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The color contour detection model used for simulating the cone photoreceptor cell- lateral geniculate nucleus 
(LGN) – primary visual cortex (V1) visual pathway has achieved reliable results. In contrast, the rod photore-
ceptor cells employ a dark adaptive mechanism, which plays a key role in contour extraction in poorly lit en-
vironments. We employ this mechanism to propose a bionic model for contour detection. The proposed model 
divides the dark adaptation process into several stages and extracts the image information at each stage for 
subsequent integration. For evaluation, we applied the proposed dark adaptation model as the front-end pro-
cessing method of the gray and color contour detection model, and performed experimental verification on the 
RuG, BSDS300/500, and NYUD databases. In comparison with a similar state-of-the-art model, the detection 
performance of the proposed model has several advantages; in particular, it extracts contour information more 
effectively in interior scenes lit with dim colors.
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1. Introduction
The Contour is the most essential information regard-
ing a target in a natural image. An effective contour 
detection method can extract the contour features 
of the target from complex interference information, 
which is conducive to improving the robustness of 
subsequent advanced visual tasks, such as target rec-
ognition [24] and image segmentation [32].
Contour detection is a highly challenging problem 
in the field of image processing. Unlike edge detec-
tion, contours are a part of the edge information, and 
hence, the results of edge detection cannot be used to 

define the contours. In digital images, edge detection 
finds and identifies points with significant changes 
in brightness, which usually includes texture edge 
information. In contrast, contour detection involves 
the extraction of target contours from digital images 
containing both targets and backgrounds, while ig-
noring the background effects, internal textures, and 
noise interference in the images. Common edge dif-
ferential operators include Prewitt [37], Roberts [46], 
Sobel [11], and Laplace [33]. These operators are usu-
ally sensitive to noise, and their edge detection perfor-
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mance in simple scenes is acceptable. However, their 
performance has been found to significantly reduce in 
images portraying more complicated scenes. In 1986, 
Canny [4] proposed a multi-level edge detection algo-
rithm. However, indicating a surplus of noise when the 
Canny’s algorithm is used. To improve the accuracy of 
the target contour, researchers have proposed the use 
of several traditional contour detection methods based 
on edge detection. These include statistical approach-
es, phase congruency and local energy, grouping pixels 
into contours according to Gestalt principles, and con-
tour detection in the scale space [25].
Owing to the advancement of intelligent computing 
over the past few years, convolutional neural net-
works (CNN) have been widely used in the field of 
computer vision. CNNs are being applied to numer-
ous image processing tasks, such as image classi-
fication [37], which has significantly improved the 
accuracy of these tasks as compared to the case us-
ing traditional methods. Presently, numerous CNN-
based contour detection methods have been pro-
posed. These methods employ the VGG or RESNET 
as the encoding networks, use their own decoding 
networks, train the original images and prescribed 
contours into the network, and adjust the parame-
ters of the convolution kernel in the network using 
the loss function, such that the contour of the output 
of the network corresponds to the specified contour. 
For example, PMI [10], COB [20], and CED [34] have 
achieved good experimental results. However, these 
methods use supervised learning, the performance 
of which relies heavily on the availability of a large 
amount of data. Furthermore, the learning process is 
also highly time-consuming. Furthermore, it cannot 
flexibly and rapidly process specific images, and the 
calculation cost is generally very high.
In the recent years, research on bionic contour detec-
tion has attracted significant attention. Physiological 
studies have shown that target contour information 
is mainly extracted from the first visual pathway of 
biological vision (retina-LGN-V1). Inspired by this 
mechanism, numerous biomimetic contour detection 
models have been proposed, which are mainly divided 
into gray and color image models. In the retina, these 
two models employ different physiological mecha-
nisms. Models for grayscale information processing 
mainly mimic the physiological mechanism of the 
ganglion cell layer in the retina, while models for col-

or information processing mainly simulate the photo-
receptors (cones) in the retina [14, 29].
Among the bionic studies on contour detection in gray-
scale, the bionic model of the single primary visual cor-
tex is the most widely used and yields good results. In 
2003, Grigorescu et al. [8] first proposed a contour de-
tection method based on a non-classical receptive field 
by utilizing isotropic inhibition (ISO) and anisotropic 
inhibition (ANI). However, some regions that are not 
classical receptive fields exhibit facilitation rather than 
inhibition during the information response process. To 
this end, Zeng et al. [44] proposed a butterfly-shaped 
inhibition model, using a unilateral regional inhibi-
tion algorithm to simulate the mechanism around the 
cell center with high accuracy. In the same year, they 
improvised this model [43] and proposed a two-sided 
+ two-ended (adaptive) suppression algorithm, which 
effectively simulated the effect of the non-classical re-
ceptive field on the center and improved the accuracy 
of contour detection. However, all these algorithms 
perform contour extraction at a single scale, which re-
sults in the loss of information. Therefore, the multi-
scale fusion method [36] was proposed, which effec-
tively improved the accuracy of contour detection. The 
proposed model was used all around in front of the lo-
cal information of inhibition and did not consider the 
direction of the cell response. Thus, Xiao and Cai [38] 
introduced a novel angle as a measure of the neighbor-
ing neuron response in the optimal direction and the 
difference in the optimal neuron direction angle in the 
response center, to determine the mechanism of the 
action of neurons to the center of. In this method, the 
separation of the facilitation and inhibition regions can 
be avoided, and the corner and t-shape contours can be 
effectively enhanced. Furthermore, Cao et al. [5] ap-
plied the center-periphery mechanism and proposed a 
method to extract the local center-periphery contrast 
information from natural images using the normalized 
Gaussian difference function and the sigmoid activa-
tion function. In comparison with the traditional algo-
rithm, the computational complexity of this method is 
low, computational speed is faster, and performance is 
superior. Although the bionic model employs periph-
eral modulation to emphasize the directional modula-
tion characteristics of all the peripheral information, 
it is difficult to extract the contour defined by other 
clues, although several models have been proposed to 
improve the contour detection ability using the multi-
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scale strategy [12]. To employ more image information 
for contour detection, Yang et al. [42] suggested that a 
combination of multiple clues could be used to further 
enhance the suppression of texture information. By in-
troducing the direction, brightness, and contrast, the 
weight of the suppressed items could be adjusted to 
further improve the contour detection effect.
To simulate the retina (ganglion cells), Wei at el. 
[35] proposed an image preprocessing model for the 
ganglion cells layer and the difference of Gaussians 
(DoG) function is used to calculate the equivalent 
values of the red, green, and blue levels in the image 
to dynamically adjusted the size of the sensory field. 
To simulate the LGN layer, Azzopardi and Petkov [2] 
proposed a computational model for contour detec-
tion in the combined receptive field (CORF), consid-
ering the arrangement of On and Off receptive fields 
in the LGN layer. Parameters such as polarity, scale, 
radius, and polar angle were introduced, which reflect 
the informational characteristics of the receptive 
field. In 2014, the CORF model was improved, and a 
push-pull CORF model was proposed. The response 
mode (excitation or suppression) was determined 
according to the polarity preference of CORF (On or 
Off ), which had a good effect on noise suppression [3]. 
With regard to the retina (ganglion cells) – LGN – pri-
mary visual cortex, Spratling [28] considered oppo-
nent properties of the On and Off receptive fields of 
the LGN layer, and introduced a sparse coding algo-
rithm in the V1 layer model to establish the contour 
detection model of the LGN to the V1 layer visual 
pathway. Inspired by the physiological mechanism of 
the x-y visual pathway, Lin et al. [18] introduced the 
summative characteristics of the field space of Y cells 
into the visual processing mechanism of the V1 layer 
and proposed a linear and nonlinear suppression con-
tour detection model based on the x-y visual pathway 
by combining the various scale image information of 
X and Y cells into a single inhibition term. Melotti et 
al. [22] proposed a contour operator that combines 
the push-pull and surround suppression. The pro-
posed model is a combination of the receptive field 
(CORF) model and the push-pull inhibition, extended 
with surround suppression, which inhibits a part of 
the texture to a certain extent.
In comparison to grayscale, a color image provides 
more detailed features. Results indicate that the con-
tour detection method based on color features, which 

