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To reduce the energy waste of modern rural buildings caused by over-cold or over-heat supply, this paper pres-
ents a method to realize energy-saving design of modern green rural buildings by using thermal decomposition 
location recognition algorithm. Based on the key points of the human skeleton, the pose recognition framework 
is constructed, and the deep learning network is combined to detect the human thermal disturbance posture. 
Furthermore, an end-to-end thermal inauthentic pose recognition algorithm is proposed to establish a green 
intelligent building energy minimization model considering thermal comfort range. The results show that the 
recognition rate of 1D convolution +LSTM model is 100%, and the optimal accuracy of 16 frames of image se-
quence with decoder module is 92.052%. Compared to traditional algorithms, the method can save up to 10% of 
the total energy cost and reduce the total temperature deviation. This study is of great significance for intelli-
gent control of indoor thermal environment and improvement of energy utilization efficiency.
KEYWORDS: Thermal discomfort; Pose; Recognition; Rural areas; Architecture; Energy saving.

1. Introduction
People’s demand for comfort in life is increasing, 
which is accompanied by increasing energy con-
sumption. Currently, about 20% of the world’s ener-
gy consumption comes from buildings, with half of 
it coming from Heating, Ventilation and Air Condi-

tioning (HVAC) systems. The main method of climate 
change framework is to provide a relatively constant 
temperature and humidity environment for buildings 
in accordance with relevant international standards 
[8, 21]. Housing construction in rural areas is usual-
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ly carried out around agricultural development, but 
in the construction of new rural areas, some village 
planning does not fully consider meteorological fac-
tors such as sunshine and ventilation, and the layout 
is random. For example, the east-west orientation of 
residential areas in some villages in order to provide 
rental shops along the road leads to excessive indoor 
temperatures in the summer and the need to use air 
conditioning for a long time, resulting in wasted elec-
tricity. With the improvement of rural economy and 
residents’ living standard, centralized residential ar-
eas are being built in various rural areas. At present, 
the main goal of energy conservation in rural build-
ings in China is to reduce energy consumption while 
ensuring the thermal comfort of occupants [1]. Ex-
isting studies mainly use contact and semi-contact 
methods to detect Thermal comfort (TC), but these 
methods are dedicated to equipment and invasive to 
the tested [9]. Questionnaire survey can obtain us-
ers’ subjective feelings, but the efficiency is low. En-
vironmental monitoring methods can obtain thermal 
comfort sustainably, but with low accuracy. The phys-
iological parameter detection method is more accu-
rate, but it requires contact with equipment [18]. To 
overcome these shortcomings, this paper proposes a 
camera-based non-contact method to design thermal 
uncomfortable pose recognition algorithm through 
machine vision and deep learning technology. This al-
gorithm aims to realize the green Energy saving (ES) 
design of modern rural buildings, accurately obtain 
the environmental thermal comfort, and avoid energy 
waste. Through the construction of green intelligent 
building energy cost minimization model, it is expect-
ed to achieve intelligent regulation of indoor thermal 
environment, improve energy efficiency, and support 
the promotion of green environmental protection 
concept. 
The contributions of the research are as follows: First, 
a thermal uncomfortable pose recognition algorithm 
based on bone key points is proposed, and an end-
to-end detection system is designed. Deep learning 
technology is used to improve the recognition accu-
racy and efficiency. Secondly, based on this algorithm, 
the energy cost minimization model of green intelli-
gent buildings is established, and the combination 
of thermal comfort and energy saving requirements 
is realized to achieve dynamic energy management 
of intelligent buildings. In addition, the non-contact 

detection method overcomes the limitations of tra-
ditional methods and improves the convenience and 
user experience. Finally, the proposed algorithm is 
superior to the traditional method in accuracy and 
energy saving effect, and can save energy significantly 
under the condition that the total temperature devia-
tion is small. 
The research mainly includes five parts, and in the 
first part of the article, the background and signifi-
cance of research on human TC detection are mainly 
introduced. The content of Part 2 is a comprehensive 
overview of educational games, mainly focusing on 
a detailed analysis of the achievements of experts 
and scholars at home and abroad in the field of TC 
detection. The third part is the research methodolo-
gy, mainly divided into two sections. In section 1, the 
study proposes a TDPRA based on bone key (BK). In 
the second section, to further improve PR accuracy, 
an end-to-end TDPRA was proposed. The fourth part 
is about verifying the effectiveness of the research 
model. The fifth part is a summary of the most re-
search methods and an analysis of experimental re-
sults. And the shortcomings of research methods and 
future research directions are proposed.

2. Related Works
In the total energy consumption, building energy con-
sumption accounts for a large proportion and has be-
come a major issue of concern to society. A comfort-
able environment has a positive regulation on human 
physiological parameters, and ES and TC are closely 
related to each other, which has also sparked in-depth 
exploration by many researchers both domestically 
and internationally. Meng et al. [16] proposed AdaViT, 
a visual deformer based on a self-attention mecha-
nism, aimed at reducing the computational cost of 
visual tasks. AdaViT improves inference efficiency 
by learning to adaptively adjust the strategy of using 
patches, self-focusing heads, and transformer blocks 
for each image. The framework attaches a lightweight 
decision network to the transformer backbone to 
generate real-time decisions and perform end-to-end 
optimization. In the ImageNet experiment, AdaViT 
achieved a more than two-fold increase in efficiency 
with only a 0.8% reduction in accuracy, balancing ef-
ficiency and accuracy. Ramsey et al. [18] studied the 
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application of human energy consumption analysis 
methods in indoor thermal environment evaluation 
and established a new dual node energy consump-
tion analysis model. The rate of human exergy loss 
has an extreme value at low or high working tempera-
tures, and can be used separately to evaluate human 
TC resistance. Chen et al. [7] studied how to improve 
image classification performance by learning multi-
scale feature representation in transformer models. 
For this purpose, a double-branch transformer is 
proposed, which combines image patches of differ-
ent sizes to generate stronger image features. This 
approach uses separate branches to handle small 
patches and large patch tokens, complementing each 
other through multiple attention fusions. In addition, 
a token fusion module based on cross-attention is 
developed, requiring only linear time computation 
and storage complexity. Experiments show that the 
proposed method performs better than DeiT on Im-
ageNet1K dataset, and FLOPs and model parameters 
are slightly increased [7]. Scholars such as Qabbal et 
al. [17] use specially developed intelligent sensors to 
detect air pollutants and TC levels inside buildings. 
Most residents feel uncomfortable with indoor tem-
perature [25]. Kong et al. [13] compared the TC per-
formance and energy efficiency of eight widely used 
space heating and ventilation methods. The TC air in-
let is preferably located at a high horizontal position in 
the wall, while the air outlet is located at the same or 
higher height position [13]. Jaffal et al. [10] designed 
a non-airconditioned building TC metamodel based 
on physical information machine learning to improve 
the interpretability and accuracy of the building TC 
machine learning model. This model combines the 
advantages of physics and machine learning, and can 
support architectural design with flexible and inter-
pretable metamodels. Traffic sign recognition is the 
key task in automatic driving. Zheng et al. [26] pro-
pose a camera-based computer vision technique that 
uses multiple convolutional neural network struc-
tures and is validated on multiple datasets. Recently, 
new transformer-based models have outperformed 
convolutional neural networks in a variety of vision 
tasks. However, the study in [11] found that trans-
formers did not perform as well as convolutional neu-
ral networks in traffic sign classification tasks.
Researchers such as Bia and Koltuk [5] provided a 
detailed introduction to the TC measurement meth-

