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Brain tumor segmentation in medical image analysis is a challenging task. Deep learning techniques have re-
cently shown promise in resolving a variety of computer vision problems, such as semantic segmentation and 
image classification. Brain MRI (magnetic resonance imaging) requires precise brain image segmentation for 
effective, rapid diagnosis and treatment planning. However, it is quite difficult to manually segment the brain 
image rapidly and accurately in low-quality, noisy images. This paper proposes a U-Net and combined attention 
mechanism-based method. This research enhances the segmentation of images of tumors in the brain using 
modified U-net. Traditional U-net segmentation techniques are still widely used in the medical field, but they 
have a number of limitations when dealing with small targets and fuzzier boundaries. To address this issue, we 
made the following modifications to U-net: We propose attention mechanisms to assist the network in concen-
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trating on important regions. The multiscale feature fusion strategy improves the efficacy of network segmen-
tation at various scales. Cross-entropy loss function and data augmentation improve the performance of the 
network further. Our method was validated using the Brats2019 dataset. The experimental results demonstrate 
that our proposed methodology exhibits superior speed and efficiency compared to existing techniques in the 
context of brain image segmentation. The dice coefficients for the multiple branch TS-U-net model were 0.876, 
0.868, and 0.814 in the tumor subregions of WT, TC, and ET, respectively. This exemplifies the feasibility and 
potential of our methodology for the segmentation of medical images.
KEYWORDS: Brain Tumor, Deep Learning, Image Segmentation, U-net.

1. Introduction
Brain tumors are one of the most severe brain dis-
eases, and malignant glioma is the most common and 
mortality primary brain tumor. According to Ameri-
can Brain Tumor Association, approximately 80,000 
Americans are diagnosed with brain tumor each year.
The World Health Organization categorized gliomas 
into four grades (I, II, III, IV) based on their malignan-
cy [2, 5]. Additionally, it is worth noting that Gliomas 
tumors are the predominant primary brain tumors in 
the adult population [4]. These tumors account for 
approximately 81% of all malignant brain tumors [8] 
and 45% of all primary brain tumors [6]. According to 
Ostrom et al., the survival rates for some people diag-
nosed with Gliomas tumors range from 0.05% to 4.7% 
[9]. This data indicates that Gliomas tumors are the 
second leading cause of mortality. According to Glas 
et al. [3], individuals who are afflicted with low-grade 
gliomas, specifically oligodendrogliomas and astrocy-
tomas, exhibit a 5-year survival rate of 57%. Howev-
er, the 5-year survival rate for high-grade gliomas, or 
grade IV glioblastoma, is about 5%. In this paper, our 
method is oriented to the segmentation of Glioblasto-
mas which are brain tumors belonging to the category 
of Gliomas tumors.
The health of patients is highly dependent on timely 
detection and an accurate assessment of their prog-
nosis. The gold standard for treating grade I and high-
er tumors in clinical practice is surgical excision. In 
the process of analyzing brain MRI images, a highly 
trained radiologist use a manual segmentation tech-
nique that incorporates data from MRI images to-
gether with their extensive anatomical and physio-
logical expertise [5]. It is well known that the manual 
segmentation of MRI images is a time-consuming and 
arduous procedure. The primary obstacle is in the in-
terpretation and segmentation of brain MRI images, 
which is contingent upon the proficiency of individu-

al radiologists. Furthermore, the task of a radiologist 
becomes significantly challenging when dealing with 
tumor regions that contain intra-tumoral structures, 
such as Glioblastomas tumors. These tumors exhibit 
three distinct structures within the tumor region, in 
addition to healthy tissue: Necrotic and Non-Enhanc-
ing tumor, Peritumoral Edema, and Enhancing tumor. 
Given the objective of getting a segmentation of brain 
tumors, it is obvious that the utilization of completely 
automated segmentation methods is of great benefit 
in both clinical settings and research endeavours.

