
1119Information Technology and Control 2024/4/53

Point Cloud Upsampling
Network Incorporating
Dynamic Graph
Convolution and
Multi-Head Attention

ITC 4/53
Information Technology
and Control
Vol. 53 / No. 4/ 2024
pp. 1119-1138
DOI 10.5755/j01.itc.53.4.37310

Point Cloud Upsampling Network Incorporating Dynamic
Graph Convolution and Multi-Head Attention

Received 2024/05/16 Accepted after revision 2024/08/19

HOW TO CITE: Yang, X., Chen, F., Li, Z., Liu, G. (2024). Point Cloud Upsampling Network
Incorporating Dynamic Graph Convolution and Multi-Head Attention. Information Technology and
Control, 53(4), 1119-1138. https://doi.org/10.5755/j01.itc.53.4.37310

Xiaoping Yang
Department of Information Physics and Engineering, School of Physics, Nanjing University of Science and
Technology, Nanjing 210094, China;
College of Physics and Electronic Information Engineering, Guilin University of Technology,
Guilin, Guangxi, 541006, China;
Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology,
Guilin 541004, Guangxi, China

Fei Chen
College of Physics and Electronic Information Engineering, Guilin University of Technology,
Guilin, Guangxi, 541006, China;
Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology,
Guilin 541004, Guangxi, China

Zhenhua Li
Department of Information Physics and Engineering, School of Physics, Nanjing University of Science and
Technology, Nanjing 210094, China

Guanghui Liu
Guilin Saipu Electronic Technology Limited Company, Guilin, Guangxi 541004, China

Corresponding authors: gutyxp@126.com (Yang); lizhenhua@njust.edu.cn (Li)

Information Technology and Control 2024/4/531120

To address the problems that graph convolution uses a fixed graph structure, fails to capture dynamic or
changing graph structure information, and is prone to bias by employing the same attention. A point-cloud
upsampling network (DGCMSA-PU) incorporating Dynamic Graph Convolutional (DGCNN) and Multi-head
Self-Attention (MHSA) is designed. DGCNN is utilised for up-sampling and a MHSA mechanism is incorporat-
ed to simultaneously fuse information from different attention heads. The edge relationships between nodes in
the graph data are captured by edge convolution (EdgeConv), and the graph structure is dynamically construct-
ed based on the relationships between nodes. Then the features of the point cloud are extracted by the three
attention heads with different weights and different foci. Finally, an up-down-up structure is used to extend
the features and reconstruct the 3D coordinates of the output point cloud. The superiority of DGCMSA-PU in
the up-sampling task is verified through experiments comparing it with existing up-sampling networks, and
the robustness of the network to noise and varying number of input point clouds, as well as the important role
of the Multi Headed Attention module in the performance improvement of the network, are analysed through
robustness and ablation experiments.
KEYWORDS: Dynamic graph convolution; Multi headed self attention mechanism; Point cloud up-sampling.

1. Introduction
Due to hardware and computational limitations in
current 3D measurement technologies, directly ac-
quired raw point clouds are often sparse, unevenly
distributed, and may contain noise, leading to insuf-
ficient precision in the measured data and affecting
subsequent work. To obtain dense and clean point
cloud data, point cloud upsampling algorithms de-
signed specifically to address this issue have become
one of the hot topics in the field of point cloud re-
search.
Traditional point cloud upsampling algorithms are
optimization-based [18, 24, 9], relying on fitting local
geometric information such as normal estimation
and grid generation. However, these methods are of-
ten constrained by shape priors, thereby impacting
the overall structure.
In recent years, the introduction of PointNet [2] and
PointNet++ [3] has demonstrated the effectiveness
and feasibility of using deep neural networks to pro-
cess point clouds. Consequently, with the rapid devel-
opment of deep learning technologies, there has been
active exploration of various deep learning-based
point cloud upsampling methods to address this chal-
lenge.
Yu et al. [14] introduced PU-Net, the first data-driven
network for point cloud upsampling. PU-Net employs
a multi-branch Multilayer Perceptron (MLP) to learn
and expand multi-scale features for each point in the
input point set, which are then used to reconstruct
the upsampled point set. However, this approach ex-

tracts features from different downsampling levels
separately for each point, resulting in reduced resolu-
tion and overlooking local details and neighbor infor-
mation. Zhang et al. [27] combine single-point, local,
and global features to process point clouds, thereby
improving task accuracy. Additionally, Yu et al. [15]
proposed EC-Net, the first edge-aware upsampling
network, which learns features for each point in the
input point set by regressing point coordinates and
distances to edges. Consequently, EC-Net can handle
sharp features detected by edge detection, enabling
precise point set expansion and 3D reconstruction.
Nevertheless, to annotate sharp edges, manual draw-
ing of lines on each 3D grid is required during data
preprocessing, which is a cumbersome and costly
process in terms of both manual effort and time. Li
et al. [21] presented PU-GAN, which learns a diverse
distribution of upsampled points and extends point
features based on GANs. However, by upscaling the
point set through duplicating point features, it sig-
nificantly restricts the variation of the final output
point cloud. Additionally, the discriminator struc-
ture is complex and unstable. Inspired by adversar-
ial networks, Zeng et al. [26] progressively extract
low-dimensional latent vectors of features from point
clouds in an incremental manner by cascading gen-
erative adversarial networks, completing point cloud
upsampling through coordinate reconstruction.
Similarly, Kulikajevas et al. [12] use a hybrid neural
network composed of a single classifier network and
multiple reconstruction networks to achieve point

1121Information Technology and Control 2024/4/53

cloud upsampling in the form of 3D reconstruction.
In their design, the reconstruction nodes in the multi-
branch reconstruction network focus on the feature
learning of specific objects or similar objects, making
it easier to train new object types without retraining
the entire network.
However, the aforementioned point upsampling net-
works treat different upsampling rates as indepen-
dent tasks, requiring a one-to-one correspondence
between the model and the upsampling rate during
the network training phase. In practical applications,
this directly results in inefficient storage and compu-
tational efficiency. To overcome this issue, Luo et al.
[17] proposed a novel design for flexible-scale point
cloud upsampling based on edge vector approxima-
tion, termed PU-EVA. PU-EVA encodes the connec-
tivity of adjacent edges through affine combinations
based on edge vectors and constrains the approxima-
tion error within the second-order term of the Tay-
lor expansion. Furthermore, PU-EVA decouples the
upsampling scale using a network architecture, en-
abling arbitrary upsampling rates in a single training
session, albeit subject to limitations in network size
and operational memory.
Aggregating point information is an indispensable
step in point cloud deep learning today, and cluster-
ing algorithms are one of the common methods. For
example, Ryselis et al. [22] use a scalable bounding
box to aggregate points to reduce the inefficiency of
independent domain searches. However, this meth-
od relies on the expansion step size, which may not
be suitable for point clouds with different densities.
Graph convolution [10] can process non-Euclidean
data by constructing graph structures and aggregat-
ing graph information. In recent years, Graph Con-
volutional Networks (GCN) have been increasingly
applied to point clouds, offering flexibility in learning
features of nodes, edges, or subgraphs [19]. To better
capture local multi-scale point information and ag-
gregate neighbor information for each point, Qian et
al. [7] proposed PU-GCN. They leverage the power-
ful capabilities of graphs and design two GCN-based
modules in the upsampling module, namely Inception
Dense GCN for feature extraction and NodeShuffle
for feature expansion. This approach performs well
in encoding local features and generating new points
without the need for any additional tools (such as edg-
es or normals). However, it may lose some global point

cloud structural information to a certain extent. Nev-
ertheless, Pierdicca et al. [20] use an improved KNN
in the input layer to select neighboring points by uti-
lizing raw coordinates, normalized coordinates, color
features, and normal vector features, thereby enhanc-
ing task accuracy. This method combines geometric
and radiometric properties, which may compensate
for this drawback. With the development of attention
mechanisms [5], Wang et al. [13] employed Graph
Attention Convolution (GAC) for feature learning to
address the issues of standard convolutional meth-
ods easily neglecting global structures and attention
mechanisms overlooking local connections in point
clouds. Similarly, Jing et al. [11] construct a topology
using KNN to extract information, and then use an at-
tention mechanism to select the most important fea-
tures within the topology, thereby better representing
different point cloud features. Hu [8] combined gen-
erative adversarial strategies with graph convolution
in brain point cloud reconstruction, achieving spon-
taneous transformation from images to point clouds
and recovering various details of the brain through
hierarchical perception. Xiao [23] et al. designed a
parallel multi-scale feature extraction module (PMA)
and utilized edge convolution for feature expansion.
Gao et al. [6] calculate attention coefficients based on
edge convolution by considering local neighborhood
correlations and local projection depth. Li et al. [16]
employed a Transformer-based multi-stage learning
framework for point cloud upsampling, utilizing a
point-wise optimization network to adjust the spatial
positions of each point after dense point generation.
The application of graph convolution provides new
insights into point cloud upsampling tasks. Graph
convolution offers greater flexibility and can effec-
tively handle non-Euclidean structured data. For
sparse 3D point cloud data, graph convolution op-
erations can be used to aggregate information from
neighboring nodes, effectively utilizing relationships
between nodes for feature extraction and expansion,
ultimately reconstructing dense 3D point clouds.
GCN and DGCNN [25] are both deep learning models
used for graph data processing. However, GCN utilize
fixed graph structures, failing to capture dynamic or
changing graph structural information. In contrast,
DGCNN employs dynamic graph structures, recon-
structing the graph structure in each convolution-
al layer based on the relationships between nodes,

Information Technology and Control 2024/4/531122

thereby better capturing both local and global infor-
mation in graph data. This paper proposes a Point
Cloud Upsampling Network named DGCMSA-PU,
which combines DGCNN and MHSA. By integrating
DGCNN with MHSA, the network captures features
representations at different scales and conducts fea-
ture fusion, enhancing the richness and diversity of
feature representations. Additionally, a top-down-
bottom-up structure is employed in the feature ex-
pansion module to improve the granularity of gener-
ated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Convolution
let 1{ , , }nX x x= … denote the point cloud consisting of
n points, where each point contains coordinate infor-
mation (, ,)i i i ix x y z= . The local point cloud structure
is represented by a directed graph (,)G ν ε= , where

{1, , }nν = … denotes the vertices and { }ε ν ν⊆ × de-
notes the edges.
Considering each point as a central point, we con-
struct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent
points jx for a point ix using an MLP to obtain the
edge feature ije as the graph feature. These edge fea-
tures are aggregated to characterize the new feature

ix′ of the central point ix .

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

. (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by * is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

. (2)

To ensure permutation invariance of the point cloud,
* requires to be independent of the input order. In
edge convolution, symmetric functions such as sum-
mation (sum) or maximum (max) can be used for ag-

gregation operations. There are four choices for the
edge function:
1 When 1, , nx x… represent pixels in a two-dimen-

sional image, and G represents connected regions
of fixed size around each pixel, hΘ selects weight
multiplication, and * selects addition. Therefore,

imx′ is the weighted sum of edge features:

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

, (3)

where each mθ has the same dimension as x, and ⋅ de-
notes the Euclidean inner product.
2 When 1, , nx x… represent scattered points in

three-dimensional space, PointNet utilizes the
edge function hΘ :

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

. (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local
neighborhood structure formed by ix and neighbor-
ing points jx . To capture local information, Point-
Net++ utilizes the multi-scale grouping (MSG) or
multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around
the central point. Thus, we have:

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

(5)

attention mechanism to select the most important
features within the topology, thereby better
representing different point cloud features. Hu [8]
combined generative adversarial strategies with graph
convolution in brain point cloud reconstruction,
achieving spontaneous transformation from images to
point clouds and recovering various details of the
brain through hierarchical perception. Xiao [23] et al.
designed a parallel multi-scale feature extraction
module (PMA) and utilized edge convolution for
feature expansion. Gao et al. [6] calculate attention
coefficients based on edge convolution by considering
local neighborhood correlations and local projection
depth. Li [16] et al. employed a Transformer-based
multi-stage learning framework for point cloud
upsampling, utilizing a point-wise optimization
network to adjust the spatial positions of each point
after dense point generation. The application of graph
convolution provides new insights into point cloud
upsampling tasks. Graph convolution offers greater
flexibility and can effectively handle non-Euclidean
structured data. For sparse 3D point cloud data, graph
convolution operations can be used to aggregate
information from neighboring nodes, effectively
utilizing relationships between nodes for feature
extraction and expansion, ultimately reconstructing
dense 3D point clouds.

GCN and DGCNN [25] are both deep learning
models used for graph data processing. However,
GCN utilize fixed graph structures, failing to capture
dynamic or changing graph structural information. In
contrast, DGCNN employs dynamic graph structures,
reconstructing the graph structure in each
convolutional layer based on the relationships
between nodes, thereby better capturing both local and
global information in graph data. This paper proposes
a Point Cloud Upsampling Network named
DGCMSA-PU, which combines DGCNN and MHSA.
By integrating DGCNN with MHSA, the network
captures features representations at different scales
and conducts feature fusion, enhancing the richness
and diversity of feature representations. Additionally,
a top-down-bottom-up structure is employed in the
feature expansion module to improve the granularity
of generated points.

2. Methodology
2.1. DGCNN
2.1.1. Edge Concolution
let 1{ , , }nX x x= … denote the point cloud
consisting of n points, where each point contains
coordinate information (, ,)i i i ix x y z= . The local
point cloud structure is represented by a directed graph

(,)G ν ε= , where {1, , }nν = … denotes the
vertices and { }ε ν ν⊆ × denotes the edges.

Considering each point as a central point, we
construct the neighborhood graph of the central points
using K-nearest neighbors (KNN). Based on this
graph structure, we calculate the features of adjacent

points jx for a point ix using a MLP to obtain the

edge feature ije as the graph feature. These edge
features are aggregated to characterize the new feature
ix′ of the central point ix .

(),ij i je h x xΘ= (1)

Here, hΘ represents a feature extraction function
with a set of learnable parameters (e.g., MLP).
On the edge features, a channel-wise aggregation
function operation denoted by ∗ is used to define the
edge convolution operation. Thus, the output of the
edge convolution for the i th− point is as follows:

()
()

: ,
,i i jj i j

x h x x
ε Θ∈

′ = ∗ (2)

To ensure permutation invariance of the point
cloud, ∗ requires to be independent of the input order.
In edge convolution, symmetric functions such as
summation (sum) or maximum (max) can be used for
aggregation operations. There are four choices for the
edge function:

(1) When 1, , nx x… represent pixels in a two-
dimensional image, and G represents connected
regions of fixed size around each pixel, hΘ selects
weight multiplication, and ∗ selects addition.
Therefore, imx′ is the weighted sum of edge features:

(): ,
im m j

j i j
x x

ε
θ

∈

′ = ⋅ (3)

Where each mθ has the same dimension as x , and ⋅
denotes the Euclidean inner product.