od of the modern intelligent building “Energis”, and 
analyzed the indoor air parameters and subjective 
reactions of volunteers. People feel better in envi-
ronments where TC is considered [5]. Tummala et 
al.’s [20] Vision transformer-based (ViT) deep neural 
networks have gained a lot of attention in the field of 
computer vision due to their success in natural lan-
guage processing. The study explored the efficacy 
of the ViT model in the diagnosis of brain tumors in 
T1-weighted (T1w) magnetic resonance imaging. The 
pre-trained and fine-tuned ViT model on ImageNet 
was used to classify MRI sections of brain tumors. 
The best model L/32 has a test accuracy of 98.2% at 
384 × 384 resolution, and the accuracy of the four ViT 
models integrated is 98.7%, which is higher than the 
performance of a single model at 224 × 224 resolution 
[15]. Kwong et al. [14] analyzed the distribution of TC 
parameters such as air temperature and velocity. And 
electronic sensors are used to collect the information 
needed for the prediction of air temperature and ve-
locity distribution mode in laboratory and workshop 
based on Fluid mechanics model. Experiments have 
shown that this model not only helps to design effi-
cient air conditioning and mechanical ventilation 
(ACMV) systems, but also helps to improve indoor 
TC performance [14]. Scholars such as Austin [4] pro-
posed the design process of a prototype Air Port Con-
troller Module (PCM) device and provided a detailed 
introduction to the corresponding experimental test-
ing. The unit limits the indoor air temperature rise 
during operation, keeping the temperature within the 
TC range, thereby helping to reduce thermal discom-
fort [4].
In summary, most research is focused on one field 
or technology, such as vision transformation models 
and smart sensors, and there is a lack of integrated 
methods for building energy consumption and TC 
detection. Many studies focus only on specific sce-
narios, such as indoor environments or specific types 
of buildings, ignoring extensive validation in differ-
ent types of buildings and environments. Although 
some studies attempt to improve model explainabil-
ity, model transparency and explainability remain 
challenges in complex environments, especially in 
applications where machine learning and physical 
models are combined. Data collection and processing 
still have limitations in terms of long-term and large-
scale monitoring, and real-time and accuracy need 
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to be improved. Therefore, the study conducted in-
depth analysis of non-contact physiological detection 
methods and proposed an ES design based on TDPRA 
for green rural modern architecture (GRMA).

3. GRMA Design Based on TDPRA
Approximately 20% of the world’s energy consump-
tion comes from buildings, with 50% of building en-
ergy consumption coming from HVAC systems. Vi-
sual perception technology can perform non-contact 
detection of human TD, effectively solving the energy 
recovery problem caused by inaccurate cold and hot 
supply. Therefore, the study first designed a frame-
work for TDPRA based on human BK. On this basis, to 
improve its detection accuracy, an end-to-end human 
TDPRA was proposed. Finally, based on TDPRA, a ru-
ral household HVAC system model was constructed. 
By utilizing its passive regulation to ensure indoor 
users’ TC, a green intelligent building design has been 
achieved.

3.1. Design of TDPRA Framework Based on BK
A good human TC environment plays a crucial role 
in the ES of intelligent buildings and personal health. 
In the early 20th century, Hill proposed that the tem-
perature and airflow inside buildings should be de-
signed based on the human body’s TC needs [24]. The 
temperature, air flow rate, and humidity in buildings 
have varying degrees of influence on indoor TC de-
gree. Most human bodies express TD through body 
language. The relationship between body language 
and Thermal Comfort (TC) is determined by observ-
ing the posture and movements of the human body 
in different temperature environments. This helps 
smart building systems automatically adjust the in-
door environment based on human posture, improv-
ing comfort and saving energy. For example, heat 
discomfort includes actions such as wiping sweat, 
fanning, shaking clothes, scratching your head, and 
rolling your sleeves. Comfort includes normal pos-
ture such as standing and walking. Cold discomfort 
is manifested as arms, crossed legs, stamping feet, 
rubbing hands and other actions. Therefore, a cor-
responding relationship between body language and 
TC status can be established. Due to the bottom-up 
estimation of human posture, the first step is to de-

tect human skeletal nodes. Therefore, this method 
inevitably includes candidate key points and BK de-
tection [12]. The extraction module of BK belongs to 
the category of 2D attitude estimation, which adopts 
the form of the COOC2017 dataset. Figure 1 shows a 
dataset-based graph of 17 BKs in the human body.
In Figure 1, a BK annotation contains all the data of 
the object. BK is an array of length 2×K, and K is the 
total BKs defined for that category. COOC2017 data-
set used in the study provided 17 BKs, with a BK array 
length of 34. 17 BKs are connected to the trunk by 19 
connecting lines, corresponding to human joints such 
as the nose, eyes, ears, shoulders, elbows, wrists, but-
tocks, knees, and ankles. Research will use the Dis-
continued Key Regression (DEKR) algorithm as the 
extraction module for BK [19]. 
Dense key point regression will represent one pixel 
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Dense key point regression will represent one 
pixel with you through an offset vector with a 
dimension of 2k, thereby achieving pose 
estimation. Figure 2 shows the DEKR 
framework structure.
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Figure 2 DEKR frame structure 

In Figure 2, DEKR structure’s output is HRNet’s 
output, and there are 17 key points in human 
pose estimation for COCO data. Therefore, 
DEKR involves regressing the coordinates of 17 
key points separately. DEKR consists of two 
committed steps. Firstly, adaptive convolution 
was used to activate pixels near key points, and 
depth features were learned based on the 
activated pixels. Adaptive convolution’s kernel 
is obtained from the predicted affine 
transformation matrix and translation matrix 
generated by each pixel, as shown in Formula 
(1) [23]. 
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In Formula (3), X  is the output eigenvector of 
the backbone network, and Y  stands for a 
single same score structure obtained by 
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the DEKR framework structure. 
In Figure 2, DEKR structure’s output is HRNet’s out-
put, and there are 17 key points in human pose esti-
mation for COCO data. Therefore, DEKR involves 
regressing the coordinates of 17 key points separately. 
DEKR consists of two committed steps. Firstly, adap-
tive convolution was used to activate pixels near key 
points, and depth features were learned based on the 
activated pixels. Adaptive convolution’s kernel is ob-
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Figure 2
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output, and there are 17 key points in human 
pose estimation for COCO data. Therefore, 
DEKR involves regressing the coordinates of 17 
key points separately. DEKR consists of two 
committed steps. Firstly, adaptive convolution 
was used to activate pixels near key points, and 
depth features were learned based on the 
activated pixels. Adaptive convolution’s kernel 
is obtained from the predicted affine 
transformation matrix and translation matrix 
generated by each pixel, as shown in Formula 
(1) [23]. 
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Multi branch regression with the same branch 
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feature information of pixels around the center 
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of key points is obtained by regression in 
Equation (3). 
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In Formula (3), X  is the output eigenvector of 
the backbone network, and Y  stands for a 
single same score structure obtained by 

In Formula (3), X is the output eigenvector of the 
backbone network, and Y stands for a single same 
score structure obtained by independent training. K  
stands for the BKs number, which is 17. PR module 
extracts BK and obtains the coordinates of key points 
with a dimension of n×17×2. After normalizing the 
coordinates, the data is then processed through the 
pose recognition algorithm (PRA) to achieve attitude 
recognition. Where n is the frames in the action se-
quence taken by PRA input. BK based PR belongs to 
multi classification tasks, so its main focus is on the 
prediction accuracy of classification. The cross entro-
py loss function is used as this algorithm’s loss func-
tion in Formula (4) [28].
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network’s output into a probability value 
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accuracy of model's prediction result in 
Equation (8). 

( )
( )^

1

1 i
N i
i

y yAccur c
N

a y
=

 
= == 

 
∑

.       