mainly adopts the retinal (cone cell) -LGN-V1 visual 
pathway, is superior to that based on gray features. 
Zhang et al. [45] proposed a color information de-
scriptor based on the color antagonism mechanism, 
which effectively improved the performance of tasks 
such as target recognition and boundary detection. 
Other similar methods employ the information pro-
cessing method of color antagonism to improve the 
algorithm performance. For example, Martin et al. 
[21] calculated the local image gradients in red-green 
and blue-yellow opponent channels to detect col-
or boundaries. However, these methods, which are 
based on color opponents, only detect the boundary 
contour based on the color, whereas that of brightness 
is not addressed. Therefore, to extract the boundary 
information from a color image (the natural image 
usually contains both brightness and color bound-
aries), it is often necessary to detect the brightness 
features. Yang et al. [40] presented a CO model that 
uses the retinal photoreceptor cone – LGN – V1 visual 
pathway, where the visual cone cells in the retina use 
a Gaussian function to receive information from the 
color information extraction. Furthermore, for the 
LGN and V1 layer, the model uses the theory of color 
single antagonism and dual antagonism to extract the 
target contours in the image. For more accurate con-
tour extraction from color images, Yang proposed the 
SCO [41] model, which is based on the CO model, and 
suggested a sparse coding mechanism for the extra 
texture in the CO model to reduce texture doping in 
the contour regions.
In summary, the contour extraction model for the 
grayscale image is mainly based on the single simu-
lation of V1, retinal ganglion cells, LGN, and retinal 
ganglion cells-LGN-V1. The color model mainly sim-
ulates the retinal cone photoreceptor cells-LGN-V1. 
Although both the grayscale and color bionic contour 
detection models involve simulation of the retina, 
the results obtained are not comprehensive. They 
are mainly applied to retinal ganglion cells (grayscale 
model) and retinal photoreceptor cones (color model) 
and are not effective in the case of other types of pho-
toreceptor-rod cells. For photoreceptors, the visual 
acuity of the retina decreases in the presence of light 
(light adaptation) and increases in darkness (dark ad-
aptation), thereby maintaining an appropriate visual 
acuity over a wide range of illuminance. The visual 
adaptation system adapts to the current environment 
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by coordinating the pupil, the rod and cone system, 
photochemical reactions, and neural mechanisms 
[7]. Shlaer et al. [27] argued that the visual acuity of 
human eyes is related to the brightness of the envi-
ronment. In a dim environment, human eyes become 
extremely sensitive, which gives them the ability to 
detect subtle changes in brightness at the cost of the 
ability to recognize detailed features and colors of 
objects. In an environment lit with sufficient bright 
light, human eyes have relatively good color vision and 
strong visual acuity. However, the sensitivity to the 
change of brightness becomes lower in this scenar-
io, and therefore, only a significant change in bright-
ness can be detected by the human eye. Hecht et al. 
[9] pointed out that light and dark adaptation simply 
indicates habituation to lower or higher levels of am-
bient lighting. Although we may not be clearly aware 
of this mechanism, our visual performance changes 
dramatically based on the situation. Dark adaptation 
occurs because of the increased synthesis of rhodop-
sin in rod cells. Drawing inspiration from these mech-
anisms, we propose a simulation model of the dark ad-
aptation process by investigating the dark adaptation 
mechanism in the retina. We simulate the adaptation 
process at different stages for various types of target 
information and subsequently integrate the results to 
obtain a highly comprehensive information, extract 
the relatively complete details. Finally, we use DA 
to refer to the dark adaptation model, and the terms 
DAG and DAC to refer to the gray and color dark adap-
tation contour detection models, respectively.
The remainder of this article is organized as follows: 
Section 2 describes the proposed DA model in detail. 
In Section 3, the grayscale and color dark adaptive 
contour detection models are introduced. Section 
4 evaluates the contour extraction performance of 
the proposed model in grayscale and color images 
through multiple data sets. Section 5 describes the 
experimental results of combining the model without 
non-maximum suppression with deep learning con-
tour detection algorithms in this paper. The discus-
sion and conclusions are provided in Section 6.

2. Dark Adaptation Model
In this study, the dark adaptation mechanism on 
the retina was simulated, and the theoretical-maxi-
mum-luminance image of the corresponding stage is 

obtained using the formulas (1) and (2). Subsequent-
ly, this image is compared with the original image, 
and the pixel points that meet the requirements are 
screened out to generate the actual-maximum-lumi-
nance image. The framework of the DA model is il-
lustrated in Figure 1. For a better understanding, fol-
low-up DA models were illustrated in four stages. The 
process of dark adaptation refers to the gradual in-
crease in visual sensitivity when entering a dark area 
from strong light or when lighting suddenly stops, al-
lowing for the resolution of surrounding objects. This 
process can be divided into four stages.

Figure 1
Dark adaptation model flow chart. The original brightness 
image was compared with the theoretical-maximum-
luminance image of each stage, and the actual-maximum-
luminance image of each stage was obtained

Primary adaptation period: In a bright environ-
ment, most of the rhodopsin (a chemical substance 
sensitive to weak light) in the rod cells is broken 
down, so when entering darkness, the rod cells have 
a weaker response to weak light. As time goes by, the 
synthesis of rhodopsin begins and the rod cells gradu-
ally recover their function.
Intermediate adaptation period: With the contin-
uous synthesis of rhodopsin, the sensitivity of rod 
cells to weak light gradually increases. The pupils 
are further dilated to increase the amount of light 
entering the eyes, thereby further enhancing visual 
sensitivity.
Advanced adaptation period: At this point, the rod 
cells have fully recovered and are in their optimal 
working state, able to produce sufficient photorecep-
tor. The visual nerve center has also undergone corre-
sponding adjustments to adapt to low light conditions.