(2) When 1, , nx x… represent scattered points in
three-dimensional space, PointNet utilizes the edge
function hΘ :

() (),i j ih x x h xΘ Θ= (4)

The above formulas encode the information of each
point ix in the global shape while ignoring the local

neighborhood structure formed by ix and

neighboring points jx . To capture local information,
PointNet++ utilizes the multi-scale grouping (MSG)
or multi-resolution grouping (MRG) method to group
points within a certain radius neighborhood around the
central point. Thus, we have:

() (),i j jh x x h xΘ Θ= (5)

() ()()(),im j i j
j V

x h x g u x xθ
∈

′ = (6)

Where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.

. (6)

where the function g is the Gaussian kernel, and
the function u calculates the pairwise distances in
Euclidean space within the MSG or MRG grouping
neighborhood.
3 When hΘ adopts the mean-centered subtraction of

neighboring points from the central point, only the
local neighborhood information is encoded, while
the global information of the central point is lost.
Thus, we have:

(3) When hΘ adopts the mean-centered subtraction
of neighboring points from the central point, only the
local neighborhood information is encoded, while the
global information of the central point is lost. Thus,
we have:

() (),i j j ih x x h x xΘ Θ= − (7)

Due to the limitations of the aforementioned three
edge functions hΘ , EdgeConv adopts a mean-

centered subtraction j ix x− to capture local
neighborhood information while preserving the
coordinates of the region center ix to capture global
shape information. Thus, we have:

() (), ,i j i j ih x x h x x xΘ Θ= − (8)

2.1.2. Dynamic update
To gradually acquire high-level feature information,
convolutional neural networks typically consist of
multiple convolutional layers. However, as
convolution is performed layer by layer, the point
cloud graph structure input to each layer may differ,
resulting in different feature spaces for the output.
Because of variations in feature space across
dimensions, it is not reasonable to use the same GCN
structure at each layer. Therefore, DGCNN adopts a
different strategy, utilizing EdgeConv at each layer to
construct local neighborhoods, whether in coordinate
space or feature space. EdgeConv treats each point as
a central point, computing edge features between it
and its neighboring points, then aggregates these
features to generate a new representation for the point.
Feature extraction at each layer first involves
computing pairwise distance matrices in either
coordinate or feature space using EdgeConv, then
constructing new local neighborhoods based on the
principle of nearest neighbors, thereby forming
different graph structures:

() () ()(),l l lG ν ε= (9)

Where l denotes the number of layers in the
network. When 1l = , ()lG is represented by points

()lν in a 64-dimensional feature space and edges ()1ε
.

2.2. Multi-head Self-attention

mechanism
In the Transformer attention mechanism, each layer of
the encoder performs two operations: self-attention
and feed-forward. Each layer of the decoder performs
three operations: self-attention, encoder-decoder
attention, and feed-forward. Both self-attention and
encoder-decoder attention utilize the MHSA[28]
mechanism.

The MHSA mechanism is an improved technique
based on the self-attention mechanism, primarily
applied in sequence modeling and natural language

processing tasks. The self-attention mechanism
calculates the relative importance of each position in
the input sequence with respect to other positions,
thereby determining the degree of attention paid to
different positions in the sequence. The multi-head
attention mechanism further extends the capabilities
of self-attention by allowing the model to perform
multiple self-attention computations in different
"heads" or subspaces, enabling it to capture more
information and relationships at different levels.

The MHSA mechanism can be viewed as an
extension of the single-head attention mechanism and
is a widely used technique in natural language
processing. It allows neural networks to focus on
multiple aspects simultaneously when processing
inputs. The MHSA mechanism utilizes multiple sets
of Q , K , and V to obtain multiple sets of feature
representations. This enables the network to fully
leverage various information present in the input data
to identify and extract features of different importance
levels.

Specifically, the MHSA mechanism can be detailed
into five steps:

 (1)Head Creation: Partition the input data into
multiple parts and construct a separate attention head
for each part.

 (2)Linear Transformation: Perform multiple linear
transformations on the input to map it to different
subspaces. Each subspace corresponds to a "head,"
each with its own weight matrix and bias vector.

 (3)Attention Computation: Within each head,
calculate attention weights between the query Q , key
K , and value V , generating a weighted
representation for each position. This process is
similar to self-attention and can utilize dot-product
attention or variants of other attention mechanisms.

 (4)Head Fusion: Aggregate and concatenate or
average the attention-weighted outputs from each
head to obtain the final multi-head attention
representation. This captures the diversity and
richness among different heads, providing
comprehensive information.

 (5)Linear Transformation and Output: Combine
the multi-head attention representation with another
linear transformation to obtain the final output
representation. This linear transformation can be a
simple fully connected layer used to map the multi-
head attention representation to the desired
dimensionality

The advantage of the multi-head attention
mechanism lies in its ability to simultaneously focus
on different levels and aspects of information and
combine the diversity among different heads. It allows
the model to learn and capture various relationships in
different representation subspaces, enhancing the
model's expressiveness and generalization
performance. Multi-head self-attention can handle
different types and levels of input data, improving
model performance and accuracy by focusing on key
information. Additionally, MHSA enables parallel
computation, ensuring a considerably large receptive

. (7)

Due to the limitations of the aforementioned three
edge functions hΘ , EdgeConv adopts a mean-centered
subtraction j ix x− to capture local neighborhood in-

1123Information Technology and Control 2024/4/53

formation while preserving the coordinates of the
region center ix to capture global shape information.
Thus, we have:

(3) When hΘ adopts the mean-centered subtraction
of neighboring points from the central point, only the
local neighborhood information is encoded, while the
global information of the central point is lost. Thus,
we have:

() (),i j j ih x x h x xΘ Θ= − (7)

Due to the limitations of the aforementioned three
edge functions hΘ , EdgeConv adopts a mean-

centered subtraction j ix x− to capture local
neighborhood information while preserving the
coordinates of the region center ix to capture global
shape information. Thus, we have:

() (), ,i j i j ih x x h x x xΘ Θ= − (8)

2.1.2. Dynamic update
To gradually acquire high-level feature information,
convolutional neural networks typically consist of
multiple convolutional layers. However, as
convolution is performed layer by layer, the point
cloud graph structure input to each layer may differ,
resulting in different feature spaces for the output.
Because of variations in feature space across
dimensions, it is not reasonable to use the same GCN
structure at each layer. Therefore, DGCNN adopts a
different strategy, utilizing EdgeConv at each layer to
construct local neighborhoods, whether in coordinate
space or feature space. EdgeConv treats each point as
a central point, computing edge features between it
and its neighboring points, then aggregates these
features to generate a new representation for the point.
Feature extraction at each layer first involves
computing pairwise distance matrices in either
coordinate or feature space using EdgeConv, then
constructing new local neighborhoods based on the
principle of nearest neighbors, thereby forming
different graph structures:

() () ()(),l l lG ν ε= (9)

Where l denotes the number of layers in the
network. When 1l = , ()lG is represented by points

()lν in a 64-dimensional feature space and edges ()1ε
.

2.2. Multi-head Self-attention

mechanism
In the Transformer attention mechanism, each layer of
the encoder performs two operations: self-attention
and feed-forward. Each layer of the decoder performs
three operations: self-attention, encoder-decoder
attention, and feed-forward. Both self-attention and
encoder-decoder attention utilize the MHSA[28]
mechanism.

The MHSA mechanism is an improved technique
based on the self-attention mechanism, primarily
applied in sequence modeling and natural language

processing tasks. The self-attention mechanism
calculates the relative importance of each position in
the input sequence with respect to other positions,
thereby determining the degree of attention paid to
different positions in the sequence. The multi-head
attention mechanism further extends the capabilities
of self-attention by allowing the model to perform
multiple self-attention computations in different
"heads" or subspaces, enabling it to capture more
information and relationships at different levels.

The MHSA mechanism can be viewed as an
extension of the single-head attention mechanism and
is a widely used technique in natural language
processing. It allows neural networks to focus on
multiple aspects simultaneously when processing
inputs. The MHSA mechanism utilizes multiple sets
of Q , K , and V to obtain multiple sets of feature
representations. This enables the network to fully
leverage various information present in the input data
to identify and extract features of different importance
levels.

Specifically, the MHSA mechanism can be detailed
into five steps:

 (1)Head Creation: Partition the input data into
multiple parts and construct a separate attention head
for each part.

 (2)Linear Transformation: Perform multiple linear
transformations on the input to map it to different
subspaces. Each subspace corresponds to a "head,"
each with its own weight matrix and bias vector.

 (3)Attention Computation: Within each head,
calculate attention weights between the query Q , key
K , and value V , generating a weighted
representation for each position. This process is
similar to self-attention and can utilize dot-product
attention or variants of other attention mechanisms.

 (4)Head Fusion: Aggregate and concatenate or
average the attention-weighted outputs from each
head to obtain the final multi-head attention
representation. This captures the diversity and
richness among different heads, providing
comprehensive information.

 (5)Linear Transformation and Output: Combine
the multi-head attention representation with another
linear transformation to obtain the final output
representation. This linear transformation can be a
simple fully connected layer used to map the multi-
head attention representation to the desired
dimensionality

The advantage of the multi-head attention
mechanism lies in its ability to simultaneously focus
on different levels and aspects of information and
combine the diversity among different heads. It allows
the model to learn and capture various relationships in
different representation subspaces, enhancing the
model's expressiveness and generalization
performance. Multi-head self-attention can handle
different types and levels of input data, improving
model performance and accuracy by focusing on key
information. Additionally, MHSA enables parallel
computation, ensuring a considerably large receptive

. (8)

2.1.2. Dynamic Update
To gradually acquire high-level feature information,
convolutional neural networks typically consist of
multiple convolutional layers. However, as convo-
lution is performed layer by layer, the point cloud
graph structure input to each layer may differ, re-
sulting in different feature spaces for the output.
Because of variations in feature space across di-
mensions, it is not reasonable to use the same GCN
structure at each layer. Therefore, DGCNN adopts a
different strategy, utilizing EdgeConv at each layer
to construct local neighborhoods, whether in coor-
dinate space or feature space. EdgeConv treats each
point as a central point, computing edge features be-
tween it and its neighboring points, then aggregates
these features to generate a new representation for
the point. Feature extraction at each layer first in-
volves computing pairwise distance matrices in ei-
ther coordinate or feature space using EdgeConv,
then constructing new local neighborhoods based on
the principle of nearest neighbors, thereby forming
different graph structures:

(3) When hΘ adopts the mean-centered subtraction
of neighboring points from the central point, only the
local neighborhood information is encoded, while the
global information of the central point is lost. Thus,
we have:

() (),i j j ih x x h x xΘ Θ= − (7)

Due to the limitations of the aforementioned three
edge functions hΘ , EdgeConv adopts a mean-

centered subtraction j ix x− to capture local
neighborhood information while preserving the
coordinates of the region center ix to capture global
shape information. Thus, we have:

() (), ,i j i j ih x x h x x xΘ Θ= − (8)

2.1.2. Dynamic update
To gradually acquire high-level feature information,
convolutional neural networks typically consist of
multiple convolutional layers. However, as
convolution is performed layer by layer, the point
cloud graph structure input to each layer may differ,
resulting in different feature spaces for the output.
Because of variations in feature space across
dimensions, it is not reasonable to use the same GCN
structure at each layer. Therefore, DGCNN adopts a
different strategy, utilizing EdgeConv at each layer to
construct local neighborhoods, whether in coordinate
space or feature space. EdgeConv treats each point as
a central point, computing edge features between it
and its neighboring points, then aggregates these
features to generate a new representation for the point.
Feature extraction at each layer first involves
computing pairwise distance matrices in either
coordinate or feature space using EdgeConv, then
constructing new local neighborhoods based on the
principle of nearest neighbors, thereby forming
different graph structures:

() () ()(),l l lG ν ε= (9)

Where l denotes the number of layers in the
network. When 1l = , ()lG is represented by points

()lν in a 64-dimensional feature space and edges ()1ε
.

2.2. Multi-head Self-attention

mechanism
In the Transformer attention mechanism, each layer of
the encoder performs two operations: self-attention
and feed-forward. Each layer of the decoder performs
three operations: self-attention, encoder-decoder
attention, and feed-forward. Both self-attention and
encoder-decoder attention utilize the MHSA[28]
mechanism.

The MHSA mechanism is an improved technique
based on the self-attention mechanism, primarily
applied in sequence modeling and natural language

processing tasks. The self-attention mechanism
calculates the relative importance of each position in
the input sequence with respect to other positions,
thereby determining the degree of attention paid to
different positions in the sequence. The multi-head
attention mechanism further extends the capabilities
of self-attention by allowing the model to perform
multiple self-attention computations in different
"heads" or subspaces, enabling it to capture more
information and relationships at different levels.

The MHSA mechanism can be viewed as an
extension of the single-head attention mechanism and
is a widely used technique in natural language
processing. It allows neural networks to focus on
multiple aspects simultaneously when processing
inputs. The MHSA mechanism utilizes multiple sets
of Q , K , and V to obtain multiple sets of feature
representations. This enables the network to fully
leverage various information present in the input data
to identify and extract features of different importance
levels.

Specifically, the MHSA mechanism can be detailed
into five steps:

 (1)Head Creation: Partition the input data into
multiple parts and construct a separate attention head
for each part.

 (2)Linear Transformation: Perform multiple linear
transformations on the input to map it to different
subspaces. Each subspace corresponds to a "head,"
each with its own weight matrix and bias vector.

 (3)Attention Computation: Within each head,
calculate attention weights between the query Q , key
K , and value V , generating a weighted
representation for each position. This process is
similar to self-attention and can utilize dot-product
attention or variants of other attention mechanisms.

 (4)Head Fusion: Aggregate and concatenate or
average the attention-weighted outputs from each
head to obtain the final multi-head attention
representation. This captures the diversity and
richness among different heads, providing
comprehensive information.