(8) 
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equality of predicted and true values. The 
predicted value was counted as equal to true 
value. Then the proportion of total sample size 
is accuracy. After obtaining BK coordinate 
information, the features input to network are 
relatively less than image information. 
Therefore, three algorithms, namely full 
connection network, 1D convolution network 
and 1D convolution+Long short-term memory 
(LSTM) network, were constructed for attitude 
recognition [22]. The matrix dimension of fully 
connected network input data is n×5×34, with a 
feature vector length of 5×34. Figure 3 shows a 
fully connected network [6]. 
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and obtains the coordinates of key points with a 
dimension of n×17×2. After normalizing the 
coordinates, the data is then processed through 
the pose recognition algorithm (PRA) to achieve 
attitude recognition. Where n is the frames in 
the action sequence taken by PRA input. BK 
based PR belongs to multi classification tasks, 
so its main focus is on the prediction accuracy 
of classification. The cross entropy loss function 
is used as this algorithm’s loss function in 
Formula (4) [28]. 
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is accuracy. After obtaining BK coordinate 
information, the features input to network are 
relatively less than image information. 
Therefore, three algorithms, namely full 
connection network, 1D convolution network 
and 1D convolution+Long short-term memory 
(LSTM) network, were constructed for attitude 
recognition [22]. The matrix dimension of fully 
connected network input data is n×5×34, with a 
feature vector length of 5×34. Figure 3 shows a 
fully connected network [6]. 
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equality of predicted and true values. The 
predicted value was counted as equal to true 
value. Then the proportion of total sample size 
is accuracy. After obtaining BK coordinate 
information, the features input to network are 
relatively less than image information. 
Therefore, three algorithms, namely full 
connection network, 1D convolution network 
and 1D convolution+Long short-term memory 
(LSTM) network, were constructed for attitude 
recognition [22]. The matrix dimension of fully 
connected network input data is n×5×34, with a 
feature vector length of 5×34. Figure 3 shows a 
fully connected network [6]. 
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equality of predicted and true values. The 
predicted value was counted as equal to true 
value. Then the proportion of total sample size 
is accuracy. After obtaining BK coordinate 
information, the features input to network are 
relatively less than image information. 
Therefore, three algorithms, namely full 
connection network, 1D convolution network 
and 1D convolution+Long short-term memory 
(LSTM) network, were constructed for attitude 
recognition [22]. The matrix dimension of fully 
connected network input data is n×5×34, with a 
feature vector length of 5×34. Figure 3 shows a 
fully connected network [6]. 

. (8)

In Equation (8), N  stands for the number of samples, 

and ( )
( )^ i

iy y==  stands for the equality of predicted 
and true values. The predicted value was counted as 
equal to true value. Then the proportion of total sam-

Figure 3
Structure of a fully connected network

ple size is accuracy. After obtaining BK coordinate 
information, the features input to network are rela-
tively less than image information. Therefore, three 
algorithms, namely full connection network, 1D con-
volution network and 1D convolution+Long short-
term memory (LSTM) network, were constructed for 
attitude recognition [22]. The matrix dimension of 
fully connected network input data is n×5×34, with a 
feature vector length of 5×34. Figure 3 shows a fully 
connected network [6].
In Figure 3, the input data dimension is n×5×34. Af-
ter Reshape, the dimension of its feature vector is 
n×1×170. The feature vector dimension obtained 
through the fully connected Densel structure is 
n×1×256, followed by Dense2, Dense3, Dense4, and 
Dense5 structures to obtain n×1×64 dimensions. Fi-
nally, through the final layer of fully connected struc-
ture Dense6, the feature vector dimension is n×1×17. 
The fully connected structures’ dropouts above are all 
0.5, and then the feature vector dimension obtained 
through Flatten is n×17. At this point, the output of 
17 stands for 17 posture categories. The input data di-
mension for 1D convolutional networks is n×5×34, the 
length of the feature vector is 5×34. Figure 4 shows 
the network structure [15].

Figure 4
Structure of 1D convolutional network
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In Figure 3, the input data dimension is n×5×34. 
After Reshape, the dimension of its feature 
vector is n×1×170. The feature vector dimension 
obtained through the fully connected Densel 
structure is n×1×256, followed by Dense2, 
Dense3, Dense4, and Dense5 structures to 
obtain n×1×64 dimensions. Finally, through the 
final layer of fully connected structure Dense6, 
the feature vector dimension is n×1×17. The 

fully connected structures’ dropouts above are 
all 0.5, and then the feature vector dimension 
obtained through Flatten is n×17. At this point, 
the output of 17 stands for 17 posture 
categories. The input data dimension for 1D 
convolutional networks is n×5×34, the length of 
the feature vector is 5×34. Figure 4 shows the 
network structure [15]. 
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Figure 4 Structure of 1D convolutional network 

In Figure 4, the dimension of the input data is 
first, and the dimension of the feature vector 
obtained through Reshape is n×10×17. Then, 
after passing through the 1D convolutional 
structure CONV in sequence, the dimension of 
the feature vector is n×6×32. Then, after Flatten, 
the dimension of the feature vector is n×192. 
The dimension of the feature vector obtained 
through a 5-layer fully connected structure. The 
Dropouts of the fully connected structure are all 
0.5, and at this time, the output of 17 stands for 
17 posture categories. The structure of the 1D 
convolution+LSTM algorithm has two branch 
structures, namely the LSTM branch and the 1D 
convolution branch. The data dimension n×5×34 
was first input. Firstly, the 1D convolution 
input is processed through Reshape to obtain a 
feature vector with a dimension of n×10×17. 
Then, through a four-layer 1D convolution 
structure, the feature vector dimension is 
obtained as n×6×32. After passing through 

Flatten, the feature vector dimension is n × 192. 
Through structures LSTM_1 to LSTM_5, the 
feature vectors dimensions were obtained as 
n×5×32, n×5×64, n×5×128, n×5×64 and n×96. 
Then two branches’ feature vectors are fused to 
obtain a feature vector dimension of n×288. 
n×17 is obtained through a 5-layer fully 
connected structure. The fully connected 
structure’s dropouts are all 0.5, and at this time, 
the output of 17 stands for 17 posture 
categories. 

3.2 Design of Rural Green Intelligent 
Buildings Based on TDPRA Detection 

Due to the interference caused by similar 
attitudes in BK coordinate data, the difference 
in normalized similar attitude coordinate data 
is smaller, resulting in insufficient similarity PR. 
To improve detection accuracy, an end-to-end 
form has been proposed for TD attitude 
recognition. Residual Net (ResNet) effectively 
solves the problem of performance degradation 
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Figure 3 Structure of a fully connected network 

In Figure 3, the input data dimension is n×5×34. 
After Reshape, the dimension of its feature 
vector is n×1×170. The feature vector dimension 
obtained through the fully connected Densel 
structure is n×1×256, followed by Dense2, 
Dense3, Dense4, and Dense5 structures to 
obtain n×1×64 dimensions. Finally, through the 
final layer of fully connected structure Dense6, 
the feature vector dimension is n×1×17. The 

fully connected structures’ dropouts above are 
all 0.5, and then the feature vector dimension 
obtained through Flatten is n×17. At this point, 
the output of 17 stands for 17 posture 
categories. The input data dimension for 1D 
convolutional networks is n×5×34, the length of 
the feature vector is 5×34. Figure 4 shows the 
network structure [15]. 
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Figure 4 Structure of 1D convolutional network 

In Figure 4, the dimension of the input data is 
first, and the dimension of the feature vector 
obtained through Reshape is n×10×17. Then, 
after passing through the 1D convolutional 
structure CONV in sequence, the dimension of 
the feature vector is n×6×32. Then, after Flatten, 
the dimension of the feature vector is n×192. 
The dimension of the feature vector obtained 
through a 5-layer fully connected structure. The 
Dropouts of the fully connected structure are all 
0.5, and at this time, the output of 17 stands for 
17 posture categories. The structure of the 1D 
convolution+LSTM algorithm has two branch 
structures, namely the LSTM branch and the 1D 
convolution branch. The data dimension n×5×34 
was first input. Firstly, the 1D convolution 
input is processed through Reshape to obtain a 
feature vector with a dimension of n×10×17. 
Then, through a four-layer 1D convolution 
structure, the feature vector dimension is 
obtained as n×6×32. After passing through 

Flatten, the feature vector dimension is n × 192. 
Through structures LSTM_1 to LSTM_5, the 
feature vectors dimensions were obtained as 
n×5×32, n×5×64, n×5×128, n×5×64 and n×96. 
Then two branches’ feature vectors are fused to 
obtain a feature vector dimension of n×288. 
n×17 is obtained through a 5-layer fully 
connected structure. The fully connected 
structure’s dropouts are all 0.5, and at this time, 
the output of 17 stands for 17 posture 
categories. 