1105Information Technology and Control 2024/4/53

Long term adaptation period: Rod cells will contin-
ue to play a role in the dark environment, maintaining 
an adaptive state of vision. The synthesis of rhodop-
sin will also continue, increasing the sensitivity of 
the eyes to low light. This process can last for several 
hours or even longer.
We simulate the adaptation process of the brightness 
and consider the brightness of the original image as 
the end of the adaptation process. Because the dark 
adaptation process occurs when going from a well-lit 
area to a dark area, we have Vt∈(0,1). In [13], a function 
was used to simulate the change in the light sensitivi-
ty of the adaptive state of the visual cell. Therefore, we 
set the calculation function of the theoretical-maxi-
mum-luminance value at the current adaptation time 
as follows:
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In Figure 2, four stages are presented as examples 
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maximum-luminance during the adaptation 
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maximum value of the current stage; if it is ×, it is not 
handled), Finally, the unprocessed pixels and the pixels 
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3. Contour Detection Model 
The contour detection model comprises two 
components: the color information response 
(Section 3.1), which mainly performs color 
processing of the image. In the first 
component, the input RGB image is 
converted to a HSV color space (V), than 
changing the brightness for many times, the 
theoretical-maximum- luminance image is 
obtained, and compared with the original 
brightness image to get the actual-maximum- 
luminance image, following which a dynamic 
adaptation process is generated, and 
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In Figure 2, four stages are presented as examples to 
illustrate the detailed changes of a pixel in a 5 × 5 area 

Figure 2
Detailed process of brightness changes in dark adaptation. In each stage, the theoretical-maximum-luminance image is 
compared with the original brightness image to select the points whose brightness is less than the theoretical-maximum-
luminance (if the comparison is √, the pixel is kept as the actual maximum value of the current stage; if it is , it is not handled), 
Finally, the unprocessed pixels and the pixels retained after the comparison are combined to form the actual-maximum-
luminance image at the current stage
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in an image under different theoretical-maximum-lu-
minance during the adaptation process. The number 
of pixels that reach the actual-maximum-luminance 
at different adaptation moments is different. When 
all the image pixels reach the actual-maximum-lu-
minance, the adaptation process is considered to be 
complete.
As mentioned above, the number of restored bright-
ness points in the image at each moment is different, 
as the information is not the same at every moment. 
Thus, we perform a weighted fusion of the images at 
different adaptation moments, using the ratio of the 
number of pixels fully adapted to the total number of 
pixels at the current moment as the weight:

 
 

 

sensitivity of the adaptive state of the visual cell. 
Therefore, we set the calculation function of the 
theoretical-maximum-luminance value at the 
current adaptation time as follows: 
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In Figure 2, four stages are presented as examples 
to illustrate the detailed changes of a pixel in a 5 × 
5 area in an image under different theoretical-
maximum-luminance during the adaptation 
process. The number of pixels that reach the 
actual-maximum-luminance at different 
adaptation moments is different. When all the 
image pixels reach the actual-maximum-
luminance, the adaptation process is considered to 
be complete. 

Figure 2 

Detailed process of brightness changes in dark 
adaptation. In each stage, the theoretical-maximum-
luminance image is compared with the original 
brightness image to select the points whose brightness is 
less than the theoretical-maximum-luminance (if the 
comparison is √ , the pixel is kept as the actual 
maximum value of the current stage; if it is ×, it is not 
handled), Finally, the unprocessed pixels and the pixels 
retained after the comparison are combined to form the 
actual-maximum-luminance image at the current stage. 
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changing the brightness for many times, the 
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completed adaptation at the current moment (exclud-
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converted to a HSV color space (V), than changing 
the brightness for many times, the theoretical-max-
imum- luminance image is obtained, and compared 
with the original brightness image to get the actu-
al-maximum- luminance image, following which a 
dynamic adaptation process is generated, and sub-
sequently, RGB color space is transformed for each 
image, and the transformed image is fused by linear 
weighting. The other component of the model consti-
tutes the grayscale information response provided by 
the rod cells (Section 3.2): here, the image is visually 
processed mainly in grayscale, and the dark adaption 
process is similar to the process of color information 
response. Finally, the grayscale images obtained from 
each stage are linearly weighted and fused.

3.1. Color Information Response
This study simulates the dark adaptation process of 
vision, where the color information response first 
transfers the input RGB image to the HSV color space 
as follows:
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Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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After the brightness V is processed by the DA 
model, the actual-maximum-luminance images of n 
stages are transferred back to the RGB color space 
one by one, and n color images of different adaptive 
moments are obtained as follows: 
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Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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where R'=R/255; G'=G/; B'=B/255, Cmax and Cmin rep-
resent the maximum value of each point in the RGB 
channel, Cmax =max(R', G', B'), Cmin = min(R', G', B'). ∆ = 
Cmax–Cmin represents the difference between the max-
imum and minimum at each point.
After the brightness V is processed by the DA model, 
the actual-maximum-luminance images of n stages 
are transferred back to the RGB color space one by 
one, and n color images of different adaptive moments 
are obtained as follows:

  

subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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the difference between the maximum and minimum 
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Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 

𝐹𝐹𝐹𝐹 =  
2𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅

 (11) 

𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃
 (12) 

(8)

3. Contour Detection Model
The contour detection model comprises two compo-
nents: the color information response (Section 3.1), 
which mainly performs color processing of the im-
age. In the first component, the input RGB image is 
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Figure 4
DAC model flow chart. After the DA model, images of each stage are transferred back to the RGB color space for weighted fusion

Figure 5
DAG model flow chart. After the DA model, images of each stage were directly weighted and fused

  

subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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the difference between the maximum and minimum 
at each point. 

After the brightness V is processed by the DA 
model, the actual-maximum-luminance images of n 
stages are transferred back to the RGB color space 
one by one, and n color images of different adaptive 
moments are obtained as follows: 
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Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 
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DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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Finally, the target contour Recolor(x, y) in the output 
image is extracted using the color opponent principle 
[7], as depicted in Figure 4.

3.2. Grayscale Information Response

The method for the processing grayscale image infor-
mation is similar to that used in the case of color im-
ages. Equations (1)-(2) are used to adapt the grayscale 
image, and linear weighted fusion Equations (3)-(4) 
are used to obtain the gray information response out-
put of the retina.
Finally, the Gabor function model [6] proposed by 
Daugman and sparse coding (SP) [41] was used to 
extract the target contour in the output image in re-
sponse to the grayscale information of the retina, as 
depicted in Figure 5.

4. Experiment and Analysis 
We perform non-maximum suppression on the en-
tire output contour [8]. Subsequently, we evaluate 
the performance of our model on the RuG, Berkeley 
segmentation (BSDS300 / 500), and NYUD datasets 
[15] using the standard F-measure evaluation meth-
od [41]. We set the tolerance parameter maxDist to 

0.0075 in all benchmark test, which represents the 
error tolerance of the contour.

  

subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 
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DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 
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subsequently, RGB color space is transformed for 
each image, and the transformed image is fused by 
linear weighting. The other component of the 
model constitutes the grayscale information 
response provided by the rod cells (Section 3.2): 
here, the image is visually processed mainly in 
grayscale, and the dark adaption process is similar 
to the process of color information response. 
Finally, the grayscale images obtained from each 
stage are linearly weighted and fused. 

3.1. Color Information Response 

This study simulates the dark adaptation process 
of vision, where the color information response 
first transfers the input RGB image to the HSV 
color space as follows: 
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point in the RGB channel, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝑅𝑅𝑅𝑅′,𝐺𝐺𝐺𝐺′,𝐵𝐵𝐵𝐵′)，
𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 = min(𝑅𝑅𝑅𝑅′,𝐺𝐺𝐺𝐺′,𝐵𝐵𝐵𝐵′) . ∆= 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛  represents 
the difference between the maximum and minimum 
at each point. 