 (5)Linear Transformation and Output: Combine
the multi-head attention representation with another
linear transformation to obtain the final output
representation. This linear transformation can be a
simple fully connected layer used to map the multi-
head attention representation to the desired
dimensionality

The advantage of the multi-head attention
mechanism lies in its ability to simultaneously focus
on different levels and aspects of information and
combine the diversity among different heads. It allows
the model to learn and capture various relationships in
different representation subspaces, enhancing the
model's expressiveness and generalization
performance. Multi-head self-attention can handle
different types and levels of input data, improving
model performance and accuracy by focusing on key
information. Additionally, MHSA enables parallel
computation, ensuring a considerably large receptive

, (9)

where l denotes the number of layers in the network.
When 1l = , ()lG is represented by points ()lν in a
64-dimensional feature space and edges ()1ε .

2.2. Multi-head Self-attention Mechanism
In the Transformer attention mechanism, each layer
of the encoder performs two operations: self-atten-
tion and feed-forward. Each layer of the decoder per-
forms three operations: self-attention, encoder-de-
coder attention, and feed-forward. Both self-attention
and encoder-decoder attention utilize the MHSA [28]
mechanism.
The MHSA mechanism is an improved technique
based on the self-attention mechanism, primarily
applied in sequence modeling and natural language
processing tasks. The self-attention mechanism cal-

culates the relative importance of each position in the
input sequence with respect to other positions, there-
by determining the degree of attention paid to differ-
ent positions in the sequence. The multi-head atten-
tion mechanism further extends the capabilities of
self-attention by allowing the model to perform mul-
tiple self-attention computations in different “heads”
or subspaces, enabling it to capture more information
and relationships at different levels.
The MHSA mechanism can be viewed as an extension
of the single-head attention mechanism and is a wide-
ly used technique in natural language processing. It
allows neural networks to focus on multiple aspects
simultaneously when processing inputs. The MHSA
mechanism utilizes multiple sets of Q, K, and V to ob-
tain multiple sets of feature representations. This en-
ables the network to fully leverage various informa-
tion present in the input data to identify and extract
features of different importance levels.
Specifically, the MHSA mechanism can be detailed
into five steps:
1 Head Creation: Partition the input data into mul-

tiple parts and construct a separate attention head
for each part.

2 Linear Transformation: Perform multiple linear
transformations on the input to map it to different
subspaces. Each subspace corresponds to a “head,”
each with its own weight matrix and bias vector.

3 Attention Computation: Within each head, calcu-
late attention weights between the query Q, key K,
and value V, generating a weighted representation
for each position. This process is similar to self-at-
tention and can utilize dot-product attention or
variants of other attention mechanisms.

4 Head Fusion: Aggregate and concatenate or aver-
age the attention-weighted outputs from each head
to obtain the final multi-head attention represen-
tation. This captures the diversity and richness
among different heads, providing comprehensive
information.

5 Linear Transformation and Output: Combine the
multi-head attention representation with anoth-
er linear transformation to obtain the final output
representation. This linear transformation can
be a simple fully connected layer used to map the
multi-head attention representation to the desired
dimensionality.

Information Technology and Control 2024/4/531124

The advantage of the multi-head attention mech-
anism lies in its ability to simultaneously focus on
different levels and aspects of information and com-
bine the diversity among different heads. It allows
the model to learn and capture various relationships
in different representation subspaces, enhancing the
model’s expressiveness and generalization perfor-
mance. Multi-head self-attention can handle differ-
ent types and levels of input data, improving model
performance and accuracy by focusing on key infor-
mation. Additionally, MHSA enables parallel compu-
tation, ensuring a considerably large receptive field
without sacrificing computational efficiency.

2.3. DGCMSA-PU
To enhance point cloud upsampling, a point cloud up-
sampling network named DGCMSA-PU is designed,
which integrates DGCNN and MHSA. The overall
framework is illustrated in Figure 1.
The network primarily consists of three modules:
the feature extraction module, the feature expansion
module, and the coordinate reconstruction module.
For the original input of an 3N × point cloud, given
the massive number of points, it is partitioned into
multiple Patch blocks. These Patch blocks serve as
input to the MHSA-DGCNN module for feature ex-
traction.
DGCNN, employing EdgeConv, captures the edge re-
lationships between nodes in graph data. It updates
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network
to focus on the correlations between different nodes,

Figure 1
DGCMSA-PU

weighting the features to enhance the network’s fea-
ture extraction capabilities.
After feature extraction, resulting in N C× point
cloud features, they are input into the feature ex-
pansion module. Utilizing the top-down-top feature
expansion approach, GCN is employed to upsample
point features, followed by downsampling to regress
to the original features. The difference in features
before and after upsampling is computed, and the
difference tensor is upsampled and aggregated with
the previous upsampling results. This process yields
expanded features of rN C′× , where r is the upsam-
pling rate, C′ is the feature channel dimension, and
N is the number of training points.Finally, the dense

3rN × point cloud data output is obtained through
the coordinate reconstruction module.

2.3.1. Feature Extraction Module
DGCNN utilizes EdgeConv to extract edge features,
constructing a per-point k nearest neighbor graph as
illustrated in Figure 2, where each edge node points
towards the central node. EdgeConv is employed to
extract edge features between the central node and its
neighboring nodes. Then, an aggregation function is
applied to update the central node using the edge fea-
tures and information from the original 1k + points.
The decentralized method is utilized to capture the
global shape structure and the global features of nodes
captured by the difference between edge nodes and
central nodes in the local neighborhood information.
In the feature extraction module, the multi-head
self-attention mechanism is incorporated to weight
the features, summing the features from multiple sets

Figure 1
DGCMSA-PU

Figure 2
An undirected graph constructed by KNN

The network primarily consists of three modules:

the feature extraction module, the feature expansion
module, and the coordinate reconstruction module.
For the original input of an 3N × point cloud, given
the massive number of points, it is partitioned into
multiple Patch blocks. These Patch blocks serve as in-
put to the MHSA-DGCNN module for feature extrac-
tion.

DGCNN, employing EdgeConv, captures the edge
relationships between nodes in graph data. It updates
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network
to focus on the correlations between different nodes,
weighting the features to enhance the network's fea-
ture extraction capabilities.

After feature extraction, resulting in N C× point
cloud features, they are input into the feature expan-
sion module. Utilizing the top-down-top feature ex-
pansion approach, GCN is employed to upsample
point features, followed by downsampling to regress
to the original features. The difference in features be-
fore and after upsampling is computed, and the differ-
ence tensor is upsampled and aggregated with the

previous upsampling results. This process yields ex-
panded features of rN C′× , where r is the upsam-
pling rate, C′ is the feature channel dimension, and
N is the number of training points.Finally, the dense

3rN × point cloud data output is obtained through
the coordinate reconstruction module.

2.3.1. Feature Extraction Module
DGCNN utilizes EdgeConv to extract edge features,
constructing a per-point k nearest neighbor graph as
illustrated in Figure 2, where each edge node points
towards the central node. EdgeConv is employed to
extract edge features between the central node and its
neighboring nodes. Then, an aggregation function is
applied to update the central node using the edge fea-
tures and information from the original 1k + points.
The decentralized method is utilized to capture the
global shape structure and the global features of nodes
captured by the difference between edge nodes and
central nodes in the local neighborhood information.

In the feature extraction module, the multi-head
self-attention mechanism is incorporated to weight the
features, summing the features from multiple sets of
self-attention networks. Finally, the output features of
the attention module are obtained, as depicted in Fig-
ure 3.

The output features of a single self-attention mech-
anism are represented as Attention(, ,)Q K V :

max

Attention(, ,)
T

soft
k

Q K V WV

QKf V
d

=

=

 (10)

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

M
LP UDUFEM

M
LPs

rN
×C'

M
LPs

rN
×3

N
× 3

Input

KN
N

Partition Patch

MHSA-
DGCNN

N
× C

Feature extraction
module

Coordinate
reconstruction

Output

Feature extension module

1125Information Technology and Control 2024/4/53

Figure 2
An undirected graph constructed by KNN

of self-attention networks. Finally, the output fea-
tures of the attention module are obtained, as depict-
ed in Figure 3.
The output features of a single self-attention mecha-
nism are represented as Attention(, ,)Q K V :

Figure 1
DGCMSA-PU

Figure 2
An undirected graph constructed by KNN

The network primarily consists of three modules:

the feature extraction module, the feature expansion
module, and the coordinate reconstruction module.
For the original input of an 3N × point cloud, given
the massive number of points, it is partitioned into
multiple Patch blocks. These Patch blocks serve as in-
put to the MHSA-DGCNN module for feature extrac-
tion.

DGCNN, employing EdgeConv, captures the edge
relationships between nodes in graph data. It updates
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network
to focus on the correlations between different nodes,
weighting the features to enhance the network's fea-
ture extraction capabilities.

After feature extraction, resulting in N C× point
cloud features, they are input into the feature expan-
sion module. Utilizing the top-down-top feature ex-
pansion approach, GCN is employed to upsample
point features, followed by downsampling to regress
to the original features. The difference in features be-
fore and after upsampling is computed, and the differ-
ence tensor is upsampled and aggregated with the

previous upsampling results. This process yields ex-
panded features of rN C′× , where r is the upsam-
pling rate, C′ is the feature channel dimension, and
N is the number of training points.Finally, the dense

3rN × point cloud data output is obtained through
the coordinate reconstruction module.

2.3.1. Feature Extraction Module
DGCNN utilizes EdgeConv to extract edge features,
constructing a per-point k nearest neighbor graph as
illustrated in Figure 2, where each edge node points
towards the central node. EdgeConv is employed to
extract edge features between the central node and its
neighboring nodes. Then, an aggregation function is
applied to update the central node using the edge fea-
tures and information from the original 1k + points.
The decentralized method is utilized to capture the
global shape structure and the global features of nodes
captured by the difference between edge nodes and
central nodes in the local neighborhood information.

In the feature extraction module, the multi-head
self-attention mechanism is incorporated to weight the
features, summing the features from multiple sets of
self-attention networks. Finally, the output features of
the attention module are obtained, as depicted in Fig-
ure 3.

The output features of a single self-attention mech-
anism are represented as Attention(, ,)Q K V :

max

Attention(, ,)
T

soft
k

Q K V WV

QKf V
d

=

=

 (10)

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

M
LP UDUFEM

M
LPs

rN
×C'

M
LPs

rN
×3

N
× 3

Input

KN
N

Partition Patch

MHSA-
DGCNN

N
× C

Feature extraction
module

Coordinate
reconstruction

Output

Feature extension module

(10)

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

Figure 1
DGCMSA-PU

Figure 2
An undirected graph constructed by KNN

The network primarily consists of three modules:

the feature extraction module, the feature expansion
module, and the coordinate reconstruction module.
For the original input of an 3N × point cloud, given
the massive number of points, it is partitioned into
multiple Patch blocks. These Patch blocks serve as in-
put to the MHSA-DGCNN module for feature extrac-
tion.

DGCNN, employing EdgeConv, captures the edge
relationships between nodes in graph data. It updates
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network
to focus on the correlations between different nodes,
weighting the features to enhance the network's fea-
ture extraction capabilities.

After feature extraction, resulting in N C× point
cloud features, they are input into the feature expan-
sion module. Utilizing the top-down-top feature ex-
pansion approach, GCN is employed to upsample
point features, followed by downsampling to regress
to the original features. The difference in features be-
fore and after upsampling is computed, and the differ-
ence tensor is upsampled and aggregated with the

previous upsampling results. This process yields ex-
panded features of rN C′× , where r is the upsam-
pling rate, C′ is the feature channel dimension, and
N is the number of training points.Finally, the dense

3rN × point cloud data output is obtained through
the coordinate reconstruction module.

2.3.1. Feature Extraction Module
DGCNN utilizes EdgeConv to extract edge features,
constructing a per-point k nearest neighbor graph as
illustrated in Figure 2, where each edge node points
towards the central node. EdgeConv is employed to
extract edge features between the central node and its
neighboring nodes. Then, an aggregation function is
applied to update the central node using the edge fea-
tures and information from the original 1k + points.
The decentralized method is utilized to capture the
global shape structure and the global features of nodes
captured by the difference between edge nodes and
central nodes in the local neighborhood information.

In the feature extraction module, the multi-head
self-attention mechanism is incorporated to weight the
features, summing the features from multiple sets of
self-attention networks. Finally, the output features of
the attention module are obtained, as depicted in Fig-
ure 3.

The output features of a single self-attention mech-
anism are represented as Attention(, ,)Q K V :

max

Attention(, ,)
T

soft
k

Q K V WV

QKf V
d

=

=

 (10)

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

M
LP UDUFEM

M
LPs

rN
×C'

M
LPs

rN
×3

N
× 3

Input

KN
N

Partition Patch

MHSA-
DGCNN

N
× C

Feature extraction
module

Coordinate
reconstruction

Output

Feature extension module

(11)

Figure 3
MHSA

Figure 1
DGCMSA-PU

Figure 2
An undirected graph constructed by KNN

The network primarily consists of three modules:

the feature extraction module, the feature expansion
module, and the coordinate reconstruction module.
For the original input of an 3N × point cloud, given
the massive number of points, it is partitioned into
multiple Patch blocks. These Patch blocks serve as in-
put to the MHSA-DGCNN module for feature extrac-
tion.

DGCNN, employing EdgeConv, captures the edge
relationships between nodes in graph data. It updates
the feature representation of central nodes by aggre-
gating the features of neighboring nodes. Addition-
ally, the inclusion of the MHSA enables the network
to focus on the correlations between different nodes,
weighting the features to enhance the network's fea-
ture extraction capabilities.

After feature extraction, resulting in N C× point
cloud features, they are input into the feature expan-
sion module. Utilizing the top-down-top feature ex-
pansion approach, GCN is employed to upsample
point features, followed by downsampling to regress
to the original features. The difference in features be-
fore and after upsampling is computed, and the differ-
ence tensor is upsampled and aggregated with the

previous upsampling results. This process yields ex-
panded features of rN C′× , where r is the upsam-
pling rate, C′ is the feature channel dimension, and
N is the number of training points.Finally, the dense

3rN × point cloud data output is obtained through
the coordinate reconstruction module.

2.3.1. Feature Extraction Module
DGCNN utilizes EdgeConv to extract edge features,
constructing a per-point k nearest neighbor graph as
illustrated in Figure 2, where each edge node points
towards the central node. EdgeConv is employed to
extract edge features between the central node and its
neighboring nodes. Then, an aggregation function is
applied to update the central node using the edge fea-
tures and information from the original 1k + points.
The decentralized method is utilized to capture the
global shape structure and the global features of nodes
captured by the difference between edge nodes and
central nodes in the local neighborhood information.

