

Flexible Job Shop Scheduling Optimization with Machine and AGV Integration Based on Improved NSGA-II

Yong Liu

School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

Tao Huang

School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China

Yong Chen

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

Li Liu, Tao Guo

School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China

Corresponding author: Yong Liu, liuyong_cdut@sina.com

Aiming at the problem of integrated scheduling of machines and AGVs in a flexible job shop, this paper constructs a scheduling model with the optimization objectives of minimizing the maximum completion time, minimizing the machine load, and minimizing the total energy consumption. This model is based on a comprehensive consideration of the payload time and no-load time of AGVs between the loading and unloading stations and the machining machines. An improved NSGA-II algorithm is proposed to address this problem. The algorithm adopts a three-level coding structure based on processes, machines, and AGVs, and employs differentiated cross-variation strategies for different levels to enhance its global search capability. A variable domain search algorithm is introduced to boost the local search capability by combining different neighborhood search methods within the three-level coding structure. Additionally, reverse individuals are introduced to improve the elite retention strategy, thereby increasing the diversity of the population. Ultimately, the case test results demonstrate that the improved NSGA-II algorithm exhibits superior performance in solving the flexible job shop scheduling problem involving AGVs, and the effect of the number of AGVs on the scheduling objectives conforms to the law of diminishing marginal utility.

KEYWORDS: Flexible job shop, multi-targeting, integrated machine and AGV scheduling, NSGA-II, VNS.

1. Introduction

With the rapid development of the manufacturing industry and the diversification of market demands, the scheduling of workpieces and the reasonable cooperation between various equipment in the workshop is a key issue in the operation process of a flow shop, so the classical shop scheduling problem (JSP) has been widely studied and applied. In the past few decades, the flexible workshop has gradually become an important part of the modern manufacturing system, which not only includes various processing equipment such as milling machines and lathes, but also conveyor belts, distribution vehicles, AGVs, etc., for which various heuristic algorithms have been proposed to improve the effective coordination of equipment in the assembly line manufacturing workshop. Nowadays, when resources and energy become the focus topic, more and more factory companies consider reducing power consumption as an important indicator of production cost. Therefore, there is an urgent need to balance energy consumption reduction and cost reduction while maximizing production benefits in the shop floor. Therefore, effective integrated scheduling of these devices is crucial for improving production efficiency, shortening production cycle time, and reducing costs [4]. Numerous scholars have carried out in-depth studies on this issue, which not only cover the selection of processing equipment and the optimization of processing sequence, but also include the path planning and scheduling strategy of AGVs, aiming at achieving the optimal integrated scheduling of processing and distribution resources [6], but do not consider the optimization of multi-objectives.

Gu et al. [7] proposed an improved memetic algorithm (IMA) considering the transport time of workpieces between machines and the start-stop operation of machines, designing a multiple initialization rule to improve the quality of the initial population, and integrating four improved variable neighborhood search strategies and two energy-saving strategies during the optimization process in order to enhance the searching capability and reduce energy consumption. Wen et al. [15] proposed an effective hybrid algorithm for the multi-AGV flexible job shop scheduling problem, which achieves global optimization by constructing an optimization model, designing a high-quality initialization method and an improved elitist strategy, as well as integrating the key techniques of problem

knowledge-driven neighborhood search. Zhang et al. [18] designed a mixed-integer linear programming model by creating an improved NSGA-II algorithm, and the improved algorithm adopts a local search operation based on critical paths and an improved congestion distance calculation method to reduce the computational complexity of the algorithm. Liu et al. [9] created a dual-resource scheduling optimization model for machine tools and AGVs, and enhanced the local search ability and quality of the algorithm by designing an improved genetic algorithm to solve the scheduling problem of flexible job shops using segmented AGVs, with the aim of minimizing the maximum completion time. Amirteimoori et al. [1] proposed a combination of mixed-integer linear programming model and Parallel Hybrid Particle Swarm Optimization-Genetic Algorithm (PPSOGA) method, which fully considers the actual situation of multiple AGVs, different processing routes and job re-entry, and utilizes parallel computing to significantly improve the operation efficiency of the algorithm.

In summary, most of the studies are aimed at completion time optimization, but in the integrated scheduling process, with the diversification of the machines and equipment involved in scheduling, such as machine energy consumption and other factors are also factors to be considered. Therefore, this paper constructs a scheduling model that minimizes the three objectives of maximum completion time, machine load and energy consumption, and proposes a hybrid algorithm of NSGA-II and VNS. A variable neighborhood search algorithm is introduced through three layers of real number coding of workpieces, machines and AGVs, and six targeted domain search strategies are designed for these three layers of coding to enhance the local search capability of the algorithm. An improved reverse elite retention strategy is used to prevent the loss of individuals with better potential and to maintain population diversity.

2. Methodology

2.1. Description of the Problem

The flexible job shop machine and AGV integration scheduling problem is an extension of the FJSP and can be defined as "A job shop with m machining ma-

chines $M = \{M_1, M_2, M_3, \ldots, M_m\}$ needs to perform machining on n workpieces $J = \{J_1, J_2, J_3, \ldots, J_n\}$, and the workpiece transfer process is handled by v AGVs $V = \{V_1, V_2, V_3, \ldots, V_v\}$ and the transfer process of the workpieces is handled by v AGVs $V = \{V_1, V_2, V_3, \ldots, V_v\}$. Each workpiece J_i is subjected to a series of operations $\{O_{i1}, O_{i2}, O_{i3}, \ldots, O_{i n_i}\}$, where n_i is the number of operations for workpiece *ⁱ ^J* . Each machining operation O_{ii} $(i = 1, 2, ..., n; j = 1, 2, ..., n_i)$ of the workpiece has to be processed by one of a given set of machines $M_{ii} \subset M$, and when the previous process is finished, it is then transferred by the AGV to the machine that is going to process the next process."

In the machining operation and AGV integrated scheduling of the machine tool in the flexible workshop, it is necessary to select the appropriate machine tool, and an AGV is also required to transfer the workpiece in an orderly manner in order to better handle each processing operation of each workpiece. The problem involves determining both the processing sequence of the workpieces, as well as the sequence of operations of the machines and the transfer sequence of the AGVs. It consists of three sub-problems: the operation sequence problem, the machining machine selection problem, and the AGV transfer order problem. In studying this problem, the following assumptions are made:

- **1** The components of the dispatching shop are: loading and unloading area, workpieces to be processed, processing machines and AGVs.
- **2** All workpieces and machining machines are available at the same time at time zero and both workpieces and AGVs are in the loading area at time zero.
- **3** The workpiece is independent, and each processing machine can only process one workpiece at a time.
- **4** Different operations on a workpiece cannot be performed simultaneously.
- **5** Operations must be performed in order of priority to each other, and each process must be processed after the previous process has been completed.
- **6** Each operation cannot be interrupted during processing.
- **7** Machine interruptions are ignored.

2.2. Mathematical Model

Mathematical models are constructed based on the flexible job shop machine and AGV scheduling problem description, and the definitions of each mathematical model symbol are listed in Table 1.

Table 1

Parameter definitions

Construct a scheduling model with the minimization of three objectives: maximum completion time, machine load and energy consumption as the optimization index. And use Pareto method to solve the model optimization.

