
14

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 1

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

Vytautas Štuikys, Kristina Bespalova, Renata Burbaitė

Software Engineering Department, Kaunas University of Technology, Lithuania
e-mail: vytautas.stuikys@ktu.lt, kristina.bespalova@stud.ktu.lt, renata.burbaite@stud.ktu.lt

 http://dx.doi.org/10.5755/j01.itc.43.1.3715

Abstract. The paper presents: (1) a graph-based theoretical background to refactoring a correct heterogeneous
meta-program into its k-stage representation; (2) the refactoring method; (3) refactoring experiments with tasks taken
from different domains, including real world tasks, such as meta-programs to teach Computer Science (CS) topics
using educational robots. Refactoring meta-programs by staging enables to flexibly adapt them to the different context
of use. To do that (semi-)automatically, we use the contextual information as a priority relation (e.g. highest, lowest,
etc.) introduced within the meta-program specification. We implement the refactoring method using the so-called
activating/de-activating label (index) to change the role of meta-language constructs at different stages. The
contribution of the paper is: (1) applying the known (in programming) staging concept to heterogeneous meta-
programming; (2) a theoretical background, properties and the method to solve tasks of this kind of refactoring.

Keywords: refactoring; meta-program; meta-parameter; meta-programming; multi-stage heterogeneous meta-
program.

1. Introduction
Refactoring is the process that takes an existing

program and transforms it into an improved new
version. Refactoring changes the program’s structure
only, without affecting its external behaviour. The
improvements typically eliminate redundancy, bad
smell of code [25], improve maintainability and may
improve performance and reduce space [10, 22].

In this paper, we consider refactoring of the
heterogeneous meta-program into its representation
which we call k-stage meta-program. In general, meta-
programming is such a programming paradigm that
deals with program transformations [13], or writing
programs that generate other programs [3, 15, 16, 23].
Powerful meta-programming is essential for
approaches to automating the software development.
Most domain-specific languages and many other
software automation tasks are implemented as
program generators. At the core of meta-programming
is the explicit representation and specification of
domain variability. In the case of heterogeneous meta-
programming, we express variability aspects at a
higher-level of abstraction through parameters using a
meta-language, while the base domain functionality
we express using a target (domain) language. Thus,
heterogeneous meta-program is a domain program
generator [44].

Similarly to program refactoring, by refactoring a
meta-program into its k-stage representation, we are

also seeking for improvements; however, they are of
the quite different sort. For example, k-stage meta-
program extends generative reuse lifting it to the
meta-level (qualitative improvement). By constructing
the k-stage meta-program, we construct a meta-
generator that generates the lower-level meta-
programs. The program generator and meta-generator
(also known as meta-meta-program) are a value in
own right, though they cannot be constructed and used
in any case. Typically the degree of base (functional)
variability of a domain and its context variability
predefines the motivated use of meta-programming
approaches. Usually, at the specification level,
researchers and practitioners represent variability
using feature models [7] where variability is modelled
by variation points and variants. We consider a few
domains with such features, where meta-
programming-based generators have been approved as
a relevant technology. Examples are: e-learning,
e-commerce and components of embedded systems [6,
44].

In the e-learning domain, for example, we use
multi-stage generative learning objects (Computer
Science (CS) teaching content that is represented as
meta-programs [41]). In this case, the k-stage meta-
programs enable to flexibly (automatically) adapt the
generated content to different context of use (e.g. the
teacher’s context, such as teaching objectives and
teaching model, the students’ context (abilities,

mailto:kristina.bespalova@stud.ktu.lt

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

15

previous knowledge, etc.), the e-learning environment
context (use PC only, educational robots [30], etc.)).

In contrast to program refactoring, the structure of
k-stage meta-program after refactoring becomes more
complex as compared to its initial form because we
need additional facilities to manage staging
(designer’s viewpoint). However, from the user
perspective, the k-stage meta-program may look much
simpler because he/she actually works with the user-
friendly meta-interface that, at each stage, has the
reduced number of meta-parameters while the
implementation hides staging fully. In fact, we can
interpret the k-stage meta-program as a tool to manage
complexity by compressing information (programs,
meta-programs) into the single high-level
specification, and then, sharing the separable parts of
the specification through the generation process in the
different context of use.