In the feature extraction module, the multi-head
self-attention mechanism is incorporated to weight the
features, summing the features from multiple sets of
self-attention networks. Finally, the output features of
the attention module are obtained, as depicted in Fig-
ure 3.

The output features of a single self-attention mech-
anism are represented as Attention(, ,)Q K V :

max

Attention(, ,)
T

soft
k

Q K V WV

QKf V
d

=

=

 (10)

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

M
LP UDUFEM

M
LPs

rN
×C'

M
LPs

rN
×3

N
× 3

Input

KN
N

Partition Patch

MHSA-
DGCNN

N
× C

Feature extraction
module

Coordinate
reconstruction

Output

Feature extension module

(12)

The attention mappings are divided into multiple
attention mapping modules for Q , K , and V , using
different weight matrices Q

iW , K
iW , and V

iW . Each at-
tention head has its own attention region. Finally,
the attention mappings obtained from each attention
head are merged. The overall weight matrix OW deter-
mines the degree of attention for each attention head.
By mapping Q, K , and V to different spaces and opti-
mizing different parts of the features, different atten-
tion heads learn features. This operation balances the
potential bias of using the same attention, making the
feature representation more diverse.
The MHSA-DGCNN module, depicted in Figure 4,
combines DGCNN as the foundation with MHSA.
Unlike GCN, which utilizes a fixed graph structure,
DGCNN employs a dynamic graph convolutional
neural network for feature extraction. It not only uti-
lizes the coordinate features of individual points but
also fully leverages the local structural information
of the point cloud and the geometric correlations be-
tween points. The feature extraction network con-
sists of four EdgeConv layers, with an MHSA module
added after each EdgeConv. The multi-head attention
mechanism adaptsively weights features at both local
and global scales, thereby capturing contextual infor-
mation more effectively. Edge convolution enhances
the feature representation of central nodes by prop-
agating features from neighboring nodes. By combin-
ing edge convolution with the multi-head attention
mechanism, the model leverages the ability of con-
text awareness and feature integration to enhance its

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

Figure 3
MHSA

Figure 4
MHSA-DGCNN

The attention mappings are divided into multiple

attention mapping modules for Q , K , and V , using

different weight matrices Q
iW , K

iW , and V
iW . Each

attention head has its own attention region. Finally, the
attention mappings obtained from each attention head
are merged. The overall weight matrix OW
determines the degree of attention for each attention
head. By mapping Q , K , and V to different spaces
and optimizing different parts of the features, different
attention heads learn features. This operation balances
the potential bias of using the same attention, making
the feature representation more diverse.

The MHSA-DGCNN module, depicted in Figure 4,
combines DGCNN as the foundation with MHSA.
Unlike GCN, which utilizes a fixed graph structure,
DGCNN employs a dynamic graph convolutional
neural network for feature extraction. It not only
utilizes the coordinate features of individual points but
also fully leverages the local structural information of
the point cloud and the geometric correlations between
points. The feature extraction network consists of four
EdgeConv layers, with an MHSA module added after
each EdgeConv. The multi-head attention mechanism
adaptsively weights features at both local and global
scales, thereby capturing contextual information more
effectively. Edge convolution enhances the feature
representation of central nodes by propagating
features from neighboring nodes. By combining edge

convolution with the multi-head attention mechanism,
the model leverages the ability of context awareness
and feature integration to enhance its ability to
represent node features in graph data. Additionally,
the residual network concept is introduced during
feature extraction, incorporating residual connections
to improve network performance, making the network
easier to optimize, and alleviating to some extent the
problem of gradient vanishing associated with
increasing depth in deep neural networks.
Subsequently, the point cloud undergoes symmetric
pooling to generate global feature vectors.

An aggregation pooling layer, as illustrated in
Figure 5, aggregates the global features. The
aggregation pooling layer combines the features
produced by the two channels using a parallel
combination of max-pooling and average-pooling
functions, thereby reducing feature loss.

Figure 5
Aggregate pooling

Input
Feature

Attention
Head#1

MLP

Attention
Head#3

Conact FC
Output
Feature

Attention
Head#1

Edge
Conv

Edge
Conv

Edge
Conv

Aggregate pooling

Edge
Conv

MH
SA

MH
SA

MH
SA

MH
SA

Max pooling

Average
pooling

Information Technology and Control 2024/4/531126

Figure 4
MHSA-DGCNN

A single attention head has only one learned space,
while multiple attention heads have multiple learned
spaces:

(, ,)Q K V
i i ihead Attention QW KW VW= (11)

1

(, ,)
(,...,) O

h

MultiHead Q K V
Concat head head W

=
 (12)

Figure 3
MHSA

Figure 4
MHSA-DGCNN

The attention mappings are divided into multiple

attention mapping modules for Q , K , and V , using

different weight matrices Q
iW , K

iW , and V
iW . Each

attention head has its own attention region. Finally, the
attention mappings obtained from each attention head
are merged. The overall weight matrix OW
determines the degree of attention for each attention
head. By mapping Q , K , and V to different spaces
and optimizing different parts of the features, different
attention heads learn features. This operation balances
the potential bias of using the same attention, making
the feature representation more diverse.

The MHSA-DGCNN module, depicted in Figure 4,
combines DGCNN as the foundation with MHSA.
Unlike GCN, which utilizes a fixed graph structure,
DGCNN employs a dynamic graph convolutional
neural network for feature extraction. It not only
utilizes the coordinate features of individual points but
also fully leverages the local structural information of
the point cloud and the geometric correlations between
points. The feature extraction network consists of four
EdgeConv layers, with an MHSA module added after
each EdgeConv. The multi-head attention mechanism
adaptsively weights features at both local and global
scales, thereby capturing contextual information more
effectively. Edge convolution enhances the feature
representation of central nodes by propagating
features from neighboring nodes. By combining edge

convolution with the multi-head attention mechanism,
the model leverages the ability of context awareness
and feature integration to enhance its ability to
represent node features in graph data. Additionally,
the residual network concept is introduced during
feature extraction, incorporating residual connections
to improve network performance, making the network
easier to optimize, and alleviating to some extent the
problem of gradient vanishing associated with
increasing depth in deep neural networks.
Subsequently, the point cloud undergoes symmetric
pooling to generate global feature vectors.

An aggregation pooling layer, as illustrated in
Figure 5, aggregates the global features. The
aggregation pooling layer combines the features
produced by the two channels using a parallel
combination of max-pooling and average-pooling
functions, thereby reducing feature loss.

Figure 5
Aggregate pooling

Input
Feature

Attention
Head#1

MLP

Attention
Head#3

Conact FC
Output
Feature

Attention
Head#1

Edge
Conv

Edge
Conv

Edge
Conv

Aggregate pooling
Edge
Conv

MH
SA

MH
SA

MH
SA

MH
SA

Max pooling

Average
pooling

ability to represent node features in graph data. Ad-
ditionally, the residual network concept is introduced
during feature extraction, incorporating residual
connections to improve network performance, mak-
ing the network easier to optimize, and alleviating to
some extent the problem of gradient vanishing asso-
ciated with increasing depth in deep neural networks.
Subsequently, the point cloud undergoes symmetric
pooling to generate global feature vectors.
An aggregation pooling layer, as illustrated in Figure 5,
aggregates the global features. The aggregation pool-
ing layer combines the features produced by the two
channels using a parallel combination of max-pooling
and average-pooling functions, thereby reducing fea-
ture loss.

Figure 5
Aggregate pooling

Figure 3
MHSA

MHSA-DGCNN

The attention mappings are divided into multiple at-

tention mapping modules for Q , K , and V , using

different weight matrices Q
iW , K

iW , and V
iW . Each

attention head has its own attention region. Finally, the
attention mappings obtained from each attention head
are merged. The overall weight matrix OW deter-
mines the degree of attention for each attention head.
By mapping Q , K , and V to different spaces and
optimizing different parts of the features, different at-
tention heads learn features. This operation balances
the potential bias of using the same attention, making
the feature representation more diverse.

An aggregation pooling layer, as illustrated in Fig-
ure 5, aggregates the global features. The aggregation
pooling layer combines the features produced by the
two channels using a parallel combination of max-
pooling and average-pooling functions, thereby reduc-
ing feature loss.

Figure 5
Aggregate pooling

2.3.2. Feature Extension Module

I nput
Feat ur e

At t ent i on
Head#1

MLP

At t ent i on
Head#3

Conact FC Out put
Feat ur e

At t ent i on
Head#1

Edge
Conv

Edge
Conv

Edge
Conv

Aggregate pooling

Edge
Conv

MH
SA

MH
SA

MH
SA

MH
SA

Max pooling

Average
pooling

5.3.2. Feature Extension Module
Inspired by PU-GAN and Transformer, a novel up-
down-up feature expansion module is introduced
in the feature expansion stage, as depicted in Fig-
ure 6. It consists of two parts: the upsampling block
and the downsampling block. The upsampling block
incorporates GCN, enabling it to encode spatial in-
formation from point neighborhoods and learn new
features from latent space, instead of simply using
convolutional neural networks. Moreover, a multi-
head self-attention mechanism is applied to rapidly
aggregate global spatial information and fine-tune
the coordinates based on spatial information, thereby

enhancing the feature expansion capability. Initially,
point features undergo upsampling (after the MLP),
generating upsampled features, followed by downs-
ampling to regress to the original features. Instead
of directly constructing the original point cloud, re-
sidual learning is applied to fine-tune the expanded
features by computing the difference between the
features before and after upsampling. This difference
tensor is then inputted into the upsampling block and
the MLP layer for upsampling. The resulting features
are summed with the previously upsampled features.
This step adopts a feature offset strategy to fine-tune
the expanded features, avoiding cumbersome multi-
step training while ensuring that the generated points
do not deviate from the geometric surface of the patch
block, thereby enhancing the granularity of the gener-
ated points.

Figure 6
Up-down-up feature extension module

attention mechanism is applied to rapidly aggregate
global spatial information and fine-tune the coordi-
nates based on spatial information, thereby enhancing
the feature expansion capability. Initially, point fea-
tures undergo upsampling (after the MLP), generating
upsampled features, followed by downsampling to re-
gress to the original features. Instead of directly con-
structing the original point cloud, residual learning is
applied to fine-tune the expanded features by compu-
ting the difference between the features before and af-
ter upsampling. This difference tensor is then inputted
into the upsampling block and the MLP layer for up-
sampling. The resulting features are summed with the
previously upsampled features. This step adopts a fea-
ture offset strategy to fine-tune the expanded features,
avoiding cumbersome multi-step training while ensur-
ing that the generated points do not deviate from the
geometric surface of the patch block, thereby enhanc-
ing the granularity of the generated points.

Figure 6
Up-down-up feature extension module

To increase variation among repeated features, the

direct replication of point features as employed in PU-
Net is not utilized in the upsampling process. Instead,
a grid mechanism inspired by FoldingNet [1] is em-
ployed, as depicted in Figure 7. After replicating the
input point cloud features r times, local neighborhood
information is captured using graph convolution, lev-
eraging learnable parameters. Subsequently, the two-
dimensional grid mechanism from FoldingNet is ap-
plied, where a unique 2D vector is added after each
replicated feature to augment its shape characteristics.
This vector is appended to each feature vector corre-
sponding to the respective point cloud, dispersing and
distributing the replicated point cloud more uniformly.
Moreover, the multi-head self-attention mechanism is
employed to introduce context dependencies, optimiz-
ing different parts of the features, enhancing the inte-
gration of connected features, and facilitating self-cor-
rection, thus better incorporating the correlation be-
tween point features into the model. Through three at-
tention heads with different weights and focuses,

features of the point cloud are extracted, balancing the
biases that may exist in using the same attention and
making the representation of features more diverse.
Finally, an MLP layer is used to regress point features
to generate the output upsampled features.

Figure 7
Upsampling block

The structure of the downsampling block is illus-

trated in Figure 8. To reduce the sampling of expanded
features, the upsampled features are reshaped through
downsampling operations, and then input into a set of
MLP layers for regressing the original features.

Figure 8
Downsampling block

3.1.Datasets and Processing
The PU1K dataset is a novel large-scale dataset spe-
cifically created for point cloud upsampling tasks, as
depicted in Figure 9. PU1K comprises 1147 3D mod-
els, divided into 1020 training samples and 127 testing
samples. The training set includes 120 3D models
compiled from the PU-GAN dataset and 900 different
models collected from ShapeNetCore. The testing set
consists of 27 models from PU-GAN and over 100
models from ShapeNetCore. The models from Shap-
eNetCore are selected from 50 different categories. By
randomly selecting 200 models from each category, a
total of 1000 models with varying levels of shape com-
plexity are obtained to encourage diversity. The Syd-
ney Urban Objects Dataset [29] includes various com-
mon urban road objects scanned using Velodyne
HDL-64E LIDAR, as shown in Figure 10.

Figure 9
PU1K Dataset

U
psam

pling block

Dow
nsam

pling block

U
psam

pling block

N
×C'

rN
×C'

N×C'

GCN

M
HA

M
LPs

rN×C'

2D grid

rN×C'

M
LPs

N×C'

Reshape
...

N×rC'

To increase variation among repeated features, the
direct replication of point features as employed in
PU-Net is not utilized in the upsampling process. In-
stead, a grid mechanism inspired by FoldingNet [1]
is employed, as depicted in Figure 7. After replicating
the input point cloud features r times, local neighbor-
hood information is captured using graph convolution,

1127Information Technology and Control 2024/4/53

leveraging learnable parameters. Subsequently, the
two-dimensional grid mechanism from FoldingNet is
applied, where a unique 2D vector is added after each
replicated feature to augment its shape characteristics.
This vector is appended to each feature vector corre-
sponding to the respective point cloud, dispersing and
distributing the replicated point cloud more uniformly.
Moreover, the multi-head self-attention mechanism is
employed to introduce context dependencies, optimiz-
ing different parts of the features, enhancing the inte-
gration of connected features, and facilitating self-cor-
rection, thus better incorporating the correlation
between point features into the model. Through three
attention heads with different weights and focuses,
features of the point cloud are extracted, balancing the
biases that may exist in using the same attention and

Figure 7
Upsampling block

attention mechanism is applied to rapidly aggregate
global spatial information and fine-tune the coordi-
nates based on spatial information, thereby enhancing
the feature expansion capability. Initially, point fea-
tures undergo upsampling (after the MLP), generating
upsampled features, followed by downsampling to re-
gress to the original features. Instead of directly con-
structing the original point cloud, residual learning is
applied to fine-tune the expanded features by compu-
ting the difference between the features before and af-
ter upsampling. This difference tensor is then inputted
into the upsampling block and the MLP layer for up-
sampling. The resulting features are summed with the
previously upsampled features. This step adopts a fea-
ture offset strategy to fine-tune the expanded features,
avoiding cumbersome multi-step training while ensur-
ing that the generated points do not deviate from the
geometric surface of the patch block, thereby enhanc-
ing the granularity of the generated points.

