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This paper introduces a method to enhance 3D human pose estimation accuracy by leveraging human topological 
structure and temporal information, addressing inaccuracies due to occlusion and complex poses. It proposes a 
spatiotemporal Transformer network that aggregates local temporal information to predict 3D poses for video 
frames, reducing sequence length through cross-step convolution. To further handle occlusion and information 
loss, the paper suggests a spatiotemporal graph attention network that incorporates spatial constraints and graph 
convolution with an improved adjacency matrix to emphasize local information in pose inference. A temporal 
convolutional network is also employed to model time, and the network alternates between temporal and spa-
tial attention modules to prevent spatiotemporal information loss. Experiments on Human3.6m and HumanEva 
datasets demonstrate that the proposed method outperforms other approaches in prediction accuracy.
KEYWORDS: 3D human pose estimation; Graph Convolutional Neural Network; Self attention; Transformer.

1. Introduction
3D human pose recognition has important applica-
tion value in human pose recognition, human-com-
puter interaction, virtual reality, and action analysis. 
Traditional pose estimation methods rely on artifi-

cially set characteristics, and the model construction 
process is relatively cumbersome, making it difficult 
to meet the needs of complex environments such 
as complex scenes and rapid movements. In recent 
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years, the rapid development of Convolutional Neu-
ral Network (CNN) technology has gradually shifted 
research on 3D human pose recognition towards deep 
learning. Li et al. (2014) first proposed a 3D human 
pose modeling method based on deep convolutional 
neural networks. This method uses a multitask fusion 
approach to jointly learn the attitude regression mod-
el and component detectors, and estimates the target 
through a regression network. Compared to directly 
inverting the three-dimensional pose, this method 
can better preserve the information in the image [1]. 
Zhou proposed a method for predicting the three-di-
mensional pose of robots by constructing a three-di-
mensional model of “parts heart heat” to construct a 
volume in space and using ensemble methods for end-
to-end learning [2]. 
Zheng introduced a deep convolutional autoencoder 
(MR-DCAE) model based on stream regularisation 
for unauthorised broadcast identification. A specially 
designed autoencoder (AE) is optimised by entropic 
stochastic gradient descent, and then the reconstruc-
tion error in the testing phase is used to determine 
whether the received signal is authorised or not. To 
make this metric more discriminative, a similarity 
estimator across different dimensional manifolds is 
designed as a penalty term to ensure their invariance 
during gradient backpropagation [3]. Tang proposed 
a new spatio-temporal interactive attention model 
to address this issue. The method spatiotemporally 
encodes the input features and divides them into two 
equivalent parts, taking into account both temporal 
and spatial effects. In order to investigate a multi-
node interaction model based on visual perception, 
multiple superconducting elements are stacked us-
ing multiple superconducting elements and a novel 
structure-enhanced local embedding (SPE) method 
is introduced in STCFormer. The method consists 
of a spatio-temporal convolution operation and a po-
sition-based embedding method for obtaining local 
information and describing the region where each 
node is located. To solve this problem [4], Zheng pro-
posed to accomplish real-time AMC by constructing 
MobileViT, a lightweight neural network driven by 
clustered constellation images.Firstly, clustered con-
stellation images were converted from I/Q sequences 
to help extract robust discriminative features. Then, 
a lightweight neural network called MobileViT was 
developed for real-time constellation image classifi-

cation. Experimental results using an edge computing 
platform on the publicly available dataset RadioML 
2016.10a demonstrate the superiority and efficiency 
of MobileViT. In addition, extensive ablation tests 
demonstrate the robustness of the proposed method 
to learning rate and batch size [5]. Zheng proposed a 
real-time AMC method based on a lightweight Mobile 
Radio Transformer (MobileRaT). The constructed 
radio transformer is iteratively trained while pruning 
the redundant weights according to the information 
entropy, so that robust modulation knowledge can 
be learnt from multimodal signal representations to 
perform the AMC task. This is the first attempt to in-
tegrate and apply pruning techniques and lightweight 
transformer models to process timing signals, there-
by improving their inference efficiency while ensur-
ing AMC accuracy. Finally, the experimental results 
validate the superiority of MobileRaT by comparing 
it with a series of state-of-the-art methods based 
on two public datasets. When processing RadioML 
2018.01A and RadioML 2016.10A, the two models 
MobileRaT-A and MobileRaT-B achieve an average 
AMC accuracy of 65.9% and 62.3%, respectively, and 
the highest AMC accuracies of 98.4% and 99.2% at 
+18 dB and +14 dB, respectively [6]. Jiang proposed a 
zero-sample diffusion optimisation (ZeDO) pipeline 
based on 3D HPEs to solve the problem of cross-do-
main and field 3D HPEs. Multi-hypothesis ZeDO 
achieves state-of-the-art (SOTA) performance of 
minMPJPE 51.4mm on Human3.6M without the need 
to use any 2D-3D or image 3D pairs for training. In 
addition, the single hypothesis ZeDO achieves SOTA 
performance on the 3DPW dataset with PA-MPJPE 
42.6mm in a cross-dataset evaluation, which outper-
forms even learning-based methods trained on 3DPW 
[7]. Li combines the estimation of 2D target pose with 
object recognition and infers the dynamic pose of the 
target by using a recursive multi-layer Transformer 
network [8]. 
Jiang reviews the results of the fast-growing research 
on the use of different graph-based deep learning 
models (e.g., Graph Convolutional Networks and 
Graph Attention Networks) in a variety of problems 
in different types of communication networks (e.g., 
wireless networks, wired networks, and software-de-
fined networks). We also provide a well-organised list 
of problems and solutions for each study and point 
out future research directions [9].
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Traffic prediction is important for the success of in-
telligent transport systems. Deep learning models in-
cluding convolutional neural networks and recurrent 
neural networks have been widely used in traffic pre-
diction problems to model spatial and temporal depen-
dencies. In recent years, graph neural networks have 
been introduced in order to model graph structures 
as well as contextual information in traffic systems 
and have achieved state-of-the-art performance in a 
range of traffic prediction problems. Jiang reviewed 
the rapidly growing body of research results on the use 
of different graph neural networks (e.g., graph convo-
lutional networks and graph attention networks) for 
a wide range of traffic prediction problems, such as 
road traffic flow and speed prediction, passenger flow 
prediction in urban rail systems, and demand predic-
tion in ride-hailing platforms. This study also provides 
a comprehensive list of open data and source code for 
each problem and identify future research directions. 
Recent research results show that deep learning tech-
niques have made significant progress in the field of 
3D human pose estimation [10]. From Li’s direct pre-
diction method to Zhou’s part-centre-heatmap triad, 
to Liu’s  GAST-Net, Tang’s STC block, Aksan’s  self-at-
tentive architecture, and Zhang’s  spatial graph feature 
acquisition scheme, each study builds on the previous 
ones to further improving the accuracy and robustness 
of pose estimation. These methods show their respec-
tive advantages in dealing with complex scenes, fast 
motion, depth ambiguity, and self-obscuration prob-
lems, and provide a variety of effective solutions for 3D 
human pose estimation. 
This paper is based on a 2D skeleton model and con-
ducts research in three aspects: the 3D-SLAM algo-
rithm for monocular visual images; Establish a 3D 
DAR model; Use graph convolution and attention the-
ory to construct a 3D DAR model. On this basis, this 
paper proposes a video spatiotemporal fusion method 
based on the spatiotemporal domain transformation 
structure, which combines local time-domain infor-
mation with a gradually reduced method to predict the 
3D human pose in intermediate frames. The research 
content includes the following aspects: establishing 
spatiotemporal correlation models based on attention 
mechanisms; Establish a spatiotemporal correlation 
model based on time-domain convolutional networks; 
A spatiotemporal correlation model based on visual 
perception to solve occlusion problems [11-16].

This paper focuses on the research of 3D human pos-
ture methods based on 2D skeleton, and the Main 
contributions are:
1 Predicting 3D human posture using monocular 

pictures, using a priori information of human pos-
ture topology map, combining graph convolution 
and attention to fuse local and global posture infor-
mation to improve the prediction accuracy.

2 Extracting spatio-temporal information from 
the video using the spatio-temporal Transformer 
structure, aggregating local temporal information 
and gradually reducing the sequence length to pre-
dict the 3D human pose in the centre frame.

3 Modelling local and global spatial information by 
attention mechanism, extracting temporal infor-
mation by temporal convolutional network, and 
designing a network structure interleaving spatial 
semantics and temporal dependence to alleviate 
the occlusion problem.

2. Related Work
To solve the problems of traditional spatio-temporal 
graph convolutional networks, this section improves 
the spatial graph convolutional GCN in ST-GCN and 
proposes adaptive data-driven graph convolution, 
which can flexibly change the topology structure of 
the skeleton graph based on the data samples learned 
during training, thus adapting to different action types 
and data characteristics [17]. A multi-dimensional 
attention mechanism was designed using attention 
mechanism to guide the model to focus on the main 
features and reduce the impact of redundant features. 
This section constructs an action recognition net-
work based on data-driven graph convolution and at-
tention mechanism, and the overall model structure 
is shown in Figure 1. The red and green dashed boxes 
represent the adaptive data-driven graph convolution 
and multi-dimensional attention mechanism mod-
ules, respectively, using ST-GCN’s temporal convolu-
tional network TCN in the temporal dimension.
Using a single spatio-temporal graph convolution 
module as one basic unit, the entire action recogni-
tion network consists of 9 spatio-temporal graph con-
volution units, as shown in Figures B1 to B9 in Figure 
1, B1 to B9 are divided into three groups based on the 
number of channels, with each group having 64, 128, 
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Figure 1
Overall Structure of Action Recognition Network Model

and 256 channels, respectively. The model adds a 
batch normalization layer in the input stage to nor-
malize the data. 
At the end, global average pooling is used to transform 
the sample feature map to a uniform size. Finally, 
Soft Max is used for predicting and classifying ac-
tion features. In order to stabilize the model training 
and avoid gradient explosion or vanishing, residual 
connections are added to the module. After passing 
through the residual module, the input is added to the 
output of the temporal convolutional network TCN as 
the overall output of the module.