1 Minimize the maximum completion time

$$
\min C_{\max} = \min \left[\max \left(\sum_{i=1}^{n} C_i \right) \right] \tag{1}
$$

(2)Minimize machine load **2** Minimize machine load (2)Minimize machine load 2 Minimize machine load ϵ infinitization index. The optimization is the optimization in α *C C*minimization of the extensive state of the three objectives: maximum minimization of three objectives: maximum

$$
\min T_{work} = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{k=1}^{m} X_{ijk} T_{ijk}
$$
 (2)

 $\frac{1}{\sqrt{1-\frac{1$

3 Minimize total energy consumption
 $LST_{ija} = \text{max}$ 111 $=$ $+$ Pareto method to solve the model optimization.

$$
\min E = \min \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{k=1}^{m} P_{ijk} \times T_{ijk} \times X_{ijk} \right) +
$$
\n
$$
\min \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{k=1}^{m} P_{Hijk} \times H_{ijk} \times (1 - X_{ijk}) \right)
$$
\n(1)\n(3)\n3. Algorithm Design\n3. Algorithm Design\n3.

considering the emergence of process sequence of process sequence of process sequence of process sequence of p
The emergence of process sequence of process sequence of process sequence of process sequence of process sequen The constraints are as in Equation:

each process in the contract of

Equation (4) indicates that a process can be machined on only one machine p_{max} the mass p_{max} the state $\frac{1}{2}$ \cdots \cdots Equation (4) indicates that a process can be machined $\frac{1}{2}$ in the flexible $\overline{1}$ *X* $\frac{1}{m}$ <u>machined on only one machine</u>d one material machined on one machined one machine

$$
\sum_{k=1}^{m} X_{ijk} = 1 \tag{4}
$$

 $\overline{E}_{\text{equations (5)-(6)}$ indicate that there is at most one immediately preceding or following process for each minediately proceding of following process for each
process Equations (5)-(6) indicate that there is at most one ing to the pro p_1 ocess. p_2 and p_3 and p_4 and p_5 and p_6 and p_7 and p_8 and p_9 an ∑∑∑∑∑ ≤ (5) $\frac{1}{2}$ indicate that there is at most one summaristor indicate that there is at most one summaristor of $\frac{1}{2}$ in $\frac{1}{2}$ immediately precedents or following process for \tilde{y} process for each MS: Corresponding to several schedule in which schedule in the set of the $\,$ immediately preceding or following process for each

Each has a different way of encoding.
\nEach has a different way of encoding.
\nThe OS segment represents the process order of the
\nworkpieces, and the length of the string represents the
\nsum
$$
\sum_{g=1}^{n} \sum_{h=1}^{n_g} \sum_{k=1}^{m} Y_{ijghk} \le 1
$$
.
\n
$$
\sum_{g=1}^{n} \sum_{h=1}^{n_g} \sum_{k=1}^{m} Y_{ijghk} \le 1.
$$
\n
$$
\sum_{g=1}^{n} \sum_{h=1}^{n_g} Y_{ijghk} \le 1.
$$

 $\overline{}$ Equation (7) indicates that only one workniece can start the next process only after completing the pre-
In the initial property of the contract vious process Equation (*i*) indicates that only one workpiece can Equation (7) indicate Equation (7) indicates that only one workpiece can
start the next process only after completing the pre-
vious process
ly generated: if generated the the state of the state of the artifacted of Equation (7) indicates that only one workpiece

The N
\n
$$
S_{ij} + T_{ij} \leq S_{i(j+1)}.
$$
\n
$$
(7)
$$
\nselect
\npiece.

piece. The ge
Equation (8) indicates that a machine can process denotes the s only one process at a time machines for the operation corresponding to E_{cutoff} (8) *i*₁ *i*_{*s*} *s i*^{*s*} *i*_{*i*} *die* μ *s* α *s*

$$
S_{ijk} \geq S_{ghk} + Y_{ijghk} \times T_{ghk} .
$$
\n(8)

Equations (9)-(10) represent the start and end Equations (9)-(10) represent the start and end times Equations (9)-(10) represent the start and end Equations (9)-(10) of the AGV when it is in an unloaded state times of the AGV when it is in an unloaded state and unloaded state in an unloaded state and

 $t_{\rm{max}}$ of the AGV when it is in an unloaded state state state state

$$
NST_{ija} = \sum_{a=1}^{v} \left(LET_{ija} \times Z_{ija} \right)
$$
 (9)

$$
NET_{ija} = NST_{ija} + \sum_{a=1}^{v} \sum_{k=1}^{m} \sum_{k'=1}^{m} \left(AT_{kk'} \times X_{i(j-1)k} \times Z_{ija} \right)
$$
 (10)
Equations (11)-(12) represent the start and end times
during the AGV load state

during the AGV load state $\frac{1}{2}$ Equations .
*i*quations (11)-(12) repres $\overline{}$ $\frac{a-1}{a-1} \sum_{k=1}^{k-1} \frac{1}{k-1}$ s (11)-(12) represent the start and end time $\cos(11)$ - (12) repr $a=1$ $k=1$ $k=1$
 Equations (11)-(12) represent the start and end time:

during the AGV load state t_{total} t_{total} and state states during the AGV local states states and states state Equations (11) - (12) represent the start and end time Equations $(11)-(12)$ represent the start and end times

$$
LST_{ija} = \max \left(\sum_{a=1}^{v} \left(NET_{ija} \times Z_{ija} \right), C_{i(j-1)k} \right)
$$
(11)

$$
LET_{ija} = LST_{ija} + \sum_{i=1}^{v} \sum_{j=1}^{m} \sum_{k=1}^{m} \left(AT_{kk'} \times X_{ijk} \times Z_{ija} \right)
$$
(12)

$$
LET_{ija} = LST_{ija} + \sum_{a=1}^{v} \sum_{k=1}^{m} \sum_{k'=1}^{m} \left(AT_{kk'} \times X_{ijk} \times Z_{ija} \right)
$$
 (12)

In the flexible scheduling problem, the flexible problem, the flexible problem, $\frac{1}{2}$ \sim 3. Algorithm Design $\overline{}$
2. Algorithm Design 3.1 mJ and 2.1 mJ a 3. Algorithm Design 3. Algorithm Design

work ijk ijk

v

3.1. Encoding and Decoding $\overline{}$ **3.1. Encoding and Decoding**

3. Algorithm Design

3. Algorithm Design

In the flexible job shop scheduling problem, considericates that a process can be machined ing the emergence of process sequencing, equipment ine assignment and AGV assignment problems, this paper assignment and red v assignment problems, and paper
adopts a three-layer coding method based on process, $\epsilon_{(4)}$ equipment and AGV. In genetic algorithms, because $\frac{1}{2}$ equipment and risk. In general algorithms, seems FJSP contains three sub-questions, chromosomes roof contains uitee sub-questions, chromosomes
contain three gene segments OS segment: correspond- $\frac{c}{c}$ or $\frac{c}{c}$ and the process sequencing in workshop scheduling; \overline{MS} . Corresponding to machine assignment problems: AS section: AGV assignment for workpiece transfer. Each has a different way of encoding. In the flexible job shop scheduling problem, consideradopts a tillee-layer coding inethod based on process, $\frac{1}{2}$ equipment and AGV. In genetic algorithms, because contain three gene segments. OS segment: corresponding to the process sequencing in workshop scheduling; MS. Corresponding to machine assignment problems;

workpieces, and the length of the string represents the sum of all the workpieces. In this representation, each ϵ 1 ≤ 1 . (6) gene of the emoniosome represents the ran dramatic number, and by scanning the OS segment sequential-19 minute; and by scalining the Ob segment sequential
ly from left to right, the first occurrence of the artifact number indicates the first operation of the artifact. The initial process sequencing population is randomly generated according to the coding principle. represents the interest of the
Interest of the interest of th The OS segment represents the process order of the

The MS segment then indicates the machine model selected for the corresponding operation of each workpiece. The gene segment contains n parts, the ith part denotes the set of selected machines for the operation at a time $\hspace{1.5cm}$ corresponding to workpiece i, where each gene denotes each workpiece. The gene segment contains n σ and σ in the process sequence is randomly population is randomly in the process sequence is randomly in the process of σ The MS segment then indicates the machine model piece and the corresponding operation of each work piece. The gene segment contains n parts, the ith part

Pareto method to solve the model optimization.

the selected model of the machine for a fixed operation. The AS segment and the MS segment are represented in a similar way, where each gene denotes the selection of the AGV for each process. Thus, a solution consists of an OS segment, an MS segment, and an AS segment, and all three segments are of the same length.

