
eterization module is applied to redesign the segmen-
tation head of YOLOv8.

To assess the performance of the YOLOV8-SS model, 
we performed ablation and comparison experiments 
to validate the model. Compared to the baseline mod-
el YOLOv8n, YOLOV8-SS improved by 2.7%, 2.9%, 
and 5.1% in Box P, Box mAP50, and Box mAP50-95 
metrics, respectively. mask P, Mask mAP50, and Mask 
mAP50-95 improved by 0.7%, 1.7%, and 4.6%, respec-
tively. However, Box R and FPS decreased slightly, by 
1.6% and 8.6%. The experimental results show that 
the YOLOV8-SS model possesses better performance 
in the task of segmenting soldiers under intricate bat-
tlefield environments.
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