2.1. Adaptive Data-driven Graph Convolution

To solve the problem of fixed topology in the tradi-
tional spatio-temporal graph convolutional network 
ST-GCN, this paper replaces the original predefined 
adjacency matrix with an adaptive adjacency matrix 
driven by data samples. Adaptive adjacency matrix 
can adaptively optimize the topology of the graph 
during the training process, modify the adjacency ma-
trix features of nodes, and share the topology struc-

ture of the graph in multi-layer graph convolution. 
To ensure the stability of the original model, residual 
structures are added to connect different branches. 
The proposed adaptive data-driven graph convolu-
tion AGCN is shown in Figure 2.

In ST-GCN, the adjacency matrix Ak actually deter-
mines the topological form of the graph, while the 
mask matrix Bk represents the connection strength 
between the root node and its neighboring nodes. This 
article improves Ak and Bk to achieve adaptive topol-
ogy of the graph structure. The ACGN theoretical cal-
culation method in Figure 2 is shown in Equation (1):

 
 

 

 
At the end, global average pooling is used to 
transform the sample feature map to a uniform size. 
Finally, Soft Max is used for predicting and 
classifying action features. In order to stabilize the 
model training and avoid gradient explosion or 
vanishing, residual connections are added to the 
module. After passing through the residual 
module, the input is added to the output of the 
temporal convolutional network TCN as the overall 
output of the module. 

1.1 Adaptive Data-driven Graph Convolution 

To solve the problem of fixed topology in the 
traditional spatio-temporal graph convolutional 
network ST-GCN, this paper replaces the original 
predefined adjacency matrix with an adaptive 
adjacency matrix driven by data samples. Adaptive 
adjacency matrix can adaptively optimize the 
topology of the graph during the training process, 
modify the adjacency matrix features of nodes, and 
share the topology structure of the graph in multi-
layer graph convolution. To ensure the stability of 
the original model, residual structures are added to 
connect different branches. The proposed adaptive 
data-driven graph convolution AGCN is shown in 
Figure 2. 

In ST-GCN, the adjacency matrix Ak actually 
determines the topological form of the graph, while 
the mask matrix Bk represents the connection 
strength between the root node and its neighboring 
nodes. This article improves Ak and Bk to achieve 
adaptive topology of the graph structure. The 
ACGN theoretical calculation method in Figure 2 
is shown in Equation (1): 
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Equation (1) introduces two different matrices 

based on the adjacency matrix kA , namely Bk 
and Ck, using Bk instead of the mask matrix Mk 
and Ak. Bk initializes using kA  in the formula. α 
is a parameterized coefficient that is learned 
and updated through data samples during the 
training process. 

 

Figure 2 Adaptive data-driven graph 
convolutional AGCN structure diagram 

 
Among them, Bk has the same size as the 
adjacency matrix Ak, which is a data-driven 
global adaptive graph adjacency matrix with 
the same initial parameters as the adjacency 
matrix Ak. The elements of adjacency matrix Bk 
can be optimized by the optimizer like other 
elements and are not restricted. Through this 
data-driven adaptive graph structure, the 
network model can continuously optimize its 
graph convolution parameters to adapt to 
different action recognition tasks. In the 
original formula, the function of Mk  is to 
provide different levels of attention to 
different adjacent nodes. However, in Mk, it is 
not possible to establish edges that do not 
naturally physically connect the human 
skeleton. In the adjacency matrix Bk, the size of 
its elements is continuously optimized 
through data-driven training, and the values 
of its elements are not limited. It can not only 
establish connections for physically 
nonadjacent nodes, but also represent the 
strength of the connections using the size of 
the values. Therefore, replacing the mask 
matrix Mk with the adjacency matrix Bk will 
make graph convolution more flexible. 
Adjacency matrix Ck, also known as similarity 
matrix, is a local graph related to data that 
expresses the similarity between two nodes in 
the graph. The normalized Gaussian function 
representation of the connection relationship 
and interaction strength between nodes vi and 
vj on the skeleton structure is shown in 
Equation (2): 

(1)

Equation (1) introduces two different matrices based 
on the adjacency matrix Ak, namely Bk and Ck, using Bk 
instead of the mask matrix Mk and Ak. Bk initializes us-
ing Ak in the formula. α is a parameterized coefficient 
that is learned and updated through data samples 
during the training process.
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Among them, Bk has the same size as the adjacen-
cy matrix Ak, which is a data-driven global adaptive 
graph adjacency matrix with the same initial param-
eters as the adjacency matrix Ak. The elements of ad-
jacency matrix Bk can be optimized by the optimizer 
like other elements and are not restricted. Through 
this data-driven adaptive graph structure, the net-
work model can continuously optimize its graph con-
volution parameters to adapt to different action rec-
ognition tasks. In the original formula, the function 
of Mk  is to provide different levels of attention to dif-
ferent adjacent nodes. However, in Mk, it is not possi-
ble to establish edges that do not naturally physically 
connect the human skeleton. In the adjacency matrix 
Bk, the size of its elements is continuously optimized 
through data-driven training, and the values of its el-
ements are not limited. It can not only establish con-
nections for physically nonadjacent nodes, but also 
represent the strength of the connections using the 
size of the values. Therefore, replacing the mask ma-
trix Mk with the adjacency matrix Bk will make graph 
convolution more flexible. Adjacency matrix Ck, also 
known as similarity matrix, is a local graph related to 
data that expresses the similarity between two nodes 
in the graph. The normalized Gaussian function rep-
resentation of the connection relationship and inter-
action strength between nodes vi and vj on the skele-
ton structure is shown in Equation (2):  
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In the formula, N is the total number of nodes on 
the skeleton. 

The interaction connection between two nodes is 
calculated using the dot product of vectors. Let the 
channel size of the input feature fin of the network 
model be Cm×T×N, and use embedding functions θ 
and ϕ to map the input feature map size to size 
Ce×T×N. For the embedding function, this article 
uses two 1x1 convolution kernels to implement the 
embedding functions θ and ϕ. The size of the input 
feature map is transformed, and the output feature 
maps of the two convolution kernels are N×CeT and 
CeT×N, respectively. The matrix multiplication is 
performed on the two output feature maps to 
eliminate the dimension CeT and obtain a similar 
adjacency matrix Ck with a size N×N, where the 
values of the elements of the matrix represent the 
similarity of their corresponding nodes νi and νj. 

The normalization effect of Gaussian embedding 
function in Equation (2) is similar to the structural 
effect of the SoftMax function. Therefore, to 
facilitate the implementation of  above function 
using neural network layers, the SoftMax function 
can be used to calculate the similarity matrix Ck of 
nodes, as shown in Equation (3): 
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In the formula, 𝑊𝑊𝑊𝑊𝜃𝜃𝜃𝜃  and 𝑊𝑊𝑊𝑊𝜑𝜑𝜑𝜑  represent the 
parameters of the embedding functions 𝜃𝜃𝜃𝜃  and φ , 
respectively. 

1.2 Multidimensional Attention Mechanism 

The core principle of attention mechanism is to find 
the correlation between local data based on the 
input raw data, and to reallocate attention 
computing resources reasonably. In research based 
on bone key points, it is particularly important to 
find the correlation between two spatially 
nonadjacent joints. Taking inspiration from this, 
this article designs a multi-dimensional attention 
mechanism module. From the perspective of spatio-
temporal channels, three modules were established: 
spatial feature attention enhancement module, 
temporal feature attention enhancement module, 
and channel feature attention enhancement 
module. Guide the model to focus on key 
spatiotemporal channel features and reduce the 
impact of redundant features. The output feature 
map of each module is multiplied by the input 

feature map to enhance attention based on the 
original feature map. The following will 
introduce the implementation methods of the 
three modules built in sequence. Spatial 
feature attention enhancement module: This 
module provides different attention intensities 
to key points at different spatial angles, 
enhancing the feature expression of joint 
features related to actions during training and 
learning in the model. Its calculation is shown 
in Equation (4): 
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In the formula: σ  is a nonlinear 
transformation function, which is completed 
using the Sigmoid activation function in this 
section. The curve of the Sigmoid function is 
an S-shaped growth curve that can map input 
variables between (0,1). The curve has the 
characteristics of smoothness and easy 
differentiation, which is more suitable for the 
data-driven adaptive graph convolutional 
network proposed in this paper and can 
strengthen the role of resource reallocation in 
attention mechanisms. The s in gs  represents 
spatial angle, and gs represents feature 
extraction at spatial angle. In this section, one-
dimensional convolution is used to generate 
spatial attention intensity for different key 
points at spatial angle, enhancing or 
weakening the influence of different joints in 
action features. X∈RC×T×N is the input feature 
map of the spatial feature attention 
enhancement module, with a number of 
channels of C×T×N. The average pooling layer 
AvgPool is used to take the mean of the input 
feature map on the spatial channels, and 
channel transformation is performed on the 
input feature map to transform its channel 
number from C×T×N to C×1×N , compressing 
the time dimension to fully enhance the spatial 
attention feature. Ms∈R1×1×N  is the output 
feature map of the spatial feature attention 
enhancement module, and the result of point 
multiplication with the input feature map is 
the addition of the input feature map and 
input to the next module. 

Time feature attention enhancement module: 
The function of this module is similar to the 
SAM module, guiding the model to enhance 
its attention to local action time segments 
during training, while suppressing the 
influence of irrelevant time segments, 
improving the efficiency of training and 
learning. The calculation method is shown in 

(2)

In the formula, N is the total number of nodes on the 
skeleton.