The aim of the paper is to propose a theoretically-
grounded method to re-factor a meta-program into its
k-stage format and approve the method experimentally
(e.g. equivalence of such transformations) before
developing the automatic refactoring tool. Such a tool
serves for changeability (adaptation) and maintenance
of meta-programs we use in different domains (e.g.
e-learning in CS [40], e-commerce system design
[21]).

The idea of multi-stage programming is not new.
We have borrowed it from [1, 47, 48]. However, we
apply it in the new context, the heterogeneous meta-
programming domain, pursuing other aims. We focus
on generative reuse through the pre-programmed
anticipated variability (at design time) and possibility
to flexibly adopting the highly reusable meta-
programs to the different context of use by staging (at
use time) while other authors focus on performance
issues.

We believe that, by introducing k-stage meta-
programs, we can not only gain practical benefits (see
case study). We are also able to achieve
methodological aims such as better understanding of
heterogeneous meta-programs, improving their design
and maintenance methods and tools.

The paper’s main contribution is a theoretical
background of meta-program refactoring that includes:
formal definitions of basic terms, rules, properties of
models to perform transformation/refactoring
processes. We have also obtained the upper bound of
the number of stages the given meta-program can be
re-factored into the k-stage representation. On this
background, we have developed the method to
refactoring the given correct meta-program into
k-stage meta-program, thus constructing meta-
generators for particular domains.

The paper’s structure is as follows. Section 2
analyses the related work. Section 3 presents the
informal description of the approach with running
examples. Section 4 describes the theoretical
background. Section 5 provides the refactoring
method along with experimental results. Section 6

delivers a discussion and evaluates the approach.
Section 7 concludes the main results.

2. Related Work
Manipulation of the program source code is one of

the main aspects of any software development
process. As the software content in systems steadily
increases [4] and the complexity of software grows
continuously, the manual manipulation becomes ever
more infeasible. On this account, Batory [9] evaluates
software trends as “the alarming complexity of
software and the alarming rate at which software
complexity is increasing”. It is the reason why
researches and practitioner make a strong focus on
higher-level modelling (see e.g. MDA [24], Product
Line Engineering (PLE) [19, 20]) approaches and
higher-level programming now.

Meta-programming is just the case. It is a higher-
level programming paradigm which deals of how
manipulating programs as data. The result of the
manipulation is the lower-level program. There are
many different views to understand, to study or to deal
with this approach (reader can learn more from [44]).
For example, according to Veldhuizen [37], meta-
programming can be seen as a program generalization
and generation technique. The meta-programming
taxonomies [12, 35] provide a systemized knowledge
on the topic. Sheard [35] reviews also research
challenges, describes formal meta-programming
systems and their role in program generation. Meta-
programming also contributes to complexity
management. The more we use program generators,
the less code we need to write manually. Hence, the
more complex software systems can be developed.
Furthermore, their quality is better, and time-to-market
is shorter.

In large, meta-programming is the domain to
research model transformations too. Mens et al. [33]
state in this regard that the term “model
transformation” encompasses the term “program
transformation” since a model can range from the
abstract analysis models, over more concrete design
models, to very concrete models of the source code.
Visser [13] presents a taxonomy that considers two
major groups of transformations: translation and
rephrasing. Winter [38] identifies seven major bi-
directional goals of program transformation: clarity,
efficiency, computability, simplicity, functionality,
translation, and computation. Cordy and Sarkar [18]
demonstrate that meta-programs can be derived from
higher-level specifications using second order source
transformations. Trujillo et al. [32] describe ideas to
generate meta-programs from abstract specifications
of synthesis paths. The execution of such a meta-
program code synthesizes a target program of a
product line. Transformation of meta-programs leads
to the problem of measuring their semantic
equivalence.