3.2 Design of Rural Green Intelligent 
Buildings Based on TDPRA Detection 

Due to the interference caused by similar 
attitudes in BK coordinate data, the difference 
in normalized similar attitude coordinate data 
is smaller, resulting in insufficient similarity PR. 
To improve detection accuracy, an end-to-end 
form has been proposed for TD attitude 
recognition. Residual Net (ResNet) effectively 
solves the problem of performance degradation 
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In Figure 4, the dimension of the input data is first, and 
the dimension of the feature vector obtained through 
Reshape is n×10×17. Then, after passing through the 
1D convolutional structure CONV in sequence, the 
dimension of the feature vector is n×6×32. Then, after 
Flatten, the dimension of the feature vector is n×192. 
The dimension of the feature vector obtained through 
a 5-layer fully connected structure. The Dropouts of 
the fully connected structure are all 0.5, and at this 
time, the output of 17 stands for 17 posture categories. 
The structure of the 1D convolution+LSTM algorithm 
has two branch structures, namely the LSTM branch 
and the 1D convolution branch. The data dimension 
n×5×34 was first input. Firstly, the 1D convolution in-
put is processed through Reshape to obtain a feature 
vector with a dimension of n×10×17. Then, through 
a four-layer 1D convolution structure, the feature 
vector dimension is obtained as n×6×32. After pass-
ing through Flatten, the feature vector dimension 
is n × 192. Through structures LSTM_1 to LSTM_5, 
the feature vectors dimensions were obtained as 
n×5×32, n×5×64, n×5×128, n×5×64 and n×96. Then 
two branches’ feature vectors are fused to obtain a 
feature vector dimension of n×288. n×17 is obtained 
through a 5-layer fully connected structure. The fully 
connected structure’s dropouts are all 0.5, and at this 
time, the output of 17 stands for 17 posture categories.

3.2. Design of Rural Green Intelligent 
Buildings Based on TDPRA Detection
Due to the interference caused by similar attitudes in 
BK coordinate data, the difference in normalized sim-
ilar attitude coordinate data is smaller, resulting in 
insufficient similarity PR. To improve detection accu-
racy, an end-to-end form has been proposed for TD at-
titude recognition. Residual Net (ResNet) effectively 
solves the problem of performance degradation when 
there are too many layers in deep learning networks. 
The introduction of residual structures provides fea-
sibility for extracting more complex feature informa-
tion and improving network performance [2]. Based 
on end-to-end TDPRA, motion sequence images are 
used as input to recognize and detect human thermal 
discomfort postures by extracting temporal relation-
ships between motion sequences and image features. 
A dataset was constructed for the research algorithm, 
with input from the network consisting of video se-
quences of 8 and 16 frames. An average of 8 or 16 

frames of image data were selected from an action as 
the input algorithm representing the complete action. 
There are a total of 17 categories based on this action, 
and Equation (9) is the calculation of accuracy.

when there are too many layers in deep 
learning networks. The introduction of residual 
structures provides feasibility for extracting 
more complex feature information and 
improving network performance [2]. Based on 
end-to-end TDPRA, motion sequence images 
are used as input to recognize and detect 
human thermal discomfort postures by 
extracting temporal relationships between 
motion sequences and image features. A dataset 
was constructed for the research algorithm, 
with input from the network consisting of video 
sequences of 8 and 16 frames. An average of 8 
or 16 frames of image data were selected from 
an action as the input algorithm representing 
the complete action. There are a total of 17 
categories based on this action, and Equation (9) 
is the calculation of accuracy. 

( )^

1
@ 11

l
N l
l

y y
N

Accuracy
=

 
= == 

 
∑

.       

(9) 

In Equation (9), N  stands for the number of 

samples, and 
( )^ l

ly y==  stands for that the 

predicted value is equal to true value. The 
traditional Resnet50 input matrix’s dimension is 
(3, 224, 224), which correspond to the channel 
number, height, and width, respectively. The 
research is based on a classification method for 
video sequences, so this algorithm’s input 
matrix dimension is (3 * 8/, 224, 224). That is, 
8/16 frames of images containing the entire 
action information are superimposed as 
channels for the entire network. Figure 5 shows 
the ResNet50 network. 
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Figure 5 ResNet 50 network structure 

In Figure 5, ResNet50 goes through five stages. 
The first stage involves preprocessing 
operations, while the remaining four stages 
involve four layers of convolution. The number 
of bottleneck modules corresponding to each 
convolution layer is 3, 4, 6, and 3, respectively. 
The bottleneck module has performance 
limitations in modeling the time dimension. By 
adding a Motion Excitation (ME) module to the 
bottleneck module for stimulating motion 

patterns, as well as a Multiple Temporal 
Aggregation (MTA) module for establishing 
long-range time relationships, time dimension 
modeling can be achieved [3]. 3×3 convolution 
in the bottleneck module was replaced with a 
combination of ME and MTA. The temporal 
excitation and aggregation (TEA) module is 
composed of 1×1 convolution before and after 
combining [28] Figure 6 shows the network 
structure based on TEA module. 
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In Equation (9), N  stands for the number of samples, 

and 
( )^ l

ly y==  stands for that the predicted value is 
equal to true value. The traditional Resnet50 input 
matrix’s dimension is (3, 224, 224), which correspond 
to the channel number, height, and width, respective-
ly. The research is based on a classification method 
for video sequences, so this algorithm’s input matrix 
dimension is (3 * 8/, 224, 224). That is, 8/16 frames 
of images containing the entire action information 
are superimposed as channels for the entire network. 
Figure 5 shows the ResNet50 network.
In Figure 5, ResNet50 goes through five stages. The 
first stage involves preprocessing operations, while 
the remaining four stages involve four layers of con-
volution. The number of bottleneck modules corre-
sponding to each convolution layer is 3, 4, 6, and 3, re-
spectively. The bottleneck module has performance 
limitations in modeling the time dimension. By add-
ing a Motion Excitation (ME) module to the bottle-
neck module for stimulating motion patterns, as well 
as a Multiple Temporal Aggregation (MTA) module 
for establishing long-range time relationships, time 
dimension modeling can be achieved [3]. 3×3 convo-
lution in the bottleneck module was replaced with 
a combination of ME and MTA. The temporal exci-
tation and aggregation (TEA) module is composed 
of 1×1 convolution before and after combining [28] 
Figure 6 shows the network structure based on TEA 
module.
In Figure 6, an average of 8/16 frames are select-
ed from video frame sequence as input to network. 
Through five stages, the first stage is to preprocess the 
input data, and the latter step is also a convolutional 
process composed of several TEA modules. Finally, 
the feature information output from four layer con-
volution is passed through the fully connected layer, 
and 17 action types output by network are converted 
into output probabilities through softmax function. 
Finally, the one with the highest probability was out-
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Figure 5
ResNet 50 network structure

