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To address the problems that graph convolution uses a fixed graph structure, fails to capture dynamic or 
changing graph structure information, and is prone to bias by employing the same attention. A point-cloud 
upsampling network (DGCMSA-PU) incorporating Dynamic Graph Convolutional (DGCNN) and Multi-head 
Self-Attention (MHSA) is designed. DGCNN is utilised for up-sampling and a MHSA mechanism is incorporat-
ed to simultaneously fuse information from different attention heads. The edge relationships between nodes in 
the graph data are captured by edge convolution (EdgeConv), and the graph structure is dynamically construct-
ed based on the relationships between nodes. Then the features of the point cloud are extracted by the three 
attention heads with different weights and different foci. Finally, an up-down-up structure is used to extend 
the features and reconstruct the 3D coordinates of the output point cloud. The superiority of DGCMSA-PU in 
the up-sampling task is verified through experiments comparing it with existing up-sampling networks, and 
the robustness of the network to noise and varying number of input point clouds, as well as the important role 
of the Multi Headed Attention module in the performance improvement of the network, are analysed through 
robustness and ablation experiments.
KEYWORDS: Dynamic graph convolution; Multi headed self attention mechanism; Point cloud up-sampling. 

1. Introduction
Due to hardware and computational limitations in 
current 3D measurement technologies, directly ac-
quired raw point clouds are often sparse, unevenly 
distributed, and may contain noise, leading to insuf-
ficient precision in the measured data and affecting 
subsequent work. To obtain dense and clean point 
cloud data, point cloud upsampling algorithms de-
signed specifically to address this issue have become 
one of the hot topics in the field of point cloud re-
search.
Traditional point cloud upsampling algorithms are 
optimization-based [18, 24, 9], relying on fitting local 
geometric information such as normal estimation 
and grid generation. However, these methods are of-
ten constrained by shape priors, thereby impacting 
the overall structure. 
In recent years, the introduction of PointNet [2] and 
PointNet++ [3] has demonstrated the effectiveness 
and feasibility of using deep neural networks to pro-
cess point clouds. Consequently, with the rapid devel-
opment of deep learning technologies, there has been 
active exploration of various deep learning-based 
point cloud upsampling methods to address this chal-
lenge.
Yu et al. [14] introduced PU-Net, the first data-driven 
network for point cloud upsampling. PU-Net employs 
a multi-branch Multilayer Perceptron (MLP) to learn 
and expand multi-scale features for each point in the 
input point set, which are then used to reconstruct 
the upsampled point set. However, this approach ex-

tracts features from different downsampling levels 
separately for each point, resulting in reduced resolu-
tion and overlooking local details and neighbor infor-
mation. Zhang et al. [27] combine single-point, local, 
and global features to process point clouds, thereby 
improving task accuracy. Additionally, Yu et al. [15] 
proposed EC-Net, the first edge-aware upsampling 
network, which learns features for each point in the 
input point set by regressing point coordinates and 
distances to edges. Consequently, EC-Net can handle 
sharp features detected by edge detection, enabling 
precise point set expansion and 3D reconstruction. 
Nevertheless, to annotate sharp edges, manual draw-
ing of lines on each 3D grid is required during data 
preprocessing, which is a cumbersome and costly 
process in terms of both manual effort and time. Li 
et al. [21] presented PU-GAN, which learns a diverse 
distribution of upsampled points and extends point 
features based on GANs. However, by upscaling the 
point set through duplicating point features, it sig-
nificantly restricts the variation of the final output 
point cloud. Additionally, the discriminator struc-
ture is complex and unstable. Inspired by adversar-
ial networks, Zeng et al. [26] progressively extract 
low-dimensional latent vectors of features from point 
clouds in an incremental manner by cascading gen-
erative adversarial networks, completing point cloud 
upsampling through coordinate reconstruction. 
Similarly, Kulikajevas et al. [12] use a hybrid neural 
network composed of a single classifier network and 
multiple reconstruction networks to achieve point 
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cloud upsampling in the form of 3D reconstruction. 
In their design, the reconstruction nodes in the multi-
branch reconstruction network focus on the feature 
learning of specific objects or similar objects, making 
it easier to train new object types without retraining 
the entire network.
However, the aforementioned point upsampling net-
works treat different upsampling rates as indepen-
dent tasks, requiring a one-to-one correspondence 
between the model and the upsampling rate during 
the network training phase. In practical applications, 
this directly results in inefficient storage and compu-
tational efficiency. To overcome this issue, Luo et al. 
[17] proposed a novel design for flexible-scale point 
cloud upsampling based on edge vector approxima-
tion, termed PU-EVA. PU-EVA encodes the connec-
tivity of adjacent edges through affine combinations 
based on edge vectors and constrains the approxima-
tion error within the second-order term of the Tay-
lor expansion. Furthermore, PU-EVA decouples the 
upsampling scale using a network architecture, en-
abling arbitrary upsampling rates in a single training 
session, albeit subject to limitations in network size 
and operational memory.
Aggregating point information is an indispensable 
step in point cloud deep learning today, and cluster-
ing algorithms are one of the common methods. For 
example, Ryselis et al. [22] use a scalable bounding 
box to aggregate points to reduce the inefficiency of 
independent domain searches. However, this meth-
od relies on the expansion step size, which may not 
be suitable for point clouds with different densities. 
Graph convolution [10] can process non-Euclidean 
data by constructing graph structures and aggregat-
ing graph information. In recent years, Graph Con-
volutional Networks (GCN) have been increasingly 
applied to point clouds, offering flexibility in learning 
features of nodes, edges, or subgraphs [19]. To better 
capture local multi-scale point information and ag-
gregate neighbor information for each point, Qian et 
al. [7] proposed PU-GCN. They leverage the power-
ful capabilities of graphs and design two GCN-based 
modules in the upsampling module, namely Inception 
Dense GCN for feature extraction and NodeShuffle 
for feature expansion. This approach performs well 
in encoding local features and generating new points 
without the need for any additional tools (such as edg-
es or normals). However, it may lose some global point 