After the brightness V is processed by the DA 
model, the actual-maximum-luminance images of n 
stages are transferred back to the RGB color space 
one by one, and n color images of different adaptive 
moments are obtained as follows: 

𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑡𝑡 × 𝑆𝑆𝑆𝑆, 𝑋𝑋𝑋𝑋 = 𝐶𝐶𝐶𝐶 × (1 −
|(𝐻𝐻𝐻𝐻 60°⁄ )𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 2 − 1|), 𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑡𝑡 − 𝐶𝐶𝐶𝐶. (8) 

(𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡′,𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡′,𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡′)

=

⎩
⎪⎪
⎨

⎪⎪
⎧(𝐶𝐶𝐶𝐶,𝑋𝑋𝑋𝑋, 0),          0° ≤ 𝐻𝐻𝐻𝐻 < 𝜋𝜋𝜋𝜋/3

(𝑋𝑋𝑋𝑋,𝐶𝐶𝐶𝐶, 0),     𝜋𝜋𝜋𝜋/3 ≤ 𝐻𝐻𝐻𝐻 < 2𝜋𝜋𝜋𝜋/3
(0,𝐶𝐶𝐶𝐶,𝑋𝑋𝑋𝑋),         2𝜋𝜋𝜋𝜋/3 ≤ 𝐻𝐻𝐻𝐻 < 𝜋𝜋𝜋𝜋
(0,𝑋𝑋𝑋𝑋,𝐶𝐶𝐶𝐶),         𝜋𝜋𝜋𝜋 ≤ 𝐻𝐻𝐻𝐻 < 4𝜋𝜋𝜋𝜋/3
(𝑋𝑋𝑋𝑋, 0,𝐶𝐶𝐶𝐶), 4𝜋𝜋𝜋𝜋/3 ≤ 𝐻𝐻𝐻𝐻 < 5𝜋𝜋𝜋𝜋/3°

(𝐶𝐶𝐶𝐶, 0,𝑋𝑋𝑋𝑋),     5𝜋𝜋𝜋𝜋/3 ≤ 𝐻𝐻𝐻𝐻 < 2𝜋𝜋𝜋𝜋°

 , (9) 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡 = (𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ,𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡 ,𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡) = (𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡′ + 𝑚𝑚𝑚𝑚) × 255, (𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡
′

+ 𝑚𝑚𝑚𝑚) × 255, (𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡′
+ 𝑚𝑚𝑚𝑚) × 255. (10) 

Figure 4 

DAC model flow chart. After the DA model, 
images of each stage are transferred back to the 
RGB color space for weighted fusion. 

 
Finally, the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) in the 
output image is extracted using the color 
opponent principle [7], as depicted in Figure 4. 

3.2. Grayscale Information Response 

The method for the processing grayscale image 
information is similar to that used in the case of 
color images. Equations (1)-(2) are used to 
adapt the grayscale image, and linear weighted 
fusion Equations (3)-(4) are used to obtain the 
gray information response output of the retina. 

Figure 5 

DAG model flow chart. After the DA model, 
images of each stage were directly weighted 
and fused. 

 
Finally, the Gabor function model [6] proposed 
by Daugman and sparse coding (SP) [41] was 
used to extract the target contour 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
in the output image in response to the 
grayscale information of the retina, as depicted 
in Figure 5. 

 

4. Experiment and Analysis  
We perform non-maximum suppression on the 
entire output contour [8]. Subsequently, we 
evaluate the performance of our model on the 
RuG, Berkeley segmentation (BSDS300 / 500), 
and NYUD datasets [15] using the standard F-
measure evaluation method [41]. We set the 
tolerance parameter maxDist to 0.0075 in all 
benchmark test, which represents the error 
tolerance of the contour. 

𝐹𝐹𝐹𝐹 =  
2𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅

 (11) 

𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃
 (12) (12)
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𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

, 
 

(13) 

where TP represents the number of contour pixels 
that are correctly detected, 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃  represents the 
number of contour pixels that are incorrectly 
detected, 𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁  represents the number of contour 
pixels that are missed; 𝑃𝑃𝑃𝑃 represents precision, and 
𝑅𝑅𝑅𝑅 represents recall rate, 𝐹𝐹𝐹𝐹 is the harmonic average 
of the both, which represents the similarity between 
the detected contour and the ground truth. ODS, 
OIS, and AP evaluated the performance of edge 
detection algorithms from different perspectives. 
ODS focuses on the average performance of the 
algorithm on the entire dataset, OIS focuses on the 
optimal performance of the algorithm on a single 
image, and AP provides an evaluation of the 
average performance of the algorithm over the 
entire recall range. These three indicators 
complement each other and together constitute a 
comprehensive evaluation of algorithm 
performance. Generally, the 𝐹𝐹𝐹𝐹 − 𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 
evaluation method corresponds to three standard 
performance indicators: ODS (the optimal threshold 
for the entire data set), OIS (the optimal threshold 
for each image), and AP (average accuracy). 

4.1. Grayscale Model Performance Analysis 

To test the effectiveness of the algorithm on 
grayscale images, we applied the DA model to the 
grayscale dataset and evaluated the performance of 
the algorithm from multiple perspectives. In this 
experiment, we set the receptive field size 𝜎𝜎𝜎𝜎 = 6  
the direction 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = 8, spatial sparseness coding 
window size 𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 = 5. As we can see that the DAG 
model superior to the other bionic contour 
extraction models on the RuG dataset. 

To test the effectiveness of the algorithm on 
grayscale images, we applied the DA model to the 
grayscale dataset and evaluated the performance of 
the algorithm from multiple perspectives. In this 
experiment, we set the receptive field size 𝜎𝜎𝜎𝜎 = 6  
the direction 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡 = 8, spatial sparseness coding 
window size 𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 = 5. As we can see that the DAG 
model superior to the other bionic contour 
extraction models on the RuG dataset. 

Figure 6 

Binary contour images of six images from the RuG 
dataset. From top to bottom: the input image, 
corresponding ground truth, ISO [37], Gabor + SP [6, 
41], CORF+PP [5], MCI [43], and DAG model. The 
values in the upper-right corner denote the P-scores. 

 
Table 1 

Average computational time (s) of eight-edge 
detection models on RUG in the MATLAB 
framework with Intel(R) Core (TM) i5-9300H 
CPU @ 2.40GHz. 

Model Time(s) 
ISO [37] 0.22 

Gabor + SP [41, 6] 0.34 
CORF [5] 1.62 

CORF+PP [5] 2.25 
LI [43] 10.28 

MCI [43] 23.06 
DAG 0.66 

The proposed model has very low 
computational cost because its building blocks 
are simple simple convolution and 
mathematical operations. With this in mind, 
we report the average computational time of 
some algorithms for RUG in Table 1; Although 
the MATLAB implementation of DAG is slow, 
it outperforms nearly every method 
considered. We only used a single CPU core for 
computation and o mitted the computational 
time of the post-processing actions of NMS and 
hysteresis thresholding. 