Figure 2
Adaptive data-driven graph convolutional AGCN structure diagram

The interaction connection between two nodes is cal-
culated using the dot product of vectors. Let the chan-
nel size of the input feature fin of the network model be 
Cm×T×N, and use embedding functions θ and ϕ to map 
the input feature map size to size Ce×T×N. For the 
embedding function, this article uses two 1x1 convo-
lution kernels to implement the embedding functions 
θ and ϕ. The size of the input feature map is trans-
formed, and the output feature maps of the two con-
volution kernels are N×CeT and CeT×N, respectively. 
The matrix multiplication is performed on the two 
output feature maps to eliminate the dimension CeT 
and obtain a similar adjacency matrix Ck with a size 
N×N, where the values of the elements of the matrix 
represent the similarity of their corresponding nodes 
νi and νj.
The normalization effect of Gaussian embedding 
function in Equation (2) is similar to the structural 
effect of the SoftMax function. Therefore, to facilitate 
the implementation of above function using neural 
network layers, the SoftMax function can be used to 
calculate the similarity matrix Ck of nodes, as shown 
in Equation (3):
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In the formula, N is the total number of nodes on 
the skeleton. 

The interaction connection between two nodes is 
calculated using the dot product of vectors. Let the 
channel size of the input feature fin of the network 
model be Cm×T×N, and use embedding functions θ 
and ϕ to map the input feature map size to size 
Ce×T×N. For the embedding function, this article 
uses two 1x1 convolution kernels to implement the 
embedding functions θ and ϕ. The size of the input 
feature map is transformed, and the output feature 
maps of the two convolution kernels are N×CeT and 
CeT×N, respectively. The matrix multiplication is 
performed on the two output feature maps to 
eliminate the dimension CeT and obtain a similar 
adjacency matrix Ck with a size N×N, where the 
values of the elements of the matrix represent the 
similarity of their corresponding nodes νi and νj. 

The normalization effect of Gaussian embedding 
function in Equation (2) is similar to the structural 
effect of the SoftMax function. Therefore, to 
facilitate the implementation of  above function 
using neural network layers, the SoftMax function 
can be used to calculate the similarity matrix Ck of 
nodes, as shown in Equation (3): 
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parameters of the embedding functions 𝜃𝜃𝜃𝜃  and φ , 
respectively. 

1.2 Multidimensional Attention Mechanism 

The core principle of attention mechanism is to find 
the correlation between local data based on the 
input raw data, and to reallocate attention 
computing resources reasonably. In research based 
on bone key points, it is particularly important to 
find the correlation between two spatially 
nonadjacent joints. Taking inspiration from this, 
this article designs a multi-dimensional attention 
mechanism module. From the perspective of spatio-
temporal channels, three modules were established: 
spatial feature attention enhancement module, 
temporal feature attention enhancement module, 
and channel feature attention enhancement 
module. Guide the model to focus on key 
spatiotemporal channel features and reduce the 
impact of redundant features. The output feature 
map of each module is multiplied by the input 

feature map to enhance attention based on the 
original feature map. The following will 
introduce the implementation methods of the 
three modules built in sequence. Spatial 
feature attention enhancement module: This 
module provides different attention intensities 
to key points at different spatial angles, 
enhancing the feature expression of joint 
features related to actions during training and 
learning in the model. Its calculation is shown 
in Equation (4): 
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In the formula: σ  is a nonlinear 
transformation function, which is completed 
using the Sigmoid activation function in this 
section. The curve of the Sigmoid function is 
an S-shaped growth curve that can map input 
variables between (0,1). The curve has the 
characteristics of smoothness and easy 
differentiation, which is more suitable for the 
data-driven adaptive graph convolutional 
network proposed in this paper and can 
strengthen the role of resource reallocation in 
attention mechanisms. The s in gs  represents 
spatial angle, and gs represents feature 
extraction at spatial angle. In this section, one-
dimensional convolution is used to generate 
spatial attention intensity for different key 
points at spatial angle, enhancing or 
weakening the influence of different joints in 
action features. X∈RC×T×N is the input feature 
map of the spatial feature attention 
enhancement module, with a number of 
channels of C×T×N. The average pooling layer 
AvgPool is used to take the mean of the input 
feature map on the spatial channels, and 
channel transformation is performed on the 
input feature map to transform its channel 
number from C×T×N to C×1×N , compressing 
the time dimension to fully enhance the spatial 
attention feature. Ms∈R1×1×N  is the output 
feature map of the spatial feature attention 
enhancement module, and the result of point 
multiplication with the input feature map is 
the addition of the input feature map and 
input to the next module. 

Time feature attention enhancement module: 
The function of this module is similar to the 
SAM module, guiding the model to enhance 
its attention to local action time segments 
during training, while suppressing the 
influence of irrelevant time segments, 
improving the efficiency of training and 
learning. The calculation method is shown in 

. (3)

In the formula, Wθ and Wφ  represent the parameters of 
the embedding functions θ and φ , respectively.

2.2. Multidimensional Attention Mechanism

The core principle of attention mechanism is to find 
the correlation between local data based on the input 
raw data, and to reallocate attention computing re-
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sources reasonably. In research based on skeleton key 
points, it is particularly important to find the correla-
tion between two spatially nonadjacent joints. Taking 
inspiration from this, this article designs a multi-di-
mensional attention mechanism module. From the 
perspective of spatio-temporal channels, three mod-
ules were established: spatial feature attention en-
hancement module, temporal feature attention en-
hancement module, and channel feature attention 
enhancement module. Guide the model to focus on 
key spatiotemporal channel features and reduce the 
impact of redundant features. The output feature map 
of each module is multiplied by the input feature map 
to enhance attention based on the original feature 
map. The following will introduce the implementa-
tion methods of the three modules built in sequence. 
Spatial feature attention enhncement module: This 
module provides different attention intensities to 
key points at different spatial angles, enhancing the 
feature expression of joint features related to actions 
during training and learning in the model. Its calcula-
tion is shown in Equation (4):
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In the formula, N is the total number of nodes on 
the skeleton. 

The interaction connection between two nodes is 
calculated using the dot product of vectors. Let the 
channel size of the input feature fin of the network 
model be Cm×T×N, and use embedding functions θ 
and ϕ to map the input feature map size to size 
Ce×T×N. For the embedding function, this article 
uses two 1x1 convolution kernels to implement the 
embedding functions θ and ϕ. The size of the input 
feature map is transformed, and the output feature 
maps of the two convolution kernels are N×CeT and 
CeT×N, respectively. The matrix multiplication is 
performed on the two output feature maps to 
eliminate the dimension CeT and obtain a similar 
adjacency matrix Ck with a size N×N, where the 
values of the elements of the matrix represent the 
similarity of their corresponding nodes νi and νj. 

The normalization effect of Gaussian embedding 
function in Equation (2) is similar to the structural 
effect of the SoftMax function. Therefore, to 
facilitate the implementation of  above function 
using neural network layers, the SoftMax function 
can be used to calculate the similarity matrix Ck of 
nodes, as shown in Equation (3): 
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In the formula, 𝑊𝑊𝑊𝑊𝜃𝜃𝜃𝜃  and 𝑊𝑊𝑊𝑊𝜑𝜑𝜑𝜑  represent the 
parameters of the embedding functions 𝜃𝜃𝜃𝜃  and φ , 
respectively. 

1.2 Multidimensional Attention Mechanism 

The core principle of attention mechanism is to find 
the correlation between local data based on the 
input raw data, and to reallocate attention 
computing resources reasonably. In research based 
on bone key points, it is particularly important to 
find the correlation between two spatially 
nonadjacent joints. Taking inspiration from this, 
this article designs a multi-dimensional attention 
mechanism module. From the perspective of spatio-
temporal channels, three modules were established: 
spatial feature attention enhancement module, 
temporal feature attention enhancement module, 
and channel feature attention enhancement 
module. Guide the model to focus on key 
spatiotemporal channel features and reduce the 
impact of redundant features. The output feature 
map of each module is multiplied by the input 

feature map to enhance attention based on the 
original feature map. The following will 
introduce the implementation methods of the 
three modules built in sequence. Spatial 
feature attention enhancement module: This 
module provides different attention intensities 
to key points at different spatial angles, 
enhancing the feature expression of joint 
features related to actions during training and 
learning in the model. Its calculation is shown 
in Equation (4): 
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In the formula: σ  is a nonlinear 
transformation function, which is completed 
using the Sigmoid activation function in this 
section. The curve of the Sigmoid function is 
an S-shaped growth curve that can map input 
variables between (0,1). The curve has the 
characteristics of smoothness and easy 
differentiation, which is more suitable for the 
data-driven adaptive graph convolutional 
network proposed in this paper and can 
strengthen the role of resource reallocation in 
attention mechanisms. The s in gs  represents 
spatial angle, and gs represents feature 
extraction at spatial angle. In this section, one-
dimensional convolution is used to generate 
spatial attention intensity for different key 
points at spatial angle, enhancing or 
weakening the influence of different joints in 
action features. X∈RC×T×N is the input feature 
map of the spatial feature attention 
enhancement module, with a number of 
channels of C×T×N. The average pooling layer 
AvgPool is used to take the mean of the input 
feature map on the spatial channels, and 
channel transformation is performed on the 
input feature map to transform its channel 
number from C×T×N to C×1×N , compressing 
the time dimension to fully enhance the spatial 
attention feature. Ms∈R1×1×N  is the output 
feature map of the spatial feature attention 
enhancement module, and the result of point 
multiplication with the input feature map is 
the addition of the input feature map and 
input to the next module. 

Time feature attention enhancement module: 
The function of this module is similar to the 
SAM module, guiding the model to enhance 
its attention to local action time segments 
during training, while suppressing the 
influence of irrelevant time segments, 
improving the efficiency of training and 
learning. The calculation method is shown in 
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improving the efficiency of training and learning. The 
calculation method is shown in Equation (5): 

 
 
Equation (5): 
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where: Mt∈R1×T×1 is the output of the time feature 
attention enhancement module, which is input into 
the next module after matrix dot multiplication and 
addition with the output of the previous module; 
AvgPools represents performing average pooling on 
the spatial dimension of the input feature map; gt 
performs convolution on the pooled feature map in 
the time dimension, similar to the SAM module, 
which uses one-dimensional convolution to 
implement this function. 