cloud structural information to a certain extent. Nev-
ertheless, Pierdicca et al. [20] use an improved KNN 
in the input layer to select neighboring points by uti-
lizing raw coordinates, normalized coordinates, color 
features, and normal vector features, thereby enhanc-
ing task accuracy. This method combines geometric 
and radiometric properties, which may compensate 
for this drawback. With the development of attention 
mechanisms [5], Wang et al. [13] employed Graph 
Attention Convolution (GAC) for feature learning to 
address the issues of standard convolutional meth-
ods easily neglecting global structures and attention 
mechanisms overlooking local connections in point 
clouds. Similarly, Jing et al. [11] construct a topology 
using KNN to extract information, and then use an at-
tention mechanism to select the most important fea-
tures within the topology, thereby better representing 
different point cloud features. Hu [8] combined gen-
erative adversarial strategies with graph convolution 
in brain point cloud reconstruction, achieving spon-
taneous transformation from images to point clouds 
and recovering various details of the brain through 
hierarchical perception. Xiao [23] et al. designed a 
parallel multi-scale feature extraction module (PMA) 
and utilized edge convolution for feature expansion. 
Gao et al. [6] calculate attention coefficients based on 
edge convolution by considering local neighborhood 
correlations and local projection depth. Li et al. [16] 
employed a Transformer-based multi-stage learning 
framework for point cloud upsampling, utilizing a 
point-wise optimization network to adjust the spatial 
positions of each point after dense point generation. 
The application of graph convolution provides new 
insights into point cloud upsampling tasks. Graph 
convolution offers greater flexibility and can effec-
tively handle non-Euclidean structured data. For 
sparse 3D point cloud data, graph convolution op-
erations can be used to aggregate information from 
neighboring nodes, effectively utilizing relationships 
between nodes for feature extraction and expansion, 
ultimately reconstructing dense 3D point clouds.
GCN and DGCNN [25] are both deep learning models 
used for graph data processing. However, GCN utilize 
fixed graph structures, failing to capture dynamic or 
changing graph structural information. In contrast, 
DGCNN employs dynamic graph structures, recon-
structing the graph structure in each convolution-
al layer based on the relationships between nodes, 
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thereby better capturing both local and global infor-
mation in graph data. This paper proposes a Point 
Cloud Upsampling Network named DGCMSA-PU, 
which combines DGCNN and MHSA. By integrating 
DGCNN with MHSA, the network captures features 
representations at different scales and conducts fea-
ture fusion, enhancing the richness and diversity of 
feature representations. Additionally, a top-down-
bottom-up structure is employed in the feature ex-
pansion module to improve the granularity of gener-
ated points.

2. Methodology 
2.1. DGCNN
2.1.1. Edge Convolution
let 1{ , , }nX x x= …  denote the point cloud consisting of  
n points, where each point contains coordinate infor-
mation ( , , )i i i ix x y z= . The local point cloud structure 
is represented by a directed graph ( , )G ν ε= , where 

{1, , }nν = …  denotes the vertices and { }ε ν ν⊆ ×  de-
notes the edges.
Considering each point as a central point, we con-
struct the neighborhood graph of the central points 
using K-nearest neighbors (KNN). Based on this 
graph structure, we calculate the features of adjacent 
points jx  for a point ix  using an MLP to obtain the 
edge feature ije  as the graph feature. These edge fea-
tures are aggregated to characterize the new feature 

ix′  of the central point ix . 
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( )
( )

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗  (2) 

To ensure permutation invariance of the point 
cloud, ∗  requires to be independent of the input order. 
In edge convolution, symmetric functions such as 
summation (sum) or maximum (max) can be used for 
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( ): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅  (3) 

Where each mθ  has the same dimension as x , and ⋅  
denotes the Euclidean inner product. 

(2) When 1, , nx x…  represent scattered points in 
three-dimensional space, PointNet utilizes the edge 
function hΘ : 

( ) ( ),i j ih x x h xΘ Θ=  (4) 

The above formulas encode the information of each 
point ix  in the global shape while ignoring the local 

neighborhood structure formed by ix  and 

neighboring points jx . To capture local information, 
PointNet++ utilizes the multi-scale grouping (MSG) 
or multi-resolution grouping (MRG) method to group 
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( ) ( ),i j jh x x h xΘ Θ=  (5) 

( ) ( )( )( ),im j i j
j V

x h x g u x xθ
∈

′ =  (6) 

Where the function g  is the Gaussian kernel, and 
the function u  calculates the pairwise distances in 
Euclidean space within the MSG or MRG grouping 
neighborhood. 

. (1)
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neighboring points from the central point, only the 
local neighborhood information is encoded, while 
the global information of the central point is lost. 
Thus, we have:
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local neighborhood information is encoded, while the 
global information of the central point is lost. Thus, 
we have: 
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Due to the limitations of the aforementioned three 
edge functions hΘ , EdgeConv adopts a mean-

centered subtraction j ix x−  to capture local 
neighborhood information while preserving the 
coordinates of the region center ix  to capture global 
shape information. Thus, we have: 
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2.1.2. Dynamic update 
To gradually acquire high-level feature information, 
convolutional neural networks typically consist of 
multiple convolutional layers. However, as 
convolution is performed layer by layer, the point 
cloud graph structure input to each layer may differ, 
resulting in different feature spaces for the output. 
Because of variations in feature space across 
dimensions, it is not reasonable to use the same GCN 
structure at each layer. Therefore, DGCNN adopts a 
different strategy, utilizing EdgeConv at each layer to 
construct local neighborhoods, whether in coordinate 
space or feature space. EdgeConv treats each point as 
a central point, computing edge features between it 
and its neighboring points, then aggregates these 
features to generate a new representation for the point. 
Feature extraction at each layer first involves 
computing pairwise distance matrices in either 
coordinate or feature space using EdgeConv, then 
constructing new local neighborhoods based on the 
principle of nearest neighbors, thereby forming 
different graph structures: 

( ) ( ) ( )( ),l l lG ν ε=  (9) 

Where l  denotes the number of layers in the 
network. When 1l = , ( )lG  is represented by points 
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2.2. Multi-head Self-attention 

mechanism 
In the Transformer attention mechanism, each layer of 
the encoder performs two operations: self-attention 
and feed-forward. Each layer of the decoder performs 
three operations: self-attention, encoder-decoder 
attention, and feed-forward. Both self-attention and 
encoder-decoder attention utilize the MHSA[28] 
mechanism. 