Figure 6
Up-down-up feature extension module

To increase variation among repeated features, the

direct replication of point features as employed in PU-
Net is not utilized in the upsampling process. Instead,
a grid mechanism inspired by FoldingNet [1] is em-
ployed, as depicted in Figure 7. After replicating the
input point cloud features r times, local neighborhood
information is captured using graph convolution, lev-
eraging learnable parameters. Subsequently, the two-
dimensional grid mechanism from FoldingNet is ap-
plied, where a unique 2D vector is added after each
replicated feature to augment its shape characteristics.
This vector is appended to each feature vector corre-
sponding to the respective point cloud, dispersing and
distributing the replicated point cloud more uniformly.
Moreover, the multi-head self-attention mechanism is
employed to introduce context dependencies, optimiz-
ing different parts of the features, enhancing the inte-
gration of connected features, and facilitating self-cor-
rection, thus better incorporating the correlation be-
tween point features into the model. Through three at-
tention heads with different weights and focuses,

features of the point cloud are extracted, balancing the
biases that may exist in using the same attention and
making the representation of features more diverse.
Finally, an MLP layer is used to regress point features
to generate the output upsampled features.

Figure 7
Upsampling block

The structure of the downsampling block is illus-

trated in Figure 8. To reduce the sampling of expanded
features, the upsampled features are reshaped through
downsampling operations, and then input into a set of
MLP layers for regressing the original features.

Figure 8
Downsampling block

3.1.Datasets and Processing
The PU1K dataset is a novel large-scale dataset spe-
cifically created for point cloud upsampling tasks, as
depicted in Figure 9. PU1K comprises 1147 3D mod-
els, divided into 1020 training samples and 127 testing
samples. The training set includes 120 3D models
compiled from the PU-GAN dataset and 900 different
models collected from ShapeNetCore. The testing set
consists of 27 models from PU-GAN and over 100
models from ShapeNetCore. The models from Shap-
eNetCore are selected from 50 different categories. By
randomly selecting 200 models from each category, a
total of 1000 models with varying levels of shape com-
plexity are obtained to encourage diversity. The Syd-
ney Urban Objects Dataset [29] includes various com-
mon urban road objects scanned using Velodyne
HDL-64E LIDAR, as shown in Figure 10.

Figure 9
PU1K Dataset

U
psam

pling block

Dow
nsam

pling block

U
psam

pling block

N
×C'

rN
×C'

N×C'

GCN

M
HA

M
LPs

rN×C'

2D grid

rN×C'

M
LPs

N×C'
Reshape

...

N×rC'

Figure 8
Downsampling block

attention mechanism is applied to rapidly aggregate
global spatial information and fine-tune the coordi-
nates based on spatial information, thereby enhancing
the feature expansion capability. Initially, point fea-
tures undergo upsampling (after the MLP), generating
upsampled features, followed by downsampling to re-
gress to the original features. Instead of directly con-
structing the original point cloud, residual learning is
applied to fine-tune the expanded features by compu-
ting the difference between the features before and af-
ter upsampling. This difference tensor is then inputted
into the upsampling block and the MLP layer for up-
sampling. The resulting features are summed with the
previously upsampled features. This step adopts a fea-
ture offset strategy to fine-tune the expanded features,
avoiding cumbersome multi-step training while ensur-
ing that the generated points do not deviate from the
geometric surface of the patch block, thereby enhanc-
ing the granularity of the generated points.

Figure 6
Up-down-up feature extension module

To increase variation among repeated features, the

direct replication of point features as employed in PU-
Net is not utilized in the upsampling process. Instead,
a grid mechanism inspired by FoldingNet [1] is em-
ployed, as depicted in Figure 7. After replicating the
input point cloud features r times, local neighborhood
information is captured using graph convolution, lev-
eraging learnable parameters. Subsequently, the two-
dimensional grid mechanism from FoldingNet is ap-
plied, where a unique 2D vector is added after each
replicated feature to augment its shape characteristics.
This vector is appended to each feature vector corre-
sponding to the respective point cloud, dispersing and
distributing the replicated point cloud more uniformly.
Moreover, the multi-head self-attention mechanism is
employed to introduce context dependencies, optimiz-
ing different parts of the features, enhancing the inte-
gration of connected features, and facilitating self-cor-
rection, thus better incorporating the correlation be-
tween point features into the model. Through three at-
tention heads with different weights and focuses,

features of the point cloud are extracted, balancing the
biases that may exist in using the same attention and
making the representation of features more diverse.
Finally, an MLP layer is used to regress point features
to generate the output upsampled features.

Figure 7
Upsampling block

The structure of the downsampling block is illus-

trated in Figure 8. To reduce the sampling of expanded
features, the upsampled features are reshaped through
downsampling operations, and then input into a set of
MLP layers for regressing the original features.

Figure 8
Downsampling block

3.1.Datasets and Processing
The PU1K dataset is a novel large-scale dataset spe-
cifically created for point cloud upsampling tasks, as
depicted in Figure 9. PU1K comprises 1147 3D mod-
els, divided into 1020 training samples and 127 testing
samples. The training set includes 120 3D models
compiled from the PU-GAN dataset and 900 different
models collected from ShapeNetCore. The testing set
consists of 27 models from PU-GAN and over 100
models from ShapeNetCore. The models from Shap-
eNetCore are selected from 50 different categories. By
randomly selecting 200 models from each category, a
total of 1000 models with varying levels of shape com-
plexity are obtained to encourage diversity. The Syd-
ney Urban Objects Dataset [29] includes various com-
mon urban road objects scanned using Velodyne
HDL-64E LIDAR, as shown in Figure 10.

Figure 9
PU1K Dataset

U
psam

pling block

Dow
nsam

pling block

U
psam

pling block

N
×C'

rN
×C'

N×C'

GCN

M
HA

M
LPs

rN×C'

2D grid

rN×C'

M
LPs

N×C'

Reshape
...

N×rC'

making the representation of features more diverse.
Finally, an MLP layer is used to regress point features
to generate the output upsampled features.
The structure of the downsampling block is illustrated
in Figure 8. To reduce the sampling of expanded fea-
tures, the upsampled features are reshaped through
downsampling operations, and then input into a set of
MLP layers for regressing the original features.

Figure 9
PU1K Dataset

3. Results and Discussion

3.1. Datasets and Processing
The PU1K dataset is a novel large-scale dataset spe-
cifically created for point cloud upsampling tasks, as
depicted in Figure 9. PU1K comprises 1147 3D mod-
els, divided into 1020 training samples and 127 test-

Information Technology and Control 2024/4/531128

Figure 10
Sydney Urban Objects Dataset

ing samples. The training set includes 120 3D models
compiled from the PU-GAN dataset and 900 different
models collected from ShapeNetCore. The testing
set consists of 27 models from PU-GAN and over 100
models from ShapeNetCore. The models from Shap-
eNetCore are selected from 50 different categories.
By randomly selecting 200 models from each catego-
ry, a total of 1000 models with varying levels of shape
complexity are obtained to encourage diversity. The
Sydney Urban Objects Dataset [29] includes various
common urban road objects scanned using Velodyne
HDL-64E LIDAR, as shown in Figure 10.
Using Meshlab for point cloud processing and visual-
ization is a common practice in the field. To prepare

data for training and testing, surface patch block
generation is the first step in data preprocessing. In-
tuitively, the point cloud should be partitioned into
patch blocks, treating each patch as a single input
when there are a large number of points within an ob-
ject. Subsequently, Poisson disk sampling is applied
to each patch to ensure coverage of the entire point
cloud. This process generates pairs of original mesh
grids and sampled point clouds (Input) along with
ground truth point clouds. As illustrated in Figure 11,
the first row represents the original mesh grid, the
second row displays the Ground Truth point cloud
(8192 points), and the third row shows the Input
(2048 points).

Figure 11
Sampling results

1129Information Technology and Control 2024/4/53

For the training data, 50 patch blocks are cropped
from each 3D model as inputs to the network. In PU1K,
a total of 51,000 training patch blocks are obtained.
Each patch consists of 256 points as the low-resolu-
tion input and 1024 points as the ground truth.
For the testing data, each object is represented by
2048 points as the input point cloud, while the ground
truth point cloud comprises 8192 points using an up-
sampling rate of 4r = .
During testing, the same processing approach as MPU
and PU-GAN is employed, namely patch-by-patch.
Firstly, M central points are selected using the far-
thest point sampling (FPS) method, and a fixed num-
ber of points are selected around each central point
using the k-nearest neighbor algorithm, forming M
clusters of point clouds. The upsample model is ap-
plied to each point cloud cluster separately to obtain
the upsampled results, i.e., dense point clouds. Then,
the overlapping patch outputs are merged according
to the total number of points needed for upsampling
(e.g., if the input point cloud contains 2048 points and
requires a 4x upsampling, the resulting point cloud
will contain 8192 points). Subsequently, the farthest
point sampling algorithm is used again to resample
the merged point cloud, resulting in the final point
cloud output. The process is illustrated in Figure 12.

Figure 12
Sampling process

3.2. Loss Function

To ensure that the generated points are evenly dis-
tributed on the object surface, a combined loss is
employed as the loss function. This loss function en-
compasses reconstruction loss (recL), repulsion loss

(repL), and uniformity loss (uniL). The loss function GL
is expressed as follows, where recλ , repλ , and uniλ denote
the weights:

Figure 12
Sampling process

3.2.Loss function
To ensure that the generated points are evenly distrib-
uted on the object surface, a combined loss is em-
ployed as the loss function. This loss function encom-
passes reconstruction loss (recL), repulsion loss (repL
), and uniformity loss (uniL). The loss function GL is

expressed as follows, where recλ , repλ , and uniλ de-
note the weights:

G rec rec rep rep uni uniL L L Lλ λ λ= + + (13)

Reconstruction loss recL : Chamfer Distance (CD)
can better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

2

1 2

2 11

(,)
(,) (,)

rec cdL D S S
d S S d S S

=
= +

 (14)

1 2(,)d S S and 2 1(,)d S S respectively denote the
sum of minimum distances from any point in one point
set to the other point set. A smaller value of

1 2(,)cdD S S indicates a better final reconstruction
result.

Repulsion loss repL : Utilizing repulsion force loss
to distribute the upsampled output points more uni-
formly rather than clustering around the original input

points, expressed as:

() ()
0 ()

|| || || ||)
rN

rep i i i i
i i K i

L p p w p pη ′ ′
′= ∈

= − −

(15)

Where r represents the upsampling rate and N
denotes the number of input points. For each point ip
, K nearest neighbor points ip ′ are selected, and

their distances are computed as || ||i id p p′= − . The
repulsion term is defined as ()d dη = − , and

2

2()
d
hd eω

−
= is a rapidly decaying weight function.

When multiplied together, repL becomes large when
the distance is too close or too far, so the generated
points should maintain an appropriate distance to re-
duce the repulsion loss repL .

Uniformity loss uniL : The repulsion loss ensures
that the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribution
of points locally. To ensure local point uniformity, a
uniformity function is employed, expressed as:

1
() ()

M

uni imbalance j clutter j
j

L U S U S
=

= ⋅ (16)

imbalanceU ensures the uniform distribution of

. (13)

Reconstruction loss recL : Chamfer Distance (CD) can
better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

Figure 12
Sampling process

3.2.Loss function
To ensure that the generated points are evenly distrib-
uted on the object surface, a combined loss is em-
ployed as the loss function. This loss function encom-
passes reconstruction loss (recL), repulsion loss (repL
), and uniformity loss (uniL). The loss function GL is

expressed as follows, where recλ , repλ , and uniλ de-
note the weights:

G rec rec rep rep uni uniL L L Lλ λ λ= + + (13)

Reconstruction loss recL : Chamfer Distance (CD)
can better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

2

1 2

2 11

(,)
(,) (,)

rec cdL D S S
d S S d S S

=
= +

 (14)

1 2(,)d S S and 2 1(,)d S S respectively denote the
sum of minimum distances from any point in one point
set to the other point set. A smaller value of

1 2(,)cdD S S indicates a better final reconstruction
result.

Repulsion loss repL : Utilizing repulsion force loss
to distribute the upsampled output points more uni-
formly rather than clustering around the original input

points, expressed as:

() ()
0 ()

|| || || ||)
rN

rep i i i i
i i K i

L p p w p pη ′ ′
′= ∈

= − −

(15)

Where r represents the upsampling rate and N
denotes the number of input points. For each point ip
, K nearest neighbor points ip ′ are selected, and

their distances are computed as || ||i id p p′= − . The
repulsion term is defined as ()d dη = − , and

2

2()
d
hd eω

−
= is a rapidly decaying weight function.

When multiplied together, repL becomes large when
the distance is too close or too far, so the generated
points should maintain an appropriate distance to re-
duce the repulsion loss repL .

Uniformity loss uniL : The repulsion loss ensures
that the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribution
of points locally. To ensure local point uniformity, a
uniformity function is employed, expressed as:

1
() ()

M

uni imbalance j clutter j
j

L U S U S
=

= ⋅ (16)

imbalanceU ensures the uniform distribution of

Figure 12
Sampling process

3.2.Loss function
To ensure that the generated points are evenly distrib-
uted on the object surface, a combined loss is em-
ployed as the loss function. This loss function encom-
passes reconstruction loss (recL), repulsion loss (repL
), and uniformity loss (uniL). The loss function GL is

expressed as follows, where recλ , repλ , and uniλ de-
note the weights:

G rec rec rep rep uni uniL L L Lλ λ λ= + + (13)

Reconstruction loss recL : Chamfer Distance (CD)
can better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

2

1 2

2 11

(,)
(,) (,)

rec cdL D S S
d S S d S S

=
= +

 (14)

1 2(,)d S S and 2 1(,)d S S respectively denote the
sum of minimum distances from any point in one point
set to the other point set. A smaller value of

1 2(,)cdD S S indicates a better final reconstruction
result.