Channel feature attention enhancement module: 
The CAM module emphasizes that the data features 
of different channels have different semantic levels 
in the action category judgment of different data 
samples, enhancing the feature discrimination 
ability of channels. The calculation method of CAM 
is shown in Equation (6): 
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In the formula, Mc∈RC×1×1 represents the feature map 
output by the CAM module, which is then 
multiplied and added with the input of the module 
before being output; AvgPoolst performs average 
pooling on the input feature map in both spatial and 
temporal dimensions and performs size 
transformation; The gc1 and gc2 of the CAM module 
are different from the one-dimensional convolution 
of the above modules. In the CAM module, gc1 and 
gc2 are linear functions implemented using fully 
connected layers, mainly used for feature extraction 
along the channel dimension; The δ  function is 
implemented using the ReLU activation function. 
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Arrange the three modules in order of space, time, 
and channel, and input the feature maps into the 
three modules in sequence for attention feature 
enhancement. As shown in Figure 3, the three 
modules in the figure are combined into a SAM-
TAM-CAM structure, or STC for short.  

The output of each module performs a point 

multiplication operation with its output, and 
then adds the input and point multiplication 
results to the next module, so as to achieve the 
fusion operation of the three attention module 
features. The input of the STC module is the 
output feature map of the graph convolutional 
neural network, and the output of the STC 
module is further input into the temporal 
convolutional network to extract temporal 
features [18]. 

 

2. Research Methodology 
The frame level progressive aggregation 
spatio-temporal Transformer network 
constructed in this section, given a sequence 

},...,,{ 21 TpppP =  for two-dimensional pose 
estimation, aims to reconstruct the three-
dimensional pose X∈Rj×3 of the intermediate 
frames in the video, where pt∈RJ×2 represents 
the two-dimensional coordinate position of 
the joint points at frame t. Regarding video 
frames, T represents the quantity, while J 
represents the number of connections. This 
network consists of two modules, namely 
STEP and STEP. The research content includes 
the following points: using the STEP method 
to encode joints and obtaining the association 
between joints through multi view attention 
method, obtaining joint representations 
containing spatial information; Convert the 
dimension of joint representation to pose 
representation, and use stepwise convolution 
method to fuse local temporal information 
based on this. Use segmented convolution 
method to fuse local temporal information to 
obtain pose descriptions of each node in the 
image; Finally, linear projection is used to 
extract the pose of intermediate frames [19]. 

2.1 Space Encoder (STE) 

By using the spatial Transformer module, a 
high dimensional representation of the bit 
positions of a single frame can be made and 
given 2D joint coordinates. The individual 
joint coordinates are then mapped to the high 
dimensional space using a linear layer and 
they are superimposed on the learnable spatial 
position embedding ESPos∈RJ×c. The position 
encoding combines the joint spatial position 
information with the joint point 
representation, enabling the encoder to 
actively learn the joint position information. 
The input pt∈RJ×2  of frame t becomes Z0t∈RJ×2, 
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frames, T represents the quantity, while J 
represents the number of connections. This 
network consists of two modules, namely 
STEP and STEP. The research content includes 
the following points: using the STEP method 
to encode joints and obtaining the association 
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method, obtaining joint representations 
containing spatial information; Convert the 
dimension of joint representation to pose 
representation, and use stepwise convolution 
method to fuse local temporal information 
based on this. Use segmented convolution 
method to fuse local temporal information to 
obtain pose descriptions of each node in the 
image; Finally, linear projection is used to 
extract the pose of intermediate frames [19]. 

2.1 Space Encoder (STE) 

By using the spatial Transformer module, a 
high dimensional representation of the bit 
positions of a single frame can be made and 
given 2D joint coordinates. The individual 
joint coordinates are then mapped to the high 
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they are superimposed on the learnable spatial 
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In the formula, Mc∈RC×1×1 represents the feature map 
output by the CAM module, which is then multiplied 
and added with the input of the module before being 
output; AvgPoolst performs average pooling on the in-
put feature map in both spatial and temporal dimen-
sions and performs size transformation; The gc1 and 
gc2 of the CAM module are different from the one-di-
mensional convolution of the above modules. In the 
CAM module, gc1 and gc2 are linear functions imple-
mented using fully connected layers, mainly used for 
feature extraction along the channel dimension; The 
δ  function is implemented using the ReLU activation 
function.
Arrange the three modules in order of space, time, and 
channel, and input the feature maps into the three 
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modules in sequence for attention feature enhance-
ment. As shown in Figure 3, the three modules in the 
figure are combined into a SAM-TAM-CAM struc-
ture, or STC for short. 

Figure 3 
STC attention mechanism fusion module

The output of each module performs a point multi-
plication operation with its output, and then adds 
the input and point multiplication results to the next 
module, so as to achieve the fusion operation of the 
three attention module features. The input of the STC 
module is the output feature map of the graph convo-
lutional neural network, and the output of the STC 
module is further input into the temporal convolu-
tional network to extract temporal features [18].

3. Research Methodology
The frame level progressive aggregation spatio-tem-
poral Transformer network constructed in this sec-
tion, given a sequence },...,,{ 21 TpppP =  for two-di-
mensional pose estimation, aims to reconstruct the 
three-dimensional pose X∈Rj×3 of the intermediate 
frames in the video, where pt∈RJ×2 represents the 
two-dimensional coordinate position of the joint 
points at frame t. Regarding video frames, T rep-
resents the quantity, while J represents the number of 
connections. This network consists of two modules, 
namely STEP and STEP. The research content in-
cludes the following points: using the STEP method to 
encode joints and obtaining the association between 
joints through multi view attention method, obtain-
ing joint representations containing spatial informa-
tion; Convert the dimension of joint representation 
to pose representation, and use stepwise convolution 
method to fuse local temporal information based on 
this. Use segmented convolution method to fuse local 

temporal information to obtain pose descriptions of 
each node in the image; Finally, linear projection is 
used to extract the pose of intermediate frames [19].

3.1. Space Encoder (STE)
By using the spatial Transformer module, a high di-
mensional representation of the bit positions of a sin-
gle frame can be made and given 2D joint coordinates. 
The individual joint coordinates are then mapped to 
the high dimensional space using a linear layer and 
they are superimposed on the learnable spatial po-
sition embedding ESPos∈RJ×c. The position encoding 
combines the joint spatial position information with 
the joint point representation, enabling the encoder 
to actively learn the joint position information. The 
input pt∈RJ×2 of frame t becomes Z0

t∈RJ×2, where J 
represents the spatial embedding dimension, and 
then the obtained feature sequence Z0

t is input into 
the spatial transformer encoder. The encoder is com-
posed of 1N cascaded structures, with two sub mod-
ules in each layer, namely multi head attention and a 
feedforward network.

3.1.1. Capturing Global Attitude Information
Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at differ-
ent positions using multi head attention. Each head 
uses scaled column dot product attention in parallel, 
and finally concatenates multiple attention heads as 
outputs.
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Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 
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points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 
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The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 
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Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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Among them, LN represents LayerNorm. In 
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Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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TTE reduces the length of the time dimension 

, Q, K and V are 
created by multiplying the input feature matrix by 
three weight matrices WQ,WK,WV∈Rc×c :

  
where J represents the spatial embedding 
dimension, and then the obtained feature sequence 
Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 

Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 
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The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 
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Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying WQ,WK,WV∈Rc×c with 
the attitude representation matrix Z∈RJ×c, where 
Q,K,V∈RJ×c and Q×K are used to calculate the degree of 
mutual influence between each joint point. This influ-
ence matrix is multiplied by the value matrix V. At the 
same time, a scaling factor is used to normalize the 
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output global attention matrix, effectively preventing 
gradient vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial atti-
tude information.

3.1.2. Consolidate Joint Information (FFN)
After the joint feature vector is output from Multi 
head attention, it has already fused joint information 
from other positions. FFN is used to consolidate the 
joint’s own representation information, only using 
fully connected layers without considering the in-
fluence of neighboring nodes and performing feature 
transformation on its own position representation. 
This operation not only aims to integrate joint infor-
mation from different positions in space for each joint 
representation, but also to consolidate the joint’s own 
information, rather than simply weighted averaging 
spatial information.

3.1.3. Complete Process of Spatial Information 
Extraction
Using Z∈RJ×c as input, describe the data processing 
process for each layer as follows:

  
where J represents the spatial embedding 
dimension, and then the obtained feature sequence 
Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 

Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 
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The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 
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Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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where J represents the spatial embedding 
dimension, and then the obtained feature sequence 
Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 

Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 

VKQ ZWVZWKZWQ === ,, .                                (9) 

The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 
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Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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where J represents the spatial embedding 
dimension, and then the obtained feature sequence 
Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 

Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 

VKQ ZWVZWKZWQ === ,, .                                (9) 

The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 

11
' ))(( −− += lll ZZLNMSAZ  ,                  (10) 

'))(( lll ZXZLNFFNZ +=   ,                  (11) 

)( LL ZLNZ =  .                                         (12) 

Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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Among them, LN represents LayerNorm. In order to 
maintain the stability of data features, the input fea-
tures of the previous layer are processed using LN, 
which can reduce the changes in feature distribution 
during nonlinear changes, accelerate network training, 
and also play a certain role in preventing overfitting.