The MHSA mechanism is an improved technique 
based on the self-attention mechanism, primarily 
applied in sequence modeling and natural language 

processing tasks. The self-attention mechanism 
calculates the relative importance of each position in 
the input sequence with respect to other positions, 
thereby determining the degree of attention paid to 
different positions in the sequence. The multi-head 
attention mechanism further extends the capabilities 
of self-attention by allowing the model to perform 
multiple self-attention computations in different 
"heads" or subspaces, enabling it to capture more 
information and relationships at different levels. 

The MHSA mechanism can be viewed as an 
extension of the single-head attention mechanism and 
is a widely used technique in natural language 
processing. It allows neural networks to focus on 
multiple aspects simultaneously when processing 
inputs. The MHSA mechanism utilizes multiple sets 
of Q , K , and V  to obtain multiple sets of feature 
representations. This enables the network to fully 
leverage various information present in the input data 
to identify and extract features of different importance 
levels. 

Specifically, the MHSA mechanism can be detailed 
into five steps: 

  (1)Head Creation: Partition the input data into 
multiple parts and construct a separate attention head 
for each part. 

 (2)Linear Transformation: Perform multiple linear 
transformations on the input to map it to different 
subspaces. Each subspace corresponds to a "head," 
each with its own weight matrix and bias vector. 

 (3)Attention Computation: Within each head, 
calculate attention weights between the query Q , key 
K , and value V , generating a weighted 
representation for each position. This process is 
similar to self-attention and can utilize dot-product 
attention or variants of other attention mechanisms. 

 (4)Head Fusion: Aggregate and concatenate or 
average the attention-weighted outputs from each 
head to obtain the final multi-head attention 
representation. This captures the diversity and 
richness among different heads, providing 
comprehensive information. 

 (5)Linear Transformation and Output: Combine 
the multi-head attention representation with another 
linear transformation to obtain the final output 
representation. This linear transformation can be a 
simple fully connected layer used to map the multi-
head attention representation to the desired 
dimensionality 

The advantage of the multi-head attention 
mechanism lies in its ability to simultaneously focus 
on different levels and aspects of information and 
combine the diversity among different heads. It allows 
the model to learn and capture various relationships in 
different representation subspaces, enhancing the 
model's expressiveness and generalization 
performance. Multi-head self-attention can handle 
different types and levels of input data, improving 
model performance and accuracy by focusing on key 
information. Additionally, MHSA enables parallel 
computation, ensuring a considerably large receptive 
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mensions, it is not reasonable to use the same GCN 
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to construct local neighborhoods, whether in coor-
dinate space or feature space. EdgeConv treats each 
point as a central point, computing edge features be-
tween it and its neighboring points, then aggregates 
these features to generate a new representation for 
the point. Feature extraction at each layer first in-
volves computing pairwise distance matrices in ei-
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then constructing new local neighborhoods based on 
the principle of nearest neighbors, thereby forming 
different graph structures:
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where l  denotes the number of layers in the network. 
When 1l = , ( )lG  is represented by points ( )lν  in a 
64-dimensional feature space and edges ( )1ε .

2.2. Multi-head Self-attention Mechanism
In the Transformer attention mechanism, each layer 
of the encoder performs two operations: self-atten-
tion and feed-forward. Each layer of the decoder per-
forms three operations: self-attention, encoder-de-
coder attention, and feed-forward. Both self-attention 
and encoder-decoder attention utilize the MHSA [28] 
mechanism.
The MHSA mechanism is an improved technique 
based on the self-attention mechanism, primarily 
applied in sequence modeling and natural language 
processing tasks. The self-attention mechanism cal-

culates the relative importance of each position in the 
input sequence with respect to other positions, there-
by determining the degree of attention paid to differ-
ent positions in the sequence. The multi-head atten-
tion mechanism further extends the capabilities of 
self-attention by allowing the model to perform mul-
tiple self-attention computations in different “heads” 
or subspaces, enabling it to capture more information 
and relationships at different levels.
The MHSA mechanism can be viewed as an extension 
of the single-head attention mechanism and is a wide-
ly used technique in natural language processing. It 
allows neural networks to focus on multiple aspects 
simultaneously when processing inputs. The MHSA 
mechanism utilizes multiple sets of Q, K, and V to ob-
tain multiple sets of feature representations. This en-
ables the network to fully leverage various informa-
tion present in the input data to identify and extract 
features of different importance levels.
Specifically, the MHSA mechanism can be detailed 
into five steps:
1 Head Creation: Partition the input data into mul-

tiple parts and construct a separate attention head 
for each part.

2 Linear Transformation: Perform multiple linear 
transformations on the input to map it to different 
subspaces. Each subspace corresponds to a “head,” 
each with its own weight matrix and bias vector.

3 Attention Computation: Within each head, calcu-
late attention weights between the query Q, key K, 
and value V, generating a weighted representation 
for each position. This process is similar to self-at-
tention and can utilize dot-product attention or 
variants of other attention mechanisms.

4 Head Fusion: Aggregate and concatenate or aver-
age the attention-weighted outputs from each head 
to obtain the final multi-head attention represen-
tation. This captures the diversity and richness 
among different heads, providing comprehensive 
information.

5 Linear Transformation and Output: Combine the 
multi-head attention representation with anoth-
er linear transformation to obtain the final output 
representation. This linear transformation can 
be a simple fully connected layer used to map the 
multi-head attention representation to the desired 
dimensionality.
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The advantage of the multi-head attention mech-
anism lies in its ability to simultaneously focus on 
different levels and aspects of information and com-
bine the diversity among different heads. It allows 
the model to learn and capture various relationships 
in different representation subspaces, enhancing the 
model’s expressiveness and generalization perfor-
mance. Multi-head self-attention can handle differ-
ent types and levels of input data, improving model 
performance and accuracy by focusing on key infor-
mation. Additionally, MHSA enables parallel compu-
tation, ensuring a considerably large receptive field 
without sacrificing computational efficiency.