2. Related Work
2.1. Medical Image Segmentation Based on 
Machine Learning

In recent years, machine learning based segmentation 
algorithms have been utilized extensively in medical 
image segmentation. The earliest learning-based seg-
mentation algorithms are manual feature extraction 
and classifier classification. A disadvantage of this ap-
proach is the requirement for meticulous and exten-
sive feature extraction, as well as the potential impact 
of feature quality on segmentation accuracy. Convo-
lutional neural network (CNN) models are extensive-
ly employed in the field of medical image segmenta-
tion due to their ability to perform feature extraction 
without the need for intricate methodologies. Con-
siderable progress has been achieved in the segmen-
tation of several anatomical regions, including the 
liver, prostate, brain, pancreas, and other tissues, 
as well as in the segmentation of brain tumors, liver 
cancer, and breast cancer. The medical imaging meth-
ods utilized for this objective include magnetic reso-
nance imaging (MRI), computed tomography (CT), 
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X-ray, ultrasound (US), and neuropathological opti-
cal images. CNN can be used to classify two distinct 
categories based on their calculation methodology: 
image block-based convolution segmentation models 
and full convolution-based models. Although there 
are benefits associated with augmenting the training 
sample size and enhancing computational efficiency 
using picture block-based convolution segmentation, 
further refinement of the method is necessary due to 
the requirement for sufficient computational memo-
ry resources. Additionally, the presence of redundant 
image information within the training image block 
results in insufficient accuracy for the segmentation 
process. Usually, the segmentation probability distri-
bution is obtained by convolution calculation. Then, 
the predicted probability distribution is the initial 
segmentation result. Finally, the results are optimized 
with the help of the traditional model segmentation 
algorithm. This type of convolutional neural network 
could be more computationally efficient. At the same 
time, there is no good use of spatial information. To 
overcome this problem, Ronneberger et al. [10] have 
proposed a computational segmentation model based 
on fully convolutional networks, UNet.
One perspective is the reconstruction of the dimen-
sion-reduction image through the process of decon-
volution. Simultaneously, in order to get complete 
automation of segmentation, it is necessary to con-
sider the data from the convolution reduction layer 
that corresponds to the task. Presently, medical pho-
tographs are extensively utilized in the field. Milletari 
et al. [8] enhanced the UNet architecture by incorpo-
rating 3D convolution for their calculations. Promis-
ing results are achieved in the field of medical picture 
segmentation. In a recent study, HanX introduced a 
novel approach that combines the concepts of U-Net 
and ResNet. This approach, referred to as DCNN, 
achieved the top position in liver tumor segmentation 
during the ISBI2017 competition. In contrast to the 
image block-based segmentation approach, the fully 
convolutional network (FCN) achieves end-to-end 
learning and streamlines the computational process. 
However, the primary obstacle lies in addressing the 
issues of imbalanced training samples, limited com-
puting resources, and accurate boundary position-
ing. These challenges serve as the foundation for the 
deep learning segmentation model proposed in this 
research paper.

2.2. Traditional Neural Network Model
2.2.1. Establishment of the FCN model
The utilization of FCN enables the classification of 
individual pixels and the subsequent completion of 
image segmentation. The fully connected layer at the 
conclusion of the network is sometimes referred to as 
CNN. The feature graph is transformed into one-di-
mensional vectors using the fully connected layer, and 
subsequently classified by computing the ultimate 
probability. In contrast to CNN, FCN incorporates 
convolutional layers throughout its architecture, al-
lowing for pixel-wise classification capabilities. FCN 
eliminates the need for the link layer, hence rendering 
the network independent of the input image size. The 
level of abstraction in Fully Convolutional Networks 
(FCNs) is positively correlated with the depth of the 
network, whereas shallower feature graphs contain 
more detailed information. The utilization of both 
fine-grained information from shallow feature net-
works and semantic information from deep feature 
graphs in semantic segmentation leads to improved 
accuracy in segmentation. Figure 1 shows the net-
work architecture of FCN, where in the final fully 
connected layer of the conventional CNN is omitted.
The Fully Convolutional Network (FCN) is composed 
of a series of convolutional layers and pooling layers 
that are coupled in a sequential manner. Following 
each pooling process, the dimensions of the feature 
map are halved, resulting in a reduction in size com-
pared to the original. Additionally, the receptive field 
of the corresponding pixel is doubled in relation to 
the original. Hence, it can be inferred that every pix-
el within the fifth layer encapsulates the semantic 
details pertaining to a specific region of the original 
image, measuring 32 by 32 in dimensions. The Fusion 
Convolutional Network (FuCNN) can be categorized 
into three distinct classical models, which are deter-
mined by the feature graph information of varying 
dimensions in the fusion convolutional layers. The 
FCN-32s architecture does not incorporate the shal-
low features in the convolution layer. Instead, it em-
ploys direct upsampling of the final output feature 
map to restore it to the original image size, hence fa-
cilitating the completion of the segmentation process. 
The FCN-16s model integrates the feature graph pro-
duced by the network with the feature graph derived 
from the fourth convolutional layer, resulting in the 
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generation of a novel feature graph. The fusion mode 
involves the summation of pixels at related positions 
in the feature graph, which is subsequently restored to 
the original picture size through upsampling in order 
to accomplish segmentation. Like FCN-16s, FCN-8s 
incorporates the feature map information from both 
the fourth and third layers. This integration allows for 
a more comprehensive utilization of detailed and se-
mantic information from the feature map, resulting in 
enhanced fitting capabilities of FCN.
This paper will use FCN in conjunction with various 
upsampling and fusion techniques to perform image 
segmentation of brain tumors. Figure 2 presented 
below depicts the partial segmentation results of the 
three models, with the rightmost figure representing 
the manually annotated gold standard.