3.2. Time Encoder (TTE)
After encoding a single frame pose into high-dimen-
sional space using STE, the dependency relationship 
between time series is modeled using TTE. For the 
i-th frame, the STE output Z∈RJ×c is transformed into 
a vector R1×(J-c), and then these vectors from the f input 
frame are connected as Z∈Rf×C. Among them, C=J·c 
adds learnable temporal position encoding ETPos∈Rf×C 
to preserve the frame position information. For TTE, 
similar to the STE structure, N2 identical hierarchical 
connections are used, and each layer uses an atten-
tion module to extract global temporal information 
from the long sequence. For the feature of redundant 

information in the time series, a convolutional feed-
forward network (CFFN) is used to capture local 
temporal information while fusing redundant infor-
mation, allowing the network to focus its attention on 
the pose of the intermediate frame.
CFFN can reduce redundant information while ex-
tracting local temporal information. It uses step con-
volution to fuse the pose representations of adjacent 
frames, supplementing some information that cannot 
be obtained due to occlusion. The pose representation 
changes from the output of the multi head attention 
layer to Z∈Rf×Cin , which will be used as input. One di-
mensional convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward net-
work can be written as:

  
where J represents the spatial embedding 
dimension, and then the obtained feature sequence 
Z0t is input into the spatial transformer encoder. The 
encoder is composed of 1N cascaded structures, 
with two sub modules in each layer, namely multi 
head attention and a feedforward network. 

2.1.1 Capturing Global Attitude Information 

Attention can calculate the influence between joint 
points, capture global pose information, and jointly 
model information from different subspaces at 
different positions using multi head attention. Each 
head uses scaled column dot product attention in 
parallel, and finally concatenates multiple attention 
heads as outputs. 
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wherein 

VdQKSoftVKQAttention T )/max(),,( = , Q, K and 
V are created by multiplying the input feature 
matrix by three weight matrices WQ,WK,WV∈Rc×c : 
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The query matrix Q, key matrix K, and value matrix 
V are obtained by multiplying                  
WQ,WK,WV∈Rc×c with the attitude representation 
matrix Z∈RJ×c , where Q,K,V∈RJ×c and Q×K are used 
to calculate the degree of mutual influence between 
each joint point. This influence matrix is multiplied 
by the value matrix V. At the same time, a scaling 
factor is used to normalize the output global 
attention matrix, effectively preventing gradient 
vanishing or exploding problems. Finally, the 
obtained joint representation has global spatial 
attitude information. 

2.1.2 Consolidate Joint Information (FFN) 

After the joint feature vector is output from Multi 
head attention, it has already fused joint 
information from other positions. FFN is used to 
consolidate the joint's own representation 
information, only using fully connected layers 
without considering the influence of neighboring 
nodes and performing feature transformation on its 
own position representation. This operation not 
only aims to integrate joint information from 
different positions in space for each joint 
representation, but also to consolidate the joint's 
own information, rather than simply weighted 
averaging spatial information. 

2.1.3 Complete Process of Spatial Information 
Extraction 

Using Z∈RJ×c as input, describe the data 
processing process for each layer as follows: 
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Among them, LN represents LayerNorm. In 
order to maintain the stability of data features, 
the input features of the previous layer are 
processed using LN, which can reduce the 
changes in feature distribution during 
nonlinear changes, accelerate network 
training, and also play a certain role in 
preventing overfitting. 

2.2 Time Encoder (TTE) 

After encoding a single frame pose into high-
dimensional space using STE, the dependency 
relationship between time series is modeled 
using TTE. For the i-th frame, the STE output 
Z∈RJ×c is transformed into a vector R1×(J-c), and 
then these vectors from the f input frame are 
connected as Z∈Rf×C. Among them, C=J·c adds 
learnable temporal position encoding 
ETPos∈Rf×C to preserve the frame position 
information. For TTE, similar to the STE 
structure, N2 identical hierarchical connections 
are used, and each layer uses an attention 
module to extract global temporal information 
from the long sequence. For the feature of 
redundant information in the time series, a 
convolutional feedforward network (CFFN) is 
used to capture local temporal information 
while fusing redundant information, allowing 
the network to focus its attention on the pose 
of the intermediate frame. 

CFFN can reduce redundant information 
while extracting local temporal information. It 
uses step convolution to fuse the pose 
representations of adjacent frames, 
supplementing some information that cannot 
be obtained due to occlusion. The pose 
representation changes from the output of the 
multi head attention layer to Z∈Rf×Cin , which 
will be used as input. One dimensional 
convolution uses a kernel size of K, a step 
factor of S, and the convolutional feedforward 
network can be written as: 
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TTE reduces the length of the time dimension layer by 
layer and combines adjacent pose representations into 
shorter sequence length representations. At the same 
time, it reduces redundant information in the time 
series, and finally outputs the feature representation 
Y∈R1×Cout Y∈R1×Cout of the intermediate target frame.
Finally, use the LayerNorm layer and a linear MLP 
block to regress Y∈R1×Cout and output y∈R1×(J·3), output-
ting the 3D pose of the intermediate frames.

3.3. Loss Function
Mean squared error loss “Optimality criterion used to 
minimize euclidean distance between the predicted 
3D poses and labeled joints:” is given by:

 
 

 
layer by layer and combines adjacent pose 
representations into shorter sequence length 
representations. At the same time, it reduces 
redundant information in the time series, and 
finally outputs the feature representation Y∈R1×Cout 
Y∈R1×Cout of the intermediate target frame. 

Finally, use the LayerNorm layer and a linear MLP 
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2.3 Loss Function 

Mean squared error loss “Optimality criterion used 
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The values represented by pk and p̂ k  are actually the 
predicted locations of the k-th 3D corner point with 
respect to their true labels. 

 
3. Experimental Setup 
This network captures spatial information through 
graph attention blocks and models long-term 
contexts using temporal dilated convolution, as 
shown in Figure 4. The graph attention module 
learns the symmetry of bone joints, local kinematic 
relationships of joints, and global pose semantics, 
while TCN can flexibly capture changing time 
series information, as shown in Figure 4(a). For 
single frame scenes, dilated convolution can be 
replaced with stride convolution for fast inference 
without the need to retrain a new model. For time 
modeling, this section designs a TCN network and 
extends it to handle three-dimensional spatio-
temporal sequences; For local spatial features, GCN 
is used to model local connections, symmetric 
connections, and kinematic connections, which are 
referred to as "local graph attention" in this section, 
as shown in Figure 4(b). For global spatial features, 
self-attention mechanism is used to express pose 
semantics through data-driven learning, which is 
called "global graph attention", as shown in Figure 
4(c). 

Meanwhile ，  Graph Attention was utilized to 
capture hierarchically structured human bodies ，
which could then be leveraged to obtain temporal-
wide holistic meaning representation especially for 
local-space / Global-Space fusion as well as 
Interleave between Temporal Module & Spatio-
Temporal Modules to extract and sift through 
spatiotemporal features of 2-dimensional joint 

sequences 。 

 

Figure 4 Spatiotemporal Graph Attention 
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On this basis, a series of two-dimensional 
motion prediction models were proposed and 
simulated. The specific content involved 
includes based on TCN theory, researching 
time models based on TCN, and solving the 
problem of temporal data dependence; 
Research on skeleton motion and human 
symmetry modeling methods based on human 
spatial attention networks; Based on the global 
human spatial attention model, achieve 
effective representation of human spatial 
features. 

3.1 Time Convolutional Network 

The method consists of an input layer, an 
output layer and a B-layer time convolution 
module, which enables flexible tuning of the 
perceptual domain by adjusting the core size 
and convolution coefficients. One kind of 1D 
convolution with a core size of k and a null 
coefficient of d=kB is used for each piece, and 
then a convolution with a core size of 1 is used. 
On this basis, we replace the original 1D 
convolution with a 1D convolution with k×1 
core size. Based on the characteristics of the 
TCN network, we design a model that can 
vary over time within the perceptual field and 
transform it into two dimensions based on a 
one-dimensional BatchNorm, which is added 
to normalize the starting position of the 
network. 

3.2 Local Attention Map 

Within any given time frame, two-
dimensional joints represent the joints of 
human bones, which can naturally be 
represented by undirected graphs, where 
joints are nodes and human limbs are edges. 
When using the SemGCN framework, the 
image can be modelled by constructing a 

. (14)

The values represented by pk and p̂ k  are actually the 
predicted locations of the k-th 3D corner point with 
respect to their true labels.

4. Experimental Setup
This network captures spatial information through 
graph attention blocks and models long-term con-
texts using temporal dilated convolution, as shown in 
Figure 4. The graph attention module learns the sym-
metry of skeleton joints, local kinematic relationships 
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of joints, and global pose semantics, while TCN can 
flexibly capture changing time series information, as 
shown in Figure 4(a). For single frame scenes, dilated 
convolution can be replaced with stride convolution 
for fast inference without the need to retrain a new 
model. For time modeling, this section designs a TCN 
network and extends it to handle three-dimensional 
spatio-temporal sequences; For local spatial features, 
GCN is used to model local connections, symmetric 
connections, and kinematic connections, which are 
referred to as “local graph attention” in this section, 
as shown in Figure 4(b). For global spatial features, 
self-attention mechanism is used to express pose se-
mantics through data-driven learning, which is called 
“global graph attention”, as shown in Figure 4(c).
Meanwhile， Graph Attention was utilized to cap-
ture hierarchically structured human bodies ，which 
could then be leveraged to obtain temporal-wide 
holistic meaning representation especially for lo-
cal-space / Global-Space fusion as well as Interleave 
between Temporal Module & Spatio-Temporal Mod-
ules to extract and sift through spatiotemporal fea-
tures of 2-dimensional joint sequences.
On this basis, a series of two-dimensional motion 
prediction models were proposed and simulated. 
The specific content involved includes based on TCN 
theory, researching time models based on TCN, and 
solving the problem of temporal data dependence; 
Research on skeleton motion and human symmetry 
modeling methods based on human spatial attention 

networks; Based on the global human spatial atten-
tion model, achieve effective representation of hu-
man spatial features.

