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Adversarial attack in Time Series Forecasting(TSF) has been a topic of growing interest in recent years. 
While some black box attack methods have been proposed for TSF, they require continuous query to the tar-
get model. And the computational costs increase as model and data complexity grows. In fact, The perturba-
tions generated by these methods have certain patterns, especially constrained in L0 norm. Those patterns 
can be captured and learned by a model. In this study, we proposed Learning-Based Attack(LBA), a novel 
black box adversarial attack method for TSF tasks, focusing on adversarial example, the perturbed data. By 
utilizing a model to learn adversarial examples and generate a similar one, we can achieve a comparable per-
formance with the original attack methods while significantly reducing the number of queries to the target 
model, ensuring high efficient and stealthiness. We evaluate our method through several public datasets. In 
this paper, we learn the adversarial samples attacked by n-Values Time Series Attack(nVITA), a sparse black 
box attack for TSF. The results show that we can effectively learn the attack information and generate similar 
adversarial samples with lower computational overhead, thus achieving the stealthiness and efficiency of 
the attack. Furthermore, we also verify the transferability of our method and found its applicability to attack 
other models. Our code is available on Github1. 
KEYWORDS: Time Series Forecasting, Adversarial Attack, Deep Learning

1 https://github.com/Six6stRINgs/LearningBased_Atk
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1. Introduction
Time series Forecasting(TSF) serves as a cornerstone 
in numerous fields, offering a dynamic perspective on 
evolving phenomena. Its intrinsic ability to capture 
temporal dependencies has fueled its applications 
across diverse domains, ranging from finance [1], 
economics, healthcare [2] and environmental scienc-
es. Furthermore, the advent of several sophisticated 
deep learning models has marked a significant leap in 
addressing TSF challenges, enhancing efficiency and 
precision [3], [4].
However neural networks have been proved to be 
vulnerable to some special noise called adversarial 
attack. Szegedy et al. [5] discovered the phenomenon 
that neural networks could make wrong decision at a 
high probability by adding some kinds of human-im-
perceptible perturbations to the original datasets. 
Subsequently, many methods were proposed to gen-
erate adversarial examples such as FGSM [6], BIM 
[7], DeepFool [8]. Fig. 1 shows the adversarial attack 
on TSF tasks. The adversarial examples generated by 
these methods can make the target model generate 
wrong trend of predictions. The target model is unre-
liable under such adversarial attacks.
Some of the existing studies on adversarial attack in 
TSF tasks rely on gradient-based methods [9]–[11], 
which are not practical in real conditions. Addition-
ally, global perturbations on time series data are more 
visible than those on images [11]. Thus, local perturba-
tions are more suitable for TSF tasks. Fig. 2 shows the 
comparison of the adversarial attack methods on TSF 

Figure 1
Adversarial attack on Time Series Forecasting. The perturbations are small and hard to be detected by human, but can fool 
the target model to generate wrong predictions.

tasks. (a) and (b) use the same sample with different 
attack methods. (a) illustrates the FGSM attack, where 
the entire dataset is subject to perturbations, leading 
to a sawtooth-like pattern that significantly deviates 
from the original data. This global perturbation is more 
conspicuous and can potentially be detected more eas-
ily due to its broader impact across the dataset. In con-
trast, (b) depicts the nVITA attack, which introduces 
perturbations at only a few critical points within the 
data window. This approach results in a less dramatic 
but targeted deviation in the adversarial example.
Sparse attack methods based on sensitive points are a 
topic of growing interest in recent years. Su et al. [12] 
proposed a method called One Pixel Attack, which can 
generate adversarial examples by perturbing a single 
pixel in the image classification tasks. Croce et al. 
[13] proposed l1-APGD, an adaptive form of PGD [14] 
which is highly effective even with a small budget of 
iterations. Several sparse black box methods [12], [15], 
[16] turn the adversarial attack into a search problem 
— to find the local optimal perturbations. Moreover,
Search problem can be solved by optimization algo-
rithms, such as Differential Evolution(DE) [17]. By 
utilizing such algorithms, the attacker can get a se-
quence of sensitive points to perturb and generate ad-
versarial examples. In order to achieve a high attack 
performance, they often require a large number of 
queries to the target model. The computational cost 
of these methods increases rapidly as the complexity 
of the model and data grows.
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So, the question is: Since sparse attack methods in-
volve fewer perturbations, might it be possible to 
learn the adversarial examples and generate sim-
ilar ones? In the context of image data, the volume 
of a single instance is typically quite substantial, 
which can complicate the process of identifying 
and learning adversarial examples. By contrast, in 
TSF tasks, time series data are split into multiple 
windows. This technique significantly reduces the 
scale of each individual window, making it feasible 
to learn the adversarial examples. In this study, we 
proposed a novel black box adversarial attack meth-
od for TSF tasks, focusing on adversarial example, 
the perturbed data. The underlying patterns and 
characteristics of these adversarial examples can be 
effectively captured and generalized by a learning 
model. By training a small model on known adver-
sarial attack patterns from a given target black box 
attack method, we are able to generate some simi-
lar adversarial examples without the need for direct 
queries to the target model.
To the best of our knowledge, none of study has been 
conducted on such way to generate adversarial ex-
amples. This Learning-Based Attack(LBA) method 
allows us to rapidly generate comparable adversarial 
examples with the target attack method. We evalu-
ate our method through some public datasets. The 
obtained results demonstrate the effectiveness of 