Table 2 shows the data for this example, which consists of 4 jobs and 4 machines (each job contains 2 operations). The numbers in the table indicate the processing time of the process on the different processing machines, and "-" indicates that the process may not be processed on this processing machine.

Table 2

Examples of FJSP problems

Figure 1 shows a chromosome. It contains three gene segments. the OS segment is an unpartitioned arrangement with repeating operation numbers. Because there are four jobs, each containing two operations, the OS segment is an arrangement of two 1's, two 2's, two 3's, and two 4's, and it has a length of 8. The MS segment contains four parts because there are four processed artifacts, and it also has a length equal to 8, with each gene denoting the model of the machine selected for each process. The AS segment and the MS segment have the same coding rule, denoting the process responsible for the transfer of each AGV An example of the process sequence is provided in Figure $O_{11} \rightarrow O_{31} \rightarrow O_{41} \rightarrow O_{21} \rightarrow O_{12} \rightarrow O_{42} \rightarrow O_{32} \rightarrow O_{22}$. The machine code is an integer value, and the integer value is equal to the index of the optional machine candidate value set by the operation. For the coding individual in Figure 1, the machine code corresponding to $the machine segment is shown in Figure 2, the machine$

Figure 1

FJSP chromosome coding

selection of process O_{11} is 1, indicating that the processing machine of process O_{11} is the first set of candidate machines, and it can be seen from Figure 2 that the candidate machine set of process O_{11} is {M2,M2,M}, that is, its processing machine is \overline{M}_2 , and the processing machine of process O_{31} is M_4 in the same way. integer value is equal to the index of the optional ing machine of process O_{31} is M_4 in the same way.

$\overline{2}$ Figure 2 generalistic segments: the OS segments: the OS segment, the MS segment, the MS segment, the MS segment, the MS segment \sim

 \mathbf{M}^{α} Machine code **Figure 2**

The decoding process can transform the The decoding process can transform the chromosome into a scheduling solution based on coded information and coding rules, which is generally represented as a Gantt chart [8]. In this paper, we use an insertive greedy decoding strategy that considers the machine idle time in order to generate an active scheduling solution that maximizes the use of machine resources.

The decoding strategy records the processing time **Figure 3** has an idle time period, judges whether the idle time period meets the processing time requirements of the ¹ ¹² ²² in decoding strategy is effective by judging whether period of each machine first, when the workpiece needs to be processed, the machining machine also workpiece, and then judges whether the greedy pluginequality 7 is true. The decoded Gantt chart in Fig-

¹ ¹² ²²

² ¹¹ ⁴¹

arrangement with repeating operation numbers.

Figure 3 ngth of 8. The MS segment contains four parts bec ause there are four processed artifacts, and it also

ure 1 is shown in Figure 3. This approach helps to optimize the maximum completion time, increase machine utilization and reduce energy losses.

3.2. Hereditary Operator

It is important to use good genetic operators to deal with this problem efficiently and to produce good individuals in the population efficiently [12]. Genetic operators can be generally categorized into three types: selection, crossover and mutation [3]. In this paper, chromosomes contain three gene segments: the OS segment, the MS segment and the AS segment, each with its own genetic operator. $\frac{1}{\pi}$ is an integer value, and the code is an integer value is equal to the index of the index of the index of the index of the option of the option of the o machine candidate value set by the operation. For p the coding individual in \mathbf{f} contract contract contract is the machine segment is the matrix of t iportant to use good genetic operators to deal

In the algorithm of this paper, the selection operation is mainly based on fast non-dominated sorting and congestion distance sorting. In fast non-dominated sorting, govern assumes for any masses contains a containated for any, $\frac{1}{2}$ ing to their fitness values, and then starting from the $\frac{1}{2}$ non-dominated frontier, the individuals are selected sequentially into the next generation of the population. In this process, the probability of each individual being $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ selected is proportional to its fitness value. Individuals 1 who are well adapted and away from crowded distances \Box are more likely to be selected for the next generation of the population. The selection operation is a combination of multiple strategies, which ensures the optimization of the algorithm and the efficiency of the search. $\qquad \qquad \mid$ $\frac{1}{\sqrt{2}}$ process O11 is 1, indicating that the processing $\frac{1}{10}$ machines, and it can be seen from Figure 2 that it can be seen from Figure 2 that it can be seen from Figure 2
That is can be seen from Figure 2 that it can be seen from Figure 2 that it can be seen from Figure 2 that it $t_{\rm{max}}$ ${\rm mag}$ solution and congestion distance sortion distance sortion distance sortion distance sortion distance sortion and the sortion of the solution o ed in the selection operation is a complete \vert

> Precedence operation crossover (POX) is used for the $\qquad \qquad \mid$ OS part. The basic workflow of POX is described as follows (the two parents are denoted as P1 and P2; the $\qquad \mid$ two children are denoted as O1 and O2). $\frac{1}{2}$ of the population operation. The selection operation is a selection operation.

> **Step 1:** Several artifacts are randomly selected as job1 \Box $\begin{array}{c|c} \text{in the parent generation;} \end{array}$ \ddotsc

> ${\bf Step~2:}$ All elements in P1 belonging to Job1 are added \qquad to the same position in O1 and deleted in P1; all ele-

ments in P2 belonging to Job1 are added to the same position in O2 and deleted in P2; $\frac{1}{2}$ is the same deleted in $\frac{1}{2}$; $\frac{1}{2}$;

Step 3: The remaining elements in P2 are sequentially added to the remaining empty positions in the O1 sequence; the remaining elements in P1 are sequentially added to the remaining empty positions in the O2 sequence. and to the remaining empty positions in the

Figure 4 **Figure 4**

Priority operation crossover Priority operation crossover

Since MS and AS segments are encoded in a Since MS and AS segments are encoded in a similar way, the same crossover, mutation operator is used. Since each gene in this string represents the machine or AGV selected to perform the fixation operation, if the selected parent is viable throughout the crossover and mutation process, then the offspring produced by the crossover and mutation operations are also viable. the crossover and mutation operations are also

Figure 5

Two-point crossover

The basic working process of exchange mutation is The basic working process of exchange mutation shown in Figure 6, whereby a new zygote is produced by exchanging any two genes on the paternal chromosome. paternal chromosome. ile basic working process of exchange intuation

Figure 6

Exchange mutations **Figure 6**

The mutation operation in the MS and AS parts is The mutation operation in the MS and AS parts is to randomly generate several process positions that require mutation operations, the number of which is not more than half of the length of the string, and $\frac{1}{2}$ string, and mutate them into other mutate them into $\frac{1}{2}$ and $\frac{1$ mutate them into other machines or AGVs that can be $\frac{1}{\sqrt{2\pi}}$ selected. The 1st, 4th and 6th positions are selected as shown in Figure 7, which represent the machines or AGVs selected for O11, O22, and O32, and a new offspring is generated by changing the value of these positions into the machine in the corresponding opmachine or AGV in the set. eration another machine or AGV in the set.