Figure 6
Network structure based on TEA module

when there are too many layers in deep 
learning networks. The introduction of residual 
structures provides feasibility for extracting 
more complex feature information and 
improving network performance [2]. Based on 
end-to-end TDPRA, motion sequence images 
are used as input to recognize and detect 
human thermal discomfort postures by 
extracting temporal relationships between 
motion sequences and image features. A dataset 
was constructed for the research algorithm, 
with input from the network consisting of video 
sequences of 8 and 16 frames. An average of 8 
or 16 frames of image data were selected from 
an action as the input algorithm representing 
the complete action. There are a total of 17 
categories based on this action, and Equation (9) 
is the calculation of accuracy. 
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In Figure 5, ResNet50 goes through five stages. 
The first stage involves preprocessing 
operations, while the remaining four stages 
involve four layers of convolution. The number 
of bottleneck modules corresponding to each 
convolution layer is 3, 4, 6, and 3, respectively. 
The bottleneck module has performance 
limitations in modeling the time dimension. By 
adding a Motion Excitation (ME) module to the 
bottleneck module for stimulating motion 

patterns, as well as a Multiple Temporal 
Aggregation (MTA) module for establishing 
long-range time relationships, time dimension 
modeling can be achieved [3]. 3×3 convolution 
in the bottleneck module was replaced with a 
combination of ME and MTA. The temporal 
excitation and aggregation (TEA) module is 
composed of 1×1 convolution before and after 
combining [28] Figure 6 shows the network 
structure based on TEA module. 
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improving network performance [2]. Based on 
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are used as input to recognize and detect 
human thermal discomfort postures by 
extracting temporal relationships between 
motion sequences and image features. A dataset 
was constructed for the research algorithm, 
with input from the network consisting of video 
sequences of 8 and 16 frames. An average of 8 
or 16 frames of image data were selected from 
an action as the input algorithm representing 
the complete action. There are a total of 17 
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traditional Resnet50 input matrix’s dimension is 
(3, 224, 224), which correspond to the channel 
number, height, and width, respectively. The 
research is based on a classification method for 
video sequences, so this algorithm’s input 
matrix dimension is (3 * 8/, 224, 224). That is, 
8/16 frames of images containing the entire 
action information are superimposed as 
channels for the entire network. Figure 5 shows 
the ResNet50 network. 
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Figure 5 ResNet 50 network structure 

In Figure 5, ResNet50 goes through five stages. 
The first stage involves preprocessing 
operations, while the remaining four stages 
involve four layers of convolution. The number 
of bottleneck modules corresponding to each 
convolution layer is 3, 4, 6, and 3, respectively. 
The bottleneck module has performance 
limitations in modeling the time dimension. By 
adding a Motion Excitation (ME) module to the 
bottleneck module for stimulating motion 

patterns, as well as a Multiple Temporal 
Aggregation (MTA) module for establishing 
long-range time relationships, time dimension 
modeling can be achieved [3]. 3×3 convolution 
in the bottleneck module was replaced with a 
combination of ME and MTA. The temporal 
excitation and aggregation (TEA) module is 
composed of 1×1 convolution before and after 
combining [28] Figure 6 shows the network 
structure based on TEA module. 

put as the result. In the last four stages, the output 
characteristic dimension and reaction network 50 
remain unchanged. On this basis, this article focuses 
on the application of MT and MTA models in the time 
domain. After implementing modeling in the tempo-
ral dimension, the study combines low-level features 
with high-level features and proposes a PRA based on 

TEA and Decoder. Figure 7 shows the network struc-
ture based on TEA and Decoder.
In Figure 7, the network structure is based on PR net-
work structure on the foundation of TEA, encoding 
the feature information output from the convolution 
of the first, second, and fourth layers. The decoded 
feature information is fully connected to obtain the 
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Figure 7
Network structure based on TEA and Decoder
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Figure 6 Network structure based on TEA module 

In Figure 6, an average of 8/16 frames are 
selected from video frame sequence as input to 
network. Through five stages, the first stage is 
to preprocess the input data, and the latter step 
is also a convolutional process composed of 
several TEA modules. Finally, the feature 
information output from four layer convolution 
is passed through the fully connected layer, and 
17 action types output by network are 
converted into output probabilities through 
softmax function. Finally, the one with the 

highest probability was output as the result. In 
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and use high-level and low-level feature 
information as the final fully connected input. 
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feature vectors after Linear interpolation. 
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the comfortable temperature range to represent the 
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buildings, it needs ensure that entire energy 
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equal to the total required power supply. Thus, 
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energy management system. The calculation 
expression is shown in Equation (12). 
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power grids. Otherwise, it will sell the excess 
electricity to the large power grid. Assuming 

that ,t tv u  are the electricity prices purchased 
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households, Equation (13) is the energy cost of 
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In Equation (13), it stands for the behavior of 
rural smart building households buying or 

selling electricity using only one variable tg . 

Frequent charging and discharging can reduce 
the service life of energy storage systems, so the 
depreciation cost of time slot t  energy storage 
systems is defined as Equation (14). 
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In Equation (14), ψ  stands for energy storage 
system’s depreciation coefficient. Based on 
these algorithms above, a green intelligent 
building energy cost minimization model 
considering the TC range was established in 
Equation (15). 

{ }1 1, 2,
1

1

min

. .

T

t t t
t

t t t t

B C C

s t B g p d

+
=

+


Ε +


 − − +

∑

.         

(15) 

In Equation (15), 1tB +  dynamically stands for 

the energy storage system’s energy storage level 
in time slot t . This expected operation affects 
the randomness of system parameters and 
possible control behaviors for each time slot 
uncertainty. Figure 8 shows the technical 
framework of green rural modern building 
design research based on thermal discomfort 
pose recognition algorithm. 
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on bone key points and end-to-end. In the former, 17 
skeleton key points from COOC2017 dataset were 
extracted by DEKR algorithm, and 1D convolution-
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for pose recognition, and accuracy and loss values 
were evaluated. The latter is identified using a com-
bination of deep residual network (ResNet), motion 
excitation (ME), and multi-time aggregation (MTA) 
modules, optimized with TEA modules and Decoder. 
The experiment involved computers and high-defi-
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320,000 images, the data for training and testing, 
recording loss values and accuracy, and comparing 
the performance of different models. The optimized 
algorithm is used in HVAC system of green intelli-
gent building to ensure indoor thermal comfort and 
achieve energy saving through passive adjustment.
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In Figure 8, the research methods include two 
thermal discomfort pose recognition 
algorithms based on bone key points and 
end-to-end. In the former, 17 skeleton key 
points from COOC2017 dataset were 
extracted by DEKR algorithm, and 1D 
convolutional network and 1D convolutional 
+LSTM were used for pose recognition, and 
accuracy and loss values were evaluated. The 
latter is identified using a combination of 
deep residual network (ResNet), motion 
excitation (ME), and multi-time aggregation 
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involved computers and high-definition 
cameras, 18 volunteers performing 17 thermal 
uncomfortable poses, generating 8,000 videos 
and 320,000 images, the data for training and 
testing, recording loss values and accuracy, 
and comparing the performance of different 
models. The optimized algorithm is used in 
HVAC system of green intelligent building to 
ensure indoor thermal comfort and achieve 
energy saving through passive adjustment.