Figure 2
A comparison of the adversarial attack methods for TSF tasks. Time series data with orange line refers to the original data, 
blue line refers to the adversarial examples. Note that the figures above are data combined with multiple window data in 
a single feature. In TSF tasks, data are usually split into windows to predict the future values. Thus sparse attack means 
perturb few sensitive points in each window data, while global attack means perturb all the points in every window data.
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ŷi,t+1 i
t+1 yi,t−k:t = {yi,t−k,, · · · ,yi,t} xi,t−k:t = {xi,t−k,, · · · ,xi,t}

i
k

si i f (X)

n
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(b) Comparison of sparse attack method(nVITA)

our method. We also verified the transferability of 
our method and found its applicability to attack oth-
er models. Our contributions can be summarized as 
follows:
1 We demonstrate that adversarial examples can be 

learned and generated by a model on TSF tasks.
2 A novel perspective on adversarial attack. We focus 

on the adversarial examples, the perturbed data.
3 Query-Less and Effectiveness. By learning the ex-

isting adversarial examples, we can achieve a com-
parable attack performance with the target attack 
method while significantly reducing the number of 
queries to the target model, ensuring high efficient 
and stealthiness.

2. Related Works and Background
In this section, we will introduce an overview of TSF 
tasks and adversarial attack.
a Deep Learning on Time Series Forecasting
TSF tasks holds a pivotal position in data analysis and 
data mining, leveraging advanced models to extract 
valuable insights from sequential data. Its signifi-
cance lies in providing accurate predictions, enabling 
informed decision-making across various domains. 
TSF tasks can be described as follows [18]:
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 is the predicted value of the i-th time se-
ries at time t + 1, yi,t−k:t = {yi,t−k,, ··· , yi,t }, xi,t−k:t = {xi,t−k, , ··· , xi,t} 
represent the true values of the i-th time series and 
the corresponding time series data, which com-
posed a k window data, si is the static metadata of 
the i-th time series, f (X ) is the prediction function 
of the model.
The equation adove focuses on the univariate TSF 
tasks. For Multivariate Time Series (MTS) forecast-
ing tasks, some adjustments are required to accom-
modate the multiple variables. The essence, howev-
er, remains the same — predicting the future values 
based on historical information.
Deep Learning has made significant progress over 
the past few years. It has been widely used in TSF 
tasks and achieved obvious success. Convolution-
al Neural Networks (CNN), due to their ability to 
extract local features from data, have demonstrat-
ed effectiveness in certain TSF tasks. Recurrent 
Neural Network(RNN) [19] can capture the tem-
poral dependencies in sequential data, making it 
suitable for TSF tasks. But long term dependencies 
are hard to learn for RNNs due to the limited in-
formation stored in the hidden state. Hence, Long 
Short- Term Memory(LSTM) [20] was developed, 
which is effective in learning and retaining infor-
mation over extended sequences with its memory 
cell structure. Cui et al. [4] proposed a novel model 
called Traffic Graph Convolutional LSTM(TGC- 
LSTM) which can learn the interactions between 
different roadways and then forecast the traffic 
state. Gated Recurrent Unit(GRU) [21], featuring 
gate mechanisms, provides a balance between mod-
el complexity and efficiency, finding valuable ap-
plications in TSF tasks. It can achieve comparable 
performance with LSTM while being computation-
ally more efficient. Li et al. [3] evaluated the water 
quality through dissolved oxygen prediction using 
GRU with high performance and lower computa-
tional cost than LSTM. In this study, we will extend 
our method based on CNN, LSTM and GRU.
b Adversarial Attack on Time Series Forecasting
Adversarial attack has been a topic of growing inter-
est in recent years. Adversarial attack can be clas-
sified into three categories: white box attack, black 