Figure 7 Figure 7

Machine code variation Machine code variation

3.3 Introduction of Variable Neighborhood **3.3. Introduction of Variable Neighborhood** Search Algorithm **Search Algorithm**

In order to improve the local search ability and In order to improve the local search ability and solve the comprehensive scheduling problem of multi-objective optimization in the later stage of the algorithm, a variable neighborhood search [14] (VNS) is introduced which designs six kinds of targeted neighborhood search workplaces, machines, and AGVs, respectively, and AGVs, respectively, respectively, $\frac{1}{2}$ strategies for the workpieces, machines, and AGVs, respectively, and combines them into eight actions.

1: Target the neighborhood structure of the workpiece:

O1: Randomly select two neighboring positional work processes and insert them into any position in reverse order; O2: randomly delete several processes, and then insert them into the process code segment in the order of deletion.

2: for the machine's neighborhood structure:

M1: randomly select a process for a machine with the smallest processing time; M2: randomly select a process, change the machine of the process to the one with the smallest energy consumption.

3: For the neighborhood structure of AGV:

A1: Randomly select two neighboring processes and exchange the serial numbers of the AGVs they are responsible for transferring. A2: Randomly select a process and replace the AGV with another AGV. The pseudocode is as follows:

#Algorithm initialization

- 1. Select an initial solution X_best
- 2. Specify a list of neighborhood structures $Y=[Y_1,Y_2,...,Y_k]$
- 3. Establish a stop rule
- 4. Set neighborhood index

 $i=1$

#Main loop

5. While(the stop guidelines):

Local search

 \blacksquare X_local_best= part(X_best,Y₁)

 \vert Check to see if you find a better solution

 $\left| \right|$ If(f(X_local_best)<f(X_best)):

X_best=X_local_best

6. Updates the current neighborhood index I= $\frac{1}{2}$ (inoult). $(I \mod |Y|)+1$

#Pull the plug

7. Output the optimal solution X_best

\log Table 3

mod |Y|)+1

ec- Domain structure combination actions

3.4. Improved Elite Retention Strategies et the prevention of the algorithm from α

NSGA-II's cross-variance operator has a certain effect on preventing the algorithm from falling into local optimum [13], and an improved elite retention strategy is now adopted. For each generation of the elite population, the individuals with better performance are retained, but for the several individuals at mance are retained, but for the several marvialans at the end of the dominance ranking, their reverse individuals are generated, and the original individuals are replaced if the new individuals dominate. to bu

In order to ensure the convergence of the algorithm, the population. the number of generated individuals decreases with the algorithm, the number of generated individuals local search process of NSGA-II and proposes a number of iterations, and the direction of the generated decreases with the number of iterations, and the number of individuals is shown in Equation (13). number of individuals is shown in Equation (13).

$$
Rn = N \times \left[\min \text{Pr} + (\max \text{Pr} - \min \text{Pr}) \times \frac{G - g}{G} \right],\tag{13}
$$

where N denotes the population size; minPr denotes \sim the lower limit of the reverse generation ratio; max-Pr denotes the upper limit of the reverse generation ratio; G denotes the maximum number of iterations; and g denotes the current number of iterations.

The reverse operation is performed only for the OS segment, and its operation steps are as follows:

Step 1: Randomly select several genes in the OS section of the chromosome;

Step 2: Determine the reverse operation, i.e., $O'i(S)=n+1-Oi(S)$. Where $Oi(S)$ the value of the gene S_{S} and S_{S} are S_{S} and S_{S} are S_{S} and S_{S} and S_{S} are S_{S} and S_{S} a tained after reverse operation and n is the number of $\overline{}$ $\frac{d}{dx}$ without reverse operation, O`i(S) is the new value obartifacts;

Step 3: Perform the reverse operation on the gene selected in step 1 and store the values before and after the $\frac{1}{2}$ reverse operation in the sets M and N, respectively;

Step 4: Finding the location of the gene in the OS segbeep 11 mang are recarred on and gene in the ∞ seg ment that agrees with the value of the set N; $\frac{1}{2}$

Step 5: replacing the genes found in step 4 sequentially after randomly ordering the values of set M.

3.5. Algorithmic Flow

INSGA-II introduces the VNS algorithm into the local search process of NSGA-II and proposes a new elite retention strategy. The algorithm flow of INSGA-II is shown in Figure 8. Its specific steps are as follows:

Step 1, Generate an initial population containing 100 individuals, each of which represents a potential solution.

Step 2, Calculate the fitness. For each individual, calculate its fitness in the objective function space, including maximum completion time, machine load m railing mot and energy consumption.

eration of the **Step 3**, Fast non-dominated ranking. Determine the better perfor- non-dominated rank of each individual.

individuals at **Step 4**, Crowding degree calculation. Measure the density of individuals in the objective space. σ in the objective space.

Step 5, Perform selection, crossover, and mutation step 5, Perform selection, electron, and mutation, operations on individuals to increase the diversity of the population. individual to individual the diversity of

 \mathbf{r}_{c} are \mathbf{r}_{c} algorithm \mathbf{S} step 6, Variable neighborhood search. In the local \mathbf{r}_{c} t the generated search range, eight neighborhood structures were systematically constructed.

Step 7, merge the child and parent populations and judge whether the termination condition is satisfied, $\overline{}$ if it is satisfied, it ends, otherwise it jumps to Step 2. $\frac{1}{2}$ individuals, such *t* individuals, $\frac{1}{2}$ individuals and $\frac{1}{2}$ individual Step 7, merge the child and parent populations and the termination condition condition is \mathbf{r} .

Figure 8

Algorithm flowchart

workpieces, machines, and AGVs, respectively,

1: Target the neighborhood structure of the

4. Simulation Test and Analysis

4.1. Parameter Settings

In the optimization process of NSGA-II, the convergence speed of the algorithm and the coverage ability of the search space can be effectively balanced by reasonable adjustment of parameters, so as to improve the performance and convergence accuracy of the algorithm. Therefore, this paper cites the moderately sized MK01 dataset from the Brandimarte benchmark algorithm and designs orthogonal experiments to determine the algorithm parameters. In this paper, the main parameters to improve the NSGA-II algorithm are: population size popsize, iteration number gen, crossover probability Pc, mutation probability Pm, lower limit of reverse generation ratio Pr_min, upper limit of reverse generation ratio Pr_max, determining that the population size is 100, the number of iterations is 100, and setting three levels for the latter four parameters, and the values of each level are shown in Table 4.

Table 4

Table of parameter levels

Since there are 4 parameters and 3 levels, L9 (34) orthogonal table is chosen to design the experiment. The algorithm is run 10 times under 9 parameter combinations, and IGD (inverted genera-tional distance) is used as the evaluation index, and the smaller value of IGD indicates that the corresponding combination of parameter levels is solved more efficiently. The table of orthogonal experiments is shown in Table 5, each number in the table indicates the parameter level selection, such as parameter combination 2, the values of Pc, Pm, Pr_min and Pr_max are 1, 2, 3 and 2, respectively, and the actual values of Pc, Pm, Pr_min and Pr_max are 0.6, 0.15, 0.2 and 0.75, respectively, according to Table 4.