In Figure 6, we show the qualitative 
experimental results of the DAG model with 
the RuG dataset. In the figure, we select the 
results of the improved optimal algorithm for 
qualitative comparison such as use CORF+PP 
instead of CORF. 

(13)

where TP represents the number of contour pix-
els that are correctly detected, FP represents the 
number of contour pixels that are incorrectly de-
tected, FN represents the number of contour pixels 
that are missed; P represents precision, and R rep-
resents recall rate, F is the harmonic average of the 
both, which represents the similarity between the 
detected contour and the ground truth. ODS, OIS, 
and AP evaluated the performance of edge detection 
algorithms from different perspectives. ODS focus-
es on the average performance of the algorithm on 
the entire dataset, OIS focuses on the optimal per-
formance of the algorithm on a single image, and 
AP provides an evaluation of the average perfor-
mance of the algorithm over the entire recall range. 
These three indicators complement each other and 
together constitute a comprehensive evaluation of 
algorithm performance. Generally, the F-measure 
evaluation method corresponds to three standard 
performance indicators: ODS (the optimal threshold 
for the entire data set), OIS (the optimal threshold 
for each image), and AP (average accuracy).

4.1. Grayscale Model Performance Analysis

To test the effectiveness of the algorithm on gray-
scale images, we applied the DA model to the gray-
scale dataset and evaluated the performance of the 
algorithm from multiple perspectives. In this experi-
ment, we set the receptive field size σ =6 the direction  
ntheat=8, spatial sparseness coding window size 
ws=5. As we can see that the DAG model superior to 
the other bionic contour extraction models on the 
RuG dataset.
To test the effectiveness of the algorithm on gray-
scale images, we applied the DA model to the gray-
scale dataset and evaluated the performance of the 
algorithm from multiple perspectives. In this experi-
ment, we set the receptive field size σ=6 the direction  
ntheat=8, spatial sparseness coding window size 
ws=5. As we can see that the DAG model superior to 
the other bionic contour extraction models on the 
RuG dataset.
The proposed model has very low computational cost 
because its building blocks are simple simple con-

volution and mathematical operations. With this in 
mind, we report the average computational time of 
some algorithms for RUG in Table 1; Although the 
MATLAB implementation of DAG is slow, it outper-
forms nearly every method considered. We only used 
a single CPU core for computation and o mitted the 
computational time of the post-processing actions of 
NMS and hysteresis thresholding.

Table 1
Average computational time (s) of eight-edge detection 
models on RUG in the MATLAB framework with Intel(R) 
Core (TM) i5-9300H CPU @ 2.40GHz

Model Time(s)

ISO [37] 0.22

Gabor + SP [41, 6] 0.34

CORF [5] 1.62

CORF+PP [5] 2.25

LI [43] 10.28

MCI [43] 23.06

DAG 0.66

In Figure 6, we show the qualitative experimental re-
sults of the DAG model with the RuG dataset. In the 
figure, we select the results of the improved optimal 
algorithm for qualitative comparison such as use 
CORF+PP instead of CORF.

4.2. Color Model Performance Analysis
When visual information from the environment en-
ters the human brain, the information is first pro-
cessed by the retina. An important physiological 
mechanism in this process is visual adaptation, from 
which various target information from different stag-
es can be obtained. In this study, the number of stag-
es of the process that we must adapt to are discussed, 
and the different data concentration curves of ODS, 
OIS, and AP are plotted and depicted. The maximum 
of each curve is marked, in the work the number of op-
timal stages is selected based on the maximum ODS 
(for NYUD, we use the RGB image screening test re-
sults datasets), as shown in Figure 7.
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Figure 6
Binary contour images of six images from the RuG dataset. From top to bottom: the input image, corresponding ground 
truth, ISO [37], Gabor + SP [6, 41], CORF+PP [5], MCI [43], and DAG model. The values in the upper-right corner denote 
the P-scores
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Figure 7
Data indicator curves of datasets (a) BSDS300 (b) BSDS500, and (c) NYUD (RGB)

(a)

(b)

(c)

In Figure 8, function curve At(t) 
illustrates the change in bright-
ness, and the marked lines cor-
respond to the optimal n values 
for different datasets. The theo-
retical-maximum-luminance is 
marked by the intersection of each 
marked line and the brightness 
curve, such that different theoreti-
cal-maximum-luminance are used 
to generate the theoretical-maxi-
mum-luminance image at differ-
ent times. When t ≥ 200, the adap-
tation is considered complete, and 
the theoretical-maximum-lumi-
nance value is taken as 1.
The contour information ob-
tained at different stages of adap-
tation are different. Therefore, we 
randomly select three different 
stages of information extraction 
in the adaptation process as an 
example. Figures 9b, 9c, and 9d 
depict the images corresponding 
to the time of adaptation t1, t2, 
and t3, respectively, whereas, 9f, 
9g, and 9h represent the contour 
effect images extracted at the 
three adaptation times. The con-
tour information in the image in-
dicates the variability across the 
three selected moments, and the 
parts marked in red correspond 
to the focus of contour extraction 
at each adaptive moment.

4.2.1. BSDS Dataset 
Experiment
Tables 2-3 list the quantitative 
results of the DAC and other 
models tested on the BSDS data-
set (BSDS300/500). In this ex-
periment, we set σ =0.8, ntheat = 
6, and ws = 5. We observe that the 
ODS of our model is 0.67, and the 
BSDS500 is 0.68. The DAC mod-
el only uses the V1 region. If SED 
only considers the information 
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Figure 8
Theoretical-maximum-luminance value at each adaptation stage and moment. BSDS300, BSDS500, NYUD datasets are 
represented by red, blue, and green, respectively. At(t) shows the change in brightness with respect to time. The intersection 
of each marked line and the brightness curve depicts the theoretical-maximum-luminance value at that moment

Figure 9
Information extraction stages in the adaptation process. (a) Original image; Images at times (b) t1, (c) t2, and (d) t3 during 
the adaptation process. (e)Ground truth; Information extraction at time (f ) t1, (g) t2, and (h) t3 during the adaptation 
process. Red marks correspond to the focus of contour extraction at each adaptive moment

(e)

(a) (b) (c) (d)

(f ) (g) (h)

Table 2
Quantitative results for several contour detection models applied to color images of BSDS300/500

Model
BSDS 300 

ODS OIS AP

CO [22] 0.64 0.66 0.64

SCO [24] 0.66 0.68 0.70

SED (only V1) [1] 0.66 0.70 0.70

Pb [28] 0.65 0.68 0.64

FDAG [19] 0.63 0.66 0.67

SCO+DL[11] 0.67 0.68 070

DAC 0.67 0.69 0.70
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processing in the V1 region, the ODS of its experimen-
tal results is 0.66. The DAC model, therefore, has ad-
vantages over the SED (only V1) under the same con-
ditions. Although the ODS of our model is the same as 
the SCO+DL, but there are still advantages over the 
other two parameters

Table 3
Quantitative results for several contour detection models applied to color images of BSDS500