2.3. DGCMSA-PU
To enhance point cloud upsampling, a point cloud up-
sampling network named DGCMSA-PU is designed, 
which integrates DGCNN and MHSA. The overall 
framework is illustrated in Figure 1. 
The network primarily consists of three modules: 
the feature extraction module, the feature expansion 
module, and the coordinate reconstruction module. 
For the original input of an 3N ×  point cloud, given 
the massive number of points, it is partitioned into 
multiple Patch blocks. These Patch blocks serve as 
input to the MHSA-DGCNN module for feature ex-
traction.
DGCNN, employing EdgeConv, captures the edge re-
lationships between nodes in graph data. It updates 
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network 
to focus on the correlations between different nodes, 

Figure 1
DGCMSA-PU

weighting the features to enhance the network’s fea-
ture extraction capabilities.
After feature extraction, resulting in N C×  point 
cloud features, they are input into the feature ex-
pansion module. Utilizing the top-down-top feature 
expansion approach, GCN is employed to upsample 
point features, followed by downsampling to regress 
to the original features. The difference in features 
before and after upsampling is computed, and the 
difference tensor is upsampled and aggregated with 
the previous upsampling results. This process yields 
expanded features of rN C′× , where r  is the upsam-
pling rate, C′  is the feature channel dimension, and 
N  is the number of training points.Finally, the dense 

3rN ×  point cloud data output is obtained through 
the coordinate reconstruction module.
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constructing a per-point k  nearest neighbor graph as 
illustrated in Figure 2, where each edge node points 
towards the central node. EdgeConv is employed to 
extract edge features between the central node and its 
neighboring nodes. Then, an aggregation function is 
applied to update the central node using the edge fea-
tures and information from the original 1k +  points. 
The decentralized method is utilized to capture the 
global shape structure and the global features of nodes 
captured by the difference between edge nodes and 
central nodes in the local neighborhood information.
In the feature extraction module, the multi-head 
self-attention mechanism is incorporated to weight 
the features, summing the features from multiple sets 
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Figure 2
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of self-attention networks. Finally, the output fea-
tures of the attention module are obtained, as depict-
ed in Figure 3.
The output features of a single self-attention mecha-
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The attention mappings are divided into multiple 
attention mapping modules for Q , K , and V , using 
different weight matrices Q

iW , K
iW , and V

iW . Each at-
tention head has its own attention region. Finally, 
the attention mappings obtained from each attention 
head are merged. The overall weight matrix OW  deter-
mines the degree of attention for each attention head. 
By mapping Q, K , and V  to different spaces and opti-
mizing different parts of the features, different atten-
tion heads learn features. This operation balances the 
potential bias of using the same attention, making the 
feature representation more diverse.
The MHSA-DGCNN module, depicted in Figure 4, 
combines DGCNN as the foundation with MHSA. 
Unlike GCN, which utilizes a fixed graph structure, 
DGCNN employs a dynamic graph convolutional 
neural network for feature extraction. It not only uti-
lizes the coordinate features of individual points but 
also fully leverages the local structural information 
of the point cloud and the geometric correlations be-
tween points. The feature extraction network con-
sists of four EdgeConv layers, with an MHSA module 
added after each EdgeConv. The multi-head attention 
mechanism adaptsively weights features at both local 
and global scales, thereby capturing contextual infor-
mation more effectively. Edge convolution enhances 
the feature representation of central nodes by prop-
agating features from neighboring nodes. By combin-
ing edge convolution with the multi-head attention 
mechanism, the model leverages the ability of con-
text awareness and feature integration to enhance its 
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Figure 4
MHSA-DGCNN
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ability to represent node features in graph data. Ad-
ditionally, the residual network concept is introduced 
during feature extraction, incorporating residual 
connections to improve network performance, mak-
ing the network easier to optimize, and alleviating to 
some extent the problem of gradient vanishing asso-
ciated with increasing depth in deep neural networks. 
Subsequently, the point cloud undergoes symmetric 
pooling to generate global feature vectors.  
An aggregation pooling layer, as illustrated in Figure 5, 
aggregates the global features. The aggregation pool-
ing layer combines the features produced by the two 
channels using a parallel combination of max-pooling 
and average-pooling functions, thereby reducing fea-
ture loss.
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5.3.2. Feature Extension Module
Inspired by PU-GAN and Transformer, a novel up-
down-up feature expansion module is introduced 
in the feature expansion stage, as depicted in Fig-
ure 6. It consists of two parts: the upsampling block 
and the downsampling block. The upsampling block 
incorporates GCN, enabling it to encode spatial in-
formation from point neighborhoods and learn new 
features from latent space, instead of simply using 
convolutional neural networks. Moreover, a multi-
head self-attention mechanism is applied to rapidly 
aggregate global spatial information and fine-tune 
the coordinates based on spatial information, thereby 

enhancing the feature expansion capability. Initially, 
point features undergo upsampling (after the MLP), 
generating upsampled features, followed by downs-
ampling to regress to the original features. Instead 
of directly constructing the original point cloud, re-
sidual learning is applied to fine-tune the expanded 
features by computing the difference between the 
features before and after upsampling. This difference 
tensor is then inputted into the upsampling block and 
the MLP layer for upsampling. The resulting features 
are summed with the previously upsampled features. 
This step adopts a feature offset strategy to fine-tune 
the expanded features, avoiding cumbersome multi-
step training while ensuring that the generated points 
do not deviate from the geometric surface of the patch 
block, thereby enhancing the granularity of the gener-
ated points. 

Figure 6
Up-down-up feature extension module
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To increase variation among repeated features, the 
direct replication of point features as employed in 
PU-Net is not utilized in the upsampling process. In-
stead, a grid mechanism inspired by FoldingNet [1] 
is employed, as depicted in Figure 7. After replicating 
the input point cloud features r times, local neighbor-
hood information is captured using graph convolution, 
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making the representation of features more diverse. 
Finally, an MLP layer is used to regress point features 
to generate the output upsampled features.
The structure of the downsampling block is illustrated 
in Figure 8. To reduce the sampling of expanded fea-
tures, the upsampled features are reshaped through 
downsampling operations, and then input into a set of 
MLP layers for regressing the original features.