Table 5

Table of orthogonal experiments

Table 5 shows the experimental results of the improved algorithm running 10 times under each parameter combination, from the table it can be seen that the ninth parameter combination has the smallest IGD value, which indicates that the Pareto optimal solution set obtained under this parameter combination has better convergence and diversity, so the initial population size of the algorithm is set to 100, the maximum number of iterations is set to 100, the crossover probability is set to 0.8, the variance probability is set to 0.2, the reverse generation ratio lower limit is 0.2 and direction generation ratio upper limit is 0.7.

4.2. Algorithm Performance Validation

For the flexible job shop machine and AGV integration scheduling optimization, a total of 18 datasets were used in this paper, 9 datasets from the Brandimarte benchmark algorithm MK01-MK09 and 9 datasets from the Dauzère-Pérès benchmark algorithm 01a-18a are used as examples [2, 5], and sets the objectives to minimize the maximum completion time, minimize the machine load, and minimize the total energy consumption.The transfer time of AGVs in the loading and unloading area and between each machine is shown in Table 6, and the idle energy consumption of each machine and the machining energy consumption are shown in Table 7.

Table 6 AGV transit times

Table 7

Machine energy consumption

Based on the traditional NSGA-II., the improved algorithm in this paper puts forward the idea of improving the elite retention strategy and introducing variable neighborhood search, and compares the performance of the traditional NSGA-II., only improving the elite retention strategy, introducing only the variable neighborhood search algorithm and the improved algorithm in this paper. As shown in Tables 8 and 9, the 9 datasets of MK01-MK09 and the 9 datasets of 01a-18a were run independently for 20 times, and the average value of the 3 optimization targets obtained by each dataset was 3 and the number of AGVs was 3. As can be seen from the table, the improved NSGA-II algorithm is significantly better than the traditional NSGA-II algorithm and the (IGA-PSO) [17] hybrid optimization algorithm in the optimization of the two objective functions of machine load and completion time, which is mainly due to the local search ability of variable neighborhood search. However, due to the

mutual constraints of the optimization objectives, the improved NSGA-II algorithm is unable to take the minimum value of the objective function of maximum completion time, but the degree of backwardness is not large, and this differentiation is gradually reduced as the solution scale of the algorithms increases. Overall, the improved algorithm in this paper is a suitable algorithm for solving multi-objective FJSP compared to other algorithms.

A more detailed introduction to INSGA-II is given by taking the MK02 dataset in Table 8 as an example of a 10×6 FJSP problem instance, i.e., the problem represents 10 workpieces to be processed that need to be processed in an orderly manner on 6 machines. Taking 3 transfer AGVs as an example, the scheduling Gantt chart of INSGA-II for this 10×6 FJSP problem is shown in Figure 9, in which the machine processing time period is labeled with a combination of workpiece number and process number, and the AGV

Table 8

Algorithm performance comparison 1

Table 9

Algorithm performance comparison 2

transfer time period is only labeled with the workpieces it transfers, and a blank labeling implies that the AGVs are unloaded at that time. The three target optimal values of this scheduling result are maximum completion time 52.8, machine load 149, and total energy consumption 111.765. F1 2898 2971 2792 3210 2998 3168 3526 3560 3452

Figure 9 Figure 9

F3 8808 8050 7669 12522 11198 11160 17158 16252 15536

MK02 Example Scheduling Gantt Chart

The convergence curves of the maximum completion time, machine load and total energy consumption of the NSGA-II algorithm with different improvement strategies for solving this scheduling problem are shown in Figures 10-12. As can be seen from the figures, under the same parameter settings, the improvement strategy combined with VNS effectively balances the global search and local search in the optimization process. On this basis, the integration

$\frac{1}{2}$ inure 10 Figure 10 $\frac{1}{2}$ is 10.717.71% higher than that of the traditional than that of the traditional than that of the traditional the traditional than the traditional than the traditional than the traditional than the traditional tha

algorithm
Taximum completion time convergence curve Maximum completion time convergence curve

Figure 11

Machine load convergence curve

Figure 12

Convergence curve of total energy consumption

space. The improved elite retention strategy of the improved elite retention strategy enables the algorithm to find a better solution in a shorter iteration period, which further improves the convergence speed and convergence accuracy of the algorithm, and of other algorithms to solve the three objectives, the algorithm is 20 times smaller than that of other algoverifies the effectiveness of the improved strategy in this paper. Compared with the optimization ability average completion time of the improved NSGA-II rithms, 5.13% less than that of IGA-PSO algorithm, and 8.21% less than that of traditional NSGA-II, so INSGA-II is more suitable for solving the optimal

straints of the three-objective optimization. solution in complex systems. Comparing the machine load of the five algorithms, according to Figure 9, the machine load of the improved NSGA-II algorithm is 10.71% higher than that of the traditional NSGA-II algorithm and 12.85% higher than that of the IGA-PSO algorithm when the same number of iterations is 70 times. The improved NSGA-II. algorithm has a large improvement in completion time and machine load, but it is higher than other algorithms in terms of energy consumption, which is mainly due to the con-

Figure 13 shows the Pareto front of each algorithm, from which it can be seen that the Pareto front of NSGA-II has a wider distribution of the solution set, showing its diversity in the three objectives, but does not have a better convergence in the later stages of the iteration. The algorithm incorporating VNS, on the other hand, has a clear distribution concentrated to the origin of the three axes, indicating the closer to the origin of the three axes, indicating the effectiveness of VNS in exploring the solution effectiveness of VNS in exploring the solution space. space. The improved elite retention strategy The improved elite retention strategy makes the algo- $\frac{1}{1}$ makes the algorithm in complete $\frac{1}{1}$ and $\frac{1}{1}$ and $\frac{1}{1}$ and $\frac{1}{1}$ rithm in combination with VNS closer to the region of the best optimization direction, further proving the effectiveness of the improved strategy in this paper.

Figure 13

Pareto Frontier Distribution

$\sum_{i=1}^{n}$ multi-objective optimization, it is optimization, it is optimization, it is optimized by $\sum_{i=1}^{n}$ **4.3. Evaluation Indicators**

In multi-objective optimization, it is often necessary to compare and evaluate the performance of different algorithms [10]. Commonly used evaluation metrics include Hypervolume (HV), Spacing and C-metric.

- **1** The HV metric measures the volume of the region consisting of the non-dominated solution set generated by the algorithm with a reference point (usually an ideal point) [11]. A larger value of hypervolume means that the solution set not only covers a larger region, but is better distributed in the target space.
- 2) The Spacing metric is used to measure the uniformity of the distribution of distances between individuals in the solution set. Ideally, a good solution set should be evenly distributed across the target space. The expressions are shown in Equations $(14)-(15)$. shown in Equations (14) shown in Equations (14) $\frac{1}{\pi}$ across the target space. The expressions are chosen in Feurations (14) (15) The expressions are shown in Equations $(14)-(15)$

$$
Spacing(U) = \sqrt{\sum_{c=1}^{|U|} \frac{(d_{2c} - \overline{d})^2}{|U| - 1}}
$$
(14)

$$
d_{2c} = \min_{U^g \in U, U^c \neq U^g} \left(\sum_{g=1}^{|U|} |U^c - U^g| \right),
$$
(15)

where the minimum Manhattan distance is the minimum Manhattan distance in the minimum Manhattan distance is th
The minimum Manhattan distance in the minimum Manhattan distance in the minimum Manhattan distance in the mini where there is the minimum Manhattan distance between the first solution in the solution set; is the $\frac{1}{2}$ $\frac{3}{2}$ The C-metric condition in the solution set mean of all; is the first solution in the solution set.