box attack, and grey box attack. White box attack as-
sumes that the attacker has full access to the target 
model, including its architecture and all the param-
eters. Black box attack assumes that the attacker has 
no information of the target model [22]. Gray box at-
tack is a combination of white box attack and black 
box attack which means the attacker has partial in-
formation of the target model.
After the discovery of adversarial attack [5], many 
methods have been proposed to generate adversarial 
examples. Good- fellow et al. [6] proposed Fast Gra-
dient Sign Method(FGSM) to effectively generate 
adversarial examples. FGSM is a one- step method 
which can be described as follows:

Xadv = X +β · sign(∇X J(θ ,X ,y))

X Xadv
β
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n

n
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where X represents the original data, Xadv represents 
the adversarial example, β means the factor of the 
perturbation, J (θ , X, y) means the loss function of the 
model, θ is the parameters of the model, y is the label 
of the original data.
Later, Kurakin et al. [7] proposed a Basic Iterative 
Method(BIM) to generate adversarial examples by 
iteratively applying FGSM.
Despite the existing gradient-based methods have 
been proposed to generate adversarial examples for 
TSF tasks [10]
[9] which can also achieve a high attack success 
rate, the noise they generated is not stealthy enough, 
making it easier to be detected [23], [24].
Wu et al. [11] proposed a method called Adversarial 
Time Series Generator(ATSG) to generate adver-
sarial examples based on the gradient of the target 
model. By using the Adversarial Attack with Impor-
tance Measuring(AAIM) strategy, they can generate 
adversarial examples with smaller perturbation.
n-Values Time Series Attack(nVITA), a black box 
sparse attack method which can both make target-
ed and non-targeted attack proposed by Chen et 
al. [15]. It’s based on DE [17], a population-based 
meta-heuristic search algorithm for global opti-
mization. DE algorithm emulates the processes of 
biological evolution, including mutation, crossover, 
and selection, in its search for the optimal solution. 
It maintains a population of candidate solutions, 
where each individual corresponds to a potential 
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solution to the problem. DE proceeds by mutating 
individuals to generate new candidate solutions, 
then combining these new solutions with the ex-
isting population through crossover operations. 
Finally, selection is used to determine which indi-
viduals will continue to the next generation based 
on their fitness. Given a time series data X , nVITA 
describes the n perturbations as a triple (t, fe, p) [15] 
as follows:

Xadv = X +β · sign(∇X J(θ ,X ,y))
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where t refers to the timestamp of the data X , fe re-
fers to the feature, p refers to the perturbation, The 
length of ηnVITA is 3n.
By randomly generating parent samples Gen1 = (η1, 
· · · , ηs), DE will generate the offspring samples iter-
atively to improve the quality through crossover and 
mutation. Whether the offspring samples can be 
added to the next generation is determined by the fit-
ness function. In nVITA, Mean Square Error(MSE) 
is used as the fitness function for non-targeted attack 
and the Absolute Error(AE) is used as the fitness 
function for targeted attack.
By specifying the n, we can control the number of 
altering timesteps and features. But as n increases, 
the computational cost of nVITA increases rapidly, 
which also means it queries the target model contin-
uously to find a better solution.
Table 1 shows the comparison of several adversarial 
attack methods for TSF tasks. We will introduce our 
method(LBA) in the next section.

Method Type Perturbation Theory Query

FGSM/
ATSG White Box Global Gradient Once

BIM White Box Global Gradient Low

nVITA Black Box Local DE High

LBA Black Box Local Deep 
Learning Low

Table 1
Several adversarial attack methods for TSF tasks. The 
number of iterations for the BIM method is generally set 
within the range of tens to hundreds. nVITA method based 
on DE algorithm. Thousands of iterations may required to 
achieve a high attack success rate.