Figure 1
FCN network structures

(a) (b) (c) (d)

The evolution of Fully Convolutional Networks 
(FCNs) from FCN-32s to FCN-16s, and subsequently 
to FCN-8s, epitomizes a sophisticated advancement 
in the architecture of neural networks for semantic 
image segmentation tasks. These variants exempli-
fy a strategic progression in mitigating the inherent 
trade-offs between capturing high-level semantic 
content and preserving spatial detail crucial for pre-
cise boundary delineation.
The FCN-32s architecture, the foundational model 
among the three, generates feature maps with a con-
siderable stride of 32 pixels. This configuration facil-
itates the encapsulation of high-level semantic infor-
mation across expansive contexts, attributable to the 
extensive receptive fields of its feature maps. However, 
this approach invariably compromises the precision of 

Figure 2
The partial segmentation results of the three models. (a) FCN-32s; (b) FCN-16s; (c) FCN-8s; (d) Manually annotated 
gold standard. Red represents necrotic and non-enhancing glioma, green represents peritumoral edema, and yellow 
represents enhancing glioma
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boundary definitions within the segmentation output, 
primarily due to the relatively coarse nature of the fea-
ture maps, which lack granular spatial details.
In an endeavor to surmount this limitation, the FCN-
16s model integrates semantic information from the 
feature maps of the final layer (characterized by a 
stride of 32 pixels) with spatial information derived 
from the upsampled feature maps of the pool4 lay-
er, which exhibits a reduced stride of 16 pixels. This 
amalgamation harnesses the strengths of both se-
mantically enriched features and localized, spatially 
detailed features, thereby enhancing the accuracy 
of boundary localization beyond the capabilities of 
FCN-32s through the inclusion of additional spatial 
information from an intermediary network layer.
Further refinement is achieved with the FCN-8s 
model, which amalgamates feature maps from the 
ultimate layer, the upsampled pool4, and further up-
sampled pool3 layers at a minimal stride of 8 pixels. 
This strategy introduces an even higher resolution 
of spatial details into the output of the model, facil-
itating a segmentation output that more closely ap-
proximates the manually annotated gold standard. By 
leveraging information from shallower feature maps, 
FCN-8s markedly improves the fitting capabilities of 
the model, resulting in superior segmentation out-
comes in comparison to both FCN-32s and FCN-16s.

2.2.2 Establishment of the SegNet Model
The University of Cambridge team has suggested an 
open-source project called SegNet, which facilitates 
pixel-level image segmentation. Figure 3 illustrates 
the architecture of SegNet [1], which has two main 
components: encoding and decoding. The left half 
of the structure encompasses the coding process, 
which involves the utilization of a convolution layer 

and a pooling layer. These layers are capable of ex-
tracting intricate information and local features from 
the image. Additionally, the pooling layer performs a 
downsampling operation, which effectively enlarges 
the receptive field of the feature map. On the other 
hand, the right half of the structure involves the de-
coding process, which comprises the utilization of an 
upsampling. The process of upsampling in the upper 
sampling stage aims to restore the feature map to the 
dimensions of the original input image. This is im-
portant because during the downsampling process, 
certain information may have been lost. To address 
this, the convolution layer in the network is designed 
to learn and capture the missing details. In order to 
maximize the utilization of shallow feature maps, the 
author included a crucial innovation in SegNet by in-
corporating pooling index connections between the 
encoding and decoding layers at matching positions. 
This addition plays a significant role in enhancing 
the overall performance of the model. The proposed 
methodology involves preserving the positional in-
formation associated with the highest value in the 
encoding layer, and subsequently reinstating this po-
sitional information during the upsampling phase of 
the decoding layer. In contrast to the deconvolution 
technique used in FCN upsampling, the pooling in-
dex immediately samples the data value at the appro-
priate index. This process requires minimal storage 
space, without the need for learning. Consequently, it 
minimizes the number of model parameters and en-
hances the models’ capacity to fit boundaries.
There are no fully connected layers and hence it is 
only convolutional. A decoder upsamples its input 
using the transferred pool indices from its encoder 
to produce a sparse feature map(s). It then performs 
convolution with a trainable filter bank to densify the 

Figure 3
An illustration of the SegNet architecture 
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feature map. The final decoder output feature maps 
are fed to a soft-max classifier for pixel-wise classifi-
cation [1].
The architecture diagram in Figure 3 includes direct 
connection lines from the input to the output, signi-
fying the implementation of skip connections with-
in the convolutional encoder-decoder framework. 
These skip connections are employed to mitigate the 
spatial information loss that occurs during the pool-
ing operations in the encoder. By transferring feature 
maps from various encoder layers to the correspond-
ing decoder layers, the network is able to utilize both 
high-level semantic information and low-level tex-
tural details. This dual usage of features facilitates the 
reconstruction of fine-grained spatial details in the 
output segmentation map, resulting in a more precise 
delineation of object boundaries. The inclusion of 
pooling indices along these connections further en-
hances the upsampling process, allowing the decoder 
to more accurately reconstruct the spatial hierarchy 
of the input image.
In this work, SegNet  was employed to perform tests 
pertaining to the segmentation of brain tumors. Fig-
ure 4(a) displays the magnetic resonance imaging 
(MRI) part of the brain tumor T1 modality, and Figure 
4(b) shows the segmentation results of this network 
are presented, while Figure 4(c) represents the gold 
standard of hand annotation for educational purpos-
es. It demonstrates that the SegNet model exhibits 
more accuracy in segmentation findings when com-
pared to FCN-8s. Notably, the SegNet model achieves 
more exact boundaries between different tumor sub-
regions, particularly in the peripheral edema region. 
This improvement in delineating the overall shape 
and detail enhances the performance of the SegNet 

model. Nevertheless, the segmentation performance 
of SegNet is not perfect in certain tumor locations 
and exhibits segmentation mistakes in specific subre-
gions, likely due to the intricate and diverse nature of 
brain tumor images.