3 The C-metric, also known as the coverage metric, is used to measure the degree to which a solution in one solution set dominates a solution in another m one solution set dominates a solution in another solution. It is usually expressed as a value from 0 to solution. It is usually expressed as a value from 0 to
1, with 1 indicating that one solution set complete. expression is shown in Equation in Equation in Equation in Equation is shown in Equation (16). Equation (16). $n(16)$. 1, with 1 indicating that one solution set completely dominates the other. The expression is shown in \overline{a} $\frac{1}{\sqrt{2}}$

$$
C(A,B) = \frac{|\{b \in B \mid \exists a \in A : a \succ b\}|}{|B|},
$$
\n(16)

B

 \overline{a} and \overline{b} and \overline{b} and \overline{b} is the B, respectively; is the B, respectively; in th where there is the value of solution $\frac{1}{2}$ is the table of the solution set B, a and B, respectively; $|B|$ is the solution sets A and B, respectively; $|B|$ is the $\sum_{i=1}^{\infty}$ number of solutions in solution set B. where:there is the value of solution set A covering $\frac{1}{2}$ solution set B; a and b are any one of the solutions in solution sets A and B, respectively; $|B|$ is the

ble 10 is the table of three performance evaluatior the to is the taste of three performance evaluation
dexes of traditional NSGA-II and different imnd algorithms after normalization, in which can
the ved strategy algorithms after normalization, in which C-metric only evaluates the mutual domination between traditional NSGA-II and other three imhigher than that of the traditional newspapers of the traditional newspapers of the traditional newspapers of
In the traditional newspapers of the traditional newspapers of the traditional newspapers of the traditional n proved algorithms. From the table, it can be seen that the HV metric of the HV metric $\frac{1}{2}$ the HV metric of the improved algorithm in this paper indicators. Higher than conventional NSGA-II. indicating that the explored solution space is higher than that of the traditional NSGA-II, is much higher than that of the traditional NSGA-II, much ingher than that of the traditional room. If indicating that the explored solution space is more comprehensive. INSGA-II spacing indicators. Higher proved strategy algorithms after normalization, in Table 10 is the table of three performance evaluation indexes of traditional NSGA-II and different imindicating that the explored solution space is more

Table 10

Table of performance evaluation indicators

than conventional NSGA-II. The spacing index of IN-SGA-II is higher than that of the traditional NSGA-II, but lower than that of the algorithm of the single improved strategy, which indicates that the solutions in the Pareto solution set are more evenly distributed in the target space.

4.4. Analysis of the Relationship Between the Number of AGVs and Scheduling Objectives

In order to study the effect of the change of AGV number on the scheduling target, this paper is based on the MK02 arithmetic example, take different AGV numbers for independent testing, take the average of 20 times results to study the change of three scheduling targets, and the obtained results are shown in Figure 14.

During AGV deployment in a flexible job shop, as the number of AGVs increases, a significant reduction in the maximum completion time in the job shop can

Figure 14

Effect of the number of AGVs on the value of the objective function

initially be observed, reflecting the direct impact of adding AGVs on improving productivity. However, the additional benefit on maximum completion time reduction gradually decreases as the number of AGVs continues to increase. This phenomenon can be attributed to the law of diminishing marginal utility, which states that as resource inputs increase, the contribution of each additional unit of resource to total utility gradually decreases. In this scenario, while more AGVs can still improve efficiency, the efficiency gains from each additional AGV become smaller. Considering the high cost of AGVs, it becomes especially critical to accurately determine the number of AGVs in order to maximize cost-effectiveness. This requires finding an optimal balance between resource input and output efficiency to ensure that the input-output ratio is optimized.

5. Results and Discussion

5.1. A Piston Ring Manufacturing Workshop Production Information

The Piston Ring Fabrication Shop is a crucial part of the manufacturing process for automotive or other internal combustion engine equipment, where the quality of the piston rings directly affects the performance and reliability of the internal combustion engine. In this shop, a range of highly sophisticated machinery and equipment are used to create and mold metal materials into piston rings that can withstand extremely high pressures and temperatures. CNC lathes, CNC grinders, CNC milling machines and other equipment are utilized to provide the necessary precision and efficiency to the machining process. Every aspect of the piston ring manufacturing process requires metic-

ulous planning and operation. For example, the heat treatment process enhances the hardness and wear resistance of piston rings, while the surface treatment process improves the surface finish and corrosion resistance of piston rings. Quality control is carried out throughout the production process, with rigorous inspection and testing to ensure that each piston ring meets specifications.

In order to further verify the applicability of the improved algorithm, the optimization of the scheduling scheme is carried out with the production information of a piston ring manufacturing workshop. The workshop has a total of 8 machining machines and 2 AGVs, and has received a task order for the machining of 14 types of piston rings with different specifications, each of which has several machining processes. Combined with the task requirements and the optimization objectives of completion time, machine load and total energy consumption, the integrated scheduling of the machines and AGVs makes a scheduling plan that meets the requirements. Table 10 shows the transportation time of AGVs between 8 machining machines in the workshop, LU is the workpiece loading and unloading area, which is also the starting position of AGV transportation. Table 11 shows the rated and unloaded power of the 8 machining machines. Table 12 shows the machining processes of the batch of workpieces and the optional machining machines for each process and their machining times.

Table 11

AGV transportation time

Table 12

Machine processing power

5.2. Optimal Scheduling Program

Based on the production information of this piston ring manufacturing plant, 100 iterations of the INS-GA-II algorithm were utilized to obtain Pareto nondominated solution sets in terms of the three scheduling objectives: completion time, machine load and $\frac{1}{\text{cal}}$ total energy consumption. These solution sets exhibit de the spatial distribution of the scheduling solutions, as shown in Figure 15.

Figure 15 **Figure 15**

Pareto non-dominated solution set Pareto non-dominated solution set

Each Pareto nondominated solution represents a scheduling solution, but in actual shop floor scheduling, only a set of optimal solutions will be selected. ω Therefore, this section uses gray correlation analysis [6] to select from multiple nondominated solutions in the set of Pareto nondominated solutions to provide Gra $\frac{1}{\cosh(\omega)}$ scheduling solution support to decision makers. ul l
S 1 Pareto nondominated solution repreduling solution, but in actual shop floor
3, only a set of optimal solutions will be s
refore, this section uses gray correlation 6260 6280 n
S 3] to select from multiple nondominate luling solution support to 778 240

Grey correlation analysis can help to analyze the dethe dimensionless quantification of data, correlation and annulation between multiple factors of a set of optimal solutions of α set of optimal solutions will be coefficient calculation, and correlation calculation, so as to provide a scientific basis for decision-making. The specific steps are as follows: $f =$ gree of association between multiple factors through selection uses and the formulation uses \mathbf{S} and a set of optimal solutions of a set of optimal solutions will be a set of optimal solutions and correlation calculation \mathbf{s} selected. The foreign term is section to the control of the section uses and the section use $\frac{1}{2}$ α provide a scientific basis for decision-maxing specific steps are as follows:
ata discretization c_1 and c_2 is selection of c_1 to select from c_2 to select from c_2 to select from c_1 to select from c_2 to select from c_2 to select from c_1 to select from c_2 to select from c_2 to select from s pecific steps are as follows. scenterent succession, and correlation calculation, a scheduling a set of optimal solutions will be a set of optimal solutions will be appeared to the contract of $\frac{1}{2}$ $s = 1$. The selected was denoted.