4.1. Time Convolutional Network
The method consists of an input layer, an output lay-
er and a B-layer time convolution module, which en-
ables flexible tuning of the perceptual domain by ad-
justing the core size and convolution coefficients. One 
kind of 1D convolution with a core size of k and a null 
coefficient of d=kB is used for each piece, and then a 
convolution with a core size of 1 is used. On this ba-
sis, we replace the original 1D convolution with a 1D 
convolution with k×1 core size. Based on the charac-
teristics of the TCN network, we design a model that 
can vary over time within the perceptual field and 
transform it into two dimensions based on a one-di-
mensional BatchNorm, which is added to normalize 
the starting position of the network.

4.2. Local Attention Map
Within any given time frame, two-dimensional joints 
represent the joints of human skeletons, which can 
naturally be represented by undirected graphs, where 
joints are nodes and human limbs are edges. When us-
ing the SemGCN framework, the image can be mod-
elled by constructing a skeletal graph of 2D nodes, 
representing the 2D bit-pose as a graph g=(V,E), 
where N nodes are represented by sets of edges, and 
X={x1,x2,...,xN|x1∈R1×C} contains the set of node char-

Figure 4 
Spatiotemporal Graph Attention Network
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acteristics for the characteristics of C channels. The 
structure of the graph can be initialized with a first 
order continuous matrix A∈RN×N which represents 
the links between nodes and a unitary matrix I  which 
represents the self-connectivity. In GCN, Ã=(A+I) is a 
convolution core. In SemGCN, given the features of l 
nodes, the following convolution operation is used to 
obtain the feature output of subsequent layers:

  
skeletal graph of 2D nodes, representing the 2D bit-
pose as a graph g=(V,E), where N nodes are 
represented by sets of edges, and 
X={x1,x2,...,xN|x1∈R1×C}  contains the set of node 
characteristics for the characteristics of  C channels. 
The structure of the graph can be initialized with a 
first order continuous matrix A∈RN×N  which 
represents the links between nodes and a unitary 
matrix I  which represents the self-connectivity. In 
GCN, Ã=(A+I) is a convolution core. In SemGCN, 
given the features of l nodes, the following 
convolution operation is used to obtain the feature 
output of subsequent layers: 

( 1) ( )( )l lX M A X Wρ+ = 

 .                    (15) 

Here there is a W ∈ RCl×Cl+1 denoting a learnable 
matrix for the output channel transformation, and 
an NNRM ×∈ denoting a mask matrix, and an   
denoting a symbol for cell-level multiplication, and 
a ρ  denoting non-linear software for normalizing 
the effect of node characteristics on corresponding 
neighbouring nodes in the graph. 

This formula can learn the spatial semantic 
information between adjacent nodes; however, the 
representation of first-order adjacent nodes is very 
poor for the symmetrical structure of the human 
body centered on the torso and the kinematic 
constraints in the human body. Therefore, this 
section explicitly considers structural knowledge 
related to human symmetry. In addition, the first-
order model cannot accurately describe the spatial 
location of a person because it is limited to first-
order neighbouring joints, i.e., the distal joints of the 
wrist, ankle, and head are only available at a more 
distant level and are not capable of effective spatial 
localization. Therefore, in order to mitigate the 
problem of inaccurate localization, second-order 
adjacent nodes (ankle-knee-hip), upper limbs 
(wrist-elbow-shoulder), head (head-neck-chest), 
and torso (chest-spine-pelvis) are used in this 
section [20-21]. 

To address these issues, this section adopts a 
convolution operator with a larger kernel to modify 
the classical GCN operation, grouping adjacent 
nodes based on semantics and using different 
kernels for different adjacent nodes. As shown in 
Figure 5(b), adjacent nodes are divided into four 
groups based on intuitive explanations: 

(1) Node itself Aself 

(2) Adjacent nodes on physical connections Aphy 

(3) Adjacent nodes indirectly "symmetrically 
correlated" Asym. 

(4) Second-order adjacent nodes related to 
motion chains Asec.  

Figure 5 Human Skeleton Map and Its 
Grouping Adjacency Matrix 

(a) Human Skeleton Map   

(b) Group adjacency matrix 

 
Based on the above classification, the update 
of graph convolution in Equation (15) 
becomes: 

( 1) ( )( )l l
k kk

X M A X Wρ+ =∑ 
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where k represents the index of adjacent node 
types, Ã and mask Mk are multiplied to obtain 
adjacency matrices for different classes, and W 
is the weight matrix of the k-th type of adjacent 
node. 

3.3 Global Attention Map 

The association between distal joints (e.g., 
wrist-ankle) is crucial for coding the overall 
body posture. This helps to solve problems 
such as distance ambiguity and occlusion 
between motion subs. In order to 
accommodate non-local relations and encode 
them efficiently, this paper plans to use a 
multi-attention end-to-end GCN to generalize 
the adjacency relations proposed in (16) to the 
whole. 
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Among them, K  is the number of attention 
heads, Bk∈RN×N is the adaptive global adjacency 
matrix, Ck∈RN×N is the learnable global 
adjacency matrix, and Wk∈RCl×Cl is the 
transformation matrix. In this experiment, 8 
parallel attention heads were set up. Next, we 
will discuss in detail the design and role of the 
defined adaptive global adjacency matrix Bk 
and the learnable global adjacency matrix Ck. 

Bk represents a data correlation matrix that 
learns the influence coefficients of all nodes on 

. (15)

Here there is a W ∈ RCl×Cl+1 denoting a learnable ma-
trix for the output channel transformation, and an 

NNRM ×∈ denoting a mask matrix, and an ⊙ denot-
ing a symbol for cell-level multiplication, and a ρ de-
noting non-linear software for normalizing the effect 
of node characteristics on corresponding neighbour-
ing nodes in the graph.
This formula can learn the spatial semantic informa-
tion between adjacent nodes; however, the represen-
tation of first-order adjacent nodes is very poor for the 
symmetrical structure of the human body centered 
on the torso and the kinematic constraints in the hu-
man body. Therefore, this section explicitly considers 
structural knowledge related to human symmetry. 

In addition, the first-order model cannot accurately 
describe the spatial location of a person because it 
is limited to first-order neighbouring joints, i.e., the 
distal joints of the wrist, ankle, and head are only 
available at a more distant level and are not capable 
of effective spatial localization. Therefore, in order 
to mitigate the problem of inaccurate localization, 
second-order adjacent nodes (ankle-knee-hip), up-
per limbs (wrist-elbow-shoulder), head (head-neck-
chest), and torso (chest-spine-pelvis) are used in this 
section [20-21].
To address these issues, this section adopts a convolu-
tion operator with a larger kernel to modify the clas-
sical GCN operation, grouping adjacent nodes based 
on semantics and using different kernels for different 
adjacent nodes. As shown in Figure 5(b), adjacent 
nodes are divided into four groups based on intuitive 
explanations:
1 Node itself Aself

2 Adjacent nodes on physical connections Aphy

3 Adjacent nodes indirectly “symmetrically cor-
related” Asym.

4 Second-order adjacent nodes related to motion 
chains Asec. 

Figure 5
Human Skeleton Map and Its Grouping Adjacency Matrix

(a) Human Skeleton Map (b) Group adjacency matrix
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Based on the above classification, the update of graph 
convolution in Equation (16) becomes:
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Figure 5(b), adjacent nodes are divided into four 
groups based on intuitive explanations: 
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where k represents the index of adjacent node 
types, Ã and mask Mk are multiplied to obtain 
adjacency matrices for different classes, and W 
is the weight matrix of the k-th type of adjacent 
node. 

3.3 Global Attention Map 

The association between distal joints (e.g., 
wrist-ankle) is crucial for coding the overall 
body posture. This helps to solve problems 
such as distance ambiguity and occlusion 
between motion subs. In order to 
accommodate non-local relations and encode 
them efficiently, this paper plans to use a 
multi-attention end-to-end GCN to generalize 
the adjacency relations proposed in (16) to the 
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matrix, Ck∈RN×N is the learnable global 
adjacency matrix, and Wk∈RCl×Cl is the 
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end-to-end GCN to generalize the adjacency relations 
proposed in (17) to the whole.

  
skeletal graph of 2D nodes, representing the 2D bit-
pose as a graph g=(V,E), where N nodes are 
represented by sets of edges, and 
X={x1,x2,...,xN|x1∈R1×C}  contains the set of node 
characteristics for the characteristics of  C channels. 
The structure of the graph can be initialized with a 
first order continuous matrix A∈RN×N  which 
represents the links between nodes and a unitary 
matrix I  which represents the self-connectivity. In 
GCN, Ã=(A+I) is a convolution core. In SemGCN, 
given the features of l nodes, the following 
convolution operation is used to obtain the feature 
output of subsequent layers: 

( 1) ( )( )l lX M A X Wρ+ = 

 .                    (15) 

Here there is a W ∈ RCl×Cl+1 denoting a learnable 
matrix for the output channel transformation, and 
an NNRM ×∈ denoting a mask matrix, and an   
denoting a symbol for cell-level multiplication, and 
a ρ  denoting non-linear software for normalizing 
the effect of node characteristics on corresponding 
neighbouring nodes in the graph. 
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section explicitly considers structural knowledge 
related to human symmetry. In addition, the first-
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adjacent nodes (ankle-knee-hip), upper limbs 
(wrist-elbow-shoulder), head (head-neck-chest), 
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where k represents the index of adjacent node 
types, Ã and mask Mk are multiplied to obtain 
adjacency matrices for different classes, and W 
is the weight matrix of the k-th type of adjacent 
node. 

3.3 Global Attention Map 

The association between distal joints (e.g., 
wrist-ankle) is crucial for coding the overall 
body posture. This helps to solve problems 
such as distance ambiguity and occlusion 
between motion subs. In order to 
accommodate non-local relations and encode 
them efficiently, this paper plans to use a 
multi-attention end-to-end GCN to generalize 
the adjacency relations proposed in (16) to the 
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Among them, K  is the number of attention 
heads, Bk∈RN×N is the adaptive global adjacency 
matrix, Ck∈RN×N is the learnable global 
adjacency matrix, and Wk∈RCl×Cl is the 
transformation matrix. In this experiment, 8 
parallel attention heads were set up. Next, we 
will discuss in detail the design and role of the 
defined adaptive global adjacency matrix Bk 
and the learnable global adjacency matrix Ck. 