2.2.3. U-net Model Building
The schematic representation of the U-net archi-
tecture is depicted in Figure 5. In the architecture 
of U-net, the process of feature fusion, particularly 
exemplified by the technique of “feature splicing” 
represents a critical innovation. This process is char-
acterized by dynamically adjusting the number of 
channels, specifically by doubling the feature chan-
nels during the upsampling phase, thereby enhancing 
the capability on the network to process and interpret 
complex information. 

(a) (b) (c)

Figure 4
(a) MRI slice of a brain tumor in T1 mode; (b) The 
segmentation results of this network are presented; (c) 
Manual annotation gold standard for learning

Figure 5
U-net architecture (example for 32x32 pixels in the lowest 
resolution). Each blue box corresponds to a multi-channel 
feature map. The number of channels is denoted on top of 
the box. The x-y-size is provided at the lower left edge of 
the box. White boxes represent copied feature maps. The 
arrows denote the different operations

The process of feature fusion within the architec-
ture of U-net encompasses two fundamental phases: 
downsampling (encoding) and upsampling (decod-
ing), each serving a distinct purpose in the operation 
of the network. The downsampling phase is charac-
terized by the ability of the network to extract and re-
fine information from the input image. This phase is 
critical for the capacity of the network to identify and 
retain essential details and textures, thereby facilitat-
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ing a granular comprehension of the data. Through 
the strategic reduction of data dimensions, the net-
work efficiently focuses on salient features, enabling 
a more profound analysis and understanding of the 
composition of the input image. Conversely, the up-
sampling phase is dedicated to the reconstruction of 
the image from its processed, condensed state. The 
objective during this stage is to accurately predict the 
final output, such as a segmented version of the orig-
inal image. Central to this phase is the mechanism of 
feature fusion—also referred to in prior discussions 
as “feature splicing.” This mechanism is integral to 
the ability of the network to amalgamate and refine 
the distilled information obtained during downsam-
pling with the goal of generating a coherent and de-
tailed output.
This dual-phase approach, consisting of both downs-
ampling and upsampling, is foundational to the U-net 
architecture’s efficacy in performing complex image 
processing tasks, such as segmentation. The strategic 
interleaving of feature extraction and reintegration 
through feature fusion is pivotal, enabling the net-
work to achieve high precision in its output, thereby 
underscoring the significance of each phase in the 
overall operation of the U-net architecture.
The U-net model was utilized in this study to con-
duct research on brain tumor image segmentation. 
Figure 6 displays the segmentation sample of U-net, 
where the number of initial convolution channels is 
configured to be 64, denoted as U-net (64) through-
out the training process. The brain images in the 
left-to-right sequence consist of the raw images, the 
segmentation results obtained using U-net (64), and 
the conventional segmentation results that were 
manually annotated.

When comparing the segmentation results of FCN 
and SegNet with U-net, it is observed that U-net ex-
hibits improved segmentation effects for necrotic 
and non-enhancing glioma, peritumoral edema, and 
enhancing glioma. This improvement can be attribut-
ed to U-net having a greater number of characteristic 
channels. U-net demonstrates a more precise and ac-
curate boundary delineation between subregions, and 
it possesses specific segmentation fitting ability for 
both the entire tumor and local tiny structures with-
in tumor subregions. Despite the great segmentation 
accuracy exhibited by U-net, the model does exhibit 
certain segmentation mistakes in localized regions. 
These errors can be attributed to the constraints im-
posed by the small dataset and the loss of tumor mul-
timodal data information.

2.2.4. CAM and SAM
Channel Attention Module (CAM) and Spatial Atten-
tion Module (SAM) have emerged as significant ad-
vancements in the realm of deep learning research, 
particularly in the enhancement of image processing 
tasks. CAM is designed to prioritize different channels 
within the input feature maps, thus augmenting the 
responsiveness of the model to channels that contain 
more informative attributes. In contrast, SAM is en-
gineered to optimize the utilization of spatial location 
information. It accomplishes this by assigning varied 
weights to different spatial locations within the input 
feature maps, thereby accentuating crucial spatial 
characteristics. This enhancement is crucial for im-
proving performance in the intricate task of segment-
ing brain tumor images, where precision in identifying 
and delineating tumor boundaries is paramount.