3. Methodology
In this section, We first formulate the adversarial at-
tack on TSF tasks. Subsequently, we will introduce 
our method and attack process in detail.
a Problem Definition
LBA relies on a learning model, which we denote as 
flearn, to learn and generate adversarial examples. We 
designate Dadv to represent the dataset of adversarial 
examples and ftar to indicate the target model that we 
intend to attack.
A time series data can be describe as X = (x1, · · · , xn), 
each xi refers to the value of the i-th timestamp. The 
magnitude of perturbation ε is controlled via a factor 
β. ε is defined as
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where xi
max and xi

min separately represent the maximum 
and minimum value of a time series of the total T items.
The adversarial attack on TSF tasks can be formulat-
ed as follows:
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Ŷ

n

3
X

Loc P
Loc

P

Loci = [ j | X̂ j
i −X j

i �= 0],Loci ∈ Loc

Pi = [X̂ j
i −X j

i | X̂ j
i −X j

i �= 0],Pi ∈ P

j i

Dadv = (X ,Loc,P)

flearn

flearn flearn(X) =
(Rate,P) Rate

 

, (5)

where X represents the time series data, Y represent-
sthe corresponding prediction, 
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 represents the ad-
versarial example, 
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 represents the corresponding 
prediction of the adversarial example.
From the equation above, it is evident that the object 
of adversarial attack is to maximize the difference 
in predictions between the original data and the ad-
versarial example while keeping the perturbation as 
small as possible.
b Learning-Based Attack Framework
LBA employs a model to learn the adversarial attack 
patterns and generate the adversarial examples. Fig. 4 
shows the whole adversarial attack framework.
1 A Target Black Box Attack Method: To learn ad-

versarial attack patterns, we first adopt a target 
black box attack method to generate adversarial 
examples, producing sparse attacks. In this study, 
we utilize the nVITA as the target black box attack 



Information Technology and Control 2025/2/54618

method to generate adversarial examples. The gen-
erated adversarial examples, crafted by the target 
black box attack, are then systematically collected 
and utilized as training data for the learning model.

2 Phase 1: Collect Adversarial Examples Data-
sets: As our method is based on learning the ad-
versarial attack patterns, we need to collect the 
adversarial examples as the training datasets. 
The components of datasets is crucial in training 
phase. For our adversarial example datasets, we 
contain 3 sequences: the original time series data 
X, the location of sensitive points Loc, and the per-
turbation values P. Each sequence is individually 
stored in the datasets. For Loc and P, they can be 
formulated as follows:
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(6)

where j refers to the timestamp index in the i-th sam-
ple where the perturbation occurs.
By subtracting adversarial samples from the origi-
nal data, we can easily and quickly obtain important 
information about adversarial attacks — sensitive 
points and perturbation values. We collect them and 
the original data all individually to form our adversar-
ial examples datasets as the training datasets for our 
learning model. This datasets also can be described as 
a triple Dadv = (X, Loc, P).

Figure 3
Our flearn is a CNN model. We designed the model to simultaneously train on sensitive points and perturbation values.

3 Phase 2: Train Learning Model: Our learning 
model is designed with a dual-purpose architec-
ture, playing a critical role in the LBA framework. 
It is first trained to identify sensitive points within 
the input data that are susceptible to attacks. At the 
same time, it generates perturbations targeted at 
these sensitive points. This two-pronged approach 
enables the model to effectively generate adversar-
ial examples for time series forecasting tasks, en-
hancing its ability to simulate realistic and impact-
ful adversarial scenarios. We utilized CNN as our 
learning model. CNN is widely used in TSF tasks, 
as it can capture the local patterns and dependen-
cies within the data. Fig. 3 shows its architecture 
for generating the adversarial examples.

To enhance the model’s performance and prevent 
over- fitting, we incorporate Bayesian convolutional 
layers. [25] Bayesian convolutional layers introduce 
a probabilistic framework, which not only enables 
the model to capture the underlying patterns but also 
allows it to estimate and account for the uncertainty 
associated with each parameter.
Unlike normal CNN designed to tackle only single 
task, our learning model is uniquely designed to si-
multaneously train both on sensitive points and per-
turbation values. The output of the learning model flearn 
is a pair of sequence: flearn(X ) = (Rate, P), Rate refers to 
the sensitive rate of each timestamp in the time series 
data. Table 2 shows all the layers of our CNN model. 
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As can be seen, we used a very small CNN network, 
which enables our training and inference processes to 
be very fast. Meanwhile, the results indicate that our 
model can effectively learn the patterns between sen-
sitive points and perturbation values.
Sensitive Points The timestamp of the attacked 
point is the sensitive point. We need to predict sensi-
tive rate of each timestamp in the time series data. By 
the Loc sequence in the Dadv, we can train the model to 
predict the sensitive points of the original data. Then 
we select the top k points as the sensitive points ˆLoc k

p̂t
δ

δ
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δ

 
we need to perturb. k will be automatically adjusted to 
match the number of sensitive points with the target 
black box method. We use Cross Entropy Loss as the 
loss function to train the model to predict the sensi-
tive points.