Bk represents a data correlation matrix that 
learns the influence coefficients of all nodes on 
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Among them, K  is the number of attention heads, 
Bk∈RN×N is the adaptive global adjacency matrix, 
Ck∈RN×N is the learnable global adjacency matrix, and 
Wk∈RCl×Cl is the transformation matrix. In this experi-
ment, 8 parallel attention heads were set up. Next, we 
will discuss in detail the design and role of the defined 
adaptive global adjacency matrix Bk and the learnable 
global adjacency matrix Ck.
Bk represents a data correlation matrix that learns the 
influence coefficients of all nodes on each node in the 
graph. In this section, the attention coefficient func-
tion is used to determine whether there are connec-
tions between nodes and the strength of the connec-
tions. That is to say, given two node features xi and xj, 
two functions θ and ϕ are first applied to down sample 
the features of each node from Ci to Cl/K channels. 
As the number of channels for each node decreases, 
the total computational cost of multi head attention 
is similar to that of single head attention for the en-
tire channel. Then, the two vectors are dot products 
to calculate the correlation between the two nodes. 
In order to facilitate coefficient comparison between 
nodes, the output is normalized using the SoftMax 
function and scaled using dk to avoid the gradient of 
the dot product being too small after passing through 

the SoftMax function. This process can be expressed 
by the following formula:
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where θ and ϕ are linear functions; dk is set to the 
number of channels through which the feature 
passes through the linear layer, Cl/K to prevent 
training instability caused by excessive weights. Ck 
is a learnable adjacency matrix with an initial value 
of 0. Unlike Bk, the value of Ck is updated by 
calculating the influence coefficient between each 
joint feature. The elements in Ck are arbitrary, 
indicating the correlation between the two joints 
learned by the network itself. 

 

4. Experimental Results and 
Analysis 

4.1 Training Set 

In this section, we used four neuronal networks of 
different sizes, 9, 27, 81, and 243, to train the built 
model. For the two perceptual wilds of 9 and 27, we 
increased the number of output channels of the 
high-altitude convolutional neural network by 128 
channels, respectively. While for the two perceptual 
fields of 81 and 243, we set 64 channels and 32 
channels, respectively. Meanwhile, only the 
maximum maxima between the predicted 3-
dimensional coordinates and the markers were 
calculated. In this section, the performance of 
Human 3.6 M and HumanEva-I is evaluated using 
the common evaluation metrics 1 and 2. The GPU 
used for the experiments was a Ge Force RTX 3080, 
Cuda version 12.0, and the model was running on 
an Ubuntu 16.04 system. 

Training and inference settings: To train the 
model, a single frame prediction training 
strategy is used. When inferring, for 
predicting a single frame, using dilated 
convolution can waste a lot of computing 
power, reduce prediction efficiency, and 
increase prediction time. Therefore, it is 
necessary to replace dilated convolution with 
step convolution, which improves efficiency 
through layer-by-layer inference. When the 
input is the entire long video sequence, step 
convolution needs to be switched to dilated 
convolution, shifting from an optimized 
training strategy to layer by layer 
implementation to make faster predictions. 

Experimental setup: The number of joints 
varies in different datasets. In Human3.6M, a 
total of 32 joints are labeled, and 17 of them are 
generally used to predict human posture. In 
HumanEva-I, 15 joints are used. In addition, 
high frame rates can lead to information 
redundancy, which can have a negative 
impact on the encoding of global semantics 
over time. For this reason, it is necessary to 
down sample the Human3.6M dataset from 
50FPS to 10FPS. On the other hand, due to the 
short duration of videos in the HumanEva-I 
dataset, down sampling is not performed. In 
real-time estimation, the duration of long 
videos is not suitable for fast estimation, 
therefore, the model of 243 receptive field is 
not down sampled. Finally, in order to expand 
the dataset, this section uses horizontal 
flipping to enhance the data during training 
and testing. 

This section uses the PyTorch deep learning 
framework to implement the constructed 
model and conducts end-to-end training. The 
Amsgrad optimizer is used for optimization, 
with a batch size of 128 and 60 epochs trained. 
The learning rate starts from 0.001, and then a 
learning decay factor of 0.95 is applied in each 
epoch, with the dropout rate set to 0.05 in each 
dropout layer. For HumanEva-I, the batch size 
is 32, the learning decay factor is 0.98, the 
dropout rate is 0.5, and 200 epochs are trained. 

4.2 Ablation Experiment 

In the ablation experiment, the two-
dimensional pose detected by CPN was used 
as input in the model with a receptive field of 
27. This section analyzes the impact of 
different spatial semantics on prediction 
results in network structures, as shown in 

,
(18)

where θ and ϕ are linear functions; dk is set to the 
number of channels through which the feature passes 
through the linear layer, Cl/K to prevent training in-
stability caused by excessive weights. Ck is a learnable 
adjacency matrix with an initial value of 0. Unlike Bk, 
the value of Ck is updated by calculating the influence 
coefficient between each joint feature. The elements 
in Ck are arbitrary, indicating the correlation between 
the two joints learned by the network itself.

5. Experimental Results and Analysis
5.1. Training Set
In this section, we used four neuronal networks of dif-
ferent sizes, 9, 27, 81, and 243, to train the built model. 
For the two perceptual wilds of 9 and 27, we increased 
the number of output channels of the high-altitude 
convolutional neural network by 128 channels, re-
spectively. While for the two perceptual fields of 
81 and 243, we set 64 channels and 32 channels, re-
spectively. Meanwhile, only the maximum maxima 
between the predicted 3-dimensional coordinates 
and the markers were calculated. In this section, the 
performance of Human 3.6 M and HumanEva-I is 
evaluated using the common evaluation metrics 1 and 
2. The GPU used for the experiments was a Ge Force 
RTX 3080, Cuda version 12.0, and the model was run-
ning on an Ubuntu 16.04 system.
Training and inference settings: To train the model, 
a single frame prediction training strategy is used. 
When inferring, for predicting a single frame, using 
dilated convolution can waste a lot of computing pow-
er, reduce prediction efficiency, and increase predic-
tion time. Therefore, it is necessary to replace dilated 
convolution with step convolution, which improves 
efficiency through layer-by-layer inference. When 
the input is the entire long video sequence, step con-
volution needs to be switched to dilated convolution, 
shifting from an optimized training strategy to layer 
by layer implementation to make faster predictions.
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Experimental setup: The number of joints varies in 
different datasets. In Human3.6M, a total of 32 joints 
are labeled, and 17 of them are generally used to pre-
dict human posture. In HumanEva-I, 15 joints are 
used. In addition, high frame rates can lead to infor-
mation redundancy, which can have a negative im-
pact on the encoding of global semantics over time. 
For this reason, it is necessary to down sample the 
Human3.6M dataset from 50FPS to 10FPS. On the 
other hand, due to the short duration of videos in 
the HumanEva-I dataset, down sampling is not per-
formed. In real-time estimation, the duration of long 
videos is not suitable for fast estimation, therefore, 
the model of 243 receptive field is not down sampled. 
Finally, in order to expand the dataset, this section 
uses horizontal flipping to enhance the data during 
training and testing.
This section uses the PyTorch deep learning frame-
work to implement the constructed model and con-
ducts end-to-end training. The Amsgrad optimizer is 
used for optimization, with a batch size of 128 and 60 
epochs trained. The learning rate starts from 0.001, 
and then a learning decay factor of 0.95 is applied in 
each epoch, with the dropout rate set to 0.05 in each 
dropout layer. For HumanEva-I, the batch size is 32, 
the learning decay factor is 0.98, the dropout rate is 
0.5, and 200 epochs are trained.

5.2. Ablation Experiment
In the ablation experiment, the two-dimensional pose 
detected by CPN was used as input in the model with 
a receptive field of 27. This section analyzes the im-
pact of different spatial semantics on prediction re-
sults in network structures, as shown in Table 1. This 
section constructs a regular graph attention spatio-
temporal network consisting of TCN and first-order 
SemGCN as the baseline, regresses two-dimensional 
joints to three-dimensional poses, and then adds dif-
ferent semantic GCNs for ablation research. The spa-
tial semantics include local kinematic relationship 
Âsec, symmetry relationship Âsym, global adaptive ma-
trix Bk, and global learnable matrix Ck. It can be seen 
that when additional local and global pose constraints 
are added, model performance steadily improves, 
with the greatest improvement coming from local 
kinematic connections, symmetry, and global adap-
tive matrices. These spatial constraints accurately 
express layered and symmetrical human structures 

and convey global pose semantics, proving the impor-
tance of rich spatial semantic information in 3D pose 
estimation tasks.
The global matrices Bk and Ck also contain local and 
symmetric joint relationships. This section aims to 
explore the impact of other modules on the predic-
tion results in the presence of global information. For 
this purpose, the effects of removing local kinematic 
connections Ãsec and symmetry Ãsym on the prediction 
of Human3.6M were studied separately, as shown in 
Table 2. 

Table 1 
Comparison of the Impact of Different Spatial Semantics

Method(T=27,CPN) MPJPE(mm) PMPJPE(mm)

Baseline 60.9 50.5

+Local GCNs with Asec 53.6 41.5

+Local GCNs with Asym 50.6 39.1

+Global GCNs with Bk 46.1 36.2

+Global GCNs with Ck 45.5 36.0

Table 2 
Comparison of the influence of local spatial semantics

Method(T=27,CPN) MPJPE(mm) ∆
Ours w/o Local GCNs with  Asec 46.3 0.8

Ours w/o Local GCNs with  Asym 46.5 1.0

Ours 45.5

Experiments have shown that removing local connec-
tions and symmetry can increase errors by 0.8 milli-
meters and 10 millimeters, respectively. is essential 
for generating more accurate 3D poses and is a sup-
plement to global spatial semantics. From this, it can 
be concluded that incorporating local connections 
and symmetric prior knowledge.