Repulsion loss repL : Utilizing repulsion force loss
to distribute the upsampled output points more uni-
formly rather than clustering around the original input

points, expressed as:

() ()
0 ()

|| || || ||)
rN

rep i i i i
i i K i

L p p w p pη ′ ′
′= ∈

= − −

(15)

Where r represents the upsampling rate and N
denotes the number of input points. For each point ip
, K nearest neighbor points ip ′ are selected, and

their distances are computed as || ||i id p p′= − . The
repulsion term is defined as ()d dη = − , and

2

2()
d
hd eω

−
= is a rapidly decaying weight function.

When multiplied together, repL becomes large when
the distance is too close or too far, so the generated
points should maintain an appropriate distance to re-
duce the repulsion loss repL .

Uniformity loss uniL : The repulsion loss ensures
that the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribution
of points locally. To ensure local point uniformity, a
uniformity function is employed, expressed as:

1
() ()

M

uni imbalance j clutter j
j

L U S U S
=

= ⋅ (16)

imbalanceU ensures the uniform distribution of

(14)

1 2(,)d S S and 2 1(,)d S S respectively denote the sum of
minimum distances from any point in one point set to
the other point set. A smaller value of 1 2(,)cdD S S indi-
cates a better final reconstruction result.
Repulsion loss repL : Utilizing repulsion force loss to
distribute the upsampled output points more uni-
formly rather than clustering around the original in-
put points, expressed as:

Figure 12
Sampling process

3.2.Loss function
To ensure that the generated points are evenly distrib-
uted on the object surface, a combined loss is em-
ployed as the loss function. This loss function encom-
passes reconstruction loss (recL), repulsion loss (repL
), and uniformity loss (uniL). The loss function GL is

expressed as follows, where recλ , repλ , and uniλ de-
note the weights:

G rec rec rep rep uni uniL L L Lλ λ λ= + + (13)

Reconstruction loss recL : Chamfer Distance (CD)
can better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

2

1 2

2 11

(,)
(,) (,)

rec cdL D S S
d S S d S S

=
= +

 (14)

1 2(,)d S S and 2 1(,)d S S respectively denote the
sum of minimum distances from any point in one point
set to the other point set. A smaller value of

1 2(,)cdD S S indicates a better final reconstruction
result.

Repulsion loss repL : Utilizing repulsion force loss
to distribute the upsampled output points more uni-
formly rather than clustering around the original input

points, expressed as:

() ()
0 ()

|| || || ||)
rN

rep i i i i
i i K i

L p p w p pη ′ ′
′= ∈

= − −

(15)

Where r represents the upsampling rate and N
denotes the number of input points. For each point ip
, K nearest neighbor points ip ′ are selected, and

their distances are computed as || ||i id p p′= − . The
repulsion term is defined as ()d dη = − , and

2

2()
d
hd eω

−
= is a rapidly decaying weight function.

When multiplied together, repL becomes large when
the distance is too close or too far, so the generated
points should maintain an appropriate distance to re-
duce the repulsion loss repL .

Uniformity loss uniL : The repulsion loss ensures
that the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribution
of points locally. To ensure local point uniformity, a
uniformity function is employed, expressed as:

1
() ()

M

uni imbalance j clutter j
j

L U S U S
=

= ⋅ (16)

imbalanceU ensures the uniform distribution of

, (15)

where r represents the upsampling rate and N de-
notes the number of input points. For each point ip ,
K nearest neighbor points ip ′ are selected, and their

distances are computed as || ||i id p p′= − . The repul-

sion term is defined as ()d dη = − , and
2

2()
d
hd eω

−
= is

a rapidly decaying weight function. When multiplied
together, repL becomes large when the distance is too
close or too far, so the generated points should main-
tain an appropriate distance to reduce the repulsion
loss repL .
Uniformity loss uniL : The repulsion loss ensures that
the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribu-
tion of points locally. To ensure local point uniformi-
ty, a uniformity function is employed, expressed as:

Figure 12
Sampling process

3.2.Loss function
To ensure that the generated points are evenly distrib-
uted on the object surface, a combined loss is em-
ployed as the loss function. This loss function encom-
passes reconstruction loss (recL), repulsion loss (repL
), and uniformity loss (uniL). The loss function GL is

expressed as follows, where recλ , repλ , and uniλ de-
note the weights:

G rec rec rep rep uni uniL L L Lλ λ λ= + + (13)

Reconstruction loss recL : Chamfer Distance (CD)
can better capture the shape to encourage the output
points to be located close to the underlying object sur-
face. Therefore, CD is used as the reconstruction loss
to assess the similarity between the output point set
Output and the Ground Truth, represented as:

2

1 2

2 11

(,)
(,) (,)

rec cdL D S S
d S S d S S

=
= +

 (14)

1 2(,)d S S and 2 1(,)d S S respectively denote the
sum of minimum distances from any point in one point
set to the other point set. A smaller value of

1 2(,)cdD S S indicates a better final reconstruction
result.

Repulsion loss repL : Utilizing repulsion force loss
to distribute the upsampled output points more uni-
formly rather than clustering around the original input

points, expressed as:

() ()
0 ()

|| || || ||)
rN

rep i i i i
i i K i

L p p w p pη ′ ′
′= ∈

= − −

(15)

Where r represents the upsampling rate and N
denotes the number of input points. For each point ip
, K nearest neighbor points ip ′ are selected, and

their distances are computed as || ||i id p p′= − . The
repulsion term is defined as ()d dη = − , and

2

2()
d
hd eω

−
= is a rapidly decaying weight function.

When multiplied together, repL becomes large when
the distance is too close or too far, so the generated
points should maintain an appropriate distance to re-
duce the repulsion loss repL .

Uniformity loss uniL : The repulsion loss ensures
that the upsampled points are as separated as possible
globally, but it does not guarantee uniform distribution
of points locally. To ensure local point uniformity, a
uniformity function is employed, expressed as:

1
() ()

M

uni imbalance j clutter j
j

L U S U S
=

= ⋅ (16)

imbalanceU ensures the uniform distribution of

(16)

imbalanceU ensures the uniform distribution of upsam-
pled points globally, while clutterU ensures uniform
distribution within local neighborhoods.

Information Technology and Control 2024/4/531130

3.3. Environment Configuration and
Parameter Setting
To ensure fairness and accuracy in comparisons, and to
minimize the impact of environmental factors, all meth-
ods in this study were trained and tested on the same
computer hardware. Details are provided in Table 1.

Table 1
Experimental environment

System/Platform Configuration/Version

OS Ubuntu18.04

GPU QuadroRTX5000(16GB)

CPU AMD EPYC 7302

Memory 64GB

CUDA 11.3

Deep Learning Framework PyTorch 1.10.2

Programming Language Python 3.8

During training, the weights for each loss function are
set as follows: 100recλ = , 2repλ = , and 10uniλ = . The
batch size is set to 32, and the initial learning rate is
0.001. At the 60th epoch, the learning rate is reduced
to 0.0001, and at the 100th epoch, it is further reduced
to 0.00001. The total number of epochs for training is
120. Both training and testing processes employ an
upsampling rate of 4.

3.4. Analysis of Experimental Results
3.4.1. Comparison with Existing Upsampling
Algorithms
The up-sampling networks were trained and tested
using the PU1k dataset. From the obtained up-sam-
pling results, three objects of different shape levels
were randomly selected, including simple and smooth
objects as well as complex and highly detailed objects,
to evaluate the performance of each network’s upsam-
pling results. Figure 13 shows the upsampling results.
From the up-sampled point clouds and their magni-
fied details, it is evident that our method produces
fewer outliers while preserving details closer to the
real structure. Specifically, examining the details of
the handle of the handbag (first row) indicates that the
method successfully up-samples relatively smooth
input point clouds, resulting in significantly fewer
outliers compared to other methods, and achieving a
smooth and evenly distributed surface on the object.
Additionally, the armrests of the chair (second row)
demonstrate the superiority of our method in main-
taining geometric shapes, as the up-sampling results
from PU-Net and PU-GAN introduce excessive noise.
Although PU-GCN can roughly restore the overall
contours, the effects are not sufficiently smooth, ir-
regular, and exhibit poor edge restoration. Our meth-
od automatically updates the graph structure at each
EdgeConv operation, capturing more correlations
among the data, thereby enhancing the model’s ex-
pressive power. Furthermore, through the MHSA
module, it integrates different relationships and fea-

Figure 13
Upsampling results

(a) Input (b) PU-Net (c) PU-GAN (d) PU-GCN (e) DGCMSA-PU (g) GT

1131Information Technology and Control 2024/4/53

Table 2
Quantitative Evaluation of Upsampled Networks

NetWork CD (10-3) HD (10-3) P2F (10-3) Uni (10-3) Time (ms)

PU-Net 3.135 16.634 6.392 22.136 10.081

PU-GAN 1.986 14.320 3.531 18.092 17.325

PU-GCN 0.815 13.682 4.894 15.342 12.612

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331

ture representations during the feature extraction
process, enabling the restoration of more shapes and
edge details.
Observations of the motorcycle’s wheels (third row)
reveal that other methods tend to overlook the ob-
ject’s own geometric shapes during the up-sampling
process. In contrast, our method can accurately re-
store the object’s geometric shape, resulting in clear-
er descriptions of wheel contour features, fewer out-
liers, better up-sampling effects on fine structures
such as brake discs, and a point cloud structure after
up-sampling that is closer to the real structure.
In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2.
These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance
(HD), Point to Surface (P2F), and Uniformity (Uni).
Their computation methods are as follows:

PU-GAN 1.986 14.320 3.531 18.092 17.325

PU-GCN 0.815 13.682 4.894 15.342 12.612

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331

Observations of the motorcycle's wheels (third row)

reveal that other methods tend to overlook the object's
own geometric shapes during the up-sampling pro-
cess. In contrast, our method can accurately restore the
object's geometric shape, resulting in clearer descrip-
tions of wheel contour features, fewer outliers, better
up-sampling effects on fine structures such as brake
discs, and a point cloud structure after up-sampling
that is closer to the real structure.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2.

These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance
(HD), Point to Surface (P2F), and Uniformity (Uni).
Their computation methods are as follows:

2

2

(,) max(sup inf ,

sup inf)
a A b B

b B a A

HD A B a b

a b
∈ ∈

∈ ∈

= −

−
(17)

, 2

12 (,)
a A b B

P F A B a b
A ∈ ∈

= −∑ (18)

1Uni() Var()
a A

A a
A ∈

= ∑ (19)

According to the objective evaluation metrics, com-
pared to PU-GCN, CD, HD, and P2F decreased by

30.109 10−× , 33.053 10−× , and 31.024 10−× , re-
spectively. The inclusion of uniform loss in the joint
loss function improved the uniformity of the generated
points, resulting in a decrease of 33.964 10−× in the
Uni metric. These experimental results validate the ef-
fectiveness of the feature extraction module, which in-
tegrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature extrac-
tion and capturing spatial structures.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2. According to the objective evaluation

metrics, compared to PU-GCN, CD, HD, and P2F de-
creased by 30.109 10−× , 33.053 10−× , and

31.024 10−× , respectively. The inclusion of uniform
loss in the joint loss function improved the uniformity
of the generated points, resulting in a decrease of

33.964 10−× in the Uni metric. These experimental
results validate the effectiveness of the feature extrac-
tion module, which integrates DGCNN and the
MHSA, as well as the up-down-up feature expansion
module, in feature extraction and capturing spatial
structures.

3.4.2. Upsampling Results of Real Scan-

ning Data from On-board Lidar
Using the models trained on the PU1K dataset, we up-
sampled the point clouds from the Sydney Urban Ob-
jects dataset and compared the upsampling results
with those of other networks. This evaluation was per-
formed on both individual objects scanned by the ve-
hicle-mounted LiDAR and complete 360-degree scan
point clouds.

From Figure 14, it is evident that the point cloud
data obtained by vehicle-mounted LiDAR scanning of
a car in a real-world scenario is sparse, blurry, and
subject to occlusion. Clearly, our proposed point cloud
upsampling method significantly improves the resolu-
tion of the radar-scanned point cloud and outperforms
other networks in detail representation. Specifically,
our method can effectively reconstruct the outline of
the vehicle and generate an adequate number of fea-
ture points.

When the input point cloud contains few points,
PU-Net and PU-GAN can only expand the number of
points without effectively reconstructing the geomet-
ric surface information expected from the original
point cloud model. Consequently, they exhibit poor
performance in handling details such as the vehicle's
wheels, the windows of the cabin, and the roof rack,
with the shapes of windows and wheels being almost
indistinguishable. While PU-GCN can recover some
details, such as the outline of the windows and the cir-
cular rear wheels of the vehicle, they still fall short in
geometric detail and exhibit uneven point distribution.

Figure 14
The on-board lidar scans the upsampling results of a single object

(17)

PU-GAN 1.986 14.320 3.531 18.092 17.325

PU-GCN 0.815 13.682 4.894 15.342 12.612

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331

Observations of the motorcycle's wheels (third row)

reveal that other methods tend to overlook the object's
own geometric shapes during the up-sampling pro-
cess. In contrast, our method can accurately restore the
object's geometric shape, resulting in clearer descrip-
tions of wheel contour features, fewer outliers, better
up-sampling effects on fine structures such as brake
discs, and a point cloud structure after up-sampling
that is closer to the real structure.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2.

These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance
(HD), Point to Surface (P2F), and Uniformity (Uni).
Their computation methods are as follows:

2

2

(,) max(sup inf ,

sup inf)
a A b B

b B a A

HD A B a b

a b
∈ ∈

∈ ∈

= −

−
(17)

, 2

12 (,)
a A b B

P F A B a b
A ∈ ∈

= −∑ (18)

1Uni() Var()
a A

A a
A ∈

= ∑ (19)

According to the objective evaluation metrics, com-
pared to PU-GCN, CD, HD, and P2F decreased by

30.109 10−× , 33.053 10−× , and 31.024 10−× , re-
spectively. The inclusion of uniform loss in the joint
loss function improved the uniformity of the generated
points, resulting in a decrease of 33.964 10−× in the
Uni metric. These experimental results validate the ef-
fectiveness of the feature extraction module, which in-
tegrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature extrac-
tion and capturing spatial structures.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2. According to the objective evaluation

metrics, compared to PU-GCN, CD, HD, and P2F de-
creased by 30.109 10−× , 33.053 10−× , and

31.024 10−× , respectively. The inclusion of uniform
loss in the joint loss function improved the uniformity
of the generated points, resulting in a decrease of

33.964 10−× in the Uni metric. These experimental
results validate the effectiveness of the feature extrac-
tion module, which integrates DGCNN and the
MHSA, as well as the up-down-up feature expansion
module, in feature extraction and capturing spatial
structures.