Table 2
CNN Model Architecture of our LBA attack. We believe 
that a relatively simple convolutional network can learn 
the information of adversarial attacks — the sensitive 
points and disturbance values. This is a multitasking 
model with two independent output layers.(Layer 5 and 6) 
Specific parameters can be found in our code.

Layer  Type

1  Bayesian Conv Layer

2 Bayesian Conv Layer

3 Fully Connected Layer

4 Batch Normalization Layer

5 Layer of Sensitive Rate

6 Layer of Perturbation Values

Figure 4
Adversarial attack framework of Learning-Based Attack. LBA needs a target attack method to learn to adversarial attack 
patterns and then generate adversarial examples without any query to the target model.
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Perturbation Values The perturbation values are 
the difference between the original data and the ad-
versarial examples. To learn the perturbation values 
of the target black box method, We use MSE as the 
loss function to train the model to predict the per-
turbation values.
4 Phase 3: Generate Adversarial Examples: Once 

the learning model is trained, it can be utilized to 
generate adversarial examples without making any 
further queries to the target model.

Fig. 5 describes the output mechanisms of our learn-
ing model and the process by which adversarial ex-
amples are crafted. A critical design choice in our 
approach was to not task the learning model with 
directly generating adversarial examples. If our mod-
el were to generate adversarial examples outright, it 
would have to learn not only the characteristics of ad-
versarial samples but also the features of the original 
data. This dual learning objective would complicate 
the learning our learning model is designed to output 
the sensitivity values and corresponding perturbation 
values for time series data. By focusing solely on these 
aspects, the learning task becomes more straightfor-
ward, allowing the model to more reliably produce the 
adversarial effects we aim to achieve.
Once the sensitive rate is identified, we apply the 
softmax function followed by a top-k selection meth-
od to determine the final sensitive points. By adding 
the perturbation values generated by our model to 
the corresponding points in the original data, we can 

effectively create the adversarial examples that are 
central to our attack strategy.
The adversarial examples generated by the learning 
model can be formulated as follows:
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 refers to the timestamps of top k sensitive 
points. 
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2

√
n

∑
i=1

(Yi −mean(Y ))2

RMSE =

√
1
n

n

∑
i=1
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 refers to the predict perturbations of the 
corresponding sensitive points. δ is the factor of the 
perturbation. As the perturbations are small enough, 
δ is usually set around 1. We can also adjust the pa-
rameter δ to a higher value to enhance the effective-
ness of the adversarial examples.

4. Experiments
We conduct a series of experiments to evaluate the 
performance of our method. All experiments with 
local model are conducted on the same GPU device. 
Repeated experiments are conducted to ensure ac-
curacy, as well as to avoid random errors. Our code is 
available on Github.
a Datasets
We evaluate our method through several public data-
sets to validate the effectiveness and efficiency of our 
method. Table 3 shows the datasets we used in our ex-
periments.

Figure 5
The output of the learning model and the process of generating adversarial examples.
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During the experimental phases, we preprocessed the 
datasets for better model training. All datasets are 
normalized to the range of [0,1]. For attack evaluation, 
we prepared 250 samples randomly selected from 
the test set of each dataset. We split these samples 
into two parts: x samples collected as the adversari-
al example datasets Dadv for training the flearn, and the 
remaining (250−x) samples used to evaluate each at-
tack performance. x may vary in different experiment 
phases.
b Parameter Setting
During the training phase of the LBA, we systemati-
cally determined the appropriate hyperparameters 
through a series of experiments. This direct training 
approach allowed us to effectively leverage the per-
formance of the LBA. We set learning rate as 0.005, 
batch size as 8, and the number of epochs as 50. For 
the balance between performance and computation-
al cost of nVITA, we adjusted the max iteration of 
DE algorithm as 60, the population size as 15. The n 
of the nVITA is set as 1, which means the 1VITA will 
generate 1 perturbation for each sample. Similarly, 
Learning model also select 1 sensitive point for each 
sample. LBA learns from 1VITA in different factors, 
to be precise, factor β is set as {0.05,0.1,0.15,0.2}. For 
the factor δ of LBA, we set {1.00} as default. Different δ 
will be noted in the corresponding experiment phase.
c Evaluation Metrics 
Because LBA depends on learning target adversarial 
attack, the fitness of the LBA is crucial. In this study, 