1 Data discretization \Box bata discretization

Data dimensionless is to transform the data of each multiple a different indi-
the comparison and analysis between different indicators. as shown in the specific formula (17) . indicator into a dimensionless form, so as to facilitate
the comparison and analysis between different indi- α correlation coefficient calculation α \mathcal{C} correlation coefficient calculation, and correlation, and c G calcretion as shown in the specific form and (1) .

$$
\xi_{i,j} = \frac{\left|f_{i,j} - f_j^*\right|}{f_j^*}.\tag{17}
$$

(2) Calculation of gray correlation coefficient **2** Calculation of gray correlation coefficient (2) Calculation of gray correlation coefficient

calculated, and the correlation coefficient reflects the $\,$ degree of correlation between the two serials, which is degree of correlation between the two serials, which is calculated according to the similarity and fluctuation degree between the serials, as shown in Equation (18). The correlation coefficient between the indicators is $% \left\vert \cdot \right\vert$ calculated according to the similarity and fluctuation $% \left\vert \cdot \right\vert$ scheduling scheme is shown in Figure 16. From $\frac{1}{\sqrt{2}}$ scheme can make balanced decisions in terms of completion time, machine load and energy α consumption, and it can also allocate the carrying \mathcal{L} degree between the serials, as sh scheduling scheme is shown in Figure 16. From $\frac{1}{\sqrt{2}}$ scheme can make balanced decisions in terms of the can make balanced decisions in terms of the can make balance
In terms of the can make balanced decisions in terms of the can make balanced decisions in the can make balanc completion time, machine load and energy consumption, and it can also allocate the carrying \mathcal{L}

$$
\eta_{i,j} = \frac{\xi_j^{\min} + \rho \xi_j^{\max}}{\xi_{i,j} + \rho \xi_j^{\max}}.
$$
\n(18)

3 Gray correlation calculation

formula (17).

1 = The grey correlation calculation is used to The grey correlation calculation is used to The grey correlation calculation is used to measure greater impact, and provide a reference basis for furthe research object, and through comparison, it can reflect the degree of influence of each indicator on reflect the degree of influence of each indicator on
the research object, determine which factors have a re: $\mathcal{O}(\sqrt{N})$ *m*-pack, and provide a reference state for the ther analysis and decision-making, the specific formula is as follows. $\frac{1}{2}$. (2012) $\frac{1}{2}$. (21) $\frac{1}{2}$. (21) $\frac{1}{2}$. (21) $\frac{1}{2}$ measure the degree of correlation between each measure the degree of correlation between each the degree of correlation between each indicator and $r e$ $\frac{16}{16}$ decision-making, the specific formula is a set of $\frac{1}{2}$ $\frac{1}{2}$ referrence basis $\frac{1}{2}$ referrence basis $\frac{1}{2}$ and decision making the groot decision-making, the specific formula is as a formula in the specific formula is as a formula in the specific formula is as α spearer impact, and provide a reference basis for further analysis and decision-making the specific for- $\frac{d}{dx}$ and specific formula is as follows: follows. decident management of the specific formula is as follows mana is t

$$
\overline{\lambda_j} = \frac{1}{n} \sum_{i=1}^n \eta_{i,j}
$$
\n
$$
\lambda_j = \frac{\overline{\lambda_j}}{\sum_{j=1}^m \overline{\lambda_j}}
$$
\n(20)

$$
\omega_i = \sum_{j=1}^m \left(\eta_{i,j} \cdot \lambda_j \right). \tag{21}
$$

253.1 778 6295.4

239.3 781 6233.8

239.3 781 6233.8

and n=11, as follows.

<u> 1980 - Johann Barnett, fransk politiker</u>

Gray correlation analysis was performed on the Pareto non-dominated solution set, where $m=3$ and $n=11$, Party correlation analysis was performed on the $G(x)$ correlation and the performed on the x Party correlation analysis was performed on the Gray correlation analysis was performed on the Gray correlation analysis was performed on the Pare-1 *j* = Pareto non-dominated solution set, where m=3 to non-dominated solution set, where m=3 and n=11, ϵ as follows.

0.000 0.004 0.000

0.000 0.004 0.000

<u> 1980 - Johann Barnett, fransk politiker</u>

0.058 0.000 0.010

1.000 0.333 1.000

1.000 0.333 1.000

<u> 1980 - Johann Barnett, fransk politiker</u>

0.497 1.000 0.453

correlation coefficient matrix, is the weight

scheduling scheme is. From the gray correlation

(22)

where f is the data matrix of the optimal solution where f is the data matrix of the optimal solution where f is the data matrix of the optimal solution set where F is the data matrix of the optimal solution set of the 11 groups of Pareto three objectives, is the dithe dimensionless data matrix, is the gray scale the dimensionless data matrix, is the gray scale mensionless data matrix, is the gray scale correlation mensioness data matrix, is the gray searce correlation coefficient matrix, is the weight coefficient matrix, is coefficient matrix, is the weight coefficient matrix, is
the gray correlation matrix, and is the gray correlaand is the gray correlation matrix, and the larger the gray correlation valthe gray correlation value is, the better the the gray correlation value is, the better the ue is, the better the scheduling scheme is. From the gray correlation matrix, it can be seen that group 2 $\frac{1}{2}$ has the largest correlation value, which corresponds correlation value, which corresponds to the correlation value, which corresponds to the to the completion time of the scheduling scheme is completion time of the scheduling scheme is 239.3, completion time of the scheduling scheme is 239.3, 239.3, the total energy consumption is 781, and the the total energy consumption is 781, and the the total energy consumption is 781, and the machine load is 6,233.8, and the Gantt chart of this machine load is 6,233.8, and the Gantt chart of this scheduling scheme is shown in Figure 16. From the scheduling scheme is shown in Figure 16. From the figure, it can be seen that the scheduling scheme can the figure, it can be seen that the scheduling the figure, it can be seen that the scheduling make balanced decisions in terms of completion make scheme decisions in terms of compressint time, machine load and energy consumption, and it energy companying time, machine load and energy companying time of each AGV in can also allocate the carrying time of cach rice v in a more reasonable way, so that the locating time of each AGV is relatively close to each other, and im- $\frac{1}{100}$ is that the generatively $\frac{1}{100}$ is $\frac{1}{100}$ is relatively $\frac{1}{100}$ is relatively $\frac{1}{100}$ is relatively $\frac{1}{100}$ prove the emerging of the the efficiency. prove the efficiency of the use of AGVs.