3.4.2. Upsampling Results of Real Scan-

ning Data from On-board Lidar
Using the models trained on the PU1K dataset, we up-
sampled the point clouds from the Sydney Urban Ob-
jects dataset and compared the upsampling results
with those of other networks. This evaluation was per-
formed on both individual objects scanned by the ve-
hicle-mounted LiDAR and complete 360-degree scan
point clouds.

From Figure 14, it is evident that the point cloud
data obtained by vehicle-mounted LiDAR scanning of
a car in a real-world scenario is sparse, blurry, and
subject to occlusion. Clearly, our proposed point cloud
upsampling method significantly improves the resolu-
tion of the radar-scanned point cloud and outperforms
other networks in detail representation. Specifically,
our method can effectively reconstruct the outline of
the vehicle and generate an adequate number of fea-
ture points.

When the input point cloud contains few points,
PU-Net and PU-GAN can only expand the number of
points without effectively reconstructing the geomet-
ric surface information expected from the original
point cloud model. Consequently, they exhibit poor
performance in handling details such as the vehicle's
wheels, the windows of the cabin, and the roof rack,
with the shapes of windows and wheels being almost
indistinguishable. While PU-GCN can recover some
details, such as the outline of the windows and the cir-
cular rear wheels of the vehicle, they still fall short in
geometric detail and exhibit uneven point distribution.

Figure 14
The on-board lidar scans the upsampling results of a single object

(18)

PU-GAN 1.986 14.320 3.531 18.092 17.325

PU-GCN 0.815 13.682 4.894 15.342 12.612

DGCMSA-PU 0.706 10.629 3.870 11.378 10.331

Observations of the motorcycle's wheels (third row)

reveal that other methods tend to overlook the object's
own geometric shapes during the up-sampling pro-
cess. In contrast, our method can accurately restore the
object's geometric shape, resulting in clearer descrip-
tions of wheel contour features, fewer outliers, better
up-sampling effects on fine structures such as brake
discs, and a point cloud structure after up-sampling
that is closer to the real structure.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2.

These evaluation metrics, in addition to CD men-
tioned in Section 3.2, include Hausdorff Distance
(HD), Point to Surface (P2F), and Uniformity (Uni).
Their computation methods are as follows:

2

2

(,) max(sup inf ,

sup inf)
a A b B

b B a A

HD A B a b

a b
∈ ∈

∈ ∈

= −

−
(17)

, 2

12 (,)
a A b B

P F A B a b
A ∈ ∈

= −∑ (18)

1Uni() Var()
a A

A a
A ∈

= ∑ (19)

According to the objective evaluation metrics, com-
pared to PU-GCN, CD, HD, and P2F decreased by

30.109 10−× , 33.053 10−× , and 31.024 10−× , re-
spectively. The inclusion of uniform loss in the joint
loss function improved the uniformity of the generated
points, resulting in a decrease of 33.964 10−× in the
Uni metric. These experimental results validate the ef-
fectiveness of the feature extraction module, which in-
tegrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature extrac-
tion and capturing spatial structures.

In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summarized
in Table 2. According to the objective evaluation

metrics, compared to PU-GCN, CD, HD, and P2F de-
creased by 30.109 10−× , 33.053 10−× , and

31.024 10−× , respectively. The inclusion of uniform
loss in the joint loss function improved the uniformity
of the generated points, resulting in a decrease of

33.964 10−× in the Uni metric. These experimental
results validate the effectiveness of the feature extrac-
tion module, which integrates DGCNN and the
MHSA, as well as the up-down-up feature expansion
module, in feature extraction and capturing spatial
structures.

3.4.2. Upsampling Results of Real Scan-

ning Data from On-board Lidar
Using the models trained on the PU1K dataset, we up-
sampled the point clouds from the Sydney Urban Ob-
jects dataset and compared the upsampling results
with those of other networks. This evaluation was per-
formed on both individual objects scanned by the ve-
hicle-mounted LiDAR and complete 360-degree scan
point clouds.

From Figure 14, it is evident that the point cloud
data obtained by vehicle-mounted LiDAR scanning of
a car in a real-world scenario is sparse, blurry, and
subject to occlusion. Clearly, our proposed point cloud
upsampling method significantly improves the resolu-
tion of the radar-scanned point cloud and outperforms
other networks in detail representation. Specifically,
our method can effectively reconstruct the outline of
the vehicle and generate an adequate number of fea-
ture points.

When the input point cloud contains few points,
PU-Net and PU-GAN can only expand the number of
points without effectively reconstructing the geomet-
ric surface information expected from the original
point cloud model. Consequently, they exhibit poor
performance in handling details such as the vehicle's
wheels, the windows of the cabin, and the roof rack,
with the shapes of windows and wheels being almost
indistinguishable. While PU-GCN can recover some
details, such as the outline of the windows and the cir-
cular rear wheels of the vehicle, they still fall short in
geometric detail and exhibit uneven point distribution.

Figure 14
The on-board lidar scans the upsampling results of a single object

(19)

According to the objective evaluation metrics, com-
pared to PU-GCN, CD, HD, and P2F decreased by

30.109 10−× , 33.053 10−× , and 31.024 10−× , respec-
tively. The inclusion of uniform loss in the joint loss
function improved the uniformity of the generated
points, resulting in a decrease of 33.964 10−× in the

Uni metric. These experimental results validate the
effectiveness of the feature extraction module, which
integrates DGCNN and the MHSA, as well as the up-
down-up feature expansion module, in feature ex-
traction and capturing spatial structures.
In the quantitative comparison, the proposed model
was evaluated against three up-sampling networks,
namely PU-Net, PU-GAN, and PU-GCN, using the
same evaluation metrics. The results are summa-
rized in Table 2. According to the objective evaluation
metrics, compared to PU-GCN, CD, HD, and P2F de-
creased by 30.109 10−× , 33.053 10−× , and 31.024 10−× ,
respectively. The inclusion of uniform loss in the joint
loss function improved the uniformity of the gener-
ated points, resulting in a decrease of 33.964 10−× in
the Uni metric. These experimental results validate
the effectiveness of the feature extraction module,
which integrates DGCNN and the MHSA, as well as
the up-down-up feature expansion module, in feature
extraction and capturing spatial structures.

3.4.2. Upsampling Results of Real Scanning Data
from On-board Lidar
Using the models trained on the PU1K dataset, we
upsampled the point clouds from the Sydney Urban
Objects dataset and compared the upsampling results
with those of other networks. This evaluation was
performed on both individual objects scanned by the
vehicle-mounted LiDAR and complete 360-degree
scan point clouds.
From Figure 14, it is evident that the point cloud data
obtained by vehicle-mounted LiDAR scanning of a
car in a real-world scenario is sparse, blurry, and sub-
ject to occlusion. Clearly, our proposed point cloud
upsampling method significantly improves the reso-
lution of the radar-scanned point cloud and outper-
forms other networks in detail representation. Spe-

Information Technology and Control 2024/4/531132

cifically, our method can effectively reconstruct the
outline of the vehicle and generate an adequate num-
ber of feature points.
When the input point cloud contains few points, PU-
Net and PU-GAN can only expand the number of
points without effectively reconstructing the geomet-
ric surface information expected from the original
point cloud model. Consequently, they exhibit poor
performance in handling details such as the vehicle’s
wheels, the windows of the cabin, and the roof rack,
with the shapes of windows and wheels being almost
indistinguishable. While PU-GCN can recover some
details, such as the outline of the windows and the
circular rear wheels of the vehicle, they still fall short
in geometric detail and exhibit uneven point distribu-
tion.
Our method utilizes DGCNN for feature extraction, dy-
namically constructing a graph structure based on the
input data’s features to better capture inter-data rela-
tionships. Furthermore, by integrating multi-head at-
tention after each EdgeConv layer, each attention head
can focus on different relationships and feature repre-
sentations, thereby enhancing the model’s expressive-
ness and generalization performance. Even for sparse
point cloud inputs, our method successfully preserves

Figure 14
The on-board lidar scans the upsampling results of a single object

(a) Input (b) PU-Net (c) PU-GAN

(d) PU-GCN (e) DGCMSA-PU

local fine-grained details, including the retention of
holes between the wheels and the body of the car.
The complete point cloud image scanned by the on-
board LiDAR during driving is used as the input point
cloud for upsampling. Figure 15 shows the upsam-
pling results, indicating a significant improvement
in the resolution of LiDAR-scanned point clouds
achieved by the proposed method. From the enlarged
details of the output point clouds, it can be observed
that the input point cloud data for vehicles and pedes-
trians are represented by sparse and irregular points,
making it difficult to discern contours and details.
The output point clouds from PU-Net and PU-GAN
remain scattered, failing to capture the contours of
objects. While the outputs from PU-GCN reveal some
outlines, they still struggle to distinguish the shapes
of objects. In comparison, the upsampling effect of
our network is superior, distinctly outlining both hu-
man and vehicle profiles. The experiments demon-
strate that our network achieves good information
recovery for sparse input point clouds from real Li-
DAR scans, successfully reconstructing the shapes of
vehicles and pedestrians on the road. The restoration
of such scene information is crucial for applications
based on LiDAR-scanned point clouds.

1133Information Technology and Control 2024/4/53

Figure 15
Upsampling results of point clouds scanned by on-board lidar 360

(c) PU-GAN(b) PU-Net(a) Input

(e) DGCMSA-PU(d) PU-GCN

3.4.3. Study of Robustness
To verify the robustness of our proposed method
against noise interference, we perturbed the input
point clouds with additive Gaussian noise at different
proportions and then performed upsampling on them.
As shown in Figure 16, the first row represents the in-
put point clouds, while the second and third rows dis-
play the upsampled point clouds generated by differ-
ent networks. From left to right, the noise proportions
added to the input data are: no noise, Gaussian noise
σ with 0.01, 0.02, and 0.03.
The MHSA module in the proposed DGCMSA-PU
network can perform multiple attention operations in
parallel. Even if one attention head fails to capture ef-
fective features, other attention heads can still provide
useful information, thus alleviating the limitations
of a single attention mechanism and enhancing the
network’s robustness. The results demonstrate that
our proposed network outperforms other upsampling
methods under the influence of noise at different pro-

portions, producing fewer outliers and preserving fin-
er details. As the noise level increases, the differences
become more pronounced. For instance, in the window
frame depicted in the figure, the upsampling result of
PU-GCN exhibits blurred contours, more outliers, and
lacks uniformity and smoothness. Moreover, with in-
creasing noise proportions, the boundaries between
window panes become increasingly blurred, making
it difficult to discern their specific shapes. In con-
trast, the upsampling results of our proposed DGCM-
SA-PU network, although somewhat blurred due to
noise, manage to preserve the basic shape and contour,
demonstrating satisfactory visualization effects. The
experimental results indicate that the upsampling net-
work proposed in this paper exhibits good robustness
to noise, mitigating the impact of various noise sources
in real scanning scenarios.
In point cloud processing tasks, the number of input
points may vary due to factors such as sampling den-
sity, scene complexity, or data collection methods. To

Information Technology and Control 2024/4/531134

Figure 16
Effect of different jitter coefficients on the upsampled network

(a) σ =0 (b) σ =0.01 (c) σ =0.02 (d) σ =0.03

Input

PU-GCN

DGCMSA-PU

ensure the robustness of the model in practical appli-
cations, its performance needs to be evaluated under
different numbers of input point clouds. By varying
the number of input points, different densities of
point cloud data can be simulated to assess the mod-
el’s performance under conditions of fewer or more
points, thereby verifying its ability to handle point
clouds of different densities. Specifically, input point
clouds of 256 points, 512 points, and 1024 points were
used for upsampling by the network, and the resulting
upsampling results were compared and analyzed. The
experimental results are as follows.
From the quantitative evaluation results in Tables 3,
4, and 5, it is evident that even with a smaller num-
ber of input points, the upsampling performance of
the proposed network in this paper remains superior
to that of other networks. Compared to PU-Net, PU-
GAN, and PU-GCN, almost all evaluation metrics
show better results. As the number of input points in-
creases, the performance of the upsampling network
improves. When only 256 points are input, compared
to PU-GCN, the proposed network in this paper ex-
hibits a decrease of 30.457 10−× in CD, 33.581 10−×
in HD, and 30.905 10−× in P2F. Additionally, the uni-
formity of the upsampling results is also superior,

Table 3
Upsampling result with Input=256

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 4.528 45.432 15.634 50.668 1.599

PU-GAN 3.836 38.162 8.631 33.206 3.036

PU-GCN 3.271 31.264 7.324 36.786 2.324

DGCM-
SA-PU 2.712 26.354 6.063 24.327 1.712

Table 4
Upsampling result with Input=512

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 2.998 35.241 11.189 40.131 2.387

PU-GAN 2.734 29.564 8.136 21.135 6.331

PU-GCN 2.096 21.862 6.746 24.413 5.301

DGCM-
SA-PU 1.837 20.136 5.638 16.324 3.135

1135Information Technology and Control 2024/4/53

with Uni decreasing by 34.136 10−× . The experiments
demonstrate that the network exhibits better robust-
ness to different densities of input point clouds, even
achieving higher-quality upsampling point clouds
when the input point cloud density is low.
From the quantitative evaluation results in Tables 3,
4, and 5, it is evident that even with a smaller num-
ber of input points, the upsampling performance of
the proposed network in this paper remains superior
to that of other networks. Compared to PU-Net, PU-

Table 5
Upsampling result with Input=1024

NetWork CD
(10-3)

HD
(10-3)

P2F
(10-3)

Uni
(10-3)

Time
(ms)

PU-Net 1.884 25.320 8.305 37.429 6.324

PU-GAN 1.602 20.631 5.364 11.841 12.574

PU-GCN 1.424 15.932 4.364 13.362 10.058

DGCM-
SA-PU 0.967 12.351 3.459 9.226 7.669

GAN, and PU-GCN, almost all evaluation metrics
show better results. As the number of input points in-
creases, the performance of the upsampling network
improves. When only 256 points are input, compared
to PU-GCN, the proposed network in this paper ex-
hibits a decrease of 30.457 10−× in CD, 33.581 10−×
in HD, and 30.905 10−× in P2F. Additionally, the uni-
formity of the upsampling results is also superior,
with Uni decreasing by 34.136 10−× . The experiments
demonstrate that the network exhibits better robust-
ness to different densities of input point clouds, even
achieving higher-quality upsampling point clouds
when the input point cloud density is low.
The visual experimental results of the network’s ro-
bustness to different input point cloud densities are
depicted in Figure 17. Even with a minimal number
of input points, the network proposed in this paper
is capable of generating higher-quality upsampling
point clouds, with minimal occurrence of outliers and
retention of details closer to the real structure. As the
input point cloud density increases, the sampling re-
sults approach the Ground Truth more closely. From

Figure 17
Upsampling results of input points with different densities

(a) 256 (b) 512 (c) 1024 (d) 2048

Input

PU-GCN

DGCMSA-PU

Information Technology and Control 2024/4/531136

Figure 18
Visualization of ablation experiment results

Table 6
Results of ablation experiments

MHSA CD(10-3) HD(10-3) P2F(10-3) Uni(10-3) Time(ms)

0.675 9.961 2.634 8.456 10.246

√ 0.622 8.705 2.475 7.712 11.327

the enlarged details of the chair, it can be observed
that the network successfully reconstructs detailed
surface features of the chair’s wheels, with uniformly
distributed generated points on the surface and mini-
mal scattered points, enabling a clear depiction of the
wheel’s specific shape. The experiments demonstrate
the network’s good robustness to point clouds with
different input densities, producing sampling results
with fewer outliers and restoring the original geomet-
ric shape, closely resembling the Ground Truth. This
network can be effectively applied to the upsampling
task of sparse point clouds obtained from real vehi-
cle-mounted LiDAR scans.