3. Method
In recent years, numerous methodologies have been 
proposed and implemented with the aim of enhanc-
ing the precision of medical image segmentation. 
The aforementioned techniques encompass the uti-
lization of enhanced algorithms, augmentation of the 
training dataset size, and enhancement of the train-
ing dataset quality.
Through the examination of segmentation exper-
iments conducted on conventional classical full 
convolutional network models, it was shown that 
the comprehensive convolutional neural network 

Figure 6
Segmentation Sample of U-net. (a) The original brain 
images; (b) U-net(64) segmentation results; (c) The 
manually annotated standard segmentation results

(a) (b) (c)
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exhibits a distinct capability in achieving high seg-
mentation accuracy for brain tumor segmentation 
tasks. The FCN-8s architecture incorporates the 
fusion of shallow and deep feature maps in order 
to enhance the capacity of the model for fitting 
and afterwards achieve semantic segmentation of 
brain tumor images. In the process of upsampling 
in SegNet, the incorporation of position informa-
tion from the shallow pooling process results in 
a reduction in the parameters of the model while 
only slightly increasing storage space. This en-
hancement improves the learning efficiency of the 
model and enhances its ability to differentiate be-
tween boundaries in distinct subregions. The U-net 
architecture, which is a variant of the conventional 
convolutional neural network model, demonstrates 
superior segmentation performance. It employs a 
distinctive approach for feature concatenation and 
fusion, wherein the number of feature channels is 
augmented during the upsampling phase. This en-
ables the utilization of more intricate information 
from shallow feature maps, thereby facilitating ef-
fective image segmentation.
Nevertheless, there is still a need for improvement 
in the segmentation result of the above three models. 
Specifically, there are issues with the accuracy of lo-
cal subregion segmentation and the classification of 
boundaries. Upon thorough review, it has been deter-
mined that there are three distinct reasons.
1 The conventional approach for segmenting brain 

tumors in multimodal data involves feeding the 
multimodal data into CNN. However, during the 
fusion of multimodal input data in the first convo-
lutional layer, there is a substantial loss of informa-
tion. This results in a limited ability of the network 
to differentiate between different modes of data, 
thereby preventing the full utilization of all four 
modalities. To achieve high-quality segmentation 
results, it is crucial to fully exploit the information 
provided by the multimodal data.

2 The availability of medical-labeled data is limit-
ed, and the convolutional neural network requires 
a substantial volume of data to assure effective 
training of the network. The segmentation accu-
racy of a neural network is expected to exhibit a 
notable enhancement with the effective expan-
sion of the data.

3 The presence of brain tumor images exhibits a 
significant disparity in class distribution. Table 1 
presents the relative proportions of several cate-
gories, namely background (label0), necrotic and 
non-enhanced gliomas (label1), peritumoral ede-
ma (label2), and enhanced gliomas (label4), inside 
the Brats2019 dataset.

Table 1
The proportion of labels of different tumor categories to 
total pixels (Brats2019)

Tumor 
Categories Label0 Label1 Label2 Label4

HGG 0.98934 0.00155 0.00658 0.00253

LGG 0.9875 0.00587 0.006 0.00061

Total brain 
glioma 0.98893 0.00253 0.00645 0.00209

Valuable insights can be derived from the label per-
centage table pertaining to various tumor classifi-
cations. In the study conducted on HGG, it was seen 
that the proportion of label0 was almost 99%. The 
remaining tumor pixels were found to be limited in 
quantity. Additionally, the ratio of background pixels 
to tumor pixels was determined to be 92.46:1. Similar 
to high-grade gliomas (HGG), the label0 of low-grade 
gliomas (LGG) achieved an accuracy of 98.75%, with 
the remaining pixels representing tumor tissue. In 
both HGG and LGG, label0 continues to dominate 
the entire tumor image, accounting for 98.89% of the 
total. Furthermore, a noticeable disparity in class dis-
tribution was seen among the three distinct tumor 
subregions. Within the context of high-grade gliomas 
(HGG), the tumor subregions designated as label1, la-
bel2, and label4 accounted for 14.5% and 61.7% of the 
total tumor volume, respectively. In low-grade glio-
mas (LGG), these three tumor subregions constitut-
ed 47%, 48.1%, and 4.9% of the overall tumor volume, 
respectively, with proportions of 22.9%, 58.3%, and 
18.9% of the total tumor volume. Based on the findings 
of the research, it is evident that there is a consider-
able magnitude in both the proportion of tumor and 
background, as well as the proportion among differ-
ent subregions of the tumor. Training the model with 
such data may result in an overabundance of back-
ground information being learned, hence potentially 
hindering the complete acquisition of tumor-related 
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information. As a consequence of the aforementioned 
challenges, the U-net, which exhibits superior seg-
mentation capabilities within the conventional con-
volutional neural network framework, is nevertheless 
prone to some segmentation inaccuracies. Conse-
quently, this study proposes novel convolutional neu-
ral networks with the aim of enhancing the segmenta-
tion performance of the network.
In order to address the issue of information loss in 
multimodal data, we have developed a multi-branch 
network architecture inspired by the U-net model. It 
is shown as Figure 7. The coding portion encompass-
es various branches, each serving the purpose of pro-
cessing data derived from distinct modalities. Every 
branch possesses a same framework while exhibiting 
distinct parameters. The decoding component of the 
system likewise employs the U-net architecture, en-
abling the effective integration of both high-level se-
mantic information and low-level detail information. 
In order to enhance the extraction of features and 
effectively utilize the global context information of 
the image, an attention module was incorporated into 
each branch of the encoding component. In this study, 
an attention mechanism is incorporated into the four 
convolutions within the encoding component in or-

Figure 7
Multi-branch network architecture

der to enhance the segmentation performance of the 
model.
In order to address the issue of inadequate data vol-
ume, a data-enhanced network model called TS-U-net 
(Teacher Student U-net) was developed. Conventional 
techniques for data augmentation, such as mirror im-
aging and scale transformations, solely induce defor-
mations in the original data without substantially ex-
panding the dataset. In addition to exclusively utilizing 
the available data information, the TS-U-net model has 
the capability to incorporate additional data through 
the utilization of pseudo-labels. The procedures em-
ployed in this research are outlined below:
1 The data is categorized into two distinct groups: la-

belled data and unlabelled data.
2 Train a U-net as a teacher network using data with 

labels.
3 After the completion of training the teacher net-

work, the unlabelled data is fed into the teacher 
network to generate data with inaccurate labels. 