 

4. Performance Analysis of 

GRMA Design Model Based on 

TDPRA 

The experimental device includes one computer 
and one high-definition USB camera. The height 
of the camera from the ground is 1.5m. Before 
conducting action collection, the experimental 
object must first reach a designated area 1.7m 
away from the camera to ensure that all actions 
of the experimental object can be captured by 
the camera. Due to insufficient data in 
attitude-based TC detection direction, a dataset 
based on TD attitude was constructed. This 
dataset invited a total of 18 adults aged 18-28 as 
experimental subjects, each of whom collected 
17 different TD postures. There are two types of 

data formats: video and image, with around 
8000 video data and around 320000 images. 
Human body’s different postures represent the 
cold and hot states they are in. In addition to 
accuracy, precision, recall rate and cross 
entropy loss are also used to evaluate the 
performance of the thermal uncomfortable 
posture recognition algorithm. Accuracy refers 
to the proportion of the number of samples 
correctly predicted for a certain class to the 
number of all samples predicted for that class; 
The recall rate is the proportion of the number 
of samples correctly predicted for a category to 
the actual number of samples for that category. 
Cross entropy loss is used to measure the 
difference between the model's predicted 
probability distribution and the true 
distribution. Table 1 shows the meanings and 
explanations of 17 movements and postures. 
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reach a designated area 1.7m away from the camera to 
ensure that all actions of the experimental object can 
be captured by the camera. Due to insufficient data 
in attitude-based TC detection direction, a dataset 
based on TD attitude was constructed. This dataset 
invited a total of 18 adults aged 18-28 as experimen-
tal subjects, each of whom collected 17 different TD 
postures. There are two types of data formats: video 
and image, with around 8000 video data and around 
320000 images. Human body’s different postures 
represent the cold and hot states they are in. In addi-
tion to accuracy, precision, recall rate and cross en-
tropy loss are also used to evaluate the performance 
of the thermal uncomfortable posture recognition 
algorithm. Accuracy refers to the proportion of the 
number of samples correctly predicted for a certain 

Table 1
Postural description and sample quantity of 17 actions

Serial number Attitude name Implication Attitude declaration Sample size

1 Raise hands to wipe 
sweat Hot Put your hand on your forehead to wipe the sweat 512

2 Raise your hand and fan Hot Put your hands next to your head and fan 489

3 Shake clothes Hot Put your hand on your chest and shake your clothes 447

4 Raise one’s hand and 
scratch one’s head Hot Put your hands on your head and scratch your head 378

5 Roll up one’s sleeves Hot Pull the cuffs of the clothes in with your hands. Pull up 562

6 Open position Hot Open hands 456

7 Head wave Hot Hands on head. Air fan 853

8 Lapel Hot Hand pulling the side collar of the neck 469

9 Walk Hot Walk normally 456

10 Standing shrug Moderation Shoulders up, head down 472

11 Fold one’s arms Cold Cross your hands over your chest 652

12 Cross leg Cold Cross left leg and right leg 457

13 Hand on neck Cold Put your hands on your neck 498

14 Raise one’s hand to 
vent Cold Put your hands together in front of your mouth and nose 561

15 Stomp on the ground Cold Step on the floor with your left and right feet alternately 473

16 Lift and rub hands Cold Rub your hands alternately in front of your abdomen 421

17 Contraction position Cold Bend your arms and pull your neck down 470

class to the number of all samples predicted for that 
class; The recall rate is the proportion of the number 
of samples correctly predicted for a category to the 
actual number of samples for that category. Cross en-
tropy loss is used to measure the difference between 
the model’s predicted probability distribution and the 
true distribution. Table 1 shows the meanings and ex-
planations of 17 movements and postures.
In Table 1, walking indicates that the human body is 
in a normal thermal environment, while the other 16 
indicate TD posture. The experiment conducted 3000 
rounds of iterative training, with each round corre-
sponding to one test. In the 1D convolution layer, the 
convolution kernel size is 3, the number of convolu-
tion nuclei is 32, the step size is 1, and the filling meth-
od is the same to capture the local features of the se-
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quence. LSTM layer parameters include the number 
of hidden units (such as 32, 64, 128) and the number 
of layers (1 to 3 layers), dropout of 0.5 is used in train-
ing to prevent overfitting, the number of samples per 
training is 16, 32, or 64, the optimizer selects Adam, 
and the learning rate is 0.01. During the training of a 
fully connected network, changes in loss values and 
accuracy on both the training and testing sets are re-
corded in Figure 9.
According to Figure 9(a), training set’s loss value de-
creases with cycles increasing and significantly de-
creases between 0-1800 cycles. As training increases, 
the loss value gradually decreases. In addition, the 
accuracy continuously improves with the iteration. 

Figure 9
Variation trend of loss value and accuracy on training set and test set of fully connected network

Figure 10
Variation trend of loss value and accuracy on training set and test set of 1D convolutional networks

At 0-1850 rounds, the accuracy will rapidly improve, 
then slowly increase, and ultimately reach 85.18%. 
According to Figure 9(b), test group’s accuracy de-
creased significantly from 0 to 900 rounds, and then 
stabilized. The prediction accuracy has significant-
ly improved between 0 and 950, and then stabilized, 
reaching the optimal value of 67.99%. When train-
ing a 1D convolutional network, Figure 10 shows the 
changes in loss values and accuracy on different sets.
According to Figure 10(a), training set’s overall loss 
values show a trend of being taken off the shelves, 
while the accuracy rate shows an overall upward 
trend. Both showed significant changes in the 0-1200 
rounds of data, followed by slow changes, with an ac-

in loss values and accuracy on both the training and testing sets are recorded in Figure 9. 
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Figure 9 Variation trend of loss value and accuracy on training set and test set of fully connected network 

According to Figure 9(a), training set’s loss 
value decreases with cycles increasing and 
significantly decreases between 0-1800 cycles. 
As training increases, the loss value gradually 
decreases. In addition, the accuracy 
continuously improves with the iteration. At 
0-1850 rounds, the accuracy will rapidly 
improve, then slowly increase, and ultimately 
reach 85.18%. According to Figure 9(b), test 

group’s accuracy decreased significantly from 0 
to 900 rounds, and then stabilized. The 
prediction accuracy has significantly improved 
between 0 and 950, and then stabilized, 
reaching the optimal value of 67.99%. When 
training a 1D convolutional network, Figure 10 
shows the changes in loss values and accuracy 
on different sets. 
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Figure 10 Variation trend of loss value and accuracy on training set and test set of 1D convolutional 
networks 

According to Figure 10(a), training set’s overall 
loss values show a trend of being taken off the 
shelves, while the accuracy rate shows an 
overall upward trend. Both showed significant 
changes in the 0-1200 rounds of data, followed 
by slow changes, with an accuracy rate of over 
91.12%. According to Figure 10(b), the loss 
value on the test set reaches the lowest level 

between 600 and 1200 rounds, with the highest 
accuracy reaching 71.23%. Afterwards, the 
fitting loss value reached its lowest point and 
began to rise, while the accuracy began to 
decline. When training 1D convolution+LSTM 
network, Figure 11 shows the changes in loss 
values and accuracy on different datasets. 
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According to Figure 9(a), training set’s loss 
value decreases with cycles increasing and 
significantly decreases between 0-1800 cycles. 
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decreases. In addition, the accuracy 
continuously improves with the iteration. At 
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to 900 rounds, and then stabilized. The 
prediction accuracy has significantly improved 
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Figure 10 Variation trend of loss value and accuracy on training set and test set of 1D convolutional 
networks 