5.3. Quantitative Analysis
This section compares with other 3D pose estimation 
methods on the Human3.6M dataset. For fair compar-
ison, the same CPN detection of 2D poses is used as 
input as other methods. Table 3 demonstrates the re-
sults of the comparison between the model with sen-
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sory field of 243 and other methods. The results show 
that the method in this section achieves an improve-
ment in accuracy with evaluation metric 1. The meth-
od in this section is close to the results of [22], which 
not only utilizes spatial and temporal information, 
but also applies pose refinement and adds motion loss 
to conventionally reconstructed 3D poses, whereas 
in this section, only spatio-temporal information is 
modelled through a simple network and only MPIPE 
loss is used without any other constraints. In addi-
tion, the table also shows the prediction results us-
ing real 2D poses as inputs, which shows an accuracy 
improvement of approximately 11.0 mm compared to 
using CPN predictions as inputs
For the HumanEva-dataset, which consists of short-
er videos compared to Human3.6M, the experiments 

Table 3 
Comparison of estimation errors of different 3D human pose estimation algorithms on Human3.6M

Direct Discuss Eating Greet Phone Photo Pose Purch

Cai [18] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9

Pavllo [19] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3

Lee [20] 40.2 49.2 47.8 52.6 50.1 75.0 52.0 43.0

Liu [21] 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2

Wang [22] 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3

Liu [23] 43.3 46.1 40.9 44.6 46.6 54.0 44.1 42.9

Ours (T=243 
CPN) 41.8 44.7 41.8 44.5 45.9 52.1 42.9 42.3

Ours (T=243 GT) 33.4 37.3 29.7 33.7 32.5 36.4 37.8 32.8

Sitting SitingD Smoke Wait WalkD Walk WalkT Avg.

Cai [18] 57.9 61.9 49.7   46.6 51.3   37.1 39.4 48.8

Pavllo [19] 57.3 65.8 47.1   44.0 49.0   32.8 33.9 46.8

Lee [20] 55.8 73.9 54.1   55.6 58.2   43.3 43.3 52.8

Liu [21] 56.2 63.6 45.3   43.5 45.3   31.3 32.2 45.1

Wang [22] 56.2 60.4 46.3   42.2 46.2   31.7 31.0 44.5

Liu [23] 55.3 57.9 45.8   43.4 47.3   30.4 30.3 44.9

Ours (T=243 
CPN) 54.2 54.2 45.5 43.0 44.4 32.4 33.2 44.5

Ours (T=243 
GT) 37.1 39.4 33.7 33.2 32.7 25.7 26.7 33.5

were chosen to be evaluated using a smaller receptive 
field27. Under evaluation index 2, the prediction re-
sults of this section are compared with other meth-
ods, as shown in Table 4, due to the corruption of the 
motion capture data, the prediction error of this sec-
tion’s method is larger in the action “Walking” of S3, 
except for the other actions, in which better predic-
tion results are achieved.
In order to compare the advantages and disadvantages 
of this section’s method with TCN, the models trained 
using different receptive fields from [23] and this sec-
tion’s method are compared in terms of the number 
of parameters and estimation errors, as shown in 
Figure 5-4. As can be seen in Figure 5-4(a)), this sec-
tion’s method achieves smaller estimation errors for 
all combinations of receptive fields on Human3.6M 
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Table 4 
Comparison results of different 3D human gesture estimation algorithms in HumanEva-l

Walk Jog Box

S1 S2 S3 S1 S2 S3 S1 S2 S3

Martinez[24] 19.7 17.4 46.8 26.9 18.2 18.6

Lee [20] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4

Pavllo [19] 13.8 10.2 46.5 21.0 13.1 13.5 24.1 33.2 31.6

Liu [23] 16.8 12.3 48.8 26.4 15.2 22.5 26.6 34.1 34.2

Ours 14.3 9.9 47.3 22.6 13.0 13.0 23.7 39.5 29.9

under both evaluation metrics. In addition, the model 
using 27 receptive fields in this section is also slightly 
better than the TCN using 243 receptive fields, sug-
gesting that the use of spatial information helps to 
reconstruct a more accurate 3D pose. For the bars in 
Figure 5-4b), the model in this section uses 50.5%, 
26.2% and 44.2% fewer parameters compared to the 
TCN’s models with 9, 81 and 243 receptive fields, re-
spectively, which suggests that the interleaved com-
bination of the spatial and temporal mechanisms in 
this section’s approach makes the network used for 
video pose estimation more efficient.

5.4. Qualitative Analysis
Based on yoga and baseball sports videos, a 3D HPE 
method based on visual perceptual domain is in-
vestigated. In the yoga video shown in Figure 6(a), 
it achieves pose reconstruction with/without local 
motion linkage seconds. And in the baseball video 
shown in Figure 6(b), the method also achieves pose 
reconstruction with/without the global adaptive 
array B and labels the pose errors as blue circles. In-
terestingly, in the qualitative study of the yoga video, 
it was found that the position estimation of the end 
joints was still not accurate enough even when con-
sidering the kinematic connection. In baseball videos, 
on the other hand, even in the face of 2D pose errors 
caused by occlusion, the method is still able to sup-
press self-occlusion using global pose semantics and 
time-domain information, resulting in more accurate 
and smoother human pose results.
The experiment also considered the situation where 
the camera only captured the upper body of a person, 
as shown in Figure 7(a). The network generated a rea-
sonable three-dimensional pose of the upper body. Al-

a) Comparison of different receptive field models with 
TCN in terms of estimation error 

Figure 6  
Comparison of model performance with TCN on Human3.6M

b) Comparison of different receptive field models with 
TCN in terms of number of parameters
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though the network was only trained on the complete 
pose, it effectively reconstructed upper body test data 
that it had never seen before. Figure 7(b) shows re-
construction failure cases caused by larger two-di-
mensional pose detection errors.
Special scene reconstruction and failed reconstruction 
cases can be seen in Figure 8. And to test the speed of 2D 
to 3D video pose estimation, this section implemented 
the model using different inference modes and recep-
tive field sizes, as shown in Table 3. These tests were 

Figure 7
Visualization of the impact of Asec and  Bk on the predicted 
outcomes

(b) Visualization of the impact Bk of prediction results

(a) Visualization of the impact Asec on prediction results

Figure 8
Special scene reconstruction and failed reconstruction 
cases

(b) Reconstruction Failure Cases Caused by 2D 
Posture Errors

(a) Visualization Results of Reconstructing 3D Posture 
from Half Body

run on the platform mentioned previously, using local 
execution in the experiments, without parallel optimi-
zation of the inference. Speed comparison of different 
inference modes can be seen in Table 5.

Table 5
Speed comparison of different inference modes

Ours Layer-by-Layer 
inference

Single-frame 
inference

Receptive 
fields 27 81 243 27 81 243

Frames per 
second 18123 15703 12090 3774 2812 2190
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Due to the parallel processing of input frames through 
layer-by-layer inference, the estimation speed is fast-
er compared to single frame inference.

6. Conclusion
This article investigates the use of spatiotemporal 
graph attention mechanisms to address occlusion 
issues in 3D human pose estimation. It leverages 2D 
human skeleton information, employing mature 2D 
pose detectors such as stacked hourglass and cascad-
ed pyramid models to extract 2D skeleton data from 
monocular images. Subsequently, a neural network 
is utilized to learn the mapping relationship between 
2D and 3D poses, and to study how spatiotemporal in-
formation can enhance estimation accuracy. The arti-
cle concludes with the following findings:
1 A human action recognition algorithm based 

on data-driven graph convolution and attention 
mechanisms (AGCN-STC) is proposed. This algo-
rithm enhances the model’s ability to express dif-
ferent action types and focus on important features 
through an adaptive graph convolution structure 
and multi-dimensional attention mechanisms.

2 A spatiotemporal Transformer network is con-
structed, which compresses sequence length pro-
gressively to focus on predicting the pose of inter-
mediate frames. By utilizing the powerful sequence 
modeling capabilities of the Transformer, com-
bined with self-attention and strided convolutions 
to extract spatio-temporal features, it significantly 
improves the accuracy of 3D pose estimation.

3 A 3D human pose estimation algorithm based on 
a spatiotemporal graph attention network is pro-
posed. This algorithm captures spatial local in-
formation through graph attention and extracts 

temporal information through time convolutions, 
effectively preventing the loss of spatiotemporal 
information and enhancing the model’s robustness, 
especially when dealing with occlusion issues.

Future research in 3D human pose estimation will 
focus on improving the performance and generaliza-
tion of the model, especially in dealing with occlusion 
problems and improving real-time performance. Re-
searchers can explore more advanced spatio-tempo-
ral information fusion strategies, such as combining 
graph convolutional networks and Transformer, to 
extract and fuse spatio-temporal features more effi-
ciently. In addition, data-driven approaches, such as 
self-supervised learning and semi-supervised learn-
ing, will help models to optimize and generalize in the 
face of large amounts of data. Real-time performance 
improvement is also a focus of future research, where 
faster processing speed and lower computational cost 
can be achieved through model lightweighting and 
optimization to meet the demands of real-time appli-
cations. Cross-modal learning and the development 
of interactive applications will also be an important 
direction for future research, which will help the 3D 
human posture estimation technology to be widely 
used in human-computer interaction, virtual reality 
and other fields. Through the exploration of these re-
search directions, 3D human posture estimation tech-
nology is expected to make greater breakthroughs in 
accuracy, robustness, real-time and other aspects, so 
that it can be widely used in more fields.
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