4 Subsequently, a new U-net network, referred to as 
the student network, is retrained using a combina-
tion of labelled data and pseudo-label data from the 
previous step. 
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5 Following the training of the student network, it 
is considered as a new teacher network. The unla-
belled data is then input into the student network 
to generate new data with inaccurate labels.

6 This process of steps 2 to 5 is iterated until there 
is no further improvement in the accuracy of seg-
mentation.

The aforementioned data augmentation approach al-
lows for the generation of several data instances with 
inaccurate labels based on the available unlabeled 
data. In theoretical terms, the potential for unlim-
ited expansion of data presents a partial resolution 
to the issue of limited availability of medical picture 
data. To address the issue of class imbalance in tumor 
labelling, we employed the weighted cross-entropy 
as the loss function. Weighting refers to the process 
of assigning varying weights to different categories 
based on their relative importance or significance. 
Greater emphasis will be placed on categories that 
possess higher weights during the process of network 
training. Typically, in statistical analysis, weights as-
signed to small sample sizes are increased, whereas 
weights assigned to big sample sizes are decreased. 
In addressing the challenge of class imbalance with-
in the BraTS2019 dataset, the relative weights for the 
loss function were judiciously calibrated to amplify 
the influence of underrepresented classes. The back-
ground class (Label0), which constitutes the majority 
of the dataset, was assigned a baseline weight of 1. The 
weights for necrotic and non-enhanced glioma (La-
bel1), peritumoral edema (Label2), and enhanced gli-
oma (Label4) were proportionately escalated to 391, 
153, and 473, respectively. This weighting scheme 
was devised by inverting the prevalence of each class 
to yield a set of preliminary weights, which were then 
normalized against the weight of the background 
class to preserve computational balance. Through 
this methodology, the sensitivity of the model to rar-
er classes is enhanced, encouraging a more equitable 
distribution of the predictive focus and an improved 
segmentation performance across all classes.

4. Experiment Results and Analysis
4.1. Experimental Data
4.1.1. Data Set
Our work uses data from the MICCAI Multimodal 
Brain Tumor Segmentation Challenge (BraTS2019) 

to conduct glioma segmentation and prognostic 
analysis. The training dataset consisted of 335 pa-
tients, with 76 samples from patients diagnosed with 
low-grade glioma and 259 samples from patients di-
agnosed with high-grade glioma. The validation set 
consisted of 125 patient samples that were devoid of 
any labels. All patients included in the analysis for 
predicting overall survival have provided their clini-
cal age measurements.
Each example comprises four modalities of three-di-
mensional magnetic resonance imaging (MRI) data, 
including the T1-weighted image (post-contrast), 
T1-weighted image, T2-weighted image, and liquid 
decay inversion recovery sequence. These diverse 
methods offer differing levels of attention on distinct 
subregions of brain tumors. Each instance is accom-
panied by an annotation, which is methodically per-
formed by professional physicians using manual pro-
cedures. Moreover, each annotation is subjected to a 
meticulous evaluation process in order to ensure its 
precision. Each unique image of a brain tumor was 
annotated with four distinct parts, which include the 
background as well as three specific subregions of the 
tumor within the brain. The subregions encompass 
the following components: the backdrop (designated 
as 0), necrotic and non-enhanced glioma (designat-
ed as 1), peritumoral edema (designated as 2), and 
enhanced glioma (designated as 4). The entire un-
derstanding of malignancies cannot be adequately 
represented by data obtained from a single modali-
ty. The segmentation model developed in this study 
integrates four modalities, namely T1, T1C, T2, and 
FLAIR, as input data to assess the impact of brain tu-
mors.

4.1.2. Data Processing
In order to address the issue of the original MR im-
age’s large size, this study employs a resizing tech-
nique to reduce its dimensions to 128 * 160 * 192, based 
on the brain volume. This resizing process serves two 
purposes: firstly, it allows for the removal of redundant 
information (specifically, non-brain information rep-
resented by intensity value 0), and secondly, it ensures 
that the resulting image block volume is compatible 
with the available computer video memory. The imag-
ing results of brain tumor patients can be influenced 
by various factors, including the features of the im-
aging machines used and the contrast agents admin-
istered. Consequently, it is imperative to preprocess 



Information Technology and Control 2024/4/531084

the multimodal MRI data to ensure a harmonized 
data distribution and mitigate any disparities. Initial-
ly, the three-dimensional (3D) data inside the dataset 
is transformed into two-dimensional (2D) data with 
dimensions of 240 * 240 along the horizontal axis. 
Subsequently, the data lacking tumor information is 
removed to prevent the inclusion of background data 
in the training process, which could potentially im-
pact the efficacy of the learning of the model. The con-
ventional normalization process was applied to each 
image using the formula (3-1) subtracted by the mean 
and then divided by the standard deviation.
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disparities. Initially, the three-dimensional (3D) data 
inside the dataset is transformed into two-dimensional 
(2D) data with dimensions of 240 * 240 along the 
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4.2 Experimental Environment and 

Setting 

The Pytorch deep learning framework was used in the 
UBUNTU environment and trained on an NVIDIA 
1080ti GPU equipped with 16G RAM, adding Adam, 
the adaptive moment estimation, as the optimization 
function. 