Figure 9
PU1K Dataset

3. Results and Discussion

3.1. Datasets and Processing
The PU1K dataset is a novel large-scale dataset spe-
cifically created for point cloud upsampling tasks, as 
depicted in Figure 9. PU1K comprises 1147 3D mod-
els, divided into 1020 training samples and 127 test-
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Figure 10
Sydney Urban Objects Dataset

ing samples. The training set includes 120 3D models 
compiled from the PU-GAN dataset and 900 different 
models collected from ShapeNetCore. The testing 
set consists of 27 models from PU-GAN and over 100 
models from ShapeNetCore. The models from Shap-
eNetCore are selected from 50 different categories. 
By randomly selecting 200 models from each catego-
ry, a total of 1000 models with varying levels of shape 
complexity are obtained to encourage diversity. The 
Sydney Urban Objects Dataset [29] includes various 
common urban road objects scanned using Velodyne 
HDL-64E LIDAR, as shown in Figure 10.
Using Meshlab for point cloud processing and visual-
ization is a common practice in the field. To prepare 

data for training and testing, surface patch block 
generation is the first step in data preprocessing. In-
tuitively, the point cloud should be partitioned into 
patch blocks, treating each patch as a single input 
when there are a large number of points within an ob-
ject. Subsequently, Poisson disk sampling is applied 
to each patch to ensure coverage of the entire point 
cloud. This process generates pairs of original mesh 
grids and sampled point clouds (Input) along with 
ground truth point clouds. As illustrated in Figure 11, 
the first row represents the original mesh grid, the 
second row displays the Ground Truth point cloud 
(8192 points), and the third row shows the Input 
(2048 points).

Figure 11
Sampling results
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For the training data, 50 patch blocks are cropped 
from each 3D model as inputs to the network. In PU1K, 
a total of 51,000 training patch blocks are obtained. 
Each patch consists of 256 points as the low-resolu-
tion input and 1024 points as the ground truth.
For the testing data, each object is represented by 
2048 points as the input point cloud, while the ground 
truth point cloud comprises 8192 points using an up-
sampling rate of 4r = .
During testing, the same processing approach as MPU 
and PU-GAN is employed, namely patch-by-patch. 
Firstly, M central points are selected using the far-
thest point sampling (FPS) method, and a fixed num-
ber of points are selected around each central point 
using the k-nearest neighbor algorithm, forming M 
clusters of point clouds. The upsample model is ap-
plied to each point cloud cluster separately to obtain 
the upsampled results, i.e., dense point clouds. Then, 
the overlapping patch outputs are merged according 
to the total number of points needed for upsampling 
(e.g., if the input point cloud contains 2048 points and 
requires a 4x upsampling, the resulting point cloud 
will contain 8192 points). Subsequently, the farthest 
point sampling algorithm is used again to resample 
the merged point cloud, resulting in the final point 
cloud output. The process is illustrated in Figure 12.

Figure 12
Sampling process
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duce the repulsion loss repL . 
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where r  represents the upsampling rate and N  de-
notes the number of input points. For each point ip , 
K  nearest neighbor points ip ′  are selected, and their 
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a rapidly decaying weight function. When multiplied 
together, repL  becomes large when the distance is too 
close or too far, so the generated points should main-
tain an appropriate distance to reduce the repulsion 
loss repL .
Uniformity loss uniL : The repulsion loss ensures that 
the upsampled points are as separated as possible 
globally, but it does not guarantee uniform distribu-
tion of points locally. To ensure local point uniformi-
ty, a uniformity function is employed, expressed as:
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=  is a rapidly decaying weight function. 

When multiplied together, repL  becomes large when 
the distance is too close or too far, so the generated 
points should maintain an appropriate distance to re-
duce the repulsion loss repL . 

Uniformity loss uniL : The repulsion loss ensures 
that the upsampled points are as separated as possible 
globally, but it does not guarantee uniform distribution 
of points locally. To ensure local point uniformity, a 
uniformity function is employed, expressed as: 

1
( ) ( )

M
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j

L U S U S
=

= ⋅  (16) 

imbalanceU  ensures the uniform distribution of 

(16)

imbalanceU  ensures the uniform distribution of upsam-
pled points globally, while clutterU  ensures uniform 
distribution within local neighborhoods.
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3.3. Environment Configuration and 
Parameter Setting
To ensure fairness and accuracy in comparisons, and to 
minimize the impact of environmental factors, all meth-
ods in this study were trained and tested on the same 
computer hardware. Details are provided in Table 1.

Table 1
Experimental environment

System/Platform Configuration/Version

OS Ubuntu18.04

GPU QuadroRTX5000(16GB)

CPU AMD EPYC 7302

Memory 64GB

CUDA 11.3

Deep Learning Framework PyTorch 1.10.2

Programming Language Python 3.8

During training, the weights for each loss function are 
set as follows: 100recλ = , 2repλ = , and 10uniλ = . The 
batch size is set to 32, and the initial learning rate is 
0.001. At the 60th epoch, the learning rate is reduced 
to 0.0001, and at the 100th epoch, it is further reduced 
to 0.00001. The total number of epochs for training is 
120. Both training and testing processes employ an 
upsampling rate of 4.

3.4. Analysis of Experimental Results
3.4.1. Comparison with Existing Upsampling 
Algorithms
The up-sampling networks were trained and tested 
using the PU1k dataset. From the obtained up-sam-
pling results, three objects of different shape levels 
were randomly selected, including simple and smooth 
objects as well as complex and highly detailed objects, 
to evaluate the performance of each network’s upsam-
pling results. Figure 13 shows the upsampling results.
From the up-sampled point clouds and their magni-
fied details, it is evident that our method produces 
fewer outliers while preserving details closer to the 
real structure. Specifically, examining the details of 
the handle of the handbag (first row) indicates that the 
method successfully up-samples relatively smooth 
input point clouds, resulting in significantly fewer 
outliers compared to other methods, and achieving a 
smooth and evenly distributed surface on the object. 
Additionally, the armrests of the chair (second row) 
demonstrate the superiority of our method in main-
taining geometric shapes, as the up-sampling results 
from PU-Net and PU-GAN introduce excessive noise. 
Although PU-GCN can roughly restore the overall 
contours, the effects are not sufficiently smooth, ir-
regular, and exhibit poor edge restoration. Our meth-
od automatically updates the graph structure at each 
EdgeConv operation, capturing more correlations 
among the data, thereby enhancing the model’s ex-
pressive power. Furthermore, through the MHSA 
module, it integrates different relationships and fea-

Figure 13
Upsampling results

(a) Input (b) PU-Net (c) PU-GAN (d) PU-GCN (e) DGCMSA-PU (g) GT
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Table 2
Quantitative Evaluation of Upsampled Networks

NetWork CD (10-3) HD (10-3) P2F (10-3) Uni (10-3) Time (ms)