we will not only evaluate attack performance of the 
LBA, but also evaluate the fitting ability of the LBA.
To be specific, we utilize the root relative square er-
ror(RSE) to evaluate the attack performance. At the 
same time, root mean square error(RMSE) will be 
adopted to evaluate the fitting ability of the LBA. The 
RSE between the original predictions and the per-
turbed predictions will be used to evaluate the attack 
performance. A larger RSE indicates that the model 
has a lower accuracy. RMSE refers the error between 
the perturbations generated by the 1VITA and the 
perturbations generated by LBA. This metric is used 
to evaluate whether the LBA could learn the adversar-
ial examples effectively. A lower RMSE indicates that 
the LBA has a better fit to the 1VITA in terms of the 
perturbation values.
For the RSE:
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For the RMSE:
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where Y ϵ Ωtest, Yi refers to the true value of the i-th 
sample, 
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 refers to the prediction. 
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  refers to the 
perturbed prediction only generated by the 1VITA, 
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2

√
n

∑
i=1

(Yi −mean(Y ))2

RMSE =

√
1
n

n

∑
i=1
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 refers to perturbed prediction only generated by 
the LBA, n refers to the number of test length.
Accuracy Rate(AR) is used to evaluate whether 
LBA have a right decision on the sensitive points. 
Higher AR indicates that the LBA has a better fit to 
the 1VITA in terms of the sensitive points predic-
tion. For the AR:
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where Loci
1VITA refers to the sensitive point selected by 

the 1VITA, 
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 refers to the sensitive point select-
ed by the LBA.

Dataset Features Length Description

Electricity 3 2192 German Electricity 
Consumption 2

CNYExch 5 2865 USD/CNY Exchange 
Rate 3

NZTemp 9 1928 New Zealand  
Temperatures 4

Oil 6 2692 iPath Pure Beta Crude 
Oil ETN 3

Table 3
Datasets for time series forecasting

2 Source: https://open-power-system-data.org/
3 Source:https://finance.yahoo.com/
4 Source:https://climatedataguide.ucar.edu/climate-data/
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Additionally, we use Mean Latency(ML) to evaluate 
the computational cost of several adversarial attack 
methods. ML can be formulated as follows:
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where Ti
cost refers to the time cost of generating the i-th 

adversarial example.
d Results
Effectiveness: RSE is a crucial metric for evaluating 
the effectiveness of the adversarial attack.
In our experiments, we utilized δ values of 1.00 and 
1.75 to craft adversarial examples for the LBA. Notably, 
when δ is set to 1.75, the perturbations introduced by 
our learning model, flearn, are amplified to 1.75 times 
their original magnitude. For LBA attack, we trained 
the learning model with the corresponding adversar-
ial examples generated by 1VITA on each dataset and 
model. The adversarial example datasets contain 100 
samples, and the remaining 150 samples are used to 
evaluate each attack performance. Table 4 and 5 sep-
arately presents the attack results under low perturba-
tion and relatively high perturbation. We can observe 
that when attack happens, the RSE of predictions will 
increase. As FGSM and BIM is a global attack method, 

they have a higher RSE than LBA and 1VITA. Addition-
ally, FGSM and BIM achieve nearly identical effects as 
their RSE values are nearly the same. LBA has a simi-
lar performance with 1VITA, as its RSE is close to the 
1VITA. But we can also observe that in Oil dataset, LBA 
and 1VITA attacks make a small impact.
Time Cost: The computational expense of adversar-
ial at- tacks is inherently linked to the capabilities of 
the hardware utilized. Given the variability in compu-
tational costs across different hardware devices, as-
sessing mean latency offers a standardized measure 
of efficiency. Fig. 6 illustrates the mean latency across 
various datasets for the GRU model, with CNN and 
LSTM models exhibiting similar latencies.
It’s noteworthy that FGSM, being a one-step attack, 
has a negligible mean latency (approximately 0.004s), 
which we also confirmed through our experiments. 
In contrast, the 1VITA method demonstrates signifi-
cantly higher mean latencies, with the Electricity 
dataset averaging at 3.5s and the Oil dataset reaching 
up to 16s. This disparity underscores the increased 
time 1VITA requires to find optimal solutions as data-
set complexity grows, particularly due to its reliance 
on the DE process. Interestingly, the mean latency of 
1VITA varies with different values of β, showing an 
increase in the CNYExch dataset but a decrease in the 

Dataset Model
RSE

Normal LBA
δ = 1.00

LBA
δ = 1.75 1VITA FGSM BIM

CNYExch

CNN 0.081 0.095 0.103 0.082 0.092 0.092

GRU 0.054 0.057 0.060 0.053 0.061 0.061

LSTM 0.061 0.064 0.068 0.061 0.067 0.067

Electricity

CNN 0.591 0.605 0.629 0.648 0.700 0.700

GRU 0.541 0.549 0.573 0.603 0.698 0.710

LSTM 0.557 0.566 0.574 0.594 0.629 0.635

NZTemp

CNN 0.336 0.333 0.334 0.368 0.504 0.504

GRU 0.318 0.356 0.430 0.338 0.476 0.476

LSTM 0.322 0.386 0.464 0.354 0.540 0.540

Oil

CNN 0.064 0.064 0.064 0.064 0.074 0.074

GRU 0.047 0.048 0.047 0.047 0.055 0.055

LSTM 0.051 0.050 0.050 0.052 0.061 0.061

Table 4
RSE when β = 0.05, count of Dadv = 100. A Larger RSE indicates that the attack is more effective.
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(a) (b)

(c) (d)

Dataset Model
RSE

Normal LBA
δ = 1.00

LBA
δ = 1.75 1VITA FGSM BIM

CNYExch

CNN 0.081 0.083 0.093 0.085 0.132 0.132

GRU 0.054 0.055 0.054 0.056 0.081 0.080

LSTM 0.061 0.064 0.068 0.062 0.087 0.087

Electricity

CNN 0.591 0.705 0.848 0.917 1.298 1.301

GRU 0.541 0.620 0.769 0.883 1.134 1.396

LSTM 0.557 0.659 0.861 0.790 0.986 1.066

NZTemp

CNN 0.335 0.382 0.446 0.488 1.071 1.071

GRU 0.318 0.337 0.362 0.419 1.015 1.019

LSTM 0.322 0.390 0.492 0.469 1.254 1.260

Oil

CNN 0.064 0.064 0.065 0.066 0.096 0.095

GRU 0.047 0.048 0.048 0.047 0.068 0.068

LSTM 0.051 0.051 0.051 0.052 0.074 0.074

Table 5
RSE when β = 0.2, count of Dadv = 100

Figure 6
Mean latency of adversarial attack in different datasets
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Electricity dataset as β increases. The BIM method, 
with a fixed perturbation iteration of 200, maintains 
a relatively lower and stable mean latency of around 
2.0s across datasets compared to 1VITA. Our LBA 
approach, which queries the trained flearn model only 
once to generate each adversarial example, achieves 
a lower mean latency than both 1VITA and BIM. Sim-
ilar to FGSM, LBA is essentially a one-step attack, 
with the trained  flearn capable of generating adversar-

ial examples within 1.0s. The relatively small size of 
our flearn model also contributes to its rapid training 
phase, enhancing overall efficiency.
Fitting Ability: The essence of our Learning-Based 
At- tack (LBA) hinges on the accuracy of our learn-
ing model, flearn. This model is tasked with predicting 
both the sensitive points and the perturbation values 
to craft effective adversarial examples. The precision 
of these dual outputs is crucial for the success of the 

(a) (b)

(c) (d)

(e) (f )

Figure 7
AR(Accuracy Rate) of sensitive points prediction in Electricity and NZTemp datasets
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(a)

(b)

(c)

(d)

Figure 8
RMSE between LBA and 1VITA in different datasets as the 
count of Dadv increases

LBA. To determine the adequate size of the adversari-
al dataset, Dadv, for training flearn, we analyzed the mod-
el’s performance as the dataset size varied. Figure 
8 presents RMSE between our LBA and the 1VITA 
method across different Dadv counts on a CNN mod-
el. Additionally, the factor β plays a role in the RMSE, 
with lower values of β generally leading to a better fit, 
as indicated by a lower RMSE. In Oil dataset, curves 
present a consistent trend, but the attack on this data-
set gets small impact on the target model (Table 4 and 
5). Despite the variability in the RMSE curves, the 
values remain relatively low in most cases, indicating 
that LBA maintains a robust fitting capability.
The predictions of sensitive points is also import-
ant to the LBA. Fig. 7 shows the accuracy of sensi-
tive points predictions in Electricity and NZTemp 
datasets. AR curves are fluctuating in some cases. As 
count of Dadv reaches 200, the accuracy of sensitive 
points predictions usually gets a higher value. But 
in CNYExch and Oil datasets, we find our LBA has a 
poor fitting ability(AR ≤ 20%) on sensitive points pre-
dictions. The sensitive points predictions is more dif-
ficult than perturbations prediction.
Transferability: A transferable attack is an attack gen-
erated for one model that can also be used to fool an-
other model. As the adversarial examples generated by 
LBA don’t require any query to the target model, they 
will remain same on other models. Hence, the trans-
ferability become a task: Whether the sensitive points 
and perturbations learned from 1VITA on one model 
can also be feasible to attack other models, revealing a 
inner sensitive relationship on datasets itself.
Fig. 9 shows the RSE of LBA in different datasets and 
models. The results are displayed through heat maps. 
As the color change on the heat maps, we can have a 
clear view of the transferability of LBA in different 
datasets and models.
A deeper color indicates a higher RSE, which means 
a better attack performance. Through a glance, CNN 
models are more vulnerable than GRU and LSTM by 
observing the 1st column of heat map. The transfer-
ability on GRU and LSTM have a similar result. The 
numerical value of the 2x2 area located in the lower 
right corner of the heat map, where indicates trans-
ferability of GRU and LSTM models, shows a similar 
color ((a),(b),(d)). The structure of GRU and LSTM 
are both designed to capture long-term dependencies, 
which may lead to a similar transferability. In con-
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(a)

(b)

(d)

(c)

trast, when CNN is employed as the original model 
and transferred to LSTM and GRU models, it exhibits 
lower performance. By observing the 1st row of heat 
map, we can clearly see that 1st element is deeper 
than 2nd and 3rd element.

5. Conclusion and Future Work
The key of sparse attack is to find the sensitive points 
to perturb. This finding process is time-consuming 
and computationally expensive. Many black box at-
tack methods require continuous queries to the target 
model to find the sensitive points.
Image data, with its multitude of pixel points, presents 
a complex landscape that makes it challenging for a 
model to learn the sensitive points within. However, in 
TSF tasks, temporal data are segmented into smaller, 
manageable windows. This reduction in the scale of 
individual samples not only streamlines the data but 
also renders it feasible for a model to learn the sensi-
tive points of the samples. By focusing on these com-
pact segments, model can more effectively identify and 
understand the sensitive points within the data.
Our experiments demonstrate that window-split time 
series adversarial examples can be learn by a learning 
model. The adversarial examples generated by LBA 
can make a compa- rable performance with the target 
black box attack methods while continuous queries to 
the target model are not required. But through the ex-
periments, we find that the LBA has a poor ability on 
some datasets. We also find that the fitting ability of 
the LBA is not stable and hard to control in some cas-
es. Plus, multiple sensitive points prediction is still 
a challenge for the LBA. Hence, the learning process 
and structure of flearn of LBA needs to be improved to 
make it more accurate and stable.
While adversarial attacks can fool models, in TSF 
tasks, modifications to samples that affect prediction 
are inevitable due to the close relationship between 
prediction and samples. The delineation of adversar-
ial attacks on TSF tasks is not well- defined, leading 
to a challenge in discerning whether data have been 
deliberately compromised by an attack or are merely 
experiencing the effects of random noise. Thus, our 
future work will also focus on developing more so-
phisticated methods to differentiate between adver-
sarial attacks and random noise in data.

Figure 9
Transferability of LBA in different datasets and models, 
count of Dadv = 100, β = 0.1. Models on the left side indicate 
original models, while models on the bottom side indicate 
transferred target models. Results on diagonal line indicate 
the attack performance of LBA on original models.
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