4.3 Evaluation Indicators 

The input of the network consists of four channels, 
each representing the MRI data of one of the four 
modalities. The slice data of each modality is spatially 
aligned with the individual case and the 3D brain 
tumor MRI. The initial learning rate is initialized at 10-
7, and subsequently, the learning rate undergoes a 
progressive increase during the training process of the 
network. In instances where the model convergence is 
sluggish, it is common practice to augment the 
learning rate by a factor of 5-10 until the model ceases 
to converge. The metric used to assess the accuracy of 
segmentation is the dice coefficient, which is 
calculated for each person and then averaged across 
all individuals. The evaluation indexes for enhanced 
glioma (Enhance Tumor, ET), glioma nucleus (Tumor 
Core, TC), and all glioma (Whole Tumor, WT) were 
computed using the dice coefficient. The classification 
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4.2. Experimental Environment and Setting
The Pytorch deep learning framework was used in the 
UBUNTU environment and trained on an NVIDIA 
1080ti GPU equipped with 16G RAM, adding Adam, 
the adaptive moment estimation, as the optimization 
function.

4.3. Evaluation Indicators
The input of the network consists of four channels, 
each representing the MRI data of one of the four 
modalities. The slice data of each modality is spatial-
ly aligned with the individual case and the 3D brain 
tumor MRI. The initial learning rate is initialized at 
10-7, and subsequently, the learning rate undergoes 
a progressive increase during the training process of 
the network. In instances where the model conver-
gence is sluggish, it is common practice to augment 
the learning rate by a factor of 5-10 until the model 
ceases to converge. The metric used to assess the ac-
curacy of segmentation is the dice coefficient, which 
is calculated for each person and then averaged across 
all individuals. The evaluation indexes for enhanced 
glioma (Enhance Tumor, ET), glioma nucleus (Tumor 
Core, TC), and all glioma (Whole Tumor, WT) were 
computed using the dice coefficient. The classifica-
tion of gliomas encompasses various types, including 
necrotic, non-enhancing, and enhancing gliomas. Ad-
ditionally, the term “WT” refers to the inclusion of all 
tumor subregions within this classification. 
In the process of partitioning the dataset for model 
training and evaluation, a meticulous stratification 

strategy was employed to accommodate the multi-
modal composition inherent within the dataset. Each 
constituent data point is an aggregation of spatially 
aligned slices derived from four distinct MRI modali-
ties: T1, T1C, T2, and FLAIR. Each modality contrib-
utes uniquely to the characterisation of tissue prop-
erties. To safeguard the integrity of the multimodal 
data throughout the training, validation, and testing 
cohorts, we ensured that a complete set of modality 
slices for each individual case was preserved during 
the randomization process. This deliberate approach 
guarantees the exposure of the model to a consistent 
and holistic multimodal dataset, thereby mirroring 
the intricate and heterogeneous nature of brain tu-
mors as encountered in authentic clinical environ-
ments. Such a strategy is pivotal in preserving the 
rigour of the evaluation of the model and the integrity 
of the dataset.
During the training process, a total of 335 data points 
were randomly partitioned into groups. Out of these, 
285 data points were assigned as validation sets, 
while the remaining 50 data points were designated 
as test sets. To ensure the elimination of random-
ness, the results were averaged. Table II presents the 
results of various conventional convolutional neural 
network segmentation techniques. The network seg-
mentation results of FCN-16s and FCN-32s exhibit-
ed suboptimal performance and did not contribute to 
the contrast analysis. Simultaneously, we conducted 
a comparative analysis of the impact of four distinct 
groups of initial convolution layers on the segmenta-
tion results of the U-net model. Specifically, U-net (8) 
denotes the utilization of an initial convolution layer 
with a size of 8, while U-net (16) signifies the use of an 
initial convolution layer with a size of 16, and so forth.
We designed a series of ablation experiments to eval-
uate the impact of CAM, SAM, and their combination 
on the performance of our modified U-net model. We 
integrated CAM and SAM into the encoder and decod-
er parts of the U-net, respectively, and compared the 
performance of models under the following configu-
rations: only CAM, only SAM, both CAM and SAM, 
and a baseline model without any attention modules.
Our experimental results indicate that the inclusion 
of CAM and SAM significantly improves the accura-
cy of brain tumor image segmentation. Specifically, 
models utilizing CAM showed an average increase of 
0.01% in the Dice coefficient compared to the baseline 
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model, while models with SAM exhibited an improve-
ment of 0.01%. Furthermore, when both CAM and 
SAM were applied, the performance of the model en-
hanced further, with an average increase of 0.03% in 
the Dice coefficient, confirming the complementary 
nature of these two attention mechanisms in improv-
ing the ability of the model to capture tumor features.
Based on the data presented in Table 2, it can be inferred 
that among the classic neural network models, U-net 
exhibits the greatest dice coefficient and achieves the 
most effective segmentation. SegNet follows with a 
moderately effective segmentation, while FCN has 
comparatively poorer segmentation performance. 
Furthermore, the precision of the U-net model will be 
enhanced as the number of initial convolutional layers 
is augmented. Nevertheless, the expansion of the num-
ber of initial convolutional layers is constrained by the 
finite computing and memory resources available. The 
subsequent multi-branch TS-U-net architecture is de-
rived from the U-net (64) model.
As presented in Table 3, the comparative efficacy of 
the U-net(64) and the innovative Multi-branch U-net 
architectures is evaluated through the Dice coeffi-
cient metric for segmenting sub-tumoral regions. 
The U-net(64) achieves a Dice score of 87.5 for Whole 
Tumor (WT) segmentation, which is marginally out-
performed by the Multi-branch U-net, attaining a 
score of 87.6. The segmentation accuracy for Tumor 
Core (TC) is notably improved with the Multi-branch 
U-net, which achieves a Dice score of 86.8, compared 