Model
BSDS 500 

ODS OIS AP

CO [40] 0.65 0.68 0.65

SCO [41] 0.67 0.71 0.71

SED (only V1) [1] 0.67 0.71 0.70

Pb [28] 0.67 0.70 0.65

FDAG [6] 0.67 0.70 0.76

SCO+DL [15] 0.68 0.71 0.71

DAC 0.68 0.72 0.73

Figure 10
Comparison of DA and SCO models. Red marks correspond to the detection effect better than SCO

To highlight the contribution of the visual adaptive 
processing model in information extraction, we ran-
domly selected five images from the BSDS300/500 
dataset for testing. The DAC model adds the DA mod-
el to the SCO model. Therefore, Figure 10 shows the 
comparison of the contour extraction performance of 
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Figure 11
Quantitative comparison of several detection models on 
BSDS300 / 500

the DAC and the SCO models. The visual adaptation 
mechanism on the retina has a large effect on informa-
tion extraction. Notably, the information obtained at 
different adaptation stages is different. Furthermore, 
detailed target information is obtained after inte-
grating all the information. If only the original image 
is processed, some information may be lost, thereby 
reducing the accuracy of contour extraction. As indi-
cated by the red marks on the image, the DAC model 
effectively extracts the contours that are similar in 
color and brightness, whereas the SCO model per-
forms poorly Figure 11 shows the P-R curve of sever-
al bionic contour detection algorithms CO [40], SCO 
[41], SED (only V1) [1], and DAC on BSDS300/500.
Figure 11 compares the DAC model with that of the 
SCO model proposed by Yang and the Pb [28] model 
proposed by Martin et al. The results indicate that the 
DAC model performs well in information extraction.
To prove that the DA model has good robustness, and 
it can maintain great contour detection performance 
in dim visual scene, we perform gamma transforma-

Figure 12
Model comparison by experiment. The last column shows the F-measure for each model contour
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Figure 13
Comparison of DAC model and SCO model under different γ. In each image, the top is the SCO model, and the bottom is 
the DAC model. In the Ground truth, the red mark indicates the area we selected for comparison, and the blue marked area 
indicates the influence on the contour detection effect of the DAC model and the SCO model as the γ changes

tion on all the images in the test data set. When the γ 
is greater than 1, It stretches areas of higher gray lev-
els in the image, while compressing lower gray levels 
(reducing the contrast of the image to simulate a dim 
visual scene). In this work, we select the contour de-
tection effect comparison of two images under differ-
ent γ. The experimental results prove that when γ =2, 
the effect of the DAC model on the contour detection 
is significantly smaller than SCO model, and when the 
γ continues to increase, the image information is lost 
more seriously, which has a great impact on the result 
of contour detection. However, it can still be seen that 
the contour detection effect of the DAC model is supe-
rior to the SCO model.
We select the contour extraction effect of the two 
images under different γ for analysis. As can be seen 
from Figure 13, the blue marked area of the first im-
age (the contour area of the reflection in the water 
surface) DAC model is better than the SCO model in 
retention effect of the contour when the a continues 
to increase. In the second image, the blue marked area 
(the non-contour area of the background in the im-
age) DAC model is significantly better than the SCO 
model in the suppression effect of non-contour when 
the γ continues to increase. In summary, the DAC 

model proposed in this paper has great robustness 
and it can extract relatively good target contours in a 
dim environment.

4.2.2. NYUD Data Set Experiment
To better demonstrate the advantages of the DAC mod-
el, we conducted additional verification experiments 
on the NYUD dataset. In this experiment, we set σ =1.2, 
ntheat = 6, and ws=5. The NUYD dataset comprises 
RGB images and HHA depth images. Therefore, the 
results obtained were as follows: NYUD-RGB image 
processing results, NYUD-HHA image processing re-
sults, and NYUD-RGB-HHA image processing results, 
which are obtained by combining the first two sets of 
results. Figure 14 depicts that the P-R curves of sever-
al bionic contour detection models in RGB, HHA, and 
RGN-HHA respectively, including CO [40], SCO [41], 
SED (Only V1) [1], and DAC.
The contour extraction performance of the same model 
varies depending on the dataset used. From the results 
obtained on the BSDS300 / 500 and NYUD datasets, it 
can be concluded that the DA model exhibits great gen-
erality. In comparison with the other models, the detec-
tion effect in the case of the NYUD dataset is more reli-
able, as the indoor lighting is dim compared to outdoor 
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Figure 14
Quantitative comparison of several detection models on NYUD dataset

lighting. Using the DAC model to 
integrate the extracted information 
therefore yields better performance 
in the extraction of darker edges of 
the indoor scene, as indicated by the 
red box in Figure 15.

5. Bionic Mechanism 
Combined with Deep 
Learning
Inspired by ConvNets using biolog-
ically inspired mechanisms for con-
volutional neural networks [16]. To 
discuss the possibility of combining 
bionics and deep learning meth-
ods, this paper fuses the proposed 
methods with deep learning mod-
els. Our method has some changes 
to the original image, it plays a sig-
nificant role in texture suppression 
and detail extraction. Therefore, I 
think that fusing our method with 
the deep learning model has certain 
research significance. Thus, we use 
the adaptive image as a new feature, 
and combine the original RGB im-
age as the input of the convolutional 
neural network. Table 4 shows the 
quantitative results of our method 
combined with the deep learning 
model and compared with the orig-
inal deep learning model. In this 
experiment, we use the enhanced 
data of BSDS500 and the flipped 
PASCAL VOC context data set [23] 
as training data. The original HED 
[39] has only single-scale results, so 
that HED+DA is also single-scale re-
sults in the table, and the others are 
multi-scale. Furthermore, ODS and 
OIS are usually related to the perfor-
mance evaluation of edge detection, 
while AP is more commonly used 
in object detection or classification 
tasks. This task places greater em-
phasis on the continuity and accura-

Figure 15
Comparison between DAC model and SCO model
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cy of the edges, therefore AP is only used as a reference 
value. The results of the DA model imported into the 
CED preprocessing network will have a certain impact 
on the overall quality of the image, which actually indi-
rectly improves the robustness of the model. Therefore, 
the AP value will decrease to some extent.

Table 4
The comparison on BSDS500 dataset

Model
BSDS 500 

ODS OIS AP

HED [39] .788 .808 .840

RCF [19] .811 .830 .846

CED [34] .815 .833 .889

LRC [17] .816 .836 .864

HED+DA .799 .817 .833

RCF+DA .813 .832 .856

CED+DA .816 .834 .869

LRC+DA .817 .840 .868

6. Discussion and Conclusions
Contour detection is usually performed in two steps; 
first, the target information is extracted, and then, the 
texture information is suppressed. Various physio-
logical mechanism-based models have been proposed 
and effectively applied to numerous image processing 
tasks. To extract target information, a model based 
on visual adaptation of the retina is proposed in this 
study. This model is capable of extracting a large 
amount target information even in complex scenes.
The main contribution of this study can be summa-
rized as follows. the process of information extraction 
in humans must be a gradual one, and the information 
presented to the mind at different visualization stag-
es must also be different. Unlike in previous studies, 
before the information processing step, we added a vi-
sual gradient processing step to simulate the gradient 