PU-Net 3.135 16.634 6.392 22.136 10.081

PU-GAN 1.986 14.320 3.531 18.092 17.325

PU-GCN 0.815 13.682 4.894 15.342 12.612

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331

ture representations during the feature extraction 
process, enabling the restoration of more shapes and 
edge details.
Observations of the motorcycle’s wheels (third row) 
reveal that other methods tend to overlook the ob-
ject’s own geometric shapes during the up-sampling 
process. In contrast, our method can accurately re-
store the object’s geometric shape, resulting in clear-
er descriptions of wheel contour features, fewer out-
liers, better up-sampling effects on fine structures 
such as brake discs, and a point cloud structure after 
up-sampling that is closer to the real structure.
In the quantitative comparison, the proposed model 
was evaluated against three up-sampling networks, 
namely PU-Net, PU-GAN, and PU-GCN, using the 
same evaluation metrics. The results are summarized 
in Table 2. 
These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance 
(HD), Point to Surface (P2F), and Uniformity (Uni). 
Their computation methods are as follows:

 
 

 

PU-GAN 1.986 14.320 3.531 18.092 17.325 

PU-GCN 0.815 13.682 4.894 15.342 12.612 

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331 

 
Observations of the motorcycle's wheels (third row) 

reveal that other methods tend to overlook the object's 
own geometric shapes during the up-sampling pro-
cess. In contrast, our method can accurately restore the 
object's geometric shape, resulting in clearer descrip-
tions of wheel contour features, fewer outliers, better 
up-sampling effects on fine structures such as brake 
discs, and a point cloud structure after up-sampling 
that is closer to the real structure. 

In the quantitative comparison, the proposed model 
was evaluated against three up-sampling networks, 
namely PU-Net, PU-GAN, and PU-GCN, using the 
same evaluation metrics. The results are summarized 
in Table 2.  

These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance 
(HD), Point to Surface (P2F), and Uniformity (Uni). 
Their computation methods are as follows: 

2

2

( , ) max(sup inf ,

sup inf )
a A b B

b B a A

HD A B a b

a b
∈ ∈

∈ ∈

= −

−
(17) 

, 2

12 ( , )
a A b B

P F A B a b
A ∈ ∈

= −∑  (18) 

1Uni( ) Var( )
a A

A a
A ∈

= ∑  (19)          

According to the objective evaluation metrics, com-
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spectively. The inclusion of uniform loss in the joint 
loss function improved the uniformity of the generated 
points, resulting in a decrease of 33.964 10−×  in the 
Uni metric. These experimental results validate the ef-
fectiveness of the feature extraction module, which in-
tegrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature extrac-
tion and capturing spatial structures. 

In the quantitative comparison, the proposed model 
was evaluated against three up-sampling networks, 
namely PU-Net, PU-GAN, and PU-GCN, using the 
same evaluation metrics. The results are summarized 
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Using the models trained on the PU1K dataset, we up-
sampled the point clouds from the Sydney Urban Ob-
jects dataset and compared the upsampling results 
with those of other networks. This evaluation was per-
formed on both individual objects scanned by the ve-
hicle-mounted LiDAR and complete 360-degree scan 
point clouds. 

From Figure 14, it is evident that the point cloud 
data obtained by vehicle-mounted LiDAR scanning of 
a car in a real-world scenario is sparse, blurry, and 
subject to occlusion. Clearly, our proposed point cloud 
upsampling method significantly improves the resolu-
tion of the radar-scanned point cloud and outperforms 
other networks in detail representation. Specifically, 
our method can effectively reconstruct the outline of 
the vehicle and generate an adequate number of fea-
ture points. 

When the input point cloud contains few points, 
PU-Net and PU-GAN can only expand the number of 
points without effectively reconstructing the geomet-
ric surface information expected from the original 
point cloud model. Consequently, they exhibit poor 
performance in handling details such as the vehicle's 
wheels, the windows of the cabin, and the roof rack, 
with the shapes of windows and wheels being almost 
indistinguishable. While PU-GCN can recover some 
details, such as the outline of the windows and the cir-
cular rear wheels of the vehicle, they still fall short in 
geometric detail and exhibit uneven point distribution. 
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According to the objective evaluation metrics, com-
pared to PU-GCN, CD, HD, and P2F decreased by 

30.109 10−× , 33.053 10−× , and 31.024 10−× , respec-
tively. The inclusion of uniform loss in the joint loss 
function improved the uniformity of the generated 
points, resulting in a decrease of 33.964 10−×  in the 

Uni metric. These experimental results validate the 
effectiveness of the feature extraction module, which 
integrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature ex-
traction and capturing spatial structures.
In the quantitative comparison, the proposed model 
was evaluated against three up-sampling networks, 
namely PU-Net, PU-GAN, and PU-GCN, using the 
same evaluation metrics. The results are summa-
rized in Table 2. According to the objective evaluation 
metrics, compared to PU-GCN, CD, HD, and P2F de-
creased by 30.109 10−× , 33.053 10−× , and 31.024 10−× , 
respectively. The inclusion of uniform loss in the joint 
loss function improved the uniformity of the gener-
ated points, resulting in a decrease of 33.964 10−×  in 
the Uni metric. These experimental results validate 
the effectiveness of the feature extraction module, 
which integrates DGCNN and the MHSA, as well as 
the up-down-up feature expansion module, in feature 
extraction and capturing spatial structures.

3.4.2. Upsampling Results of Real Scanning Data 
from On-board Lidar
Using the models trained on the PU1K dataset, we 
upsampled the point clouds from the Sydney Urban 
Objects dataset and compared the upsampling results 
with those of other networks. This evaluation was 
performed on both individual objects scanned by the 
vehicle-mounted LiDAR and complete 360-degree 
scan point clouds.
From Figure 14, it is evident that the point cloud data 
obtained by vehicle-mounted LiDAR scanning of a 
car in a real-world scenario is sparse, blurry, and sub-
ject to occlusion. Clearly, our proposed point cloud 
upsampling method significantly improves the reso-
lution of the radar-scanned point cloud and outper-
forms other networks in detail representation. Spe-
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cifically, our method can effectively reconstruct the 
outline of the vehicle and generate an adequate num-
ber of feature points.
When the input point cloud contains few points, PU-
Net and PU-GAN can only expand the number of 
points without effectively reconstructing the geomet-
ric surface information expected from the original 
point cloud model. Consequently, they exhibit poor 
performance in handling details such as the vehicle’s 
wheels, the windows of the cabin, and the roof rack, 
with the shapes of windows and wheels being almost 
indistinguishable. While PU-GCN can recover some 
details, such as the outline of the windows and the 
circular rear wheels of the vehicle, they still fall short 
in geometric detail and exhibit uneven point distribu-
tion.
Our method utilizes DGCNN for feature extraction, dy-
namically constructing a graph structure based on the 
input data’s features to better capture inter-data rela-
tionships. Furthermore, by integrating multi-head at-
tention after each EdgeConv layer, each attention head 
can focus on different relationships and feature repre-
sentations, thereby enhancing the model’s expressive-
ness and generalization performance. Even for sparse 
point cloud inputs, our method successfully preserves 