3.4.4. Ablation Experiment
To validate the contribution of MHSA in the network
model, ablation experiments were conducted where
the multi-head self-attention (MHSA) module was
removed from the feature extraction module. The
network was retrained without MHSA, and the same
dataset was used for testing. The upsampling results
were then compared with the previous results. The
visual results are shown in Figure 18, and the quanti-
tative results are presented in Table 6.
From the close-up regions of the telephone (first
row), airplane (second row), and chair (third row), it
is evident that the network model proposed in this
paper exhibits fewer outliers and more specific con-
tour information in the point cloud models. When the

multi-head self-attention module is removed, the up-
sampling results for the telephone lines (first row) ex-
hibit blurred and scattered contours. However, with
the inclusion of the multi-head self-attention module
(MHSA), the specific shape of the telephone lines is
better restored. For the details of the airplane engine,
the addition of the MHSA module optimizes feature
representation, as multiple attention heads can learn
different features. This reduces the impact of outliers
on contour information, resulting in clearer contour
feature descriptions in the point cloud model. Simi-
larly, for the details of the chair, better restoration is
achieved, with more specific detail feature represen-
tations and upsampling results closer to the Ground
Truth (GT). Quantitative evaluation results also indi-
cate that when the multi-head self-attention (MHSA)
module is removed, the performance of HD and P2F
metrics significantly decreases, resulting in poorer
upsampling results. With the inclusion of the multi-
head self-attention (MHSA) module in the network,
the performance decreases by 30.053 10−× in CD,

(a) Input (b) NO MHSA (c) Complete network (d) Ground Truth

1137Information Technology and Control 2024/4/53

31.256 10−× in HD, and 30.159 10−× in P2F. Although
there is some increase in processing time, the unifor-
mity is improved. These results demonstrate that the
multi-head self-attention (MHSA) module diversifies
feature representation, leading to a significant en-
hancement in upsampling performance.

4. Conclusion
This paper proposes a point cloud upsampling network
called DGCMSA-PU, which integrates dynamic graph
convolution and multi-head self-attention. Firstly, the
overall structure and implementation process of the
network are analyzed, followed by a detailed explana-
tion of the feature extraction module and the up-down-
up feature expansion module that combines dynam-
ic graph convolution and multi-head self-attention.
DGCNN enhances feature representation by capturing
edge relationships between nodes through edge con-
volutions and propagating feature information from
neighboring nodes to the central node. The multi-head
attention mechanism integrates information from
different heads simultaneously, enabling comprehen-
sive information exchange and integration. The up-
down-up feature expansion structure captures both
global semantic information and local details, thereby
enriching and diversifying feature representation and
improving the granularity of generated points.
Experimental comparisons with existing upsam-
pling networks demonstrate that DGCMSA-PU out-
performs other networks in almost all evaluation
metrics. Subsequently, upsampling experiments are
conducted on real-world vehicle-mounted LiDAR

scan data to further validate the generalization per-
formance of the proposed method in real scenes. Ro-
bustness studies indicate that DGCMSA-PU exhibits
good robustness to noise and different point inputs.
Finally, ablation experiments are conducted to ver-
ify the importance of each module in the entire up-
sampling process. All experimental results confirm
the practicality and effectiveness of the proposed
network, DGCMSA-PU, laying the foundation for its
practical application.
For example, in a typical SLAM system, the raw point
cloud data acquired by sensors needs to undergo pre-
processing and feature extraction before being used
for pose estimation and map updating. Our upsam-
pling technique can enhance the raw point cloud data,
providing higher resolution and more detailed data,
which will help improve the accuracy of feature ex-
traction, leading to more reliable pose estimation and
map construction. In the future, this method can be
implemented on a Field-Programmable Gate Array
(FPGA) and integrated with sensors. By leveraging
its powerful parallel processing and computation ca-
pabilities, it can achieve efficient data processing and
analysis in real-time applications.

Acknowledgement

The authors acknowledge the National Natural Foun-
dation of China (NSFC62221004); Guangxi Key Re-
search and Development Program (AB23026149,
AB24010073); Guilin Scientific Research Project
(202201131-1); Guilin Scientific Research Project
(20220107-1); Guilin Scientific Research Project
(20210101-5)

References
1. Aoqing, Y., Feng, C., Yiru, S., Dong T. Folding Net: Point

cloud auto-encoder via deep grid defor-mation. In
IEEE Conf. on Computer Vision and Pat-tern Recog-
nition(CVPR), 2018: 206-215. https://doi.org/10.1109/
CVPR.2018.00029

2. Charles, R, Q., Hao, S., Kaichun, M., Leonidas, J. G.
PointNet: Deep learning on point sets for 3D classifi-
cation and segmentation. In 2017 IEEE Con-ference
on Computer Vision and Pattern Recogni-tion (CVPR),
2017: 77-85. https://doi.org/10.1109/CVPR.2017.16

3. Charles, R, Q., Yi, L., Hao ,S., Leonidas, J. G. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a
Metric Space. arXiv preprint arXiv, 2017: 652-660.

4. Cigneni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., Ranzuglia, G. Meshlab:an open-source
mesh processing tool. Eurographics Italian chapter
conference, 2008: 129-136. DOI:10.2312/LocalChapter-
Events/ItalChap/ItalianChapConf2008/129-136.

5. Dzmitry, B,. Kyunghyun, C., Yoshua, B. Neural machine
translation by jointly learning to align and translate,
Proceedings of International Conference on Learning
Representations (ICLR-15), 2015: 1-15.

6. Gao, J., Lan, J., Wang, B., Li, F. SDANet: spatial deep
attention-based for point cloud classification and seg-
mentation. Machine Learning, 2022, 111(4): 1327-1348.
https://doi.org/10.1007/s10994-022-06148-1

Information Technology and Control 2024/4/531138

7. Guocheng, Q., Abdulellah, A., Guohao, L., Ali, T., Bernard,
G. Pu-gcn: point cloud upsampling using graph convolu-
tional networks, In: 2021 IEEE Con-ference on Comput-
er Vision and Pattern Recogni-tion (CVPR), 2021: 11683-
11692. https://doi.org/10.1109/CVPR46437.2021.01151

8. Hu, B. Research on brain point cloud reconstruction
model based on generative adversarial strategy and
graph convolutional neural network. Chinese Acad-
emy of Sciences (Shenzhen Institute of Advanced
Technology), 2022.

9. Hui, H., Dan, L., Hao, Z., Uri, A., Daniel, C. Con-solidation
of unorganized point clouds for surface reconstruction.
ACM Trans. on Graphics (SIG-GRAPH Asia), 2009,
28(5): 176: 1-7. https://doi.org/10.1145/1618452.1618522

10. Jie, Z., Ganqu, C., Shengding, H., Zhengyan, Z., Cheng,
Y., Zhiyuan, L., Lifeng, W., Changcheng, L., Maosong,
S. Graph neural networks: a review of methods and
applications. AI Open, 2020, 1: 57-81. https://doi.
org/10.1016/j.aiopen.2021.01.001

11. Jing, W., Zhang, W., Li, L., Di, D., Chen, G., Wang, J. AG-
Net: An attention-based graph network for point cloud
classification and segmentation. Remote Sensing, 2022,
14(4): 1036. https://doi.org/10.3390/rs14041036

12. Kulikajevas, A., Maskeliūnas, R., Damaševičius, R.,
Misra, S. Reconstruction of 3D object shape using hy-
brid modular neural network architecture trained on
3D models from ShapeNetCore dataset. Sensors, 2019,
19(7): 1553. https://doi.org/10.3390/s19071553

13. Lei, W., Yuchun, H., Yaolin, H., Shenman, Z., Jie, S. Graph
attention convolution for point cloud se-mantic seg-
mentation, Proceedings of IEEE Confer-ence on Com-
puter Vision and Pattern Recognition (CVPR-19) , 2019:
10288-10297. https://doi.org/10.1109/CVPR.2019.01054

14. Lequan, Y., Xianzhi, L., Chi-Wing, F., Daniel, C., Pheng-
Ann, H. PU-Net: Point cloud upsampling network. In:
2018 IEEE Conference on Computer Vision and Pat-
tern Recognition(CVPR), 2018: 2790-2799. https://doi.
org/10.1109/CVPR.2018.00295

15. Lequan, Y., Xianzhi, L., Chi-Wing, F., Daniel, C., Pheng-
Ann, H. EC-Net: An edge-aware point set consolidation
network. In European Conference on Computer Vision
(ECCV), 2018: 386-402. https://doi.org/10.1007/978-3-
030-01234-2_24

16. Li, Z., Bai, Z., Xiao, X., Zhang, Y., You, Y. Point cloud up-
sampling network fusing transformer and multi-stage
learning framework. Computer Science: 2023: 1-14.

17. Luqing, L., Lulu, T., Wanyi, Z., Shizheng, W., Zhi-Xin, Y.
Pu-eva: an edge-vector based approxima-tion solution
for flexible-scale point cloud upsam-pling, Proceedings
of IEEE International Confer-ence on Computer Vision
(ICCV-21) , 2021: 16188-16197. https://doi.org/10.1109/
ICCV48922.2021.01590

18. Marc, A., Johannes, B., Daniel, C., Shachar, F., Da-vid,
L., Claudio, T, Silva. Computing and rendering point set
surfaces. IEEE Trans. Vis. & Comp.Graphics, 2003, 9(1):
3-15. https://doi.org/10.1109/TVCG.2003.1175093

19. Peng, C., Xiao, W., Jian, P., Wenwu, Z. A survey on net-
work embedding. IEEE Trans, 2019, 31 (5): 833-852.
https://doi.org/10.1109/TKDE.2018.2849727

20. Pierdicca, R., Paolanti, M., Matrone, F., Martini, M.,
Morbidoni, C., Malinverni, E., Frontoni, E., Lingua, A.
Point cloud semantic segmentation using a deep learn-
ing framework for cultural heritage. Remote Sensing,
2020, 12(6): 1005. https://doi.org/10.3390/rs12061005

21. Ruihui, L., Xianzhi, L., Chi-Wing, F., Daniel, C., Pheng, A.
PU-GAN: A point cloud upsampling ad-versarial network.
In: 2019 IEEE International Con-ference on Computer
Vision (ICCV), 2019: 7202-7211. https://doi.org/10.1109/
ICCV.2019.00730

22. Ryselis, K., Blažauskas, T., Damaševičius, R., Maskel-
iūnas, R. Computer-aided depth video stream masking
framework for human body seg-mentation in depth
sensor images. Sensors, 2022, 22(9): 3531. https://doi.
org/10.3390/s22093531

23. Xiao, X., Bai, Z., Li, Z., Liu, X., Du, J. Parallel mul-ti-
scale point Cloud Upsampling Method with At-tention
mechanism. Computer Science, 2024, 51(8): 183-191.
DOI: 10.11896/jsjkx.230500094.

24. Yaron, L., Daniel, C., David, L., Hillel, T. Parame-teri-
zation-free projection for geometry reconstruc-tion.
ACM Trans. on Graphics (SIGGRAPH), 2007, 26(3): 22:
1-5. https://doi.org/10.1145/1276377.1276405

25. Yue, W., Yongbin, S., Ziwei, L., Sanjay, E., Mi-chael, M.,
Justin, M. Dynamic Graph CNN for Learning on Point
Clouds. Association for Compu-ting Machinery (ACM),
2019, 38(5): 1-12. https://doi.org/10.1145/3326362

26. Zeng, J. Research on 3d point cloud quality im-provement
method based on deep learning. Xiamen University, 2020.

27. Zhang, X., Fu, C., Zhao, Y., Xu, X. Hybrid feature CNN
model for point cloud classification and seg-menta-
tion. IET Image Processing, 2020, 14(16): 4086-4091.
https://doi.org/10.1049/iet-ipr.2020.0658

28. Zhengwei, W., Qi, S., Tomas, E. Generative Adver-sar-
ial Networks in Computer Vision: A Survey and Tax-
onomy. ACM Comput. 2021, 54(2): 1-38. https://doi.
org/10.1145/3439723

29. Zhipeng, L., Jonathan, L., Zhenlong, X., Z. Geroge, M.,
Xiaojie, C. Learning high-level features by fus-ing
multi-view representation of MLS point clouds for 3D
object recognition in road environments. IS-PRS Jour-
nal of Photogrammetry and Remote Sens-ing, 2019, 150:
44-58. https://doi.org/10.1016/j.isprsjprs.2019.01.024

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