of the image. Therefore, we obtainedpieces of image 
information at different visual adaptation periods, 
which are then integrated to yield a relatively more 
complete target image information.
The dark adaptation vision model proposed in this 
paper was quantitatively tested on the RuG, BSDS, 
and NYUD datasets. In comparison with the current 
bionic contour detection model, the DA model can ex-
tract more contour information from complex scenes. 
And discussed the possibility of combining the bion-
ic model and the deep learning model. From the re-
sults, it can be seen that the combination of the two 
can improve the extraction of the target contour to a 
certain extent. However, the human visual adaptation 
system is highly complicated, as it not only adapts the 
brightness, but also the color. Hence, the DA model is 
incomplete in that regard. The model proposed in this 
study only uses the retina, LGN, and primary visual 
cortex to process the image, and does not apply to the 
higher visual cortex. Studies have shown that the ad-
aptation of one eye to strong colored lights affects the 
color vision of the other eye, which indicates that col-
or adaptation can only be performed by advanced vi-
sual systems. Thus, the future research must focus on 
studying how the higher-level visual cortex processes 
color adaptation on the basis of preprocessing can be 
performed. In summary, the theoretically complete 
visual adaptation process should include brightness 
and color adaptations, which are closely related to one 
another and form a closed loop. The color adaptation 
information should be returned from the advanced 
visual cortex to the primary visual cortex through 
feedback and the preceding brightness adaptation 
information. This combination is expected to form a 
completely closed information processing loop.

Acknowledgement 
The authors appreciate the anonymous reviewers for 
their helpful and constructive comments on an ear-
lier draft of this paper. This work was supported by 
China University Industry University Research Inno-
vation Fund-New Generation Information Tech-nol-
ogy Innovation Project Topic (Grant (2021ITA11001).

References 
1. Akbarinia, A., Parraga, C. A. Feedback and Surround 

Modulated Boundary Detection. International Journal 
of Computer Vision, 2018, 126(12), 1367-1380. https://
doi.org/10.1007/s11263-017-1035-5

2. Azzopardi, G., Petkov, N. A CORF Computational Model of 
a Simple Cell That Relies on LGN Input Outperforms the 
Gabor Function Model. Biological Cybernetics, 2012, 106, 
177-189. https://doi.org/10.1007/s00422-012-0486-6



1117Information Technology and Control 2024/4/53

3. Azzopardi, G., Rodríguez-Sánchez, A., Piater, J., Petkov, 
N. A Push-Pull CORF Model of a Simple Cell with Anti-
phase Inhibition Improves SNR and Contour Detection. 
PLoS One, 2014, 9(7), e98424. https://doi.org/10.1371/
journal.pone.0098424

4. Bao, P., Zhang, L., Wu, X. Canny Edge Detection Enhance-
ment by Scale Multiplication. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2005, 27(9), 
1485-1490. https://doi.org/10.1109/TPAMI.2005.192

5. Cao, Y.-J., Lin, C., Pan, Y.-J., Zhao, H.-J. Application of 
the Center-Surround Mechanism to Contour Detection. 
Multimedia Tools and Applications, 2019, 78, 25121-
25141. https://doi.org/10.1007/s11042-018-6924-2

6. Daugman, J. G. Uncertainty Relation for Resolution in 
Space, Spatial Frequency, and Orientation Optimized by 
Two-Dimensional Visual Cortical Filters. JOSA A, 1985, 
2(7), 1160-1169. https://doi.org/10.1364/JOSAA.2.001160

7. Dowling, J. E. The Retina: An Approachable Part of 
the Brain. Harvard University Press, 1987. ISBN: 
9780674766800

8. Grigorescu, C., Petkov, N., Westenberg, M. A. Contour 
Detection Based on Nonclassical Receptive Field Inhi-
bition. IEEE Transactions on Image Processing, 2003, 
12(7), 729-739. https://doi.org/10.1109/TIP.2003.814250

9. Hecht, S., Haig, C., Chase, A. M. The Influence of Light 
Adaptation on Subsequent Dark Adaptation of the Eye. 
The Journal of General Physiology, 1937, 20(6), 831-
850. https://doi.org/10.1085/jgp.20.6.831

10. Isola, P., Zoran, D., Krishnan, D., Adelson, E. H. Crisp 
Boundary Detection Using Pointwise Mutual Informa-
tion. In Computer Vision-ECCV 2014: 13th Europe-
an Conference, Zurich, Switzerland, September 6-12, 
2014, Proceedings, Part III 13, Springer, 2014, 799-814. 
https://doi.org/10.1007/978-3-319-10578-9_52

11. Kazakova, N., Margala, M., Durdle, N. G. Sobel Edge De-
tection Processor for a Real-Time Volume Rendering 
System. In 2004 IEEE International Symposium on 
Circuits and Systems, IEEE, 2004, 2, II-913. https://doi.
org/10.1109/ISCAS.2004.1328866

12. La Cara, G.-E., Ursi, M. A Model of Contour Extraction 
Including Multiple Scales, Flexible Inhibition, and At-
tention. Neural Networks, 2008, 21(5), 759-773. https://
doi.org/10.1016/j.neunet.2008.04.003

13. Ledda, P., Santos, L. P., Chalmers, A. A Local Model of 
Eye Adaptation for High Dynamic Range Images. In 
Proceedings of the 3rd International Conference on 
Computer Graphics, Virtual Reality, Visualization 
and Interaction in Africa, 2004, 151-160. https://doi.
org/10.1145/1029949.1029974

14. Leibrock, C. S., Reuter, T., Lamb, T. D. Molecular Basis 
of Dark Adaptation in Rod Photoreceptors. Eye, 1998, 
12(3), 511-520. https://doi.org/10.1038/eye.1998.144

15. Li, F., Lin, C., Zhang, Q., Wang, R. A Biologically In-
spired Contour Detection Model Based on Multiple 
Visual Channels and Multi-Hierarchical Visual Infor-
mation. IEEE Access, 2020, 8, 15410-15422. https://doi.
org/10.1109/ACCESS.2020.2966916

16. Liang, Z., Shen, W., Shou, T. Enhancement of Oblique 
Effect in the Cat’s Primary Visual Cortex via Orienta-
tion Preference Shifting Induced by Excitatory Feed-
back from Higher-Order Cortical Area21a. Neurosci-
ence, 2007, 145(1), 377-383. https://doi.org/10.1016/j.
neuroscience.2006.12.046

17. Lin, C., Cui, L., Li, F., Cao, Y. Lateral Refinement Network 
for Contour Detection. Neurocomputing, 2020, 409, 
361-371. https://doi.org/10.1016/j.neucom.2020.05.073

18. Lin, C., Xu, G., Cao, Y. Contour Detection Model Using 
Linear and Non-Linear Modulation Based on Non-CRF 
Suppression. IET Image Processing, 2018, 12(6), 993-
1003. https://doi.org/10.1049/iet-ipr.2017.0679

19. Liu, Y., Cheng, M.-M., Hu, X., Wang, K., Bai, X. Richer 
Convolutional Features for Edge Detection. In Pro-
ceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2017, 3000-3009. https://doi.
org/10.1109/CVPR.2017.656

20. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L. 
Convolutional Oriented Boundaries: From Image Seg-
mentation to High-Level Tasks. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2017, 40(4), 
819-833. https://doi.org/10.1109/TPAMI.2017.2700300