Figure 16

Gantt chart of optimal decision-making

6. Conclusion \overline{A} integrated scheduling at the problem of integrated scheduling of integrated scheduling of integrated scheduling of \overline{A}

Aiming at the problem of integrated scheduling of machines and AGVs in flexible job shop, this paper establishes a scheduling model with the optimiza-

T mizing the total energy consumption, and proposes tion objectives of minimizing the maximum completion time, minimizing the machine load, and minian improved NSGA-II algorithm. In order to better solve the problem of simultaneous scheduling of machine and AGV, a three-layer coding structure based on process, processing machine and AGV was designed. In order to solve the problem of poor diversity of NSGA-II. solution set and easy to fall into local optimum, an improved elite retention strategy was designed, in which the inferior individual generated its inverse individual, and a variable domain search algorithm was introduced to enhance the local search ability of the algorithm by combining different neighborhood search methods at each layer of the coding structure. The effectiveness of the algorithm's improved strategy is verified through several benchmarking examples, and it is found that the efficiency improvement of the maximum completion time shows a decreasing trend with the increase of the number of AGVs. Finally, taking a piston ring manufacturing workshop as the research object, the gray correlation analysis is applied to evaluate the Pareto non-dominated solution set, and a most satisfactory scheduling scheme is identified from the non-dominated solution set.

the production efficiency of the workshop, resulting
in a worte of resources In the next study, more influ encing factors and constraints will be considered, such as AGV charging problem, rescheduling problem due to equipment failure, etc., in order to more realistically simulate the actual production, find a scheduling strategy that conforms to the actual enof the algorithm, which is more suitable for the curenvironment. Meanwhile, there are some limitations in this study, such as high computational complexity, long computation time, and the design of the domain structure still has more invalid process moves. This will affect in a waste of resources In the next study, more influvironment, and consider the introduction of reinforcement learning to enhance the search efficiency rent complex and dynamic discrete manufacturing

$\bf Acknowledgements$

2022 Provincial Transfer Payment Key R&D Project: R&D of Automated Cellar Stepping System for Baijiu Brewing Based on Three-Dimensional Force Feedback (22ZFSHFZ0001).

References

- 1. Amirteimoori, A., Kia, R. Concurrent Scheduling of Jobs and AGVs in a Flexible Job Shop System: A Parallel Hybrid PSO-GA Meta-Heuristic. Flexible Services and Manufacturing Journal, 2023, 35(3), 727-753. https:// doi.org/10.1007/s10696-022-09453-y
- 2. Brandimarte, P. Routing and Scheduling in a Flexible Job Shop by Tabu Search. Annals of Operations Research, 1993, 41(3), 157-183. https://doi.org/10.1007/ BF02023073
- 3. Chang, J., Yu, D., Zheng, Z., He, W., Zhang, L. Hierarchical Reinforcement Learning for Multi-Objective Real-Time Flexible Scheduling in a Smart Shop Floor. Machines, 2022, 10(12), 1195-1195. https://doi. org/10.3390/machines10121195
- 4. Cheng, W., Meng, W. Collaborative Algorithm of Workpiece Scheduling and AGV Operation in Flexible Workshop. Robotic Intelligence and Automation, 2024, 44(1), 34-47. https://doi.org/10.1108/RIA-11-2022-0266
- 5. Dauzère-Pérès, S., Paulli, J. An Integrated Approach for Modeling and Solving the General Multiprocessor Job-Shop Scheduling Problem using Tabu Search. Annals of Operations Research, 1997, 70. https://doi. org/10.1023/A:1018930406487
- 6. Fazlollahtabar, H., Amiri, N. M. An Optimal Path in a Bi-Criteria AGV-based Flexible Jobshop Manufacturing System having Uncertain Parameters. International Journal of Industrial and Systems Engineering, 2013, 13(1), 27. https://doi.org/10.1504/IJISE.2013.050544
- 7. Gu, Y., Xu, H., Yang, J., Li, R. An Improved Memetic Algorithm to Solve the Energy-Efficient Distributed Flexible Job Shop Scheduling Problem with Transportation and Start-Stop Constraints. Mathematical Biosciences and Engineering, 2023, 20(12), 21467-21498. https:// doi.org/10.3934/mbe.2023950
- 8. Liu, H., Li, R., He, Y. Adaptive Genetic Algorithm for Scheduling Problem in Flexible Workshop with Low Carbon Constraints. International Journal of Wireless and Mobile Computing, 2021, 20(1), 84-92. https://doi. org/10.1504/IJWMC.2021.113227
- 9. Liu, Q. H., Wang, N. J., Li, J., Ma, T., Li, F., Gao, Z. Research on Flexible Job Shop Scheduling Optimization Based on Segmented AGV. Computer Modeling in Engineering & Sciences, 2023, 134(3), 2073-2091. https:// doi.org/10.32604/cmes.2022.021433
- 10. Pang, Z., Yang, B., Chen, R., Zhang, Z., Mo, F. A Multi-Phase Scheduling Method for Reconfigurable Flexi-

ble Job-Shops with Multi-Machine Cooperation Based on a Scout and Mutation-based Aquila Optimizer. CIRP Journal of Manufacturing Science and Technology, 2023, 46, 116-134. https://doi.org/10.1016/j. cirpj.2023.08.003

- 11. Schworm, P., Wu, X., Klar, M., Glatt, M., Aurich, J. C. Multi-objective Quantum Annealing Approach for Solving Flexible Job Shop Scheduling in Manufacturing. Journal of Manufacturing Systems, 2024, 72, 142- 153. https://doi.org/10.1016/j.jmsy.2023.11.015
- 12. Shao, X., Kshitij, F. S., Kim, C. S., Kshitij, F. S., Kim, C. S. GAILS: An Effective Multi-Object Job Shop Scheduler Based on Genetic Algorithm and Iterative Local Search. Scientific Reports, 2024, 14(1). https://doi.org/10.1038/ s41598-024-51778-1
- 13. Yahui, W., Ling, S., Cai, Z., Liuqiang, F., Xiangjie, J. NSGA-II Algorithm and Application for Multi-Objective Flexible Workshop Scheduling. Journal of Algorithms & Computational Technology, 2020, 14, 174830262094246-174830262094246. https://doi. org/10.1177/1748302620942467
- 14. Wang, X., Zou, W., Meng, L., Zhang, B., Li, J., Sang, H. Effective Metaheuristic and Rescheduling Strategies for the Multi-AGV Scheduling Problem with Sudden Failure. Expert Systems with Applications, 2024, 123473- 123473. https://doi.org/10.1016/j.eswa.2024.123473
- 15. Wen, X., Fu, Y., Yang, W., Wang, H., Zhang, Y., Sun, C. An Effective Hybrid Algorithm for Joint Scheduling of Machines and AGVs in Flexible Job Shop. Measurement and Control, 2023, 56(9-10), 1582-1598. https://doi. org/10.1177/00202940231173750
- 16. Xiang, J., Zhang, Y., Cao, X., Zhou, Z. An Improved Multi-Objective Hybrid Genetic- Simulated Annealing Algorithm for AGV Scheduling under Composite Operation Mode. Computers, Materials & Continua/ Computers, Materials & Continua (Print), 2023, 77(3), 3443-3466. https://doi.org/10.32604/cmc.2023.045120
- 17. Yan J., Liu Z. F., Zhang C. X., Zhang T., Zhang Y. Z., Yang C. B. Research on Flexible Job Shop Scheduling Under Finite Transportation Conditions for Digital Twin Workshop. Robotics and Computer-Integrated Manufacturing, 2021, 72. https://doi.org/10.1016/j.rcim.2021.102198
- 18. Zhang, H., Qin, C., Zhang, W., Xu, Z., Xu, G., Gao, Z. Energy-Saving Scheduling for Flexible Job Shop Problem with AGV Transportation Considering Emergencies. Systems, 2023, 11(2), 103-103. https://doi.org/10.3390/ systems11020103