According to Figure 10(a), training set’s overall 
loss values show a trend of being taken off the 
shelves, while the accuracy rate shows an 
overall upward trend. Both showed significant 
changes in the 0-1200 rounds of data, followed 
by slow changes, with an accuracy rate of over 
91.12%. According to Figure 10(b), the loss 
value on the test set reaches the lowest level 

between 600 and 1200 rounds, with the highest 
accuracy reaching 71.23%. Afterwards, the 
fitting loss value reached its lowest point and 
began to rise, while the accuracy began to 
decline. When training 1D convolution+LSTM 
network, Figure 11 shows the changes in loss 
values and accuracy on different datasets. 
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curacy rate of over 91.12%. According to Figure 10(b), 
the loss value on the test set reaches the lowest level 
between 600 and 1200 rounds, with the highest ac-
curacy reaching 71.23%. Afterwards, the fitting loss 
value reached its lowest point and began to rise, while 
the accuracy began to decline. When training 1D con-
volution+LSTM network, Figure 11 shows the chang-
es in loss values and accuracy on different datasets.
According to Figure 11(a), the overall loss value on the 
training set shows a decreasing trend, with a relative-
ly rapid convergence in the 0-600 rounds and a slower 
trend afterwards. According to Figure 11(b), the rate 
of increase in accuracy is the fastest between 0-600 
rounds, and the final frame is above 92.09%. Accord-
ing to Figure 11(c), during testing, it converged rapid-
ly in 0-600 rounds. The loss value reaches its lowest 
point between 600 and 1200 rounds. According to 
Figure 11(d), the accuracy began to fluctuate after 600 

rounds, with a maximum accuracy of 72.16% on the 
test set. Figure 12 shows the effect of full connection 
network, 1D convolution network and 1D convolu-
tion+Long short-term memory network on PR.
According to Figure 12(a), the recognition accuracy 
of fully connected, 1D convolution, and 1D convolu-
tion+LSTM algorithms increases in sequence. How-
ever, its highest accuracy rate only reached 85.67%, 
which did not achieve the desired effect. According 
to Figure 12(b), the recognition rate of 1D convolu-
tion+LSTM for single poses 5, 6, and 17 is as high as 
100%. However, the recognition rate for poses 2, 4, 7, 
8, 9, 10, 11, 12, 14, and 15 is relatively low, with a range 
of 50% -80%, indicating a high similarity among these 
groups of poses. TEA decoder-based PRA construct-
ed through research preserves the best performing 
weights during the training process. Firstly, the con-
volutional output of the first layer and the convolu-

Figure 11
Variation trend of loss value and accuracy on training set and test set of 1D convolutional +LSTM convolutional network
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Figure 11 Variation trend of loss value and accuracy on training set and test set of 1D convolutional 
+LSTM convolutional network 

According to Figure 11(a), the overall loss value 
on the training set shows a decreasing trend, 
with a relatively rapid convergence in the 0-600 
rounds and a slower trend afterwards. 
According to Figure 11(b), the rate of increase in 
accuracy is the fastest between 0-600 rounds, 
and the final frame is above 92.09%. According 
to Figure 11(c), during testing, it converged 

rapidly in 0-600 rounds. The loss value reaches 
its lowest point between 600 and 1200 rounds. 
According to Figure 11(d), the accuracy began 
to fluctuate after 600 rounds, with a maximum 
accuracy of 72.16% on the test set. Figure 12 
shows the effect of full connection network, 1D 
convolution network and 1D convolution+Long 
short-term memory network on PR. 
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Figure 12 Effect of three kinds of networks on gesture recognition 

According to Figure 12(a), the recognition 
accuracy of fully connected, 1D convolution, 
and 1D convolution+LSTM algorithms increases 
in sequence. However, its highest accuracy rate 
only reached 85.67%, which did not achieve the 

desired effect. According to Figure 12(b), the 
recognition rate of 1D convolution+LSTM for 
single poses 5, 6, and 17 is as high as 100%. 
However, the recognition rate for poses 2, 4, 7, 
8, 9, 10, 11, 12, 14, and 15 is relatively low, with 
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Figure 12
Effect of three kinds of networks on gesture recognition
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tional output of the fourth layer were decoded, and an 
average of 8 and 16 frames of action sequences were 
selected as inputs to the model. Figure 13 shows the 
trend of loss values and accuracy on the training set 
and testing when inputting 8 frames.
According to Figure 13(a), the overall loss value on 
training set shows a decreasing trend, with a relatively 
rapid convergence in 0-40 rounds and a slower trend af-

Figure 13
Trend of loss value and accuracy on training set and test set when 8 frames were input

terwards. According to Figure 13(b), the accuracy trend 
on training set is ultimately fixed at around 91.12%. Ac-
cording to Figure 13(c), the loss values on the test set 
show a gradually decreasing trend from 0 to 40 rounds. 
According to Figure 13(d), the accuracy shows an up-
ward trend, with the best PR accuracy of 83.74%. Figure 
14 shows the trend of loss values and accuracy in indif-
ferent datasets when 16 frames are input.
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convolutional output of the fourth layer were 
decoded, and an average of 8 and 16 frames of 
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Figure 13 Trend of loss value and accuracy on training set and test set when 8 frames were input 

According to Figure 13(a), the overall loss value 
on training set shows a decreasing trend, with a 
relatively rapid convergence in 0-40 rounds and 
a slower trend afterwards. According to Figure 
13(b), the accuracy trend on training set is 
ultimately fixed at around 91.12%. According to 
Figure 13(c), the loss values on the test set show 

a gradually decreasing trend from 0 to 40 
rounds. According to Figure 13(d), the accuracy 
shows an upward trend, with the best PR 
accuracy of 83.74%. Figure 14 shows the trend 
of loss values and accuracy in indifferent 
datasets when 16 frames are input. 
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Figure 14
Trend of loss value and accuracy on training set and test set when 16 frames were input

a range of 50% -80%, indicating a high 
similarity among these groups of poses. TEA 
decoder-based PRA constructed through 
research preserves the best performing weights 
during the training process. Firstly, the 
convolutional output of the first layer and the 

convolutional output of the fourth layer were 
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According to Figure 13(a), the overall loss value 
on training set shows a decreasing trend, with a 
relatively rapid convergence in 0-40 rounds and 
a slower trend afterwards. According to Figure 
13(b), the accuracy trend on training set is 
ultimately fixed at around 91.12%. According to 
Figure 13(c), the loss values on the test set show 
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rounds. According to Figure 13(d), the accuracy 
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of loss values and accuracy in indifferent 
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Figure 14 Trend of loss value and accuracy on training set and test set when 16 frames were input 
According to Figure 14(a), the overall loss value on 
the training set shows a decreasing trend, with a rela-
tively rapid convergence in 0-40 rounds and a slower 
trend afterwards. According to Figure 14(b), the final 
accuracy is around 91.12%. According to Figure 14(c), 
test set’s loss values show a gradually decreasing 
trend from 0 to 40 rounds. According to Figure 14(d), 
test set’s accuracy shows an upward trend, with an 
optimal PR accuracy of 88.35%. The study construct-
ed PRAs for ResNet50, ResNet50 based on TEA mod-
ule, and ResNet50 based on TEA Decoder, respective-
ly. In Figure 15, action sequences of 8 and 16 frames 
were selected as inputs to the model, and a total of 10 
experiments with the same network training strategy 
were designed.
According to Figure 15, the best results based on action 
sequences of 8 and 16 frames as model inputs were 
obtained by ResNet50 TEA Decoder (layer1-2-4). 
After adding Decoder module to the network, its opti-
mal accuracy can reach 86.973% when 8 frame image 
sequences are used as inputs, and 92.052% when 16 

frame image sequences are used as inputs. The results 
are better than those of the network without decoder 
module. Decoder module has a certain improvement 
effect on accuracy. Figure 16 shows the robustness 
test results of GRMA energy cost minimization model 
based on TDPRA.
According to Figure 16, research algorithm has better 
performance than traditional algorithms. Research 
algorithm can save up to 10% of total energy cost while 
minimizing total temperature deviation from the 
added value. Research algorithm can provide a more 
effective and flexible compromise between maintain-
ing TC performance and reducing energy costs. To 
further verify the performance of the research meth-
od, the method is compared with the current building 
energy saving technology in terms of energy saving 
efficiency, intelligence degree, technical realization 
difficulty and cost. Data on energy efficiency, intelli-
gence, technical difficulty and cost of thermal uncom-
fortable posture recognition algorithm and current 
building energy saving technology were collected. De-
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Figure 15
The frame numbers of the five models correspond to the accuracy results