Figure 14
The on-board lidar scans the upsampling results of a single object

(a) Input (b) PU-Net (c) PU-GAN

(d) PU-GCN (e) DGCMSA-PU

local fine-grained details, including the retention of 
holes between the wheels and the body of the car.
The complete point cloud image scanned by the on-
board LiDAR during driving is used as the input point 
cloud for upsampling. Figure 15 shows the upsam-
pling results, indicating a significant improvement 
in the resolution of LiDAR-scanned point clouds 
achieved by the proposed method. From the enlarged 
details of the output point clouds, it can be observed 
that the input point cloud data for vehicles and pedes-
trians are represented by sparse and irregular points, 
making it difficult to discern contours and details. 
The output point clouds from PU-Net and PU-GAN 
remain scattered, failing to capture the contours of 
objects. While the outputs from PU-GCN reveal some 
outlines, they still struggle to distinguish the shapes 
of objects. In comparison, the upsampling effect of 
our network is superior, distinctly outlining both hu-
man and vehicle profiles. The experiments demon-
strate that our network achieves good information 
recovery for sparse input point clouds from real Li-
DAR scans, successfully reconstructing the shapes of 
vehicles and pedestrians on the road. The restoration 
of such scene information is crucial for applications 
based on LiDAR-scanned point clouds.
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Figure 15
Upsampling results of point clouds scanned by on-board lidar 360

(c) PU-GAN(b) PU-Net(a) Input

(e) DGCMSA-PU(d) PU-GCN

3.4.3. Study of Robustness
To verify the robustness of our proposed method 
against noise interference, we perturbed the input 
point clouds with additive Gaussian noise at different 
proportions and then performed upsampling on them. 
As shown in Figure 16, the first row represents the in-
put point clouds, while the second and third rows dis-
play the upsampled point clouds generated by differ-
ent networks. From left to right, the noise proportions 
added to the input data are: no noise, Gaussian noise 
σ  with 0.01, 0.02, and 0.03.
The MHSA module in the proposed DGCMSA-PU 
network can perform multiple attention operations in 
parallel. Even if one attention head fails to capture ef-
fective features, other attention heads can still provide 
useful information, thus alleviating the limitations 
of a single attention mechanism and enhancing the 
network’s robustness. The results demonstrate that 
our proposed network outperforms other upsampling 
methods under the influence of noise at different pro-

portions, producing fewer outliers and preserving fin-
er details. As the noise level increases, the differences 
become more pronounced. For instance, in the window 
frame depicted in the figure, the upsampling result of 
PU-GCN exhibits blurred contours, more outliers, and 
lacks uniformity and smoothness. Moreover, with in-
creasing noise proportions, the boundaries between 
window panes become increasingly blurred, making 
it difficult to discern their specific shapes. In con-
trast, the upsampling results of our proposed DGCM-
SA-PU network, although somewhat blurred due to 
noise, manage to preserve the basic shape and contour, 
demonstrating satisfactory visualization effects. The 
experimental results indicate that the upsampling net-
work proposed in this paper exhibits good robustness 
to noise, mitigating the impact of various noise sources 
in real scanning scenarios.
In point cloud processing tasks, the number of input 
points may vary due to factors such as sampling den-
sity, scene complexity, or data collection methods. To 
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Figure 16
Effect of different jitter coefficients on the upsampled network

(a) σ =0 (b) σ =0.01 (c) σ =0.02 (d) σ =0.03

Input

PU-GCN

DGCMSA-PU

ensure the robustness of the model in practical appli-
cations, its performance needs to be evaluated under 
different numbers of input point clouds. By varying 
the number of input points, different densities of 
point cloud data can be simulated to assess the mod-
el’s performance under conditions of fewer or more 
points, thereby verifying its ability to handle point 
clouds of different densities. Specifically, input point 
clouds of 256 points, 512 points, and 1024 points were 
used for upsampling by the network, and the resulting 
upsampling results were compared and analyzed. The 
experimental results are as follows.
From the quantitative evaluation results in Tables 3, 
4, and 5, it is evident that even with a smaller num-
ber of input points, the upsampling performance of 
the proposed network in this paper remains superior 
to that of other networks. Compared to PU-Net, PU-
GAN, and PU-GCN, almost all evaluation metrics 
show better results. As the number of input points in-
creases, the performance of the upsampling network 
improves. When only 256 points are input, compared 
to PU-GCN, the proposed network in this paper ex-
hibits a decrease of 30.457 10−×  in CD, 33.581 10−×  
in HD, and 30.905 10−×  in P2F. Additionally, the uni-
formity of the upsampling results is also superior, 

Table 3
Upsampling result with Input=256

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 4.528 45.432 15.634 50.668 1.599

PU-GAN 3.836 38.162 8.631 33.206 3.036

PU-GCN 3.271 31.264 7.324 36.786 2.324

DGCM-
SA-PU 2.712 26.354 6.063 24.327 1.712

Table 4
Upsampling result with Input=512

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 2.998 35.241 11.189 40.131 2.387

PU-GAN 2.734 29.564 8.136 21.135 6.331

PU-GCN 2.096 21.862 6.746 24.413 5.301

DGCM-
SA-PU 1.837 20.136 5.638 16.324 3.135
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with Uni decreasing by 34.136 10−× . The experiments 
demonstrate that the network exhibits better robust-
ness to different densities of input point clouds, even 
achieving higher-quality upsampling point clouds 
when the input point cloud density is low.
From the quantitative evaluation results in Tables 3, 
4, and 5, it is evident that even with a smaller num-
ber of input points, the upsampling performance of 
the proposed network in this paper remains superior 
to that of other networks. Compared to PU-Net, PU-