Table 2
Traditional convolutional neural network segmentation results

Sub-Tumour SegNet U-net(8) U-net(16) U-net(32) U-net(64)

WT 85.67 86.56 86.67 87.43 87.5

TC 82.13 83.69 84.23 85.23 86.02

ET 81.62 80.58 81.43 81.19 81.39

Table 3
Dice between U-net(64) and our method

Sub-Tumor U-net(64) Multi-branch U-net

WT 87.5 87.6

TC 86.02 86.8

ET 81.39 81.4

to the U-net(64)’s 86.02. For the Enhanced Tumor 
(ET) category, both models demonstrate comparable 
proficiency, with the U-net(64) achieving a score of 
81.39 and the Multi-branch U-net a slightly superior 
score of 81.4. These results suggest a consistent, albe-
it slight, superiority of the Multi-branch U-net in seg-
menting various tumor subregions, potentially indic-
ative of its superior capability to accurately delineate 
the complex pathology of gliomas.
Figure 8 illustrates the output results a multi-branch 
TS-U-net, alongside the standard results of manual 
annotation. The original brain images of the output re-
sults of the multi-branch TS-U-net are presented from 
left to right. The model is designed to differentiate be-
tween various tumor tissues, and the segmentation is 
depicted in different grayscale intensities. The lighter 
areas represent the enhancing tumor, while the dark-
er regions indicate non-enhancing tumor or necrotic 
tissue. Figure 8(c) provides the manual segmentation 
performed by clinical experts, serving as the ground 
truth against which the performance of the model is 
compared. It is evident that while human brain tu-
mor forms vary, there is disparity in the proportion of 
tumor sub-regions. This section presents the design 
of a multi-branch TS-U-net network model for the 

Figure 8
Detailed segmentation analysis of brain tumors. (a) The 
original brain images; (b) The output results of the multi-
branch TS-U-net; (c)The manually annotated standard 
segmentation results

(a) (b) (c)
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segmentation of different tumor sub-regions and the 
precise delineation of fine structures. The results ob-
tained from the network output are found to be highly 
consistent with the manually annotated gold standard, 
indicating the promising potential of this model in the 
domain of medical image semantic segmentation.
In order to enhance the credibility of the multi-
branched TS-U-net model’s segmentation accuracy 
inside the identical dataset, a comparison was con-
ducted with the segmentation results of the top-rank-
ing validation set from the Brats 2019.

Table 4
Dice between the first of Brats2019 and our method

Sub-Tumor The top of Brats2019 Multi-branch U-net

WT 91 87.6

TC 86.68 86.8

ET 82.33 81.4

5. Discussion
In this paper, we conduct a comprehensive analysis 
and evaluation of various established traditional fully 
convolutional neural networks. Our focus is on their 
performance in the context of a 2D brain tumor seg-
mentation task. The results of the study indicate that 
U-net demonstrates superior performance compared 
to other fully convolutional neural networks in the task 
of semantic segmentation of medical images. Specifi-
cally, U-net achieved dice coefficients of 87.6, 86.8, and 
81.4 for the WT, TC, and ET regions, respectively.
Moreover, our work introduces a novel approach 
called multi-branch TS-U-net, which aims to over-

come some limitations seen in the conventional 
U-net architecture. The network addresses the is-
sue of inadequate medical image data by employing 
a robust data augmentation technique. It tackles the 
problem of imbalanced brain tumor image classes by 
utilizing weighted cross entropy as a loss function. 
Additionally, it incorporates a multi-branch attention 
mechanism to mitigate the loss of multimodal data 
and enhance segmentation accuracy. The dice coeffi-
cients for the multiple branch TS-U-net model were 
0.876, 0.868, and 0.814 in the tumor subregions of WT, 
TC, and ET, respectively.
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