Figure 16
Algorithm robustness test

According to Figure 14(a), the overall loss value 
on the training set shows a decreasing trend, 
with a relatively rapid convergence in 0-40 
rounds and a slower trend afterwards. 
According to Figure 14(b), the final accuracy is 
around 91.12%. According to Figure 14(c), test 
set’s loss values show a gradually decreasing 
trend from 0 to 40 rounds. According to Figure 
14(d), test set’s accuracy shows an upward 

trend, with an optimal PR accuracy of 88.35%. 
The study constructed PRAs for ResNet50, 
ResNet50 based on TEA module, and ResNet50 
based on TEA Decoder, respectively. In Figure 
15, action sequences of 8 and 16 frames were 
selected as inputs to the model, and a total of 10 
experiments with the same network training 
strategy were designed. 
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Figure 15 The frame numbers of the five models correspond to the accuracy results 

According to Figure 15, the best results based 
on action sequences of 8 and 16 frames as 
model inputs were obtained by ResNet50 TEA 
Decoder (layer1-2-4). After adding Decoder 
module to the network, its optimal accuracy can 
reach 86.973% when 8 frame image sequences 
are used as inputs, and 92.052% when 16 frame 

image sequences are used as inputs. The results 
are better than those of the network without 
decoder module. Decoder module has a certain 
improvement effect on accuracy. Figure 16 
shows the robustness test results of GRMA 
energy cost minimization model based on 
TDPRA. 
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Figure 16 Algorithm robustness test 

According to Figure 16, research algorithm has 
better performance than traditional algorithms. 
Research algorithm can save up to 10% of total 
energy cost while minimizing total temperature 
deviation from the added value. Research 
algorithm can provide a more effective and 
flexible compromise between maintaining TC 

performance and reducing energy costs. To 
further verify the performance of the research 
method, the method is compared with the 
current building energy saving technology in 
terms of energy saving efficiency, intelligence 
degree, technical realization difficulty and cost. 
Data on energy efficiency, intelligence, technical 

According to Figure 14(a), the overall loss value 
on the training set shows a decreasing trend, 
with a relatively rapid convergence in 0-40 
rounds and a slower trend afterwards. 
According to Figure 14(b), the final accuracy is 
around 91.12%. According to Figure 14(c), test 
set’s loss values show a gradually decreasing 
trend from 0 to 40 rounds. According to Figure 
14(d), test set’s accuracy shows an upward 

trend, with an optimal PR accuracy of 88.35%. 
The study constructed PRAs for ResNet50, 
ResNet50 based on TEA module, and ResNet50 
based on TEA Decoder, respectively. In Figure 
15, action sequences of 8 and 16 frames were 
selected as inputs to the model, and a total of 10 
experiments with the same network training 
strategy were designed. 
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Figure 15 The frame numbers of the five models correspond to the accuracy results 

According to Figure 15, the best results based 
on action sequences of 8 and 16 frames as 
model inputs were obtained by ResNet50 TEA 
Decoder (layer1-2-4). After adding Decoder 
module to the network, its optimal accuracy can 
reach 86.973% when 8 frame image sequences 
are used as inputs, and 92.052% when 16 frame 

image sequences are used as inputs. The results 
are better than those of the network without 
decoder module. Decoder module has a certain 
improvement effect on accuracy. Figure 16 
shows the robustness test results of GRMA 
energy cost minimization model based on 
TDPRA. 
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Figure 16 Algorithm robustness test 

According to Figure 16, research algorithm has 
better performance than traditional algorithms. 
Research algorithm can save up to 10% of total 
energy cost while minimizing total temperature 
deviation from the added value. Research 
algorithm can provide a more effective and 
flexible compromise between maintaining TC 

performance and reducing energy costs. To 
further verify the performance of the research 
method, the method is compared with the 
current building energy saving technology in 
terms of energy saving efficiency, intelligence 
degree, technical realization difficulty and cost. 
Data on energy efficiency, intelligence, technical 

scriptive statistical analysis was performed to calcu-
late mean ± standard deviation. Independent sample 
t test was used to evaluate significance, and P<0.05 
indicated significant difference. The performance 
comparison results of various building energy saving 
methods are shown in Table 2.
As can be seen from Table 2, the values of the research 
method in terms of energy saving efficiency, intelli-

gence degree, technical implementation ease and at-
titude recognition effect are all above 92%, which are 
superior to other existing building technical meth-
ods, and the P-values are all less than 0.05, indicating 
that the experimental results are statistically signifi-
cant. In the total energy cost saving rate, the research 
method is significantly higher than other methods, 
and its energy cost saving rate can be as high as 10%.
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Table 2
Performance comparison results of various building energy saving methods

Method Energy 
efficiency (%)

Degree of 
intelligence

Technical 
implementation ease (%)

Attitude recognition 
effect (%)

Total energy 
cost savings (%) P

Research method 98.65±0.23 92.49±1.30 93.64±0.74 97.64±0.63 10.11±0.02 <0.05

Literature [25] 91.30±0.42 89.14±1.29 88.24±0.84 89.12±0.37 6.23±0.11 <0.05

Literature [14] 86.04±0.31 82.76±1.03 87.12±0.67 83.41±0.86 5.64±0.34 <0.05

References [5] 88.22±0.42 86.19±1.14 90.34±0.53 91.05±0.65 7.21±0.32 <0.05

References [16] 89.24±0.36 90.14±1.21 91.34±0.32 92.71±0.33 8.33±0.42 <0.05

References [15] 95.73±0.45 91.02±1.39 92.63±0.49 93.62±0.79 9.31±0.21 <0.05

P <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

5. Conclusion
At present, TC detection mainly adopts contact and 
semi contact detection, both of which have issues 
such as equipment specificity and intrusion into the 
detected person. To avoid these issues, an innova-
tive camera based non-contact measurement meth-
od is proposed in the study. Firstly, a framework for 
TDPRA was designed based on human BK. On this 
basis, in order to improve its detection accuracy, an 
end-to-end human TDPRA was proposed. Finally, 
based on TDPRA, a rural household HVAC system 
model was constructed. Experiments have shown 
that the recognition rate of 1D convolution+LSTM 
for single poses 5, 6, and 17 is as high as 100%. When 
inputting 8 frames, the convergence is relatively fast 
in 0-40 rounds on the training set, and then tends to 
slow down. The accuracy trend on the training set is 
ultimately fixed at around 91.12%. On the test set, the 
loss value shows a gradual decrease trend from 0 to 40 
rounds, and the best PR accuracy is 83.74%. When in-
putting 16 frames, the convergence is relatively fast on 
the training set in 0-40 rounds, and its accuracy trend 

finally freezes at around 91.12%. The accuracy on the 
test set shows an upward trend, with the optimal PR 
accuracy of 88.35%. The best results based on action 
sequences of 8 and 16 frames as model inputs were 
obtained by ResNet 50-TEA Decoder (layer1-2-4). 
After adding Decoder module to the network, the op-
timal accuracy of 16 frame image sequences as input 
can reach 92.052%. Decoder module has a certain im-
provement effect on accuracy. Compared to tradition-
al algorithms, research algorithm can save up to 10% 
of total energy costs while minimizing the total tem-
perature deviation from the added value. Although 
the research has been successful, there are still lim-
itations. For example, the same pose may occur for 
different reasons (such as fatigue or restlessness), 
adding complexity to the algorithm. Variables in the 
laboratory environment and real-world applications 
(e.g., interior design, climate conditions) can affect 
algorithm performance. Future research should de-
velop personalized thermal comfort models, expand 
the data set to cover more practical scenarios, and test 
and optimize in practical applications to improve the 
reliability and applicability of the algorithm.
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