Table 5
Upsampling result with Input=1024

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 1.884 25.320 8.305 37.429 6.324

PU-GAN 1.602 20.631 5.364 11.841 12.574

PU-GCN 1.424 15.932 4.364 13.362 10.058

DGCM-
SA-PU 0.967 12.351 3.459 9.226 7.669

GAN, and PU-GCN, almost all evaluation metrics 
show better results. As the number of input points in-
creases, the performance of the upsampling network 
improves. When only 256 points are input, compared 
to PU-GCN, the proposed network in this paper ex-
hibits a decrease of 30.457 10−×  in CD, 33.581 10−×  
in HD, and 30.905 10−×  in P2F. Additionally, the uni-
formity of the upsampling results is also superior, 
with Uni decreasing by 34.136 10−× . The experiments 
demonstrate that the network exhibits better robust-
ness to different densities of input point clouds, even 
achieving higher-quality upsampling point clouds 
when the input point cloud density is low.
The visual experimental results of the network’s ro-
bustness to different input point cloud densities are 
depicted in Figure 17. Even with a minimal number 
of input points, the network proposed in this paper 
is capable of generating higher-quality upsampling 
point clouds, with minimal occurrence of outliers and 
retention of details closer to the real structure. As the 
input point cloud density increases, the sampling re-
sults approach the Ground Truth more closely. From 

Figure 17
Upsampling results of input points with different densities

(a) 256 (b) 512 (c) 1024 (d) 2048

Input
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Figure 18
Visualization of ablation experiment results

Table 6
Results of ablation experiments

MHSA CD(10-3) HD(10-3) P2F(10-3) Uni(10-3) Time(ms)

0.675 9.961 2.634 8.456 10.246

√ 0.622 8.705 2.475 7.712 11.327

the enlarged details of the chair, it can be observed 
that the network successfully reconstructs detailed 
surface features of the chair’s wheels, with uniformly 
distributed generated points on the surface and mini-
mal scattered points, enabling a clear depiction of the 
wheel’s specific shape. The experiments demonstrate 
the network’s good robustness to point clouds with 
different input densities, producing sampling results 
with fewer outliers and restoring the original geomet-
ric shape, closely resembling the Ground Truth. This 
network can be effectively applied to the upsampling 
task of sparse point clouds obtained from real vehi-
cle-mounted LiDAR scans.

3.4.4. Ablation Experiment
To validate the contribution of MHSA in the network 
model, ablation experiments were conducted where 
the multi-head self-attention (MHSA) module was 
removed from the feature extraction module. The 
network was retrained without MHSA, and the same 
dataset was used for testing. The upsampling results 
were then compared with the previous results. The 
visual results are shown in Figure 18, and the quanti-
tative results are presented in Table 6.
From the close-up regions of the telephone (first 
row), airplane (second row), and chair (third row), it 
is evident that the network model proposed in this 
paper exhibits fewer outliers and more specific con-
tour information in the point cloud models. When the 

multi-head self-attention module is removed, the up-
sampling results for the telephone lines (first row) ex-
hibit blurred and scattered contours. However, with 
the inclusion of the multi-head self-attention module 
(MHSA), the specific shape of the telephone lines is 
better restored. For the details of the airplane engine, 
the addition of the MHSA module optimizes feature 
representation, as multiple attention heads can learn 
different features. This reduces the impact of outliers 
on contour information, resulting in clearer contour 
feature descriptions in the point cloud model. Simi-
larly, for the details of the chair, better restoration is 
achieved, with more specific detail feature represen-
tations and upsampling results closer to the Ground 
Truth (GT). Quantitative evaluation results also indi-
cate that when the multi-head self-attention (MHSA) 
module is removed, the performance of HD and P2F 
metrics significantly decreases, resulting in poorer 
upsampling results. With the inclusion of the multi-
head self-attention (MHSA) module in the network, 
the performance decreases by 30.053 10−×  in CD, 

(a) Input (b) NO MHSA (c) Complete network (d) Ground Truth
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31.256 10−×  in HD, and 30.159 10−×  in P2F. Although 
there is some increase in processing time, the unifor-
mity is improved. These results demonstrate that the 
multi-head self-attention (MHSA) module diversifies 
feature representation, leading to a significant en-
hancement in upsampling performance.

4. Conclusion
This paper proposes a point cloud upsampling network 
called DGCMSA-PU, which integrates dynamic graph 
convolution and multi-head self-attention. Firstly, the 
overall structure and implementation process of the 
network are analyzed, followed by a detailed explana-
tion of the feature extraction module and the up-down-
up feature expansion module that combines dynam-
ic graph convolution and multi-head self-attention. 
DGCNN enhances feature representation by capturing 
edge relationships between nodes through edge con-
volutions and propagating feature information from 
neighboring nodes to the central node. The multi-head 
attention mechanism integrates information from 
different heads simultaneously, enabling comprehen-
sive information exchange and integration. The up-
down-up feature expansion structure captures both 
global semantic information and local details, thereby 
enriching and diversifying feature representation and 
improving the granularity of generated points.
Experimental comparisons with existing upsam-
pling networks demonstrate that DGCMSA-PU out-
performs other networks in almost all evaluation 
metrics. Subsequently, upsampling experiments are 
conducted on real-world vehicle-mounted LiDAR 

scan data to further validate the generalization per-
formance of the proposed method in real scenes. Ro-
bustness studies indicate that DGCMSA-PU exhibits 
good robustness to noise and different point inputs.
Finally, ablation experiments are conducted to ver-
ify the importance of each module in the entire up-
sampling process. All experimental results confirm 
the practicality and effectiveness of the proposed 
network, DGCMSA-PU, laying the foundation for its 
practical application.
For example, in a typical SLAM system, the raw point 
cloud data acquired by sensors needs to undergo pre-
processing and feature extraction before being used 
for pose estimation and map updating. Our upsam-
pling technique can enhance the raw point cloud data, 
providing higher resolution and more detailed data, 
which will help improve the accuracy of feature ex-
traction, leading to more reliable pose estimation and 
map construction. In the future, this method can be 
implemented on a Field-Programmable Gate Array 
(FPGA) and integrated with sensors. By leveraging 
its powerful parallel processing and computation ca-
pabilities, it can achieve efficient data processing and 
analysis in real-time applications.
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