V. Štuikys, K. Bespalova, R. Burbaitė

16

Formal and semi-formal description of meta-
programs, meta-programming and related higher-level
programming methodologies and transformations for
implementing higher-level programs has been
intensively studied by many researchers. Though
meta-programming was known and used for a long
time in formal logic programming [12], now, however,
the scope of the application of the meta-programming
techniques is much wider. These include the domains
such as programming language implementation, parser
and compiler generation [29], application and software
generators [8], product lines, program transformations
[2], generative reuse, XML-based web applications
and web component deployment [46]. Many, if not all
of the presented cases, can be summarized as multi-
stage programming, i.e. the development of programs
in several different stages.

Taha was the first to provide a formal description
for a multi-stage programming language [48]. Staging
is a program transformation that involves reorganizing
the program execution into stages. He treats the use of
the formal language MetaML to develop meta-
programs as multi-stage programming. The concept
relates to the fundamental principle of information
hiding through the introduction of a set of abstraction
levels (stages) aiming at gaining a great deal of
flexibility in managing the program construction
process. In this approach (similarly to partial
evaluation [26]), the program’s performance
optimization is a main focus.

However, in the case of heterogeneous meta-
programming, we can use any programming language
satisfying a set of minimal requirements in the role of
a meta-language (has abstractions for output, looping,
etc.) [45]. Application domain and designer’s flavour
are the most decisive attributes for selecting the
languages.

Refactoring is a program transformation aiming at
improving the structure of a program without
changing its behaviour [10, 22]. Reader can learn
more on this topic from the comprehensive survey
[34]. The paper [31] considers the refactoring problem
at the level of feature models. As meta-programs
implement feature models, both topics are equally
important, but here we focus on the first topic.

Though there is a great deal effort on program
refactoring research (see e.g. [5, 34]), to our best
knowledge, meta-program refactoring is restricted
either by homogeneous meta-programming (such as
logic meta-programming [36]), or aspect-oriented
programming [25].

Though our approach has some conceptual
similarities with the ones discussed above, it has also
essential differences as follows. We focus on: 1) using
general-purpose languages as a meta-language for
heterogeneous meta-programming; 2) staging is
concerned with the generation stage (but not with the
execution stage as it is the case in the Taha’s
approach); 3) automatic adaptation (reuse) through
generation, but not on program performance. Some

partial results on meta-program refactoring are also
given in [39, 43].

3. Basic idea and running examples
Meta-programming and the development of

heterogeneous meta-programs can be dealt with and
understood using two general engineering approaches:
forward engineering and reverse engineering [42]. The
latter approach enables to re-factor a given
heterogeneous meta-program and represent it as a
k-stage meta-specification aiming at developing meta-
meta-programs or meta-generators, or pursuing other
goals. As the complexity of systems and their
components is steadily increasing, meta-programs and
k-stage meta-programs can be seen as tools for
managing complexity and changeability aiming to
adapt generated programs to the different context of
use.

The use of models constitutes a background for
transformations. To explain the transformations, we
first introduce motivating examples, and then the
structural models of the 1-stage and k-stage meta-
programs. Say, we aim at developing a simple meta-
program for generating a set of the homogeneous
Boolean equations (they are instances of a target
program here). We represent two variants of the set as
follows:

Variant 1: Y = X1 AND X2; Y = X1 OR X2 OR
X3 OR X4; Y = X1 AND X2 AND X3;
Variant 2: Y = NOT (X); Y = X1 AND X2; Y = X1
OR X2 OR X3 OR X4; Y = X1 AND X2 AND X3.

The meta-program has to specify the variable
aspects (i.e. variability) of the domain of Boolean
equations using a meta-language while the base
aspects (i.e. commonality) have to be expressed using
a target language (in our case, the assignment
statement: the left side variable, symbol “=“, and the
expression to the right). We code variability by (meta-)
parameters. For Variant 1 (we explain Variant 2 later),
there are two parameters: P1 and P2. The first
(meaning operation) has two values (AND, OR). The
second (meaning the number of arguments) has 3
values (2, 3, and 4). In Fig. 1(a), we present the
1−stage meta-program’s model. In Fig. 1(b), we give
its full implementation in PHP (used as meta-
language). In Fig. 1(c), we outline the internet-based
representation of the meta-program as the user sees it.
The meta-program, when interpreted by the PHP
processor, can generate any instance on demand from
the space of possible variants (in our case 2*3=6). The
generated instance (when P1=AND and P2=3) is
given at the bottom (see Fig. 1).

One can predict that the use of the k-stage meta-
program is beneficial when the number of parameters
is large enough. We can enlarge, for example, the
variability space of Variant 1 by introducing changes
for the function name (Y, Z) and for the assignment
operator (“=”, “:=”). However, even without the

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

17

Meta-interface
of Meta-program

<?php

// here is meta-interface

$P1 = "AND";
$P2 = 3;

Meta-body
of Meta-program

// here is meta-body
echo "Y = X"."1";
for($i = 2; $i <= $P2; $i++)
echo " $P1 X".$i;
?>

The generated instance:
a) b) c)

Figure 1. Meta-program model (a), its full implementation in PHP for Variant 1 (b) and user’s vision (c)

<?php

// here is meta-interface of stage 2

$P2 = 3;

//here is the meta-body of stage 2

echo "<?\n";
echo "\$P1 = \"AND\";\n";
echo "echo \"Y= X\".\"1\";\n";
echo "for(\$i=2;\$i<=$P2; \$i++)\n";
echo "echo \" \$P1 X\".\$i;\n";
echo "?>\n";
?>

Meta-body of 2-stage as a Black Box

a) b) c)

Figure 2. 2-stage meta-program for Variant 1 (a), user’s vision of it (b), model of k-stage meta-program (c)

enlargement, the given meta-program can be
rewritten as the 2-stage meta-program (see Fig. 2(a)).
Fig. 2(b) represents the user’s view of the 2-stage
meta-program. The role of the symbol “\” is to
manage interpretation of the target program at stage 2
(see DEFINITIONS 4-7, for details). Fig. 2(c)
represents the k-stage meta-program model containing
the multi-level meta-interface and multi-level meta-
body.

Though the basic idea is clear from the running
examples, the transformation is not a trivial task. It
requires as much as deep insights to study as follows.

4. Theoretical background of meta-program
transformations

4.1. Basic definitions

Meta-program is a higher-level executable
specification M (aka program generator), which is
coded using two languages (meta-language ML and
target language TL), to specify and generate a set of
programs in TL . The ML processor (compiler) is the
transformation tool to derive or generate programs in

TL from the meta-program. To understand the syntax
(structure) of any meta-program (1-stage, k-stage), it is
enough to read and study running examples given in
the paper. As running examples are supplemented by
the result of executing M, one is also able to
understand semantics (behaviour) of the meta-
program. However, the deep understanding of meta-
program refactoring necessitates more precise models.
We introduce them through the following definitions
and notions.

We denote 1-, 2-, and k-stage meta-programs as
1M (also M), 2M ,…, kM respectively. Meta-program

is a structure that consists of the meta-interface and
the meta-body (see Fig. 1(a)). Also the meta-program
is a target program generator. The k-stage meta-
program is a structure that consists of the multi-level
meta-interface and the multi-level meta-body (see
Fig. 2(c)). The meta-interface (single or the multi-
level) specifies (meta-)parameters and their values.
The 2-stage meta-program is a meta-meta-program or
meta-generator. The k-stage meta-program is the meta-
meta-generator.

As, in fact, parameters play a decisive role in
refactoring, we need to introduce the following formal
definitions.

Meta-body as a Black
Box (invisible part)

Meta-body of 1-stage as a Black Box

Meta-interface of k-stage meta-program

Meta-body of k-stage meta-program

Meta-body of 2-stage meta-program

Meta-interface of 1-stage
meta-program

Meta-body of 1-stage meta-program

Meta-interface of 2-stage meta-program

. . .
. . .

V. