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Graph neural networks (GNNs) have emerged as a powerful tool in the field of graph machine learning, demon-
strating by a various practical applications. However, the complex nature of graph structures and their expand-
ing use across different scenarios present challenges for GNNs in terms of privacy protection. While there have 
been studies dedicated to addressing the privacy leakage problem of GNNs, many issues remain unresolved. 
This survey aims to provide a comprehensive understanding of the scientific challenges in the field of priva-
cy-preserving GNNs. The survey begins with a succinct review of recent research on graph data privacy, fol-
lowed by an analysis of the current methods for GNNs privacy attacks. Subsequently, the survey categorizes and 
explores the limitations, evaluation standards, and privacy defense technologies for GNNs, with a focus on data 
anonymization, differential privacy, graph-based federated learning, and methods based on adversarial learn-
ing. Additionally, the survey also summarizes some widely used datasets in GNNs privacy attacks and defenses. 
Finally, we identify several open challenges and possible directions for future research.
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1. Introduction
Over the last decade, deep learning has achieved signif-
icant success in processing data formats like images, 
speech, text, and video. These domains share a common-
ality: their data are characterized by regular sizes and di-
mensions, known as Euclidean or grid-structured data 
[99]. However, a vast array of real-world applications 
involves non-Euclidean spatial data, such as protein 
structure prediction [27], knowledge graph completion 
[109], social network recommendation [73], text classi-
fication [112], and fact verification [130]. This non-eu-
clidean spatial data can be effectively represented using 
graph data structures. Naturally, researchers have inte-
grated deep learning techniques into graph-structured 
data, leading to the development of Graph Neural Net-
works (GNNs). Today, GNNs represent a significant and 
growing field within deep learning.
The privacy implications of large-scale, non-Euclid-
ean structured data, typically composed of multiple 
interconnected roles, are playing vital roles in the re-
al-world scenarios. These intricately interconnected 
roles, once abstracted into a graph-structured format, 
can potentially expose personal privacy informa-
tion through nodes, edges, and subgraphs within the 
graph. Therefore, privacy research within the realm 
of GNNs must consider not only node attributes, but 
also their interrelationships. This complexity renders 
traditional privacy protection methods, based on eu-
clidean spatial data in machine learning, inapplica-
ble to graph-structured data. Hence, it is imperative 
to either adapt and enhance existing privacy protec-
tion methods designed for Euclidean spatial data or 
construct novel methods to safeguard privacy in the 
field of graph data. Currently, preliminary research in 
GNN privacy protection methods exists, such as the 
creation of a GNN learning framework independent 
of model architecture based on differential privacy 
[75], privacy research centered on graph federated 
learning [104], and the use of adversarial learning to 
enhance the quality of generated privacy protection 
data [93]. However, a comprehensive and in-depth 
systematic review of privacy protection approach-
es within GNNs is conspicuously absent, which is 
disadvantageous for aspiring researchers in this do-
main. Consequently, this paper presents a systematic 
exposition and analysis of the most recent research 
on GNN privacy attacks and defense mechanisms. It 
provides a classification and introduction to the topic, 

and delineates an outlook on future work in this do-
main, with the intention of assisting researchers em-
barking on this area of study.
Over the past few years, several surveys have summa-
rized graph data privacy preservation methods and 
its applications, which can be categorized into the fol-
lowing categories:
1 Graph data release
 _ The review [60] summarized anonymization tech-

niques for privacy-preserving data publishing.
 _ Jiang et al. [46] summarized the applications of 

differential privacy (DP) in social network anal-
ysis, including classification, challenges, adapta-
tions, and new applications.

 _ Li et al. [54] discussed the private graph data re-
lease algorithms that aim to balance privacy and 
utility graphs. They focused on provably private 
mechanisms, including extensions of DP and other 
privacy formulations.

2 Graph adversarial learning
 _ The work [17] presented the vulnerability of deep 

learning models on graphs to adversarial attacks 
and the emerging field of graph adversarial learning.

 _ Sun et al. [83] studied adversarial attack and 
defense strategies for graph data. It highlighted the 
vulnerability of deep neural networks (DNNs) to 
adversarial attacks and the need for robust defense 
strategies.

3 Trustworthy graph learning
 _ In the survey [98], the authors focused on 

trustworthy graph learning, including reliability, 
explainability, and privacy protection. They 
emphasized the importance of ensuring that 
deep graph learning algorithms behave in a 
socially responsible manner and met regulatory 
compliance requirements.

 _ Dai et al. [20] summarized a comprehensive survey 
on trustworthy GNNs with a focus on privacy, 
robustness, fairness, and explainability. They 
discussed the challenges and offered a taxonomy 
of methods and frameworks for each aspect of 
trustworthiness.

 _ Zhang et al. [116] recently surveyed the importance 
of building trustworthy GNNs and proposed a 
roadmap to achieve this goal.



1253Information Technology and Control 2024/4/53

4 Heterogeneous data privacy-preserving
 _ Cunha et al. [19] reviewed privacy-preserving 

mechanisms (PPMs) for heterogeneous data 
types. They highlighted the importance of PPMs 
in protecting users’ privacy and proposed a privacy 
taxonomy that establishes a relation between 
different types of data and suitable PPMs.

5 Unstructured data privacy protection
 _ Chen et al. [14] discussed the problem of data 

isolation in Knowledge Graphs (KGs) and the need 
for privacy-preserving techniques in KGs.

 _ Zhao et al. [127] focused on differential privacy for 
unstructured data content, including image, graph, 
audio, video, and text.

6 GNNs privacy and security
 _ The latest work [32] conducted an in-depth 

analysis of the security and privacy challenges 
faced by GNNs in practical applications, with a 
specific focus on adversarial attacks and their 
corresponding defensive strategies.

While previous survey papers focus on privacy protec-
tion theory and applications in unstructured data or 
graph data, the literature primarily focuses on specific 
aspects, such as privacy protection for data publishing, 
knowledge graphs, or social network analysis. Alterna-
tively, some studies concentrate on the privacy, robust-
ness, and interpretability of Trustworthy GNNs. There 
is no survey that specifically focuses on GNNs and 
systematically analyzes privacy attacks and defense 
technologies. Comprehensively understanding and 

systematically analyzing privacy attacks and defense 
technologies targeted at GNNs is a challenging task, 
which motivates our efforts in this paper.
The organization of this survey is listed as follows: 
Section 2 summarizes the attack principles and chal-
lenges of various privacy attack methods in GNNs. 
Section 3 and Section 4 analyze and summarize the 
classification, research progress, and evaluation cri-
teria of privacy attacks and defense technologies in 
GNNs. Section 5 statistically analyzes commonly 
used datasets in existing research. Section 6 presents 
open challenges and future directions in GNNs priva-
cy attack and defense technology.

2. Background
2.1. GNNs
2.1.1. Notations
Definition 2.1: Let G {V,E}=  represent a graph, 
where 1 2 n{v ,v , ,v }V =   constitutes a set of N  nodes. 
Here, v ,vij i je E= 〈 〉 ∈  indicates the presence of a con-
nection between nodes iv  and v j . Typically, 
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used datasets in existing research. Section 6 
presents open challenges and future 
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n dX ×∈  represents the node feature matrix, 
with v

dX ∈  as individual node feature 
vectors. The edge set E  is encapsulated by 
the adjacency matrix n nA ×∈ , where 0ijA ≠   

indicates the presence of an edge, and 0ijA =  
signifies its absence.  

To better describe the privacy protection 
problem of GNNs, Table 1 lists the 
commonly used symbol definitions in this 
domain. 

 

Table 1 

Definition of common symbols. 
Notation Description Notation Description 

G  The original graph H  Hidden layer feature information 
G′  Perturbation graph W  Weight matrix 
E  Graph edges L  Loss function 
V  Graph nodes σ  Nonlinear activation function 
X  Feature matrix ∆  Disturbance cost 

X ′  Perturbed Feature matrix f  Target model 

A  Adjacency matrix 'f  Alternative model 
I  Identity matrix   Privacy budget 

A  A I+  δ  Slack variable 

A′  Perturbed adjacency matrix vi  Node 

D  Degree matrix of A  ije  Connected edges of vi  and v j  

D  Degree matrix of A  0
 0L norm 
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2.1.2. The Principles of GNNs
GNNs are a series of neural network architectures de-
signed for modeling graph-structured [79, 78, 13, 34, 
91]. For simplicity, this discussion will focus on two 
models: the basic GNN and the graph convolutional 
network (GCN) as representative examples. 
1 Basic GNN
The foundational concept of GNNs was first intro-
duced by Franco Scarselli et al. in 2009 [78, 79]. This 
pioneering work extended traditional neural network 
methodologies to graph data processing. It offered an 
efficient modeling approach to graph-structured data 
and contributed to the early efforts to adapt neural 
networks for graph data applications, and also played 
a crucial role in later research and development in the 
field of GNNs. 
The primary aim of the basic GNN model is to learn a 
state embedding representation 

  

the graph convolutional network (GCN) as 
representative examples.  

(1) Basic GNN 

The foundational concept of GNNs was first 
introduced by Franco Scarselli et al. in 2009 [78, 
79]. This pioneering work extended traditional 
neural network methodologies to graph data 
processing. It offered an efficient modeling 
approach to graph-structured data and 
contributed to the early efforts to adapt neural 
networks for graph data applications, and also 
played a crucial role in later research and 
development in the field of GNNs.  

The primary aim of the basic GNN model is to 
learn a state embedding representation v

sh ∈  for 
each node. The node state representation vh  is 
used to derive the model’s output embedding 
representation vo . The predictions are related to 
the distribution, clustering, and anomaly detection 
of node labels. The basic GNN uses a local 
transition function f  to update the node state. 
This helps obtain the node embedding 
representatio vh and output embedding 
representation vo . Subsequently, a local output 
function g  is introduced to determine the node 
input. The cumulative distribution is defined as 
follows [59]: 

v v [v] [v] [v]( , , , )co ne neh f x x h x=                                        (1) 

v v v(h , )o g x= .                                                            (2) 

Among them, x  and h  represent the input 
features and hidden states of the node v , [v]co  
and [v]ne denote the set of edges and the set of 
nodes adjacent to v . Furthermore, vx  is the node’s 
characteristics. [v]cox  is the edge’s characteristics. 

[v]neh  is the node’s hidden state. [v]nex  represents 
the adjacent nodes’ characteristics. 

The basic GNN is proficient in modeling 
structured data, but it has several limitations. 
These include low computational efficiency, a lack 
of hierarchical feature extraction capabilities, 
challenges in effectively modeling edge 
information features, and a focus on node 
representation rather than the graph as a whole. 
Additionally, it often lacks enough information to 
distinguish between nodes. This is due to other 
constraints [59]. 

(2) GCN 

Bruna et al. proposed the GCN model [13]. They 
were the first to generalize convolution operations 
to graph data from traditional data domains. GCN 

utilizes convolutional neural network (CNN) 
principles to achieve local perception of 
graph data. It incorporates features like 
translation invariance and weight sharing 
[12]. This groundbreaking work presented a 
new method and also provided guidance and 
a framework for improving other GNN 
models [99].  

GCN serves as the foundation for a variety of 
complex GNN models, including 
autoencoder-based models, generative 
models, and spatiotemporal networks. Its 
innovative aspect lies in the development of a 
method to extract features from graph data. 
The extracted features are utilized in a range 
of applications such as node classification 
[126], graph classification [96], edge 
prediction [64], and obtaining embedding 
representations of graphs [114], among 
others. Fundamentally, GCN aims to learn a 
function mapping, through which nodes in 
the graph can aggregate their own features 
and those of neighboring nodes to form a 
new node representation. The feature 
propagation function of GCN is [13]: 

1 1
1 2 2( )H D AD H Wσ

− −+ =  

  .                                (3) 

In short, the GNN architecture, a deep 
learning framework grounded in graph data 
structures, adeptly captures both high-order 
content and topological information within 
graphs. This architecture has undergone 
continuous enhancements in effectiveness, 
robustness, scalability, and universality. Such 
developments have propelled the application 
of GNNs in numerous downstream tasks, 
including node classification, graph 
classification, link prediction, and 
community detection, yielding significant 
social and economic benefits.  

2.2. Privacy Risks in GNNs 
Graph neural network models can encounter 
various degrees of privacy risks throughout 
their lifecycle, potentially leading to private 
information leaks or compromising the 
model’s ability to provide normal services. 
These privacy risks specifically manifest in 
several ways. 

2.2.1. Model Training Stage 

(1) An attacker may use acquired information 
to determine whether a node or subgraph is 
part of the training set, executing a 
membership inference attack (e.g., [123]); or 
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development in the field of GNNs.  

The primary aim of the basic GNN model is to 
learn a state embedding representation v

sh ∈  for 
each node. The node state representation vh  is 
used to derive the model’s output embedding 
representation vo . The predictions are related to 
the distribution, clustering, and anomaly detection 
of node labels. The basic GNN uses a local 
transition function f  to update the node state. 
This helps obtain the node embedding 
representatio vh and output embedding 
representation vo . Subsequently, a local output 
function g  is introduced to determine the node 
input. The cumulative distribution is defined as 
follows [59]: 

v v [v] [v] [v]( , , , )co ne neh f x x h x=                                        (1) 

v v v(h , )o g x= .                                                            (2) 

Among them, x  and h  represent the input 
features and hidden states of the node v , [v]co  
and [v]ne denote the set of edges and the set of 
nodes adjacent to v . Furthermore, vx  is the node’s 
characteristics. [v]cox  is the edge’s characteristics. 

[v]neh  is the node’s hidden state. [v]nex  represents 
the adjacent nodes’ characteristics. 

The basic GNN is proficient in modeling 
structured data, but it has several limitations. 
These include low computational efficiency, a lack 
of hierarchical feature extraction capabilities, 
challenges in effectively modeling edge 
information features, and a focus on node 
representation rather than the graph as a whole. 
Additionally, it often lacks enough information to 
distinguish between nodes. This is due to other 
constraints [59]. 

(2) GCN 

Bruna et al. proposed the GCN model [13]. They 
were the first to generalize convolution operations 
to graph data from traditional data domains. GCN 

utilizes convolutional neural network (CNN) 
principles to achieve local perception of 
graph data. It incorporates features like 
translation invariance and weight sharing 
[12]. This groundbreaking work presented a 
new method and also provided guidance and 
a framework for improving other GNN 
models [99].  

GCN serves as the foundation for a variety of 
complex GNN models, including 
autoencoder-based models, generative 
models, and spatiotemporal networks. Its 
innovative aspect lies in the development of a 
method to extract features from graph data. 
The extracted features are utilized in a range 
of applications such as node classification 
[126], graph classification [96], edge 
prediction [64], and obtaining embedding 
representations of graphs [114], among 
others. Fundamentally, GCN aims to learn a 
function mapping, through which nodes in 
the graph can aggregate their own features 
and those of neighboring nodes to form a 
new node representation. The feature 
propagation function of GCN is [13]: 

1 1
1 2 2( )H D AD H Wσ

− −+ =  

  .                                (3) 

In short, the GNN architecture, a deep 
learning framework grounded in graph data 
structures, adeptly captures both high-order 
content and topological information within 
graphs. This architecture has undergone 
continuous enhancements in effectiveness, 
robustness, scalability, and universality. Such 
developments have propelled the application 
of GNNs in numerous downstream tasks, 
including node classification, graph 
classification, link prediction, and 
community detection, yielding significant 
social and economic benefits.  

2.2. Privacy Risks in GNNs 
Graph neural network models can encounter 
various degrees of privacy risks throughout 
their lifecycle, potentially leading to private 
information leaks or compromising the 
model’s ability to provide normal services. 
These privacy risks specifically manifest in 
several ways. 

2.2.1. Model Training Stage 

(1) An attacker may use acquired information 
to determine whether a node or subgraph is 
part of the training set, executing a 
membership inference attack (e.g., [123]); or 

(2)
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2.2.1. Model Training Stage
1 An attacker may use acquired information to de-

termine whether a node or subgraph is part of the 
training set, executing a membership inference at-
tack (e.g., [123]); or they might infer global or group 
attributes of the training set, constituting an attri-
bute inference attack (e.g., [95]).

2 Attackers can manipulate the training data distri-
bution by introducing strategically crafted samples 
into the training set, altering model behavior and 
diminishing performance. This approach leads to 
poisoning attacks (e.g., [135]) or backdoor attacks 
(e.g., [124]). 

3 In federated learning scenarios, an untrusted serv-
er may engage in adversarial attacks by contin-
uously interacting with participant parameters, 
thereby extracting sensitive training data informa-
tion (e.g., [16]). 

2.2.2. Model Prediction Stage
1 Data leakage due to insufficient generalization 

ability of the trained GNN model, simple mod-
el, etc., such as member inference attacks (e.g., 
[129]).

2 If the model prediction results are sensitive, such 
as the probability of disease, the attacker extracts 
sensitive information related to the training data 
based on the model prediction results and auxiliary 
information, and can implements model inversion 
attacks (e.g., [37]). 

3 To obtain free model services, the attack recon-
structs the training graph or shadow graph based 
on the model’s response results and related auxilia-
ry information, trains alternative models with sim-
ilar functions, and implements model extraction 
attacks (e.g., [102]). 

4 The attacker injects a small number of malicious 
nodes or edges into the test data to cause the model 
to make wrong decisions, that is, to implement an 
escape attack (e.g., [21]).

2.3. Attack Strategies in GNNs

Attack strategy refers to the method employed by at-
tackers. Based on the unique characteristics of graph 
data, these strategies can be categorized into the fol-
lowing five types. 

2.3.1. Modification of Characteristics
Node features are crucial in GNNs. Even minor ad-
justments to the model’s interpretation of node fea-
tures can significantly influence the model’s output, 
thereby facilitating attacks. The attack cost of modi-
fying the characteristics can be expressed as [33]:
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0
X X′ − ≤ ∆ .                                                   (4) 

2.3.2. Modification of Connected Edges 

The topology of graph data significantly 
influences the graph’s characteristics. 
Attackers can alter this topology by adding 
or deleting a limited number of edges, thus 
executing attacks. The cost associated with 
modifying these edges can be quantified as 
indicated in the formula [33]: 

0
A A′ − ≤ ∆ .                                                     (5) 

2.3.3. Addition of False Nodes and 
Corresponding Edges 

To preserve the information of the original 
nodes and edges in the graph, the attacker 
carries out the attack by introducing false 
nodes and corresponding edges. The cost of 
this attack can be quantified as follows [33]: 

0 0
X X A A′ ′− + − ≤ ∆ .                                  (6) 

2.3.4. Modification of Subgraph 

In executing a graph misclassification attack, 
the attacker modifies the existing subgraph, 
which involves altering node characteristics 
or the edges within the subgraph. The cost 
associated with this attack, when 
implemented through subgraph 
modification, can be quantified as follows: 

0
G G′ − ≤ ∆ .                                                    (7) 

2.3.5. Reconstruction of Graph Data 

By integrating dataset distribution 
characteristics, model output results, and 
model parameters, along with other pertinent 
information, an attacker can reconstruct the 
graph data or create a shadow graph. This 
reconstructed data is then utilized to train an 
alternative model f ′ , facilitating model 
extraction attacks, or to further implement 
other forms of attacks, such as inference 
attacks. The cost can be quantified as follows: 

0
f f′ − ≤ ∆ .                                                     (8) 

Table 2 provides an overview of the various 
methods used for privacy attacks and the 
common strategies employed in GNNs. 
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2.3.5. Reconstruction of Graph Data
By integrating dataset distribution characteristics, 
model output results, and model parameters, along 
with other pertinent information, an attacker can 
reconstruct the graph data or create a shadow graph. 
This reconstructed data is then utilized to train an al-
ternative model f ′, facilitating model extraction at-
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tacks, or to further implement other forms of attacks, 
such as inference attacks. The cost can be quantified 
as follows:
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(3) In federated learning scenarios, an untrusted 
server may engage in adversarial attacks by 
continuously interacting with participant 
parameters, thereby extracting sensitive training 
data information (e.g., [16]).  

2.2.2. Model Prediction Stage 

(1) Data leakage due to insufficient generalization 
ability of the trained GNN model, simple model, 
etc., such as member inference attacks (e.g., [129]). 

(2) If the model prediction results are sensitive, 
such as the probability of disease, the attacker 
extracts sensitive information related to the 
training data based on the model prediction 
results and auxiliary information, and can 
implements model inversion attacks (e.g., [37]).  

(3) To obtain free model services, the attack 
reconstructs the training graph or shadow graph 
based on the model’s response results and related 
auxiliary information, trains alternative models 
with similar functions, and implements model 
extraction attacks (e.g., [102]).  

(4) The attacker injects a small number of 
malicious nodes or edges into the test data to 
cause the model to make wrong decisions, that is, 
to implement an escape attack (e.g., [21]). 

2.3. Attack Strategies in GNNs 

Attack strategy refers to the method employed by 
attackers. Based on the unique characteristics of 
graph data, these strategies can be categorized into 
the following five types.  

2.3.1. Modification of Characteristics 

Node features are crucial in GNNs. Even minor 
adjustments to the model’s interpretation of node 
features can significantly influence the model’s 
output, thereby facilitating attacks. The attack cost 
of modifying the characteristics can be expressed 
as [33]: 

0
X X′ − ≤ ∆ .                                                   (4) 

2.3.2. Modification of Connected Edges 

The topology of graph data significantly 
influences the graph’s characteristics. 
Attackers can alter this topology by adding 
or deleting a limited number of edges, thus 
executing attacks. The cost associated with 
modifying these edges can be quantified as 
indicated in the formula [33]: 

0
A A′ − ≤ ∆ .                                                     (5) 

2.3.3. Addition of False Nodes and 
Corresponding Edges 

To preserve the information of the original 
nodes and edges in the graph, the attacker 
carries out the attack by introducing false 
nodes and corresponding edges. The cost of 
this attack can be quantified as follows [33]: 

0 0
X X A A′ ′− + − ≤ ∆ .                                  (6) 

2.3.4. Modification of Subgraph 

In executing a graph misclassification attack, 
the attacker modifies the existing subgraph, 
which involves altering node characteristics 
or the edges within the subgraph. The cost 
associated with this attack, when 
implemented through subgraph 
modification, can be quantified as follows: 

0
G G′ − ≤ ∆ .                                                    (7) 

2.3.5. Reconstruction of Graph Data 

By integrating dataset distribution 
characteristics, model output results, and 
model parameters, along with other pertinent 
information, an attacker can reconstruct the 
graph data or create a shadow graph. This 
reconstructed data is then utilized to train an 
alternative model f ′ , facilitating model 
extraction attacks, or to further implement 
other forms of attacks, such as inference 
attacks. The cost can be quantified as follows: 

0
f f′ − ≤ ∆ .                                                     (8) 

Table 2 provides an overview of the various 
methods used for privacy attacks and the 
common strategies employed in GNNs. 
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Table 2 provides an overview of the various methods 
used for privacy attacks and the common strategies 
employed in GNNs.

3. Privacy Attack Methods in GNNs
Existing research in the field of privacy attacks in ma-
chine learning mainly focuses on Euclidean space. 
In contrast, there is a scarcity of studies exploring 
privacy attack methods in GNNs. Privacy violations 
on GNNs can fundamentally be viewed as extracting 
non-shareable information embedded in a model or 
training dataset. This non-shareable information can 
include member affiliations, node attribute knowl-
edge, link relationships between nodes, and model pa-
rameters. Privacy attacks against GNNs, depending 
on the specific target, can broadly be classified into 
five distinct categories.

3.1. Membership Inference Attacks

The objective of a membership inference attack is to 
ascertain whether the target sample was used in the 
training of the model f, thereby exposing the privacy 
of the training dataset. Recently, given the surge in 
the application of GNNs, membership inference at-

Table 2
Privacy attack methods and common attack strategies in GNNs

Attack stage Attack Method Attack strategy

Model training

Membership inference attack Modification of X or E, reconstruction of G

Attribute inference attack Modification of X or E, reconstruction of G

Poisoning attack Modification of X or E, add nodes and edges

Backdoor attack Modification of X or E, add nodes and edges

Model prediction

Membership inference attack Modification of X or E, reconstruction of G

Attribute inference attack Modification of X or E, reconstruction of G

Model inversion attack Reconstruction of G

Model extraction attacks Modification of X or E, reconstruction of G

Evasion attack Modification of X or E, add nodes and edges

tacks based on graph machine learning have garnered 
increasing attention [24, 38, 70, 101, 58, 18]. In the 
realm of membership inference attack models, the 
most prevalent method involves the utilization of a 
shadow model or a shadow dataset. This method en-
gages membership reasoning to determine whether 
the target sample was used as a training sample for 
the model. For instance, in a node classification task, 
the target sample might be a specific node [38], sen-
sitive attributes or topological structures within the 
node [38, 70], or a subgraph from the target node’s lo-
cal graph [101, 123]. For graph classification tasks, the 
target might also be a graph awaiting classification 
[101]. It is important to note that targets with higher 
subgraph densities are more susceptible to member-
ship inference attacks. Even when the adversary is 
unaware of the training data distribution or the archi-
tecture of the target model, the attack remains effec-
tive [38].
In existing research, Zhang et al. [123] were the first 
to explore the privacy concerns associated with graph 
embedding, introducing a subgraph inference-based 
attack method. This approach allows for the success-
ful determination of whether a subgraph is part of the 
target graph, its effectiveness having been validated 
through experimental means. Liu et al. [58] have ex-
amined the interplay between graph adversarial at-
tacks and privacy breaches, discovering that models 
trained via graph adversarial methods can greatly 
enhance the success rate of graph membership in-
ference attacks. This enhancement can primarily be 
attributed to the distinct performance of the robust 
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model’s loss function on training and test datasets. 
Mauro Conti et al. [18] investigated a more complex 
attack scenario where the GNN model outputs only 
labels, by relaxing the assumptions of a similarly dis-
tributed shadow dataset and knowledge of the target 
model’s architecture (similar to approaches in [37] 
and [38]). Obviously, this represents a more practical 
application scenario. The attacker leverages fixed at-
tributes, 0-hop, and 1-hop queries to construct attack 
features, achieving better performance compared 
to probability-based membership inference attacks. 
Additionally, Zhong et al. [129] first studied the sub-
group vulnerability differences in link-level member-
ship inference attacks (LMIA) on GNNs. They iden-
tified a strong correlation between varying subgroup 
structural attributes (such as density, node similarity, 
and average edge betweenness centrality) and attack 
performance. Consequently, they designed a balanced 
fairness algorithm to counter LMIA, which employs 
fixed probability randomization on the original graph 
to perturb edge memberships. This method avoids 
iterative accumulation on the target model, effective-
ly balancing LMIA defense performance and model 
utility while reducing vulnerability disparities among 
subgroups.
Generally, node-level and link-level membership in-
ference attacks heavily rely on graph data attributes 
and model architecture. Notably, even when the fit-
ting is normal, robustness against privacy attacks 
cannot be guaranteed. In contrast, graph-level mem-
bership inference attacks are primarily influenced 
by the target model’s degree of overfitting, which is a 
critical determinant. This is in line with research on 
membership inference attacks on data with Euclide-
an-structured within the traditional machine learn-
ing domain.

3.2. Attribute Inference Attacks
Similar to membership inference attacks, attribute 
inference attacks also concern with the training data. 
However, the latter seeks to infer specific, potential-
ly sensitive, attributes of the training data based on 
the model’s outputs, non-sensitive attributes, and 
other information. Both membership and attribute 
inference attacks extract private information from 
training data through inference, and as such, they 
both fall under the umbrella of inference attacks. 
Consequently, they can be represented through the 

same inference model framework (refer to Figure 1). 
Consider the node classification task as an example: 
an attacker submits a query ix  to the shadow model, 
obtains the output’s ( )if x  probability value, and in-
fers whether it is in the training data set: a typical sce-
nario for a membership inference attack. In another 
scenario, the attacker may acquire the entire target 
graph G  and a subgraph G′  of interest as input [123], 
aggregate the embeddings of the target graph G and 
subgraph G′ , and derive attributes (such as degree 
distribution, number of nodes, etc.). This is a typical 
process of attribute inference attacks. The primary 
distinction between them is that member inference 
attacks are concerned with determining whether 
individual nodes, local nodes, or subgraphs were uti-
lized in training the model. In contrast, attribute in-
ference attacks aim to infer specific global attributes 
of the training dataset [42].

Figure 1
General model of inference attacks
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model framework (refer to Figure 1). Consider the 
node classification task as an example: an attacker 
submits a query ix  to the shadow model, obtains 
the output’s ( )if x  probability value, and infers 
whether it is in the training data set: a typical 
scenario for a membership inference attack. In 
another scenario, the attacker may acquire the 
entire target graph G  and a subgraph G′  of 
interest as input [123], aggregate the embeddings 
of the target graph G and subgraph G′ , and 
derive attributes (such as degree distribution, 
number of nodes, etc.). This is a typical process of 
attribute inference attacks. The primary distinction 
between them is that member inference attacks are 
concerned with determining whether individual 
nodes, local nodes, or subgraphs were utilized in 
training the model. In contrast, attribute inference 
attacks aim to infer specific global attributes of the 
training dataset [42]. 

At present, there is a limited body of research on 
attribute inference attacks within the realm of 
graph data. Notably, Zhang et al. [123] introduced 
a method to infer basic attributes of a target graph 
embedded within a given graph, which includes 
the count of nodes, edges, and the density of the 
graph. Their approach frames the attack as a 
multi-task classification problem, enabling the 

prediction of all graph attributes of interest 
simultaneously, thus achieving high attack 
accuracy.  

For the first time, Wang et al. [95] engaged in 
a systematic exploration of group attribute 
inference for GNNs. They categorized threats 
from both white-box (where the model 
architecture and parameters are known) and 
black-box (where only the model output is 
accessible) scenarios based on different attack 
knowledge into six types, designing attack 
methods for each category. They discovered 
that with just 20% of the training graphs, 
high-precision inferences can be made for 
node and link attributes in the range of 
[0.9, 1]  and [0.72, 0.92] respectively. Even 
when a shadow graph is utilized for the 
attack, the accuracy can reach as high as 0.66. 
Thus, the privacy leakage of group attributes 
for GNNs is a significant concern.  
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In a different approach, Olatunji et al. [69] 
proposed three attribute inference attack 
methods, including attribute inference 
attacks via repeated queries of the target 
model, those based on feature propagation 
solely, and shadow-based attribute inference 
attacks. While prior research predominantly 
focused on inferring single binary attributes, 
their work differs in that it can infer single or 
multiple binary attributes, as well as 
continuous attribute values. In conclusion, 
node attribute inference attacks are 
commonly employed in scenarios where 
attribute features and labels are strongly 
correlated. However, even when there is a 
weak correlation between node attribute 
features and task labels, the implementation 
of group attribute inference attacks can still 

At present, there is a limited body of research on attri-
bute inference attacks within the realm of graph data. 
Notably, Zhang et al. [123] introduced a method to in-
fer basic attributes of a target graph embedded with-
in a given graph, which includes the count of nodes, 
edges, and the density of the graph. Their approach 
frames the attack as a multi-task classification prob-
lem, enabling the prediction of all graph attributes of 
interest simultaneously, thus achieving high attack 
accuracy. 
For the first time, Wang et al. [95] engaged in a sys-
tematic exploration of group attribute inference for 
GNNs. They categorized threats from both white-box 
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(where the model architecture and parameters are 
known) and black-box (where only the model out-
put is accessible) scenarios based on different attack 
knowledge into six types, designing attack methods 
for each category. They discovered that with just 20% 
of the training graphs, high-precision inferences can 
be made for node and link attributes in the range of 
[0.9, 1]  and [0.72, 0.92] respectively. Even when a 
shadow graph is utilized for the attack, the accuracy 
can reach as high as 0.66. Thus, the privacy leakage of 
group attributes for GNNs is a significant concern. 
In a different approach, Olatunji et al. [69] proposed 
three attribute inference attack methods, including 
attribute inference attacks via repeated queries of 
the target model, those based on feature propagation 
solely, and shadow-based attribute inference attacks. 
While prior research predominantly focused on infer-
ring single binary attributes, their work differs in that it 
can infer single or multiple binary attributes, as well as 
continuous attribute values. In conclusion, node attri-
bute inference attacks are commonly employed in sce-
narios where attribute features and labels are strongly 
correlated. However, even when there is a weak cor-
relation between node attribute features and task la-
bels, the implementation of group attribute inference 
attacks can still lead to privacy leakage.

3.3. Model Inversion Attacks

Model inversion attacks constitute a form of privacy 
attack aimed at inferring sensitive information con-
cealed within training data. Attackers extensively 
gather information through diverse channels, en-
compassing not only the labels of certain nodes but 
also auxiliary knowledge such as node attributes, 
node identifiers, and edge density. Initially, the at-
tackers integrate and analyze this data, subsequently 
transforming the inversion task into a complex opti-
mization problem. The core objective is to construct 
data that closely approximates the original target 
data, enabling the inference of node attributes, in-
ter-node connections, and even the reconstruction 
of the entire graph’s adjacency matrix. The attack 
framework is shown in Figure 2. Model inversion 
attacks treat the inversion task as an optimization 
problem. The optimal data ix ∗ corresponding to the 
target class data ix , is constructed through gradient 
methods, aiming to make ( )if x  and ( )if x ∗  as close as 

possible, thereby inferring the sensitive features of 
the training data.
Wu et al. [105] discovered that features, particularly 
edges, play a significant role in privacy leakage during 
graph model inversion attacks. Taking inspiration 
from this work [105], Zhang et al. [125] proposed a 
method called GraphMI, which employs an optimized 
model inversion attack approach to reconstruct the 
adjacency matrix in a white-box setting with known 
training model parameters. The fundamental pro-
cess of GraphMI involves three steps: initially, using 
the projected gradient descent method to identify the 
optimal network topology where the nodes are locat-
ed; subsequently, forwarding the adjacency matrix 
and feature matrix to the graph autoencoder module, 
which gets parameters from the target model; finally, 
interpreting the optimized graph as an edge proba-
bility matrix, followed by sampling a binary adjacen-
cy matrix. Their research elucidates the correlation 
between edge influence and inversion risk, affirming 
that “the greater the edge influence, the greater the 
adversary’s advantage”. 
He et al. [37] proposed a black-box method that steals 
links (based on link prediction). This approach as-
sumes that the attacker has access to a dataset ex-
tracted from a distribution similar to the target data 
(shadow dataset). The core idea is to use a heuristic 
method to predict the attribute similarity (cosine 
similarity) of two nodes in the training dataset and 
determine whether two nodes are connected based 
on the degree of similarity. Experimental outcomes 
demonstrate that abundant graph structure informa-
tion can be stolen through prediction. 

Figure 2
General model of model inversion attack
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Wu et al. [105] discovered that features, 
particularly edges, play a significant role in 
privacy leakage during graph model inversion 
attacks. Taking inspiration from this work [105], 
Zhang et al. [125] proposed a method called 
GraphMI, which employs an optimized model 
inversion attack approach to reconstruct the 
adjacency matrix in a white-box setting with 
known training model parameters. The 
fundamental process of GraphMI involves three 
steps: initially, using the projected gradient 
descent method to identify the optimal network 
topology where the nodes are located; 

subsequently, forwarding the adjacency 
matrix and feature matrix to the graph 
autoencoder module, which gets parameters 
from the target model; finally, interpreting 
the optimized graph as an edge probability 
matrix, followed by sampling a binary 
adjacency matrix. Their research elucidates 
the correlation between edge influence and 
inversion risk, affirming that "the greater the 
edge influence, the greater the adversary’s 
advantage".  

He et al. [37] proposed a black-box method 
that steals links (based on link prediction). 
This approach assumes that the attacker has 
access to a dataset extracted from a 
distribution similar to the target data 
(shadow dataset). The core idea is to use a 
heuristic method to predict the attribute 
similarity (cosine similarity) of two nodes in 
the training dataset and determine whether 
two nodes are connected based on the degree 
of similarity. Experimental outcomes 
demonstrate that abundant graph structure 
information can be stolen through prediction.  

Zhang et al. [123] proposed a method to 
initiate a graph reconstruction attack using 
the graph autoencoder paradigm, capable of 
reconstructing a graph with similar graph 
structure statistics (such as degree 
distribution, local clustering coefficient 
distribution) to the target graph. The cosine 
similarity of the local clustering coefficient 
distribution between the target graph and the 
reconstructed graph is as high as 0.99, 
sufficiently validating the effectiveness of the 
graph reconstruction attack method.  

Zhang et al. [115] addressed the issue of 
variable degrees of link-stealing attacks from 
different groups, unveiling the theory of 
unequal vulnerability across different 
groups, and proposed a group-based attack 
paradigm. This paradigm allows customizing 
different attack strategies for different 
groups, achieving superior attack 
performance.  

Zhou et al. [132] utilized the original Markov 
chain approximate attack chain to model and 
implement graph reconstruction attacks in a 
white-box attack scenario, enhancing attack 
fidelity through parameterization techniques 
and the introduction of randomness. 

For the first time, Olatunji et al. [71] explored 
the possibility that feature explanations 
published in GNN may leak structural 
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Zhang et al. [123] proposed a method to initiate a 
graph reconstruction attack using the graph autoen-
coder paradigm, capable of reconstructing a graph 
with similar graph structure statistics (such as degree 
distribution, local clustering coefficient distribution) 
to the target graph. The cosine similarity of the local 
clustering coefficient distribution between the target 
graph and the reconstructed graph is as high as 0.99, 
sufficiently validating the effectiveness of the graph 
reconstruction attack method. 
Zhang et al. [115] addressed the issue of variable de-
grees of link-stealing attacks from different groups, 
unveiling the theory of unequal vulnerability across 
different groups, and proposed a group-based attack 
paradigm. This paradigm allows customizing differ-
ent attack strategies for different groups, achieving 
superior attack performance. 
Zhou et al. [132] utilized the original Markov chain 
approximate attack chain to model and implement 
graph reconstruction attacks in a white-box attack 
scenario, enhancing attack fidelity through param-
eterization techniques and the introduction of ran-
domness.
For the first time, Olatunji et al. [71] explored the 
possibility that feature explanations published in 
GNN may leak structural information of training 
nodes. Their study hypothesized that the attacker 
can obtain the model’s feature explanations and de-
signed attacks ranging from simple similarity-based 
to complex graph reconstruction attacks using graph 
structure learning technology. They quantified the 
information leakage of the graph structure via the at-
tack success rate, and generated feature-based inter-
pretations through three distinct methods based on 
gradient, perturbation, and agent model. The results 
indicate that gradient-based methods reveal the most 
information.
Research on adversarial reverse engineering methods 
for GNN models can enhance our understanding of 
their vulnerabilities and enable us to proactively mit-
igate privacy risks. However, there remains a notable 
lack of research on adversarial reverse engineering 
specifically targeting GNNs. Currently, implement-
ing adversarial reverse attacks on GNNs faces three 
major challenges. Firstly, owing to the discrete nature 
of the graph, computing and optimizing the gradient 
on its binary edge is challenging, rendering existing 

model inversion attack methods inapplicable to the 
graph. Secondly, existing model inversion techniques 
do not sufficiently leverage the intrinsic characteris-
tics of graph sparsity and feature smoothness. Lastly, 
the current model inversion attack methodologies fail 
to fully leverage on node attribute information and 
GNN model data.

3.4. Model Extraction Attacks
The principle of model extraction attacks is that the 
attacker submits queries to the target model, infer-
ring model parameters or creating a machine learn-
ing model with similar functionality based on the 
responses. Successful extraction and misuse of the 
model can lead to significant privacy breaches, in-
volving the disclosure of extensive private data. The 
typical procedure starts with the attacker issuing 
query requests to the model, collecting maximal in-
formation from the responses. Subsequently, the 
attacker uses the gathered input-output data to de-
velop and train a knockoff model. This process, il-
lustrated in Figure 3, involves the attacker owning 
data and a pre-trained model f . They send a query 
request 1 2( , , , )nx x x…  to the target, receive response 

1 2( ( ), ( ), , ( ))nf x f x f x… , and create a query-response 
pair 1 1 2 2(( , ( )),( , ( )), , ( , ( )))n nx f x x f x x f x… . Using this 
pair and additional knowledge, they train and extract 
an alternate model f ′, epitomizing a standard model 
extraction attack.
Current research on model extraction attacks pri-
marily focuses on traditional machine learning mod-
els in areas such as graphics and text, as outlined in 
references [90, 7, 30, 106]. However, there is limited 
investigation into potential attacks on GNNs. 
David et al. [22] explored a scenario where the adver-
sary queries only the predicted labels via the target 
model’s API. They trained the model on the labels of 
false sample graphs and learned the model by itera-
tively altering the sample subgraphs of the target’s 
original graph, conduct model extraction training on 
various instances of these modified subgraphs. The 
requirement is that each class should have at least 
one sample in the sample graph data, and can reach an 
output fidelity of 80%. 
Another study [100] involved generating legitimate 
appearing queries as ordinary nodes in the target 
graph, extracting GNN models through responses, 
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graph structure information, and other available 
knowledge, and subsequently reconstructing models 
with similar functions. 
Wu et al. [102] proposed a threat modeling framework 
based on black-box attack scenarios. This framework 
encompasses seven types of model extraction attacks 
with varying degrees of background knowledge, con-
sidering aspects like node attributes, graph structure, 
and shadow subgraphs. The core strategy involves us-
ing known background knowledge to create a substi-
tute graph for model training and extracting a model 
that mirrors the target model. 

Building on previous research [102, 22], another pa-
per [82] introduced a model stealing attack method 
applicable to inductive GNNs. In this approach, suited 
for black-box attack scenarios, the adversary queries 
the target model through a remote access API, with 
the model’s structure and training process remaining 
opaque. This study demonstrated that even without 
access to graph structure information, adversaries 
could still conduct effective model theft attacks.

3.5. Graph Injection Attacks
Graph injection attacks allow an attacker to introduce 
a limited number of nodes or edges, but prohibit the 
modification of the original graph’s nodes or edges. 
This emerging attack method aligns with real-world 
scenarios. Depending on the attack target, stage, and 
method, graph injection attacks can be categorized 
into poisoning attacks [135, 11, 94, 23], evasion at-
tacks [21, 87, 134, 48, 118], and backdoor attacks [124, 
111, 128]. This section aims to provide a nuanced un-

derstanding of graph injection attacks by classifying 
and comparing them.
1 Poisoning attack. The objective of a poisoning 

attack is to alter the model’s behavior during in-
ference by modifying training data, such as label 
flipping or introducing malicious data. This com-
promises the model’s accuracy or makes it sus-
ceptible to similarly modified samples. Zügner et 
al. [135] demonstrated an attack on a single node 
of a graph neural network, primarily focusing on 
poisoning attacks but also applicable to evasion 
attacks. This approach manipulates graph topol-
ogy and node features while preserving key data 
characteristics (e.g., degree distribution, feature 
co-occurrence). To minimize detection, the au-
thors developed Nettack, an algorithm based on 
linearization ideas, to calculate the subtlety of 
these attacks. Bojchevski et al. [11] altered a lim-
ited number of edges to degrade the embedding 
effect of the new graph, marking the first study 
on attacking node embedding. This research used 
spectral random walk algorithms and eigenvalue 
perturbation theory to effectively approximate 
spectral changes. In [94], an attack method with-
out node injection limits was proposed, offering a 
linearized attack model with an optimized, lower 
time-cost strategy. Ding et al. [23] incorporated 
an attention mechanism in the link detection net-
work to enhance the GNN model’s focus on node 
connections. This resulted in more similar out-
puts for connected nodes and increased dissim-
ilarity between unconnected nodes, improving 
node adjacency inference. The black-box setup 
and online learning in this study accommodate 
real-world application scenarios.

2 Evasion attack. Evasion attacks involve manip-
ulating a model’s output by modifying inputs in a 
manner imperceptible to humans. These attacks 
manifest during the model prediction phase, with 
the fundamental principle being the injection of 
nodes that propagate malicious attributes to per-
tinent nodes through feature aggregation. This 
process ultimately leads to erroneous predictions 
by the model. While research on evasion attacks 
targeting GNNs is relatively recent, it has gar-
nered more attention from scholars compared to 
other forms of graph injection attacks. Among the 
pioneering works is Dai et al. [21], who proposed 

Figure 3
General model of model extraction attack
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and GNN model data. 

3.4. Model Extraction Attacks 
The principle of model extraction attacks is that 
the attacker submits queries to the target model, 
inferring model parameters or creating a machine 
learning model with similar functionality based on 
the responses. Successful extraction and misuse of 
the model can lead to significant privacy breaches, 
involving the disclosure of extensive private data. 
The typical procedure starts with the attacker 
issuing query requests to the model, collecting 
maximal information from the responses. 
Subsequently, the attacker uses the gathered 
input-output data to develop and train a knockoff 
model. This process, illustrated in Figure 3, 
involves the attacker owning data and a pre-
trained model f . They send a query request 

1 2( , , , )nx x x…  to the target, receive response 

1 2( ( ), ( ), , ( ))nf x f x f x… , and create a query-
response pair 1 1 2 2(( , ( )),( , ( )), , ( , ( )))n nx f x x f x x f x… . 
Using this pair and additional knowledge, they 
train and extract an alternate model f ′ , 
epitomizing a standard model extraction attack. 

Current research on model extraction attacks 

primarily focuses on traditional machine 
learning models in areas such as graphics 
and text, as outlined in references [90, 7, 30, 
106]. However, there is limited investigation 
into potential attacks on GNNs.  

David et al. [22] explored a scenario where 
the adversary queries only the predicted 
labels via the target model’s API. They 
trained the model on the labels of false 
sample graphs and learned the model by 
iteratively altering the sample subgraphs of 
the target’s original graph, conduct model 
extraction training on various instances of 
these modified subgraphs. The requirement 
is that each class should have at least one 
sample in the sample graph data, and can 
reach an output fidelity of 80%.  

Another study [100] involved generating 
legitimate appearing queries as ordinary 
nodes in the target graph, extracting GNN 
models through responses, graph structure 
information, and other available knowledge, 
and subsequently reconstructing models 
with similar functions.  

Wu et al. [102] proposed a threat modeling 
framework based on black-box attack 
scenarios. This framework encompasses 
seven types of model extraction attacks with 
varying degrees of background knowledge, 
considering aspects like node attributes, 
graph structure, and shadow subgraphs. The 
core strategy involves using known 
background knowledge to create a substitute 
graph for model training and extracting a 
model that mirrors the target model.  

 

Figure 3 

General model of model extraction attack. 

 
 

Building on previous research [102, 22], 
another paper [82] introduced a model 
stealing attack method applicable to 
inductive GNNs. In this approach, suited for 
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an attack methodology based on reinforcement 
learning to maximize classification error rates 
by minimally altering edges. Tao et al. [87] ad-
dressed the issue of excessive node injection by 
introducing an evasion attack method based on 
single-node injection, utilizing Gumbel-Top-k 
technology for high-dimensional discrete attri-
bute optimization. The edge injection budget ∆  
was limited during the attack process, and the en-
forced injection properties were kept consistent 
with the original graph. Zou et al. [134] suggest-
ed a gray-box-mode evasion attack, introducing a 
topological flaw edge selection strategy, selecting 
original nodes associated with injected nodes, and 
designing smooth feature optimization objectives 
to generate characteristics of the injected nodes. 
Such carefully designed perturbations are chal-
lenging to identify and possess strong conceal-
ment, enabling effective injection attacks. Ju et al. 
[48] used a black-box setting and employed node 
generators and edge samplers to create adversari-
al nodes, modeling node injection attacks through 
the Markov decision process, thus contributing 
new theories and methods for graph-structured 
data security. A recent work by Zhang et al. [118] 
considered that a fixed budget may lead to attack 
failure and proposed a topology attack method 
based on minimum budget. This method utilizes 
a dynamic projected gradient descent algorithm 
to alternately update perturbations and budget, 
achieving a minimum budget topology attack on 
the GNNs. 

3 Backdoor attack. Backdoor attacks are analo-
gous to poisoning attacks but differ in their tar-
gets and processes. Like poisoning attacks, back-
door attacks also occur during the training phase. 
The attacker employs a data poisoning method, 
embedding hidden backdoors into the GNNs us-
ing training data laced with triggers. The back-
door is activated only under specific conditions. 
If the model processes benign data, it will pro-
duce correct predictions; however, it will exhibit 
abnormal behavior when processing data con-
taining triggers. Zhang et al. [124] introduced a 
method involving randomly generated subgraphs. 
In this method, nodes are randomly selected and 
connected into subgraphs based on a probability 

matching the original graph’s density. These sub-
graphs are then injected into the training set, and 
their labels are modified to create a dataset with 
a backdoor. The resulting model is a graph neural 
network compromised by a backdoor. Following 
a similar approach, Yang et al. [111] conducted a 
more comprehensive study on backdoor attacks in 
GNNs. Their study involved injecting predefined 
subgraphs into the test graph, causing the GNNs 
to favor the attacker’s chosen target label during 
predictions. Previous studies often used random-
ly or gradient-based generated subgraphs as trig-
gers for backdoor attacks, potentially overlooking 
the relationship between the trigger structure 
and the effectiveness of the attack. Acknowledg-
ing this, Zheng et al. [128] explored the impact of 
loops and statistically significant patterns in the 
graph on attack strategies. They discovered that 
triggers based on subgraphs with lower frequen-
cies of occurrence yielded better attack perfor-
mance. Consequently, the authors developed a 
method for generating triggers based on topic sta-
tistical information, which showed promising at-
tack performance. However, this method requires 
extensive model access, which may increase the 
risk of detection.

Research on graph injection attacks encompasses 
studies on poisoning attacks and evasion attacks, 
with backdoor attacks receiving comparatively less 
attention. Poisoning attacks occur during the training 
phase, while evasion attacks take place in the testing 
phase. Backdoor attacks, which also primarily occur 
during training, differ in that they target model secu-
rity rather than data security. Furthermore, attacks 
can be categorized based on the attacker’s knowledge 
level into white-box, gray-box, and black-box ap-
proaches. Significant research has focused on adver-
sarial example attacks [81, 55], which involve minor 
modifications to existing samples. These alterations, 
such as changing node attributes or the connections 
between nodes, can occur during either the training 
or testing phases. These attacks align with the princi-
ples of poisoning and evasion attacks and thus can be 
categorized accordingly. Table 3 provides a compre-
hensive summary of representative research on injec-
tion attacks in GNNs, encompassing six dimensions: 
tasks, attack types, background knowledge, modifica-
tion content, and key technologies.
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Table 3
Analysis of representative research work on graph injection attacks

Ref. Attack type Knowledge Modification Task Methods

Ref. [135] Poisoning attack, 
Evasion attack Gray-box Node & Edge Node classification, 

Graph classification
Greedy algorithm, 

Linear model

Ref. [11] Poisoning attack White-box Edge Node classification, 
Link prediction Random walk algorithm

Ref. [94] Poisoning attack Black-box Node & Edge Node classification Fast Gradient-Sign,
Linear model

Ref. [23] Poisoning attack Black-box Edge Node classification, 
Link prediction

Self-attention mechanism, 
Projected gradient descent

Ref. [21] Evasion attack White-box, 
Black-box Edge Node classification, 

Graph classification
Reinforcement learning, 

Genetic algorithm

Ref. [87] Evasion attack Black-box Node & Edge Node classification Gumbel-Top-k technique, 
Reinforcement learning

Ref. [134] Evasion attack Gray-box Node Node classification Defect edge selection, feature 
optimization

Ref. [48] Evasion attack Black-box Node & Edge Node classification Markov decision, 
Reinforcement learning

Ref. [118] Evasion attack Black-box Edge Node classification Dynamic PGD, Minimum 
budget control

Ref. [124] Backdoor attack Black-box Subgraph Graph classification Randomly generate subgraphs

Ref. [111] Backdoor attack Black-box Subgraph Graph classification Randomly generate subgraphs

Ref. [128] Backdoor attack Black-box Subgraph Graph classification Topic-based backdoor attacks

Ref. [81] Evasion attack Black-box Node Node classification Q-learning network, 
Jaccard distance

Ref. [55] Poisoning attack White-box, 
Gray-box Edge Node classification Disturbance evaluation 

function

3.6. Summary

From the above analysis, it can be seen that GNNs 
predominantly confront five types of privacy attack 
methods. Notably, member inference attacks and 
graph injection attacks have received higher atten-
tion. Member inference attacks deduce the presence 
of specific records in a dataset, assessing their mem-
bership status. This area is a current research fo-
cus. Graph injection attacks compromise the graph 
model’s output by introducing fictitious nodes, edg-

es, or subgraphs, affecting data and model security. 
Model inversion attacks target the theft of private 
information from the training dataset, potentially 
undermining the dataset owner’s commercial inter-
ests. Model extraction attacks involve developing al-
ternative models as a research strategy, which could 
underpin other attacks such as member inference 
and attribute inference attacks. Table 4 summarizes 
the statistics and application areas of privacy attack 
methods on GNNs in key research works.
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4. Privacy Defense Technology in 
GNNs 
4.1. Data Anonymization
Data anonymization involves the application of tech-
niques such as replacement, generalization, and 
clustering to process personal privacy information 
within a dataset. The process entails blending indi-
vidual privacy information with other data to effec-
tively conceal the true attribute characteristics with 
the aim of protecting individual private information. 
Anonymization technology serves as a commonly 
used method for privacy defense in various scenarios, 
including data release, transmission, and shared use.
Liu et al. [56] introduced k − anonymity technology 
[84] to the field of graph data, proposing the concept 
of k −  anonymity. A vector is considered k− anony-
mous when each element appears at least k  times. 
For instance, vector [5, 5, 1, 1, 1, 4, 4]v =  is a 2- 
anonymous vector. They also introduced the notion 
of k− anonymous graphs, where the degree sequence 
vector satisfies the k −  anonymity property. The 
choice of k − anonymity for GNNs is suitable because 
it can effectively conceal the identity of individual 
nodes within the graph, thereby protecting privacy, 
while still allowing for meaningful analysis of the 
graph’s structure and properties. This is particularly 
important in social network data where preserving 
the privacy of individuals is crucial.

Table 4
Statistics of privacy attack methods for GNNs and their application areas

Privacy attack method Ref. Application Areas

Member inference attack [123], [129], [24], [38], [70], [101], [58], [18] Social networks, financial systems, recommen-
dation systems, healthcare

Property inference attack [123], [95], [42], [69] Social networks, financial systems, recommen-
dation systems

Model inversion attack [123], [37], [24], [125], [115], [132], [71]
Social networks, recommendation systems, 

financial systems, healthcare, Natural language 
process

Model extraction attack [102], [22], [100], [82] All fields

Graph injection attack [135], [124], [94], [11], [21], [23], [87], [134], 
[48], [118], [111], [128], [81], [55]

Social networks, financial systems, healthcare, 
cybersecurity

Backstrom et al. [9] proposed a privacy defense tech-
nique that replaces identifiable attributes with syn-
thetic identifiers prior to publishing real graph data on 
social networks. However, this method is susceptible 
to background knowledge attacks, enabling attackers 
to infer vertex identity from structural characteris-
tics. To address this, Meden et al. [61] proposed a face 
image recognition method that hides personal iden-
tity information within the image. Their approach 
combines a GNN with an anonymity mechanism, 
offering a formal guarantee for privacy defense on 
closed identity datasets. Furthermore, Tian et al. [89] 
proposed a two-stage GNN privacy defense method 
in social networks. In the first stage, they designed 
an anonymization method, incorporating classic lo-
cal differential privacy (LDP) and k DA−  , to achieve 
both ϵ – local differential privacy and k −  anonymity. 
In the second stage, an adversarial training mech-
anism was developed to enhance the GNN model’s 
resistance to ϵ – k anonymization interference. The 
experiments confirmed that the ϵ – k anonymization 
method effectively preserves the privacy of social net-
work data while maintaining performance in tasks 
such as node classification, link prediction, and graph 
clustering. Researchers have also introduced cluster-
ing-based anonymization [88], random walk-based 
anonymization [63], and combined anonymization 
with other privacy defense technologies in graph data 
[26] to counter background knowledge attacks and 
homogeneity attacks. However, these methods still 
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face challenges in achieving a balance between the 
availability and privacy of anonymous data.
To summarize, current research in graph data ano-
nymization largely focuses on adaptive optimization 
of existing anonymization technology or proposes tar-
geted protection for specific vulnerable feature dimen-
sions. Given the complexity of graph data, relying sole-
ly on anonymization technology to protect the privacy 
of node features or labels proves inadequate. Attackers 
can infer private information from partial topological 
structures of graph data, inter-node links, non-anon-
ymous node attributes, and other types of background 
knowledge. Moreover, the embedding representation 
of anonymized graph data often exhibits poor usability, 
diminishing the effectiveness of GNN training. Despite 
these challenges, the integration of anonymization 
techniques with GNNs remains a promising direction 
for privacy defense in graph data, as evidenced by the 
growing body of research in this area.

4.2. Differential Privacy
Differential privacy (DP) stands as a robust privacy 
protection standard initially proposed by Dwork et 
al. [25] in 2006. It has garnered widespread attention 
among researchers due to its stringent mathematical 
definition and quantifiable privacy protectionmodel. 
The formal definition of (ϵ, δ) – differential privacy is 
provided below. 
Definition 4.1: D  and D′  are two adjacent datasets, 
M  is a random query function, the parameter ϵ is the 
privacy budget, (ϵ, δ) – differential privacy is deemed 
satisfied if the following inequality holds [25]:

 
 

 

in social network data where preserving the 
privacy of individuals is crucial. 

Backstrom et al. [9] proposed a privacy defense 
technique that replaces identifiable attributes with 
synthetic identifiers prior to publishing real graph 
data on social networks. However, this method is 
susceptible to background knowledge attacks, 
enabling attackers to infer vertex identity from 
structural characteristics. To address this, Meden 
et al. [61] proposed a face image recognition 
method that hides personal identity information 
within the image. Their approach combines a 
GNN with an anonymity mechanism, offering a 
formal guarantee for privacy defense on closed 
identity datasets. Furthermore, Tian et al. [89] 
proposed a two-stage GNN privacy defense 
method in social networks. In the first stage, they 
designed an anonymization method, 
incorporating classic local differential privacy 
(LDP) and k DA−  , to achieve both −  local 
differential privacy and k −  anonymity. In the 
second stage, an adversarial training mechanism 
was developed to enhance the GNN model’s 
resistance to k−  anonymization interference. 
The experiments confirmed that the k−  
anonymization method effectively preserves the 
privacy of social network data while maintaining 
performance in tasks such as node classification, 
link prediction, and graph clustering. Researchers 
have also introduced clustering-based 
anonymization [88], random walk-based 
anonymization [63], and combined anonymization 
with other privacy defense technologies in graph 
data [26] to counter background knowledge 
attacks and homogeneity attacks. However, these 
methods still face challenges in achieving a 
balance between the availability and privacy of 
anonymous data. 

To summarize, current research in graph data 
anonymization largely focuses on adaptive 
optimization of existing anonymization 
technology or proposes targeted protection for 
specific vulnerable feature dimensions. Given the 
complexity of graph data, relying solely on 
anonymization technology to protect the privacy 
of node features or labels proves inadequate. 
Attackers can infer private information from 
partial topological structures of graph data, inter-
node links, non-anonymous node attributes, and 
other types of background knowledge. Moreover, 
the embedding representation of anonymized 
graph data often exhibits poor usability, 
diminishing the effectiveness of GNN training. 
Despite these challenges, the integration of 
anonymization techniques with GNNs remains a 
promising direction for privacy defense in graph 

data, as evidenced by the growing body of 
research in this area. 

4.2. Differential Privacy 
Differential privacy (DP) stands as a robust 
privacy protection standard initially 
proposed by Dwork et al. [25] in 2006. It has 
garnered widespread attention among 
researchers due to its stringent mathematical 
definition and quantifiable privacy 
protectionmodel. The formal definition of 
( , )-δ differential privacy is provided below.  

Definition 4.1: D  and D′  are two adjacent 
datasets, M  is a random query function, the 
parameter   is the privacy budget, ( , )-δ  
differential privacy is deemed satisfied if the 
following inequality holds [25]: 

( ( ) ) ( ( ) )P M D S e P M D S′∈ ≤ ∈ .                     (9) 

the output results of adjacent datasets are 
influenced by the  parameter value to be 
nearly identical, implying that ( )M D  and

( )M D′  are approximately equal in a 
probabilistic sense [59]. This makes it 
exceedingly challenging for attackers to 
distinguish between adjacent datasets. A 
smaller value of  indicates a stronger 
privacy defense capability. The variable δ  is 
an optional slack term, equivalent to the 
probability of   failure. In practical 
applications, δ  is typically set to a very small 
value, such as 410− [59]. 

Differential privacy, initially applied to 
privacy defense technology in databases [10], 
has since witnessed significant research 
progress in the realm of machine learning 
security [1, 72, 62, 6]. In the context of graph 
data structures, differential privacy manifests 
in three distinct categories based on its 
application to different components: node 
differential privacy, edge differential privacy, 
and graph differential privacy. Furthermore, 
differential privacy can be categorized into 
two overarching types: centralized 
differential privacy (CDP) and local 
differential privacy (LDP). In CDP, the 
mechanism introduces noise to the data by 
defining global sensitivity, subsequently 
imposing statistical constraints on the 
quantitative boundary of privacy information 
leakage. This approach does not impose 
specific requirements on the volume of 
statistical data. Conversely, LDP adds noise 
to individual data points, where the 
introduced noises encompass both positive 

(9)

the output results of adjacent datasets are influenced 
by the ϵ parameter value to be nearly identical, imply-
ing that ( )M D  and ( )M D′  are approximately equal in 
a probabilistic sense [59]. This makes it exceedingly 
challenging for attackers to distinguish between ad-
jacent datasets. A smaller value of ϵ indicates a stron-
ger privacy defense capability. The variable δ  is an 
optional slack term, equivalent to the probability of ϵ 
failure. In practical applications, δ  is typically set to 
a very small value, such as 410−

 [59].
Differential privacy, initially applied to privacy defense 
technology in databases [10], has since witnessed sig-
nificant research progress in the realm of machine 
learning security [1, 72, 62, 6]. In the context of graph 

data structures, differential privacy manifests in three 
distinct categories based on its application to different 
components: node differential privacy, edge differen-
tial privacy, and graph differential privacy. Further-
more, differential privacy can be categorized into two 
overarching types: centralized differential privacy 
(CDP) and local differential privacy (LDP). In CDP, the 
mechanism introduces noise to the data by defining 
global sensitivity, subsequently imposing statistical 
constraints on the quantitative boundary of privacy 
information leakage. This approach does not impose 
specific requirements on the volume of statistical data. 
Conversely, LDP adds noise to individual data points, 
where the introduced noises encompass both positive 
and negative perturbations. The aggregation of pertur-
bation results offsets the positive and negative noise, 
requiring substantial datasets to ensure unbiasedness 
in the final statistical outcomes. The stochastic nature 
of the noise underscores the necessity for extensive 
datasets to meet the dual demands of data availability 
and statistical accuracy.
To safeguard the privacy of graph-structured data, Hay 
et al. [35] pioneered the application of differential pri-
vacy technology in 2009, aiming to securely release 
graph data. They introduced two variants of differen-
tial privacy for graph data release, namely Point Dif-
ferential Privacy and Edge Differential Privacy. The 
algorithm employs a sophisticated two-stage random 
perturbation process to obtain the degree distribution 
of the graph. Olatunji et al. [70] extended the Private 
Aggregation of Teacher Ensembles (PATE) method 
from the literature [72]. They utilized random subgraph 
sampling of the teacher training set and a noise labeling 
mechanism for public data. Combining private graph 
knowledge with the “teacher” model’s insights on the 
existing recommendation system, they trained the “stu-
dent” model to achieve the release of graph-structured 
data with a guarantee of differential privacy. Zhang et al. 
[120] addressed potential attackers in existing recom-
mendation systems who might leverage user behavior 
trajectories and recommendation results to infer user 
privacy attributes. They proposed a two-stage combi-
nation strategy involving user feature perturbation in 
the input stage and optimization stage perturbation 
to obtain a privacy-preserving GNN for recommenda-
tion. Experimental results demonstrated the method’s 
effectiveness in defending against attribute inference 
attacks. Sajadmanesh et al. [75] considered scenarios 
where local node data may be anonymized due to po-
tentially sensitive information. To address the reduc-
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tion in node availability and its impact on model train-
ing caused by anonymization, they proposed a GNN 
learning framework, the Local Privacy Graph Neural 
Network (LPGNN). Based on LDP and independent of 
model architecture, this framework effectively protects 
the privacy of node data. It can be combined with any 
GNN model independently, thereby reducing commu-
nication overhead. Additionally, drawing inspiration 
from literature [2, 3, 4], they introduced a graph convo-
lution layer, KProp, based on multi-hop aggregation of 
node features. This innovation enhances the informa-
tion of the aggregated neighborhood set, thereby im-
proving the denoising process’s effectiveness and the 
efficiency of graph convolution estimation accuracy. 
Zhang et al. [119] proposed a framework for decoupled 
graph neural networks called DPAR, which achieves 
node-level differential privacy by leveraging a differ-
entially private approximate personalized PageRank 
algorithm coupled with differentially private stochastic 
gradient descent, thereby optimizing the trade-off be-
tween privacy and utility.
There is also literature available that discusses pri-
vacy leakage issues based on the similarity of graph 
data. Yang et al. [110] demonstrated that attackers can 
discern specific node details in a target network by ex-
amining the analogous attribute node degree distribu-
tion and triangle count between two social networks. 

This study enhanced the representation of the global 
graph structure using a GCN network, complemented 
by a generative adversarial network (GAN) [31] and 
an enhanced GVAE model [49]. Theoretical and em-
pirical evaluations have confirmed that these frame-
works robustly safeguard the privacy of the graph’s 
overall structure and its edge connections. Imola et 
al. [44] focused on privacy preservation in scenarios 
involving k-star and triangle subgraph enumeration. 
They introduced noise addition techniques grounded 
in differential privacy, proposing both single-stage 
and multi-stage approaches. The single-stage meth-
od, which directly injects noise into graph edges for 
triangle detection, was shown to be flawed. Conse-
quently, they advocate for a two-stage noise addition 
strategy, which includes a corrective mechanism to 
ensure accuracy in triangle counting.
In summary, differential privacy introduces noise 
to various components of the graph (such as nodes, 
edges, or the entire graph) or to the GNN model (pa-
rameters), thereby preventing attackers from infer-
ring sensitive information about the graph data or 
the GNN model. While this technique is effective for 
privacy preservation, it can adversely affect the utility 
and accuracy of the model, resulting in decreased pre-
cision. Consequently, it remains unsuitable for appli-
cations requiring high accuracy. Table 5 encapsulates 

Table 5
Comparison of representative research on differential privacy protection in GNNs

Ref. Type Optimize target Noise mechanism

Ref. [75] LDP, Node DP Communication cost Multi-bit

Ref. [70] LDP, Node DP Effectiveness Laplace, Gaussian

Ref. [35] CDP, Node DP, Edeg DP Execution time, Effectiveness The mechanism of Ref. [36]

Ref. [120] LDP, Node DP Effectiveness Laplace, Combination mechanism

Ref. [15] LDP, Node DP Execution time, Computing costs Gaussian, J-S estimator

Ref. [40] LDP, Edge DP Effectiveness Laplace

Ref. [110] LDP, Edge DP Effectiveness Gaussian

Ref. [44] LDP, Edge DP Relative error, Effectiveness Laplace

Ref. [50] LDP, Edge DP Effectiveness Laplace

Ref. [65] LDP, Edge DP Computing costs, Effectiveness Gaussian

Ref. [8] LDP, Edge DP Computing costs, Effectiveness Gaussian

Ref. [77] CDP, Node DP, Edge DP Computing costs, Effectiveness Gaussian

Ref. [119] Mix mode, Node DP Effectiveness Laplace, Gaussian
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the salient works on differential privacy in GNNs, de-
lineating types, fundamental concepts, optimization 
objectives, and mechanisms for noise integration.

4.3. Federated Learning
Since its inception, Federated Learning [51] has rap-
idly emerged as a focal point of research in both ac-
ademia and industry, with practical applications in 
numerous domains including smart healthcare, the 
Internet of Things, edge systems, and autonomous 
driving [80]. This distributed data training and aggre-
gation architecture ensures the consistency of a joint-
ly trained model through a series of steps including lo-
cal training, local updates upload, secure server-side 
aggregation, and global model download. Federated 
learning enables data to be trained at the terminal 
(data holder), thereby addressing the issue of single 
data features in the model training phase. Addition-
ally, it offers a local privacy protection mechanism 
that effectively utilizes local computing resources for 
model training, thereby mitigating the risk of private 
information leakage during data transmission.
1 Privacy risks in federated learning. Several addi-

tional privacy risks persist within federated learn-
ing, encompassing three distinct facets. Firstly, 
attackers can potentially infer data from partic-
ipants and misappropriate model parameters by 
reverse-engineering the aggregated gradient and 
weight information transmitted by the central 
server. Secondly, the federated learning framework 
inherently trusts all participants, thus it is suscep-
tible to the risk of malicious entities exploiting this 
trust by contributing falsified data during training 
to extract private information. Finally, the base 
model supplied by a third-party platform could it-
self introduce privacy risks, such as the potential 
for the illicit embedding of viruses or unauthorized 
collection of parameter information.

2 Mitigating data leakage in FedGNNs. Zhou et al. 
[15] introduced a federated graph neural network 
(FedGNNs) learning approach, termed VFGNN. 
This research presumes the model’s resilience 
against semi-honest attackers and bifurcates the 
computation into two segments. Calculations per-
taining to private data are delegated to the data 
holder, whilst the server undertakes the remaining 
computations. The application of differential priva-
cy safeguards the private information on the server 

side. The computational methodology employed by 
VFGNN not only preserves private data, but also en-
hances the model’s accuracy and efficiency. 
Additionally, Ni et al. [68] developed a vertical 
federated learning framework (Fed-VGCN) based 
on graph convolutional networks. FedVGCN in-
corporates a self-supervision mechanism and ini-
tially splits the graph data computation into two 
segments. Training occurs on two clients; each 
client employs additive homomorphic encryption 
to transfer intermediate results to the counter-
part during the training process iterations, there-
by ensuring privacy protection. Experimental 
validations were performed on the FedVGCN and 
GraphSage models. The findings indicate that Fed-
VGCN surpasses GNN models trained on isolated 
data and is on par with conventional GNN models 
trained on combined plaintext data. 
Wu et al. [103] proposed a federated GNN for privacy 
preservation in recommendation systems. Initially, 
the client uses local differential privacy to transmit 
the noise-added gradient to the server, and employs 
pseudo-interaction terms to ensure local user data 
items interaction anonymity. Subsequently, the cli-
ent’s embedded representation is uploaded to the 
server to offer personalized services. Experimental 
findings demonstrate that this model’s recommen-
dation accuracy rivals that of existing centralized 
GNN recommendation methods and effectively 
safeguards user privacy. 
Following this, the authors executed an optimiza-
tion [104] based on the work of [103] in three di-
mensions: firstly, further dividing the embedding 
and gradient modules of the FedGNN framework; 
secondly, excluding adjacent modules prior to 
model training commencement. User embedding 
is adjusted and then integrated into model train-
ing, addressing the issue of potential inaccurate 
user embedding due to inadequate model adjust-
ment. The privacy budget ϵ definition method has 
been updated from ϵ = 2δ/λ to ϵ = 2δe /λ, where e 
denotes the number of epochs. Furthermore, the 
RSA algorithm is designated as the homomorphic 
encryption algorithm for the user items involved in 
the interaction, and the average privacy protection 
ratio is adjusted. The research findings reveal a sig-
nificant reduction in prediction error. 
Rizk et al. [74] extended the client edge hierar-
chical federated learning architecture of [57] to 
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graph-structured data, incorporating cryptogra-
phy and differential privacy technology. The server 
employs the FedAvg mechanism for local training 
and aggregation of training results, adds noise to 
the updates during each round of client-server 
communication using differential privacy, and 
maps the updates to an encrypted version. The 
study explores the influence of privatization on 
algorithm performance under convexity and Lip-
schitz conditions. 
Lastly, Gauthier et al. [29] proposed a personalized 
graph federated learning framework that enables 
distributed servers and their edge devices to learn 
collaboratively while maintaining each device’s 
privacy and ensuring security. The framework pri-
marily leverages differential privacy (especially 
zero-centralized differential privacy) for privacy 
protection, and mathematical analysis indicates 
linear time convergence and reasonable accuracy.

3 Heterogeneous data handling in FedGNNs. Fu 
et al. [28] introduced FedSpray, a novel federated 
graph learning framework, by incorporating glob-
al class structure proxies and a feature-structure 
encoder. This approach aims to enhance the classi-
fication performance of minority class nodes. Zhu 
et al. [133] innovatively applied topology-aware, 
data-free knowledge distillation techniques with-
in FedTAD. By generating pseudo-graphs, they 
strengthened the reliable transfer of knowledge 
from local models to the global model, thus op-
timizing the performance of subgraph federated 
learning. Li et al. [53] proposed AdaFGL, a new 
paradigm that effectively addresses topological 
heterogeneity through structural non-IID splitting 
and a two-step personalized training approach. 
This method improved the accuracy of federat-
ed node classification. These three works are de-
signed to tackle heterogeneous data challenges in 
federated graph learning scenarios.
As GNN models integrate with federated learning 
frameworks, the development and application of 
FedGNNs have progressed swiftly. However, Fed-
GNNs continue to face challenges related to privacy 
leakage and deployment. Current privacy protec-
tion solutions in this domain are primarily catego-
rized into three types: model aggregation, homo-
morphic encryption, and differential privacy. Model 
aggregation involves combining participants’ model 

parameters to train a global model, thereby circum-
venting the transmission of original data during train-
ing. Homomorphic encryption allows participants to 
compute and transmit encrypted data without expos-
ing the original data, including data, model parame-
ters, gradients, and weights. Differential privacy aims 
to ensure that the outputs of GNN computations are 
not influenced by changes in specific records. Nota-
bly, graph federated learning often employs a com-
bination of these privacy technologies for enhanced 
protection.

4.4. Adversarial Privacy Preserving
Recent studies [93, 41, 107] have demonstrated that 
attackers can exploit trained GNN models to extract 
private information from graph data. To counter such 
sensitive information leakage, adversarial learning 
[93] can be employed to create graph data fortified with 
privacy protection. The fundamental principle of ad-
versarial privacy preservation involves identifying the 
most effective adversarial examples through sophisti-
cated adversarial attacks (internal maximization opti-
mization), incorporating these examples into the data-
set for adversarial training. This enhances the model’s 
expressive power and aids in discovering the optimal 
adversarial model through a training process focused 
on minimizing the loss function (external minimiza-
tion optimization). This approach significantly bol-
sters the robustness and privacy defense mechanisms 
of the GNNs. Figure 4 [135] illustrates the overarching 
framework of graph adversarial attacks.

Figure 4 
Graph neural network adversarial attack framework [135]
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The adversarial nature of GNNs has been a subject 
of extensive research. Zhang et al. [121] developed 
a defense mechanism called GNNGuard, to 
protect GNNs from various attacks that disrupt 
graph-structured data during the training phase. 
The method can be directly incorporated into any 
GNN model. The primary methodology involves 
detecting and quantifying graph structures along 
with the relationship between node features. After 
quantification, higher weights are assigned to 
edges connecting similar nodes, while edges 
between irrelevant nodes are pruned. This process 
helps in mitigating the negative effects of 
adversarial attacks. Wang et al. [93] proposed a 
privacy-preserving graph representation learning 
framework. The framework tackles two problem 
scenarios: link prediction with node privacy 
protection and node classification with link 
privacy protection. The researchers express these 
two scenarios through two mutual information 
objectives and employ variational processing to 

resolve the issue of calculating the posterior 
distribution of mutual information items for 
practical applications. Hsieh et al. [41] 
proposed a graph perturbation method, 
NetFence, to protect the privacy of graph 
data nodes while also countering adversarial 
attacks on GNNs. This is achieved by 
modifying the graph structure, i.e., deleting 
an edge and adding a new one. The 
perturbed graph aims to reduce the 
prediction confidence of the private label 
while maintaining the target label’s 
prediction confidence. This method strikes a 
balance between reducing privacy leakage 
risks and maintaining data utility. Xie et al. 
[107] first used a robust design in graph 
neural architecture search. The authors 
propose a method to automatically select the 
most appropriate defense strategy. They 
designed a metric for robustness and used 
evolutionary algorithms along with a single-
path one-shot graph framework to search for 
the most robust architecture. Even under 
severe poisoning attacks, this approach can 
achieve state-of-the-art performance. 

In summary, a variety of adversarial attack 
algorithms are employed to identify privacy 
breaches in GNNs. The existing literature 
reveals that prevalent defense and protection 
strategies encompass:  

(1) Adversarial training [16, 41], which 
integrates adversarial and clean samples for 
hybrid training, thereby augmenting the 
model’s resilience against known adversarial 
attacks; 

(2) Adversarial perturbation detection [33, 
107, 121, 122], which discerns differences 
between adversarial and clean samples using 
statistical and geometric features, and 
subsequently modifies the graph structure 
based on these findings; 

(3) Leveraging the attention mechanism [16, 
86], this approach trains the model and 
penalizes adversarial samples to yield a 
highly robust GNN model. Additionally, 
purifying the disturbance map before sample 
involvement in model training [52, 47] is an 
effective method to mitigate the effects of 
adversarial attacks. Overall, the primary goal 
of adversarial learning-based GNN privacy 
protection is to bolster the model’s 
robustness, thereby safeguarding the privacy 
of graph data. 

4.5. Privacy Defense Capability 
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The adversarial nature of GNNs has been a subject of 
extensive research. Zhang et al. [121] developed a de-
fense mechanism called GNNGuard, to protect GNNs 
from various attacks that disrupt graph-structured 
data during the training phase. The method can be di-
rectly incorporated into any GNN model. The prima-
ry methodology involves detecting and quantifying 
graph structures along with the relationship between 
node features. After quantification, higher weights 
are assigned to edges connecting similar nodes, while 
edges between irrelevant nodes are pruned. This 
process helps in mitigating the negative effects of 
adversarial attacks. Wang et al. [93] proposed a priva-
cy-preserving graph representation learning frame-
work. The framework tackles two problem scenari-
os: link prediction with node privacy protection and 
node classification with link privacy protection. The 
researchers express these two scenarios through two 
mutual information objectives and employ variation-
al processing to resolve the issue of calculating the 
posterior distribution of mutual information items 
for practical applications. Hsieh et al. [41] proposed 
a graph perturbation method, NetFence, to protect 
the privacy of graph data nodes while also counter-
ing adversarial attacks on GNNs. This is achieved by 
modifying the graph structure, i.e., deleting an edge 
and adding a new one. The perturbed graph aims to 
reduce the prediction confidence of the private label 
while maintaining the target label’s prediction confi-
dence. This method strikes a balance between reduc-
ing privacy leakage risks and maintaining data utili-
ty. Xie et al. [107] first used a robust design in graph 
neural architecture search. The authors propose a 
method to automatically select the most appropriate 
defense strategy. They designed a metric for robust-
ness and used evolutionary algorithms along with a 
single-path one-shot graph framework to search for 
the most robust architecture. Even under severe poi-
soning attacks, this approach can achieve state-of-
the-art performance.
In summary, a variety of adversarial attack algorithms 
are employed to identify privacy breaches in GNNs. 
The existing literature reveals that prevalent defense 
and protection strategies encompass: 
1 Adversarial training [16, 41], which integrates ad-

versarial and clean samples for hybrid training, 
thereby augmenting the model’s resilience against 
known adversarial attacks;

2 Adversarial perturbation detection [33, 107, 121, 
122], which discerns differences between adver-
sarial and clean samples using statistical and geo-
metric features, and subsequently modifies the 
graph structure based on these findings;

3 Leveraging the attention mechanism [16, 86], this 
approach trains the model and penalizes adver-
sarial samples to yield a highly robust GNN model. 
Additionally, purifying the disturbance map before 
sample involvement in model training [52, 47] is an 
effective method to mitigate the effects of adver-
sarial attacks. Overall, the primary goal of adver-
sarial learning-based GNN privacy protection is to 
bolster the model’s robustness, thereby safeguard-
ing the privacy of graph data.

4.5. Privacy Defense Capability Evaluation 
Criteria
Similar to the challenges faced in evaluating privacy 
defense mechanisms in traditional machine learning, 
GNNs also suffer from the absence of unified or spe-
cialized standards for assessing privacy defense capa-
bilities. Evaluation methodologies vary significantly 
across research efforts, largely depending on the spe-

Table 6
GNN privacy defense capability evaluation metric

Evaluation metric Ref.

Accuracy

[75], [93], [135], [16], [33], [54], 
[35], [119], [110], [15], [40], [50], 
[65], [8], [77], [68], [103], [29], 

[28], [133], [53] [41], [107], [121], 
[122], [52], [47]

Area under curve [93], [50], [65], [122], [52]

Mean-square error [47]

Structure similarity [89], [131]

Privacy-utility [65], [103]

Mean absolute error [47], [76]

Relative error [44], [47]

Root mean square error [104], [103]

Mean square displacement [74], [29]

Average attack success rate [50], [76]

Recall rate [8], [77]

Macro F1 [120], [65], [8], [77], [52]
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cific tasks and application contexts. For instance, in 
social recommendation systems, tasks such as social, 
cross-domain, and behavioral recommendations are 
common, requiring operations like node classifica-
tion and prediction, link prediction, and clustering. 
Metrics such as classification accuracy, prediction 
accuracy, similarity assessment, and class coeffi-
cients are employed for evaluation. In the context of 
adversarial privacy protection for classification tasks, 
metrics like classification accuracy, average attack 
success rate, misclassification rate, and mean square 
error are used for measurement. Table 6 collates and 
summarizes the evaluation criteria from representa-
tive studies on GNN privacy defense. 

5. Datasets for Research on Privacy 
Attacks and Defenses in GNNs
In the realm of GNN privacy defense research, except 
for a handful of studies that utilize simulated data-
sets (such as ref. [35, 65, 43]) and proprietary datasets 
(such as ref. [35]), the majority rely on public datasets 
(or their subsets). Consequently, this section focuses 
on the utilization of public datasets. 
Table 7 organizes and enumerates the fundamental 
characteristics of public datasets commonly imple-
mented in GNN privacy defense research, including 
a tally of their usage in literature. These datasets 

Table 7
Commonly used public datasets for GNNs privacy attacks and defenses research.

Dataset Graphs Nodes Edges Features Labels Ref.

Cora 1 2708 5429 1433 7 [75], [93], [135], [16], [102], [33], [38], [89], [15], [50], 
[8], [68],[133], [53], [41], [107], [122], [47], [76], [97]

Citeseer 1 3327 4732 3703 6 [93], [135], [16], [33], [102], [38], [89], [15], [50], [8], 
[68], [133], [53], [41], [107], [122], [47], [76], [97]

PubMed 1 19717 44338 500 3 [75], [93], [16], [33], [15], [50], [8], [68], [28], [133], 
[53], [107], [47]

DBLP 1 4107340 36624464 — — [110]
Arxiv 1 169343 295319 128 40 [70], [15], [8]
Facebook 1 — — — — [75], [50], [77]
LastFM 1 7624 27806 7842 18 [75], [38]
Reddit 1 232965 11606919 602 41 [70], [119], [40], [8], [77], [53], [47]
Orkut 1 3072441 117185083 — — [35], [44]
Elliptic 1 203769 234355 166 2 [89], [47], [76]
YouTube 1 1138499 2990443 — — [35]
LiveJournal 1 4847571 68993773 — — [35]
Amazon 1 8500 48766 767 10 [70], [77]
MovieLens-100K 1 943 100000 1682 5 [104], [120], [103]
MovieLens-1M 1 6040 1000209 3592 5 [104], [103], [47]
MovieLens-10M 1 138493 20000263 27278 5 [104], [103]
Yahoo 1 3000 5335 3000 100 [104], [103]
Douban 1 129490 16830839 58541 5 [104], [103]
Polblogs 1 1490 19025 — 2 [102], [135], [16], [122], [47], [97]
RaFD 67 67 536 — 8 [61]
XM2VTS 295 295 2360 — 8 [61]
CK+ 123 593 — — 7 [61]
Flickr 1 89250 449878 500 7 [104], [89], [35], [8], [103], [28], [53], [76]
Twitch 1 7126 35324 2545 2 [89], [76]
IMDB 1 896308 57064358 428440 2 [110], [44]
Physics 1 495924 34493 8415 8 [119], [28], [133], [53]
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originate from various application fields, predom-
inantly encompassing citation network datasets, 
social network datasets, image datasets, medical 
datasets, and biochemistry datasets. For instance, 
Cora, Citeseer, PubMed, DBLP, Arxiv, and PIT are 
citation network datasets, frequently applied to 
node classification and link prediction tasks; Face-
book, LastFM, Reddit, Orkut, Elliptic, LiveJournal, 
MovieLens, Yahoo, Douban, and Polblogs are social 
network datasets, typically used for social recom-
mendation, product recommendation, community 
discovery, and similar tasks; RaFD, XM2VTS, CK+, 
Flickr, Twitch, IMDB, and Yale are image datasets; 
In addition, certain literature makes use of biochem-
ical datasets, such as NCI [38, 87] and OVCAR [38, 
101]. Considering space constraints, this section 
only includes datasets that are commonly used in 
GNN privacy defense research, but these selections 
remain representative, as the choice of datasets for 
attack and defense research primarily aligns with 
the specific scenarios and tasks of interest.

6. Future Directions
With the ongoing advancements in graph data repre-
sentation, the availability of GNN model, and training 
algorithms, GNNs have emerged as a robust and prag-
matic tool in graph machine learning. Their develop-
ment has paved the way for expanded applications 
in graph data. On this solid foundation, the privacy 
issues and corresponding attack and defense tech-
nologies related to GNNs are increasingly garnering 
attention. Current research efforts are addressing the 
privacy concerns of GNNs in various application con-
texts, yielding promising outcomes and practical im-
plementations. However, a thorough review and anal-
ysis of the research on privacy attacks and defenses 
in GNNs reveals numerous unresolved challenges in 
this domain. Specifically, future research should fo-
cus on the following specific directions.

6.1. Balancing Privacy and Utility of Privacy 
Protection Mechanisms
Implementing privacy protection in machine learn-
ing often comes at the cost of model or data utility. 
The relationship between privacy and utility indi-
cates that as the degree of privacy defense increases, 

the utility of the model and/or data decreases. Conse-
quently, striking a balance between privacy protec-
tion and utility is crucial.
The complex structure of graph data complicates the 
measurement of its privacy and utility. Some studies 
have assessed the privacy and utility of proposed pri-
vacy protection schemes [20]. For instance, privacy is 
measured through factors such as privacy budget and 
time overhead [67], while utility is evaluated using 
metrics like accuracy. Literature [67] measures the 
privacy of graphs by calculating the re-identification 
rate and assesses utility using statistical indicators 
such as the number of edges, the average degree of 
nodes, and the degree variance of nodes in the graph 
data. However, current privacy quantification meth-
ods for GNNs are relatively simple, lacking efficient 
approaches. Furthermore, the optimal trade-off strat-
egy between privacy and utility remains a key chal-
lenge for future privacy protection research.

6.2. Research on GNN Privacy Attack 
Performance Optimization
There have been numerous studies investigating 
privacy attacks on GNN models, with the objective 
of enhancing their robustness and generalization 
capabilities. Existing research predominantly cen-
ters on the exploration of privacy attack methods 
tailored to specific GNN models under particular 
assumptions. However, a notable research gap exists 
in addressing the occurrence of multiple privacy at-
tacks simultaneously. Specifically, research on the 
performance optimization of privacy attacks based 
on GNN models can be conducted from the following 
six aspects: (1) Optimize existing GNN model attack 
methods by fully leveraging the characteristics of 
graph sparsity and feature smoothness. (2) Extend 
privacy attack methods to white box settings: Cur-
rent privacy attacks are primarily based on black 
box settings, highlighting the urgent need to explore 
privacy attack methods that extend to GNN models 
in white box settings. (3) Explore research on model 
reuse attacks based on GNNs. (4) Conduct joint at-
tack performance and correlation analysis on the si-
multaneous occurrence of multiple privacy attacks. 
(5) Explore defense methods in the case of multi-
ple privacy joint attacks, because existing research 
predominantly focuses on defense methods against 
single privacy attacks. (6) Design a comprehensive 
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privacy protection framework [108, 5] to address 
privacy protection issues across all aspects of GNN 
model applications, also a prominent topic for future 
research.

6.3. Research on Dynamic Defense 
Mechanisms Against Large-Scale Graph Data
Studies on defending against privacy attacks have 
primarily focused on small-scale graphs. The adapt-
ability of these methods to large-scale graphs, along 
with their effectiveness and reliability, remains an 
area that necessitates further exploration. Current 
research suggests that existing countermeasures are 
at a significant disadvantage, particularly in the con-
text of adversarial games [45]. Specifically, the ma-
jority of GNN adversarial defense algorithms cur-
rently in use are passive, static, and empirical, and 
thus fail to adapt effectively to the dynamic nature 
of adversarial attack methods. In light of this, future 
research should prioritize defending against combi-
nations of multiple adversarial privacy attacks, ex-
amining the effectiveness and reliability of defense 
mechanisms against privacy attacks on large-scale 
graphs in real-world settings, and developing dy-
namic defense mechanisms to counteract adversar-
ial privacy attacks in GNNs. This will ensure that 
GNN learning models meet the security and reliabil-
ity requirements across various application scenari-
os, even as adversarial attacks continue to evolve.

6.4. Privacy Defense for Personalized Graph 
Federated Learning
The primary challenges faced by privacy defense in 
graph federated learning are twofold: (1) The issue 
of preventing potential data privacy leaks that may 
occur when local client GNN models share model 
parameters during the synthesis of the global GNN 
model. (2) The inability to acquire high-order inter-
action information between clients due to privacy 
restrictions when training data participants only 
contain first-order interactions of local client user 
data [104]. However, the high-order interaction in-
formation is fundamental to the implementation of 
personalized graph federated learning. As strategies 
for personalized graph federated learning continue 
to emerge [16, 117, 85], the design of reasonable mod-
el updates that ensure privacy while simultaneously 
breaking through information isolation to fully utilize 
high-order interactions for enhancing GNN model 

learning in personalized scenarios remains a signifi-
cant challenge.

6.5. Other Research Directions

The five research directions previously mentioned 
stand as promising areas for future exploration in 
the sphere of privacy attack and defense within GNN 
research. Beyond these areas, several other avenues 
warrant investigation: 
1 Beginning at the data processing phase, the design 

and selection of appropriate preprocessing tech-
niques (such as graph purification) is prevent ma-
licious adversarial or toxic data from participating 
in model training. This approach could enhance 
the quality of training data and bolster both data 
and model privacy. 

2 While current research primarily concentrates on 
preventative measures and controls during inci-
dents, there is a dearth of studies addressing reme-
dial actions following data privacy leaks. Data leaks 
could precipitate substantial economic losses and 
potentially severe legal repercussions. Hence, re-
search into post-incident remedial measures is of 
particular importance.

3 The integration of technologies like secure 
multi-party computation and blockchain to con-
struct neural network privacy protection in de-
centralized scenarios is another promising re-
search area.

4 Advanced persistent threat (APT), a long-term and 
highly concealed attack mode, is prevalent in graph 
data application fields, including social networks 
and recommendation systems. Its objective is to 
steal or misappropriate data. Therefore, examin-
ing the APT attack and defense game mechanism 
in GNNs holds practical significance. 

5 Establishing a game model based on the game the-
ory [39], with the purpose of balancing data priva-
cy and utility [113], and combine it with techniques 
such as reinforcement learning to apply it to GNN 
models or data privacy defense, is a worthwhile re-
search direction. 

6 The exploration of whether privacy defense tech-
nology itself may leak privacy or escalate the com-
plexity of privacy protection is also a significant 
area of research.
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7. Conclusions
In this survey, we systematically describe and analyze 
the latest research achievements in the field of priva-
cy attacks and defense mechanisms for GNNs, there-
by filling a gap in the existing literature. Specifically, 
the survey commences with an introduction to GNNs 
and their variants, along with the privacy risks they 
encounter. Subsequently, it offers a comprehensive 
classification, analysis, and summary of research en-
deavors within the domain of privacy attacks and de-
fenses in GNNs, encompassing the strengths, weak-
nesses, commonly utilized datasets, and evaluation 

methodologies of current studies. Finally, the survey 
anticipates potential future research directions in 
this field.

Acknowledgement
This paper is supported by National Natural Science 
Foundation of China (No. 61972366 and 62366013), 
and Project for Enhancing Young and Middle-aged 
Teacher’s Research Ability in Colleges of Guangxi 
(No. 2022KY0702).

Conflicts of Interest
The authors declare that there is no conflict of interest.

References 
1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., 

Mironov, I., Talwar, K., Zhang, L. Deep Learning 
with Differential Privacy. In Proceedings of the 2016 
ACM SIGSAC conference on computer and com-
munications security, 2016, 308-318. https://doi.
org/10.1145/2976749.2978318

2. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., 
Lerman, K., Harutyunyan, H., Steeg, G. V., Galstyan, A. 
Mixhop: Higher-order Graph Convolutional Architec-
tures via Sparsified Neighborhood Mixing. In Interna-
tional Conference on Machine Learning, PMLR, 2019, 
21-29. https://doi.org/10.48550/arXiv.1905.00067

3. Acharya, J., Sun, Z., Zhang, H. Communication Effi-
cient, Sample Optimal, Linear Time Locally Private 
Discrete Distribution Estimation. arxiv preprint arx-
iv:1802.04705, 2018.

4. Acharya, J., Sun, Z., Zhang, H. Hadamard Response: 
Estimating Distributions Privately, Efficiently, and 
with Little Communication. In The 22nd Internation-
al Conference on Artificial Intelligence and Statistics, 
PMLR, 2019, 1120-1129. https://doi.org/10.48550/arX-
iv.1802.04705

5. Akter, M., Moustafa, N., Lynar, T., Razzak, I. Edge Intel-
ligence: Federated Learning-Based Privacy Protection 
Framework for Smart Healthcare Systems. IEEE Jour-
nal of Biomedical and Health Informatics, 2022, 26(12), 
5805-5816. https://doi.org/10.1109/JBHI.2022.3192648

6. Arachchige, P. C. M., Bertok, P., Khalil, I., Liu, D., Cam-
tepe, S., Atiquzzaman, M. Local Differential Privacy 
for Deep Learning. IEEE Internet of Things Jour-
nal, 2019, 7(7), 5827-5842. https://doi.org/10.1109/
JIOT.2019.2952146

7. Atli, B. G., Szyller, S., Juuti, M., Marchal, S., Asokan, 
N. Extraction of Complex DNN Models: Real Threat 
or Boogeyman? In Engineering Dependable and Se-
cure Machine Learning Systems: Third International 
Workshop, EDSMLS 2020, New York City, NY, USA, 
February 7, 2020, Revised Selected Papers, 2020, 42-
57. https://doi.org/10.1007/978-3-030-62144-5_4

8. Ayle, M., Schuchardt, J., Gosch, L., Zügner, D., 
Günnemann, S. Training differentially private graph 
neural networks with random walk sampling. arxiv pre-
print arxiv:2301.00738, 2023. https://doi.org/10.48550/
arXiv.2301.00738

9. Backstrom, L., Dwork, C., Kleinberg, J. Wherefore 
Art Thou R3579X? Anonymized Social Networks, 
Hidden Patterns, and Structural Steganography. 
In Proceedings of the 16th International Confer-
ence on World Wide Web, 2007, 181-190. https://doi.
org/10.1145/1242572.1242598

10. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSher-
ry, F., Talwar, K. Privacy, Accuracy, and Consisten-
cy Too: A Holistic Solution to Contingency Table 
Release. In Proceedings of the twenty-sixth ACM 
SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, 2007, 273-282. https://doi.
org/10.1145/1265530.1265569

11. Bojchevski, A., Günnemann, S. Adversarial Attacks on 
Node Embeddings via Graph Poisoning. In Interna-
tional Conference on Machine Learning, PMLR, 2019, 
695-704. https://doi.org/10.48550/arXiv.1809.01093

12. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., Van-
dergheynst, P. Geometric Deep Learning: Going Be-
yond Euclidean Data. IEEE Signal Processing Mag-



1273Information Technology and Control 2024/4/53

azine, 2017, 34(4), 18-42. https://doi.org/10.1109/
MSP.2017.2693418

13. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y. Spectral 
Networks and Locally Connected Networks on Graphs. 
arXiv Preprint arXiv:1312.6203, 2013. https://doi.
org/10.48550/arXiv.1312.6203

14. Chen, C., Zheng, F., Cui, J., Cao, Y., Liu, G., Wu, J., Zhou, 
J. Survey and Open Problems in Privacy-Preserving 
Knowledge Graph: Merging, Query, Representation, 
Completion, and Applications. International Jour-
nal of Machine Learning and Cybernetics, 2024, 1-20. 
https://doi.org/10.1007/s13042-024-02106-6

15. Chen, C., Zhou, J., Zheng, L., Wu, H., Lyu, L., Wu, J., 
Liu, Z., Wang, W., Zheng, X. Vertically federated graph 
neural network for privacy-preserving node classifica-
tion. arxiv preprint arxiv:2005.11903, 2020. https://doi.
org/10.48550/arXiv.2005.11903

16. Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, 
C. Graph-Fraudster: Adversarial Attacks on Graph 
Neural Network-Based Vertical Federated Learning. 
IEEE Transactions on Computational Social Sys-
tems, 2022, 10(2), 492-506. https://doi.org/10.1109/
TCSS.2022.3161016

17. Chen, L., Li, J., Peng, J., Xie, T., Cao, Z., Xu, K., He, X., 
Zheng, Z., Wu, B. A Survey of Adversarial Learning 
on Graphs. arXiv Preprint arXiv:2003.05730, 2020. 
https://doi.org/10.48550/arXiv.2003.05730

18. Conti, M., Li, J., Picek, S., Xu, J. Label-Only Member-
ship Inference Attack Against Node-Level Graph Neu-
ral Networks. In Proceedings of the 15th ACM Work-
shop on Artificial Intelligence and Security, 2022, 1-12. 
https://doi.org/10.1145/3560830.3563734

19. Cunha, M., Mendes, R., Vilela, J. P. A Survey of Priva-
cy-Preserving Mechanisms for Heterogeneous Data 
Types. Computer Science Review, 2021, 41, 100403. 
https://doi.org/10.1016/j.cosrev.2021.100403

20. Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., Tang, 
J., Wang, S. A Comprehensive Survey on Trustworthy 
Graph Neural Networks: Privacy, Robustness, Fairness, 
and Explainability. arXiv Preprint arXiv:2204.08570, 
2022. https://doi.org/10.48550/arXiv.2204.08570

21. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., 
Song, L. Adversarial Attack on Graph Structured Data. 
In International Conference on Machine Learning, 
PMLR, 2018, 1115-1124. https://doi.org/10.48550/arX-
iv.1806.02371

22. DeFazio, D., Ramesh, A. Adversarial Model Extraction 
on Graph Neural Networks. arXiv Preprint arX-
iv:1912.07721, 2019.

23. Ding, R., Duan, S., Xu, X., Fei, Y. VertexSerum: Poison-
ing Graph Neural Networks for Link Inference. In Pro-
ceedings of the IEEE/CVF International Conference 
on Computer Vision, 2023, 4532-4541. https://doi.
org/10.1109/ICCV51070.2023.00418

24. Duddu, V., Boutet, A., Shejwalkar, V. Quantifying Privacy 
Leakage in Graph Embedding. In MobiQuitous 2020 - 
17th EAI International Conference on Mobile and Ubiq-
uitous Systems: Computing, Networking and Services, 
2020, 76-85. https://doi.org/10.1145/3448891.3448939

25. Dwork, C., McSherry, F., Nissim, K., Smith, A. Calibrat-
ing Noise to Sensitivity in Private Data Analysis. In 
Theory of Cryptography: Third Theory of Cryptogra-
phy Conference, TCC 2006, New York, NY, USA, March 
4-7, 2006. Proceedings 3, 2006, 265-284. https://doi.
org/10.1007/11681878_14

26. Fedeli, S., Schain, F., Imtiaz, S., Abbas, Z., Vlassov, V. 
Privacy Preserving Survival Prediction. In 2021 IEEE 
International Conference on Big Data (Big Data), 
IEEE, 2021, 4600-4608. https://doi.org/10.1109/Big-
Data52589.2021.9672036

27. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A. Protein Inter-
face Prediction Using Graph Convolutional Networks. 
Advances in Neural Information Processing Systems, 
2017, 30.

28. Fu, X., Chen, Z., Zhang, B., Chen, C., Li, J. Federated 
Graph Learning with Structure Proxy Alignment. In 
Proceedings of the 30th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining, 2024, 827-838. 
https://doi.org/10.1145/3637528.3671717

29. Gauthier, F., Gogineni, V. C., Werner, S., Huang, Y. F., 
Kuh, A. Personalized Graph Federated Learning with 
Differential Privacy. IEEE Transactions on Signal and 
Information Processing over Networks, 2023, 9, 736-
749. https://doi.org/10.1109/TSIPN.2023.3325963

30. Gong, X., Wang, Q., Chen, Y., Yang, W., Jiang, X. Model 
Extraction Attacks and Defenses on Cloud-Based Ma-
chine Learning Models. IEEE Communications Mag-
azine, 2020, 58(12), 83-89. https://doi.org/10.1109/
MCOM.001.2000196

31. Gu, X., Cho, K., Ha, J. W., Kim, S. Dialogwae: Multimod-
al Response Generation with Conditional Wasserstein 
Auto-encoder. arxiv preprint arxiv:1805.12352, 2018. 
https://doi.org/10.48550/arXiv.1805.12352

32. Guan, F., Zhu, T., Zhou, W., Choo, K. K. R. Graph Neural 
Networks: A Survey on the Links Between Privacy and 
Security. Artificial Intelligence Review, 2024, 57(2), 
40. https://doi.org/10.1007/s10462-023-10656-4



Information Technology and Control 2024/4/531274

33. Guohan, H., Zhang, D. GRD-GNN: Graph Reconstruc-
tion Defense for Graph Neural Network. Journal of 
Computer Research and Development, 2021, 58(5), 
1075-1091.

34. Hamilton, W., Ying, Z., Leskovec, J. Inductive Repre-
sentation Learning on Large Graphs. Advances in Neu-
ral Information Processing Systems, 2017, 30. https://
doi.org/10.48550/arXiv.1706.02216

35. Hay, M., Li, C., Miklau, G., Jensen, D. Accurate Estima-
tion of the Degree Distribution of Private Networks. In 
2009 Ninth IEEE International Conference on Data 
Mining, IEEE, 2009, 169-178. https://doi.org/10.1109/
ICDM.2009.11

36. Hay, M., Rastogi, V., Miklau, G., Suciu, D. Boosting the 
Accuracy of Differentially-Private Histograms through 
Consistency. arxiv preprint arxiv:0904.0942, 2009. 
https://doi.org/10.48550/arXiv.0904.0942

37. He, X., Jia, J., Backes, M., Gong, N. Z., Zhang, Y. Steal-
ing Links from Graph Neural Networks. In 30th USE-
NIX Security Symposium (USENIX Security 21), 2021, 
2669-2686. https://doi.org/10.48550/arXiv.2005.02131

38. He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., Zhang, 
Y. Node-Level Membership Inference Attacks 
Against Graph Neural Networks. arXiv Preprint arX-
iv:2102.05429, 2022. https://doi.org/10.48550/arX-
iv.2102.05429

39. Heng, X., Tianqiong, Z., Lefeng, Z. Machine Unlearning: 
A Survey. In: ACM Comput. Surv., 2023, 56(1), 1-36. 
https://doi.org/10.1145/3603620

40. Hidano, S., Murakami, T. Degree-preserving Random-
ized Response for Graph Neural Networks Under Local 
Differential Privacy. arxiv preprint arxiv:2202.10209, 
2022. https://doi.org/10.48550/arXiv.2202.10209

41. Hsieh, I. C., Li, C. T. Netfense: Adversarial Defenses 
Against Privacy Attacks on Neural Networks for Graph 
Data. IEEE Transactions on Knowledge and Data Engi-
neering, 2021, 35(1), 796-809. https://doi.org/10.1109/
TKDE.2021.3087515

42. Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., Zhang, 
X. Membership Inference Attacks on Machine Learn-
ing: A Survey. ACM Computing Surveys (CSUR), 2022, 
54(11s), 1-37. https://doi.org/10.1145/3523273

43. Huang, H., Zhang, D., Wang, K., Zhu, Y., Wang, R. 
Weighted Large-scale Social Network Data Privacy 
Protection Method. Journal of Computer Research and 
Development, 2020, 57(2), 363.

44. Imola, J., Murakami, T., Chaudhuri, K. Locally Differ-
entially Private Analysis of Graph Statistics. In 30th 

USENIX Security Symposium (USENIX Security 21), 
2021, 983-1000.

45. Ji, S. L., Du, T. Y., Li, J. F., Shen, C., Li, B. Security and 
Privacy of Machine Learning Models: A Survey. Ruan 
Jian Xue Bao/J Softw, 2021, 32(1), 41-67. https://doi.
org/10.13328/j.cnki.jos.006131

46. Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X. Ap-
plications of Differential Privacy in Social Network 
Analysis: A Survey. IEEE Transactions on Knowledge 
and Data Engineering, 2021, 35(1), 108-127. https://doi.
org/10.1109/TKDE.2021.3073062

47. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J. Graph 
Structure Learning for Robust Graph Neural Networks. 
In Proceedings of the 26th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
2020, 66-74. https://doi.org/10.1145/3394486.3403049

48. Ju, M., Fan, Y., Ye, Y., Zhao, L. Black-Box Node Injec-
tion Attack for Graph Neural Networks. arXiv Preprint 
arXiv:2202.09389, 2022. https://doi.org/10.48550/arX-
iv.2202.09389

49. Kipf, T. N., Welling, M. Variational Graph Auto-encod-
ers. arxiv preprint arxiv:1611.07308, 2016. https://doi.
org/10.48550/arXiv.1611.07308

50. Kolluri, A., Baluta, T., Hooi, B., Saxena, P. LPGNet: Link 
Private Graph Networks for Node Classification. In 
Proceedings of the 2022 ACM SIGSAC Conference on 
Computer and Communications Security, 2022, 1813-
1827. https://doi.org/10.1145/3548606.3560705

51. Konecný, J., McMahan, H. B., Yu, F. X., Richtárik, P., 
Suresh, A. T., Bacon, D. Federated Learning: Strate-
gies for Improving Communication Efficiency. arx-
iv preprint arxiv:1610.05492, 2016, 8. https://doi.
org/10.48550/arXiv.1610.05492

52. Li, K., Luo, G., Ye, Y., Li, W., Ji, S., Cai, Z. Adversarial Pri-
vacy-Preserving Graph Embedding Against Inference 
Attack. IEEE Internet of Things Journal, 2020, 8(8), 
6904-6915. https://doi.org/10.1109/JIOT.2020.3036583

53. Li, X., Wu, Z., Zhang, W., Sun, H., Li, R. H., Wang, G. 
AdaFGL: A New Paradigm for Federated Node Classi-
fication with Topology Heterogeneity. arxiv preprint 
arxiv:2401.11750, 2024. https://doi.org/10.48550/arX-
iv.2401.11750 

54. Li, Y., Purcell, M., Rakotoarivelo, T., Smith, D., Ranba-
duge, T., Ng, K. S. Private Graph Data Release: A Survey. 
ACM Computing Surveys, 2023, 55(11), 1-39. https://
doi.org/10.1145/3569085

55. Lin, X., Zhou, C., Wu, J., Yang, H., Wang, H., Cao, Y., 
Wang, B. Exploratory Adversarial Attacks on Graph 



1275Information Technology and Control 2024/4/53

Neural Networks for Semi-Supervised Node Classifi-
cation. Pattern Recognition, 133, 2023, 109042. https://
doi.org/10.1016/j.patcog.2022.109042

56. Liu, K., Terzi, E. Towards Identity Anonymization on 
Graphs. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, 2008, 
93-106. https://doi.org/10.1145/1376616.1376629

57. Liu, L., Zhang, J., Song, S. H., Letaief, K. B. Client-
edge-cloud Hierarchical Federated Learning. In ICC 
2020-2020 IEEE international conference on com-
munications (ICC), 2020, 1-6. https://doi.org/10.1109/
ICC40277.2020.9148862

58. Liu, Z., Zhang, X., Chen, C., Lin, S., Li, J. Membership 
Inference Attacks Against Robust Graph Neural Net-
work. In International Symposium on Cyberspace 
Safety and Security, Springer, 2022, 259-273. https://
doi.org/10.1007/978-3-031-18067-5_19

59. Liu, Z., Zhou, J. Introduction to Graph Neural Networks. 
Springer Nature, 2022. https://doi.org/10.1007/978-
981-16-6054-2_7

60. Majeed, A., Lee, S. Anonymization Techniques for Pri-
vacy Preserving Data Publishing: A Comprehensive 
Survey. IEEE access, 2020,9, 8512-8545. https://doi.
org/10.1109/ACCESS.2020.3045700

61. Meden, B., Emeršič, Ž., Štruc, V., Peer, P. k-Same-Net: 
k-Anonymity with Generative Deep Neural Networks 
for Face Deidentification. Entropy, 2018, 20(1), 60. 
https://doi.org/10.3390/e20010060

62. Mironov, I. Rényi Differential Privacy. In 2017 IEEE 
30th computer security foundations symposium 
(CSF), IEEE, 2017, 263-275. https://doi.org/10.1109/
CSF.2017.11

63. Mittal, P., Papamanthou, C., Song, D. Preserving Link 
Privacy in Social Network Based Systems. arXiv Pre-
print arXiv:1208.6189, 2012. https://doi.org/10.48550/
arXiv.1208.618

64. Mudiyanselage, T. B., Lei, X., Senanayake, N., Zhang, Y., 
Pan, Y. Predicting CircRNA Disease Associations Using 
Novel Node Classification and Link Prediction Models 
on Graph Convolutional Networks. Methods, 2022, 198, 
32-44. https://doi.org/10.1016/j.ymeth.2021.10.008

65. Mueller, T. T., Paetzold, J. C., Prabhakar, C., Usynin, 
D., Rueckert, D., Kaissis, G. Differentially Private 
Graph Classification with Gnns. arxiv preprint arx-
iv:2202.02575, 2022. https://doi.org/10.48550/arX-
iv.2202.02575

66. Mueller, T. T., Usynin, D., Paetzold, J. C., Rueckert, D., 
Kaissis, G. SoK: Differential Privacy on Graph-Struc-

tured Data. arxiv preprint arxiv:2203.09205, 2022. 
https://doi.org/10.48550/arXiv.2203.09205

67. Nguyen, H. H., Imine, A., Rusinowitch, M. Anonymiz-
ing Social Graphs via Uncertainty Semantics. In Pro-
ceedings of the 10th ACM Symposium on Information, 
Computer and Communications Security, 2015, 495-
506. https://doi.org/10.1145/2714576.2714584

68. Ni, X., Xu, X., Lyu, L., Meng, C., Wang, W. A Vertical 
Federated Learning Framework for Graph Convolu-
tional Network. arxiv preprint arxiv:2106.11593, 2021. 
https://doi.org/10.48550/arXiv.2106.11593

69. Olatunji, I. E., Hizber, A., Sihlovec, O., Khosla, M. Does 
Black-Box Attribute Inference Attacks on Graph Neu-
ral Networks Constitute Privacy Risk? arXiv Preprint 
arXiv:2306.00578, 2023. https://doi.org/10.48550/arX-
iv.2306.00578

70. Olatunji, I. E., Nejdl, W., Khosla, M. Membership Infer-
ence Attack on Graph Neural Networks. In 2021 Third 
IEEE International Conference on Trust, Privacy 
and Security in Intelligent Systems and Applications 
(TPS-ISA), 2021, 11-20. https://doi.org/10.1109/TPSI-
SA52974.2021.00002

71. Olatunji, I. E., Rathee, M., Funke, T., Khosla, M. Pri-
vate Graph Extraction via Feature Explanations. 
arXiv Preprint arXiv:2206.14724, 2022. https://doi.
org/10.56553/popets-2023-0041

72. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., 
Talwar, K. Semi-supervised Knowledge Transfer for 
Deep Learning From Private Training Data. arxiv pre-
print arxiv:1610.05755, 2016. https://doi.org/10.48550/
arXiv.1610.05755

73. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J. Deep-
Inf: Social Influence Prediction with Deep Learning. In 
Proceedings of the 24th ACM SIGKDD International 
Conference on Knowledge Discovery Data Mining, 2018, 
2110-2119. https://doi.org/10.1145/3219819.3220077

74. Rizk, E., Sayed, A. H. A Graph Federated Architec-
ture with Privacy Preserving Learning. In 2021 IEEE 
22nd International Workshop on Signal Processing 
Advances in Wireless Communications (SPAWC), 
IEEE, 2021, 131-135. https://doi.org/10.1109/
SPAWC51858.2021.9593148

75. Sajadmanesh, S., Gatica-Perez, D. Locally Private 
Graph Neural Networks. In Proceedings of the 2021 
ACM SIGSAC Conference on Computer and Com-
munications Security, 2021, 2130-2145. https://doi.
org/10.1145/3460120.3484565

76. Sajadmanesh, S., Gatica-Perez, D. When Differential 
Privacy Meets Graph Neural Networks. arxiv preprint 



Information Technology and Control 2024/4/531276

arxiv:2006.05535, 2020. https://doi.org/10.48550/arX-
iv.2006.05535

77. Sajadmanesh, S., Shamsabadi, A. S., Bellet, A., Gati-
ca-Perez, D. {GAP}: Differentially Private Graph Neu-
ral Networks with Aggregation Perturbation. In 32nd 
USENIX Security Symposium (USENIX Security 
23), 2023, 3223-3240. https://doi.org/10.48550/arX-
iv.2203.00949

78. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., 
Monfardini, G. The Graph Neural Network Model. 
IEEE Transactions on Neural Networks, 2008, 20(1), 
61-80. https://doi.org/10.1109/TNN.2008.2005605

79. Scarselli, F., Tsoi, A. C., Gori, M., Hagenbuchner, M. 
Graphical-Based Learning Environments for Pattern 
Recognition. In Structural, Syntactic, and Statistical Pat-
tern Recognition: Joint IAPR International Workshops, 
SSPR 2004 and SPR 2004, Lisbon, Portugal, 2004, 42-56. 
https://doi.org/10.1007/978-3-540-27868-9_4

80. Shaheen, M., Farooq, M. S., Umer, T., Kim, B. S. Appli-
cations of Federated Learning; Taxonomy, challenges, 
and Research Trends. Electronics, 2022, 11(4), 670. 
https://doi.org/10.3390/electronics11040670

81. Sharma, K., Verma, S., Medya, S., Bhattacharya, A., 
Ranu, S. Task and Model Agnostic Adversarial Attack 
on Graph Neural Networks. In Proceedings of the AAAI 
Conference on Artificial Intelligence, 2023, 37(12), 
15091-15099. https://doi.org/10.1609/aaai.v37i12.26761

82. Shen, Y., He, X., Han, Y., Zhang, Y. Model Stealing At-
tacks Against Inductive Graph Neural Networks. 
In 2022 IEEE Symposium on Security and Privacy 
(SP), IEEE, 2022, 1175-1192. https://doi.org/10.1109/
SP46214.2022.9833607

83. Sun, L., Dou, Y., Yang, C., Zhang, K., Wang, J., Philip, S. Y., 
He, L., Li, B. Adversarial Attack and Defense on Graph 
Data: A Survey. IEEE Transactions on Knowledge 
and Data Engineering, 2022. https://doi.org/10.1109/
TKDE.2022.3201243

84. Sweeney, L. k-Anonymity: A Model for Protecting Pri-
vacy. International Journal of Uncertainty, Fuzziness 
and Knowledge-Based Systems, 2002, 10(05), 557-570. 
https://doi.org/10.1142/S0218488502001648

85. Tan, Y., Liu, Y., Long, G., Jiang, J., Lu, Q., Zhang, C. 
Federated Learning on Non-iid Graphs Via Structural 
Knowledge Sharing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2023, 37(8), 9953-
9961. https://doi.org/10.1609/aaai.v37i8.26187

86. Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P., Wang, S. 
Transferring Robustness for Graph Neural Net-

work Against Poisoning Attacks. In Proceed-
ings of the 13th International Conference on Web 
Search and Data Mining, 2020, 600-608. https://doi.
org/10.1145/3336191.3371851

87. Tao, S., Cao, Q., Shen, H., Huang, J., Wu, Y., Cheng, X. Single 
Node Injection Attack Against Graph Neural Networks. 
In Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management, 2021, 
1794-1803. https://doi.org/10.1145/3459637.3482393

88. Thompson, B., Yao, D. The Union-Split Algorithm and 
Cluster-Based Anonymization of Social Networks. In 
Proceedings of the 4th International Symposium on In-
formation, Computer, and Communications Security, 
2009, 218-227. https://doi.org/10.1145/1533057.1533088

89. Tian, H., Zheng, X., Zhang, X., Zeng, D. D. ∊-k Anonymiza-
tion and Adversarial Training of Graph Neural Networks 
for Privacy Preservation in Social Networks. Electronic 
Commerce Research and Applications, 2021, 50, 101105. 
https://doi.org/10.1016/j.elerap.2021.101105

90. Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., Ristenpart, 
T. Stealing Machine Learning Models via Prediction 
APIs. In 25th USENIX Security Symposium (USENIX 
Security 16), 2016, 601-618. https://doi.org/10.48550/
arXiv.1609.02943 

91. Velicković, P., Cucurull, G., Casanova, A., Romero, A., 
Lio, P., Bengio, Y. Graph Attention Networks. arXiv Pre-
print arXiv:1710.10903, 2017. https://doi.org/10.48550/
arXiv.1710.10903

92. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R. 
Split Learning for Health: Distributed Deep Learn-
ing without Sharing Raw Patient Data. arxiv preprint 
arxiv:1812.00564, 2018. https://doi.org/10.48550/arX-
iv.1812.00564

93. Wang, B., Guo, J., Li, A., Chen, Y., Li, H. Privacy-Pre-
serving Representation Learning on Graphs: A Mu-
tual Information Perspective. In Proceedings of the 
27th ACM SIGKDD Conference on Knowledge Dis-
covery Data Mining, 2021, 1667-1676. https://doi.
org/10.1145/3447548.3467273

94. Wang, J., Luo, M., Suya, F., Li, J., Yang, Z., Zheng, Q. Scal-
able Attack on Graph Data by Injecting Vicious Nodes. 
Data Mining and Knowledge Discovery, 2020, 34, 1363-
1389. https://doi.org/10.1007/s10618-020-00696-7

95. Wang, X., Wang, W. H. Group Property Inference At-
tacks Against Graph Neural Networks. In Proceedings 
of the 2022 ACM SIGSAC Conference on Comput-
er and Communications Security, 2022, 2871-2884. 
https://doi.org/10.1145/3548606.3560662 



1277Information Technology and Control 2024/4/53

96. Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B. Mixup for 
Node and Graph Classification. In Proceedings of the 
Web Conference 2021, 2021, 3663-3674. https://doi.
org/10.1145/3442381.3449796

97. Wei, J., Yaxin, L., Han, X., Yiqi, W., Jiliang, T. Adversar-
ial Attacks and Defenses on Graphs: A Review and Em-
pirical Study. arxiv preprint arxiv:2003.00653, 2020. 
https://doi.org/10.48550/arXiv.2003.00653

98. Wu, B., Li, J., Yu, J., Bian, Y., Zhang, H., Chen, C., Houw, C., 
Fu, G., Chen, L., Xu, T., Rong, Y., Zheng, X., Huang, J., He, R., 
Wu, B., Sun, G., Cui, P., Zheng, Z., Liu, Z., Zhao, P. A Survey of 
Trustworthy Graph Learning: Reliability, Explainability, 
and Privacy Protection. arXiv Preprint arXiv:2205.10014, 
2022. https://doi.org/10.1145/3534678.3542597

99. Wu, B., Liang, X., Zhang, S., Xu, R. Advances and Ap-
plications in Graph Neural Network. Chinese Jour-
nal of Computers, 2022, 45(1), 35-68. https://doi.
org/10.11897/SP.J.1016.2022.00035

100. Wu, B., Pan, S., Yuan, X. Towards Extracting Graph 
Neural Network Models via Prediction Queries (Stu-
dent Abstract). In Proceedings of the AAAI Conference 
on Artificial Intelligence, 2021, 15925-15926. https://
doi.org/10.1609/aaai.v35i18.17959

101. Wu, B., Yang, X., Pan, S., Yuan, X. Adapting Membership 
Inference Attacks to GNN for Graph Classification: Ap-
proaches and Implications. In 2021 IEEE International 
Conference on Data Mining (ICDM), 2021, 1421-1426. 
https://doi.org/10.1109/ICDM51629.2021.00182

102. Wu, B., Yang, X., Pan, S., Yuan, X. Model Extraction At-
tacks on Graph Neural Networks: Taxonomy and Reali-
sation. In Proceedings of the 2022 ACM On Asia Confer-
ence on Computer and Communications Security, 2022, 
337-350. https://doi.org/10.1145/3488932.3497753

103. Wu, C., Wu, F., Cao, Y., Huang, Y., Xie, X. Fedgnn: Fed-
erated Graph Neural Network for Privacy-Preserving 
Recommendation. arxiv preprint arxiv:2102.04925, 
2021. https://doi.org/10.48550/arXiv.2102.04925

104. Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., Xie, X. A Federat-
ed Graph Neural Network Framework for Privacy-Pre-
serving Personalization. Nature Communications, 
2022, 13. https://doi.org/10.1038/s41467-022-30714-9

105. Wu, X., Fredrikson, M., Jha, S., Naughton, J. F. A Meth-
odology for Formalizing Model-Inversion Attacks. 
In 2016 IEEE 29th Computer Security Foundations 
Symposium (CSF), IEEE, 2016, 355-370. https://doi.
org/10.1109/CSF.2016.32

106. Xian, X., Hong, M., Ding, J. A Framework for Un-
derstanding Model Extraction Attack and Defense. 

arXiv Preprint arXiv:2206.11480, 2022. https://doi.
org/10.48550/arXiv.2206.11480

107. Xie, B., Chang, H., Zhang, Z., Wang, X., Wang, D., Zhang, 
Z., Ying, R., Zhu, W. Adversarially Robust Neural Archi-
tecture Search for Graph Neural Networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, 2023, 8143-8152. https://doi.
org/10.1109/CVPR52729.2023.00787

108. Xiong, J., Ma, R., Chen, L., Tian, Y., Li, Q., Liu, X., Yao, 
Z. A Personalized Privacy Protection Framework for 
Mobile Crowdsensing in IoT. IEEE Transactions on 
Industrial Informatics, 2019, 16(6), 4231-4241. https://
doi.org/10.1109/TII.2019.2948068

109. Yang, B., Yih, W. T., He, X., Gao, J., Deng, L. Embedding 
Entities and Relations for Learning and Inference in 
Knowledge Bases. arXiv Preprint arXiv:1412.6575, 
2014. https://doi.org/10.48550/arXiv.1412.6575

110. Yang, C., Wang, H., Zhang, K., Chen, L., Sun, L. Secure 
deep graph generation with link differential privacy. 
arxiv preprint arxiv:2005.00455, 2020. https://doi.
org/10.48550/arXiv.2005.00455

111. Yang, S., Doan, B. G., Montague, P., De Vel, O., Abra-
ham, T., Camtepe, S., Kanhere, S. S. Transferable 
Graph Backdoor Attack. In Proceedings of the 25th 
International Symposium on Research in Attacks, 
Intrusions and Defenses, 2022, 321-332. https://doi.
org/10.1145/3545948.3545976

112. Yao, L., Mao, C., Luo, Y. Graph Convolutional Networks 
for Text Classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2019, 33(1), 7370-7377. 
https://doi.org/10.1609/aaai.v33i01.33017370

113. Ye, D., Zhu, T., Gao, K., Zhou, W. Defending against 
Label-only Attacks via Meta-Reinforcement Learn-
ing. IEEE Transactions on Information Forensics and 
Security, 2024, 3295-3308. https://doi.org/10.1109/
TIFS.2024.3357292

114. Yu, D., Yang, Y., Zhang, R., Wu, Y. Knowledge Embed-
ding Based Graph Convolutional Network. In Proceed-
ings of the Web Conference 2021, 2021, 1619-1628. 
https://doi.org/10.1145/3442381.3449925

115. Zhang, H., Wu, B., Wang, S., Yang, X., Xue, M., Pan, S., 
Yuan, X. Demystifying Uneven Vulnerability of Link 
Stealing Attacks Against Graph Neural Networks. 
In International Conference on Machine Learning, 
PMLR, 2023, 41737-41752. https://doi.org/10.56553/
popets-2023-0103

116. Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., Pei, J. 
Trustworthy Graph Neural Networks: Aspects, Meth-



Information Technology and Control 2024/4/531278

ods, and Trends. arXiv Preprint arXiv:2205.07424, 
2022. https://doi.org/10.48550/arXiv.2205.07424

117. Zhang, K., Yang, C., Li, X., Sun, L., Yiu, S. M. Subgraph 
Federated Learning with Missing Neighbor Genera-
tion. Advances in Neural Information Processing Sys-
tems, 2021, 34, 6671-6682. https://doi.org/10.48550/
arXiv.2106.13430

118. Zhang, M., Wang, X., Shi, C., Lyu, L., Yang, T., Du, J. Min-
imum Topology Attacks for Graph Neural Networks. In 
Proceedings of the ACM Web Conference 2023, 2023, 
630-640. https://doi.org/10.1145/3543507.3583509

119. Zhang, Q., Lee, H.K., Ma, J., Lou, J., Yang, C. Xiong, 
L. DPAR: Decoupled Graph Neural Networks with 
Node-Level Differential Privacy. In Proceedings of 
the ACM on Web Conference 2024, 2024, 1170-1181. 
https://doi.org/10.1145/3589334.3645531

120. Zhang, S., Yin, H., Chen, T., Huang, Z., Cui, L., Zhang, 
X. Graph Embedding for Recommendation Against 
Attribute Inference Attacks. In Proceedings of the 
Web Conference 2021, 2021, 3002-3014. https://doi.
org/10.1145/3442381.3449813

121. Zhang, X., Zitnik, M. Gnnguard: Defending Graph Neu-
ral Networks Against Adversarial Attacks. Advances 
in neural information processing systems, 2020, 33, 
9263-9275. https://doi.org/10.48550/arXiv.2006.08149

122. Zhang, Y., Khan, S., Coates, M. Comparing and Detect-
ing Adversarial Attacks for Graph Deep Learning. In 
Proc. Representation Learning on Graphs and Mani-
folds Workshop, Int. Conf. Learning Representations, 
New Orleans, LA, USA, 2019.

123. Zhang, Z., Chen, M., Backes, M., Shen, Y., Zhang, Y. In-
ference Attacks Against Graph Neural Networks. In 
31st USENIX Security Symposium (USENIX Security 
22), 2022, 4543-4560. https://doi.org/10.48550/arX-
iv.2110.02631 

124. Zhang, Z., Jia, J., Wang, B., Gong, N. Z. Backdoor At-
tacks to Graph Neural Networks. In Proceedings 
of the 26th ACM Symposium on Access Control 
Models and Technologies, 2021, 15-26. https://doi.
org/10.1145/3450569.3463560

125. Zhang, Z., Liu, Q., Huang, Z., Wang, H., Lu, C., Liu, C., Chen, 
E. GraphMI: Extracting Private Graph Data from Graph 
Neural Networks. arXiv Preprint arXiv:2106.02820, 2021. 
https://doi.org/10.24963/ijcai.2021/516

126. Zhao, T., Zhang, X., Wang, S. GraphSMOTE: Imbalanced 
Node Classification on Graphs with Graph Neural Net-

works. In Proceedings of the 14th ACM International 
Conference on Web Search and Data Mining, 2021, 833-
841. https://doi.org/10.1145/3437963.3441720

127. Zhao, Y., Chen, J. A Survey on Differential Priva-
cy for Unstructured Data Content. ACM Comput-
ing Surveys (CSUR), 2022, 54(10s), 1-28. https://doi.
org/10.1145/3490237

128. Zheng, H., Xiong, H., Chen, J., Ma, H., Huang, G. Mo-
tif-Backdoor: Rethinking the Backdoor Attack on 
Graph Neural Networks via Motifs. IEEE Transactions 
on Computational Social Systems, 2023. https://doi.
org/10.1109/TCSS.2023.3267094

129. Zhong, D., Yu, R., Wu, K., Wang, X., Xu, J., Wang, W. 
H. Disparate Vulnerability in Link Inference Attacks 
against Graph Neural Networks. Proceedings on Priva-
cy Enhancing Technologies, 2023, 149-169. https://doi.
org/10.56553/popets-2023-0103

130. Zhou, J., Han, X., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M. 
GEAR: Graph-Based Evidence Aggregating and Reason-
ing for Fact Verification. arXiv Preprint arXiv:1908.01843, 
2019. https://doi.org/10.18653/v1/P19-1085

131. Zhou, K., Michalak, T. P., Rahwan, T., Waniek, M., Vor-
obeychik, Y. Attacking similarity-based link prediction 
in social networks. arxiv preprint arxiv:1809.08368, 
2018. https://doi.org/10.48550/arXiv.1809.08368 

132. Zhou, Z., Zhou, C., Li, X., Yao, J., Yao, Q., Han, B. On 
Strengthening and Defending Graph Reconstruc-
tion Attack with Markov Chain Approximation. 
arXiv Preprint arXiv:2306.09104, 2023. https://doi.
org/10.48550/arXiv.2306.09104

133. Zhu, Y., Li, X., Wu, Z., Wu, D., Hu, M., Li, R. H. Fed-
TAD: Topology-aware Data-free Knowledge Distilla-
tion for Subgraph Federated Learning. arxiv preprint 
arxiv:2404.14061, 2024. https://doi.org/10.24963/ij-
cai.2024/632 

134. Zou, X., Zheng, Q., Dong, Y., Guan, X., Kharlamov, E., 
Lu, J., Tang, J. TDGIA: Effective Injection Attacks 
on Graph Neural Networks. In Proceedings of the 
27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, 2021, 2461-2471. https://doi.
org/10.1145/3447548.3467314

135. Zügner, D., Akbarnejad, A., Günnemann, S. Adversarial 
Attacks on Neural Networks for Graph Data. In Pro-
ceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery Data Mining, 2018, 
2847-2856. https://doi.org/10.1145/3219819.3220078

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