21. Martin, D. R., Fowlkes, C. C., Malik, J. Learning to De-
tect Natural Image Boundaries Using Local Brightness, 
Color, and Texture Cues. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2004, 26(5), 530-
5494. https://doi.org/10.1109/TPAMI.2004.1273918

22. Melotti, D., Heimbach, K., Rodríguez-Sánchez, A., 
Strisciuglio, N., Azzopardi, G. A Robust Contour Detec-
tion Operator with Combined Push-Pull Inhibition and 
Surround Suppression. Information Sciences, 2020, 
524, 229-240. https://doi.org/10.1016/j.ins.2020.03.081

23. Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., 
Fidler, S. The Role of Context for Object Detection and 
Semantic Segmentation in the Wild. In Proceedings of 
the IEEE Conference on Computer Vision and Pattern 
Recognition, 2014, 891-898. https://doi.org/10.1109/
CVPR.2014.119

24. Olson, C. F., Huttenlocher, D. P. Automatic Target Rec-
ognition by Matching Oriented Edge Pixels. IEEE 



Information Technology and Control 2024/4/531118

Transactions on Image Processing, 1997, 6(1), 103-113. 
https://doi.org/10.1109/83.552100

25. Papari, G., Petkov, N. Edge and Line Oriented Contour 
Detection: State of the Art. Image and Vision Comput-
ing, 2011, 29(2-3), 79-103. https://doi.org/10.1016/j.
imavis.2010.08.009

26. Pattanaik, S. N., Tumblin, J., Yee, H., Greenberg, D. 
P. Time-Dependent Visual Adaptation for Fast Re-
alistic Image Display. In Proceedings of the 27th 
Annual Conference on Computer Graphics and 
Interactive Techniques, 2000, 47-54. https://doi.
org/10.1145/344779.344810

27. Shlaer, S. The Relation Between Visual Acuity and Il-
lumination. The Journal of General Physiology, 1937, 
21(2), 165-188. https://doi.org/10.1085/jgp.21.2.165

28. Spratling, M. W. Image Segmentation Using a Sparse 
Coding Model of Cortical Area V1. IEEE Transactions 
on Image Processing, 2012, 22(4), 1631-1643. https://
doi.org/10.1109/TIP.2012.2235850

29. Staddon, J. E. R. Adaptive Behavior and Learning. Cam-
bridge University Press, 2016. https://doi.org/10.1017/
CBO9781139998369

30. Strisciuglio, N., Azzopardi, G., Petkov, N. Robust Inhibi-
tion-Augmented Operator for Delineation of Curvilin-
ear Structures. IEEE Transactions on Image Process-
ing, 2019, 28(12), 5852-5866. https://doi.org/10.1109/
TIP.2019.2922096

31. Strisciuglio, N., Lopez-Antequera, M., Petkov, N. En-
hanced Robustness of Convolutional Networks with a 
Push-Pull Inhibition Layer. Neural Computing Applica-
tions, 2020. https://doi.org/10.1007/s00521-020-04751-8

32. Tabb, M., Ahuja, N. Multiscale Image Segmentation by 
Integrated Edge and Region Detection. IEEE Transac-
tions on Image Processing, 1997, 6(5), 642-655. https://
doi.org/10.1109/83.568922

33. Van Vliet, L. J., Young, I. T., Beckers, G. L. An Edge De-
tection Model Based on Non-Linear Laplace Filtering. 
In Machine Intelligence and Pattern Recognition, Else-
vier, 1988, 7, 63-73. https://doi.org/10.1016/B978-0-444-
87137-4.50011-4

34. Wang, Y., Zhao, X., Huang, K. Deep Crisp Boundaries. In 
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, 3892-3900. https://
doi.org/10.1109/CVPR.2017.414

35. Wei, H., Dai, Z.-L., Zuo, Q.-S. A Ganglion-Cell-Based Pri-
mary Image Representation Method and Its Contribution 
to Object Recognition. Connection Science, 2016, 28(4), 
311-331. https://doi.org/10.1080/09540091.2016.1212813

36. Wei, H., Lang, B., Zuo, Q. Contour Detection Model 
with Multi-Scale Integration Based on Non-Classical 

Receptive Field. Neurocomputing, 2013, 103, 247-262. 
https://doi.org/10.1016/j.neucom.2012.10.009

37. Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J. HCP: A 
Flexible CNN Framework for Multi-Label Image Clas-
sification. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2015, 38(9), 1901-1907. https://
doi.org/10.1109/TPAMI.2015.2491929

38. Xiao, J., Cai, C. Contour Detection Based on Horizon-
tal Interactions in Primary Visual Cortex. Electronics 
Letters, 2014, 50(5), 359-361. https://doi.org/10.1049/
el.2014.0298

39. Xie, S., Tu, Z. Holistically-Nested Edge Detection. In 
Proceedings of the IEEE International Conference 
on Computer Vision, 2015, 1395-1403. https://doi.
org/10.1109/ICCV.2015.164

40. Yang, K., Gao, S., Li, C. Efficient Color Boundary De-
tection with Color-Opponent Mechanisms. In Pro-
ceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, 2013, 2810-2817. https://doi.
org/10.1109/CVPR.2013.361

41. Yang, K.-F., Gao, S.-B., Guo, C.-F., Li, C.-Y., Li, Y.-J. 
Boundary Detection Using Double-Opponency and 
Spatial Sparseness Constraint. IEEE Transactions on 
Image Processing, 2015, 24(8), 2565-2578. https://doi.
org/10.1109/TIP.2015.2425538

42. Yang, K.-F., Li, C.-Y., Li, Y.-J. Multifeature-Based Sur-
round Inhibition Improves Contour Detection in Nat-
ural Images. IEEE Transactions on Image Process-
ing, 2014, 23(12), 5020-5032. https://doi.org/10.1109/
TIP.2014.2361210

43. Zeng, C., Li, Y., Li, C. Center-Surround Interaction with 
Adaptive Inhibition: A Computational Model for Con-
tour Detection. NeuroImage, 2011, 55(1), 49-66. https://
doi.org/10.1016/j.neuroimage.2010.11.060

44. Zeng, C., Li, Y., Yang, K., Li, C. Contour Detection Based 
on a Non-Classical Receptive Field Model with Butter-
fly-Shaped Inhibition Subregions. Neurocomputing, 
2011, 74(10), 1527-1534. https://doi.org/10.1016/j.neu-
com.2010.05.014

45. Zhang, J., Barhomi, Y., Serre, T. A New Biologically 
Inspired Color Image Descriptor. In Computer Vi-
sion-ECCV 2012: 12th European Conference on Com-
puter Vision, Florence, Italy, October 7-13, 2012, Pro-
ceedings, Part V 12, Springer, 2012, 312-324. https://doi.
org/10.1007/978-3-642-33715-4_23

46. Zhao, D., Yang, L., Wu, X., Wang, N., Li, H. An Improved 
Roberts Edge Detection Algorithm Based on Mean Fil-
ter and Wavelet Denoising. In Advances in Information 
Technology and Industry Applications, Springer, 2012, 
299-305. https://doi.org/10.1007/978-3-642-26001-8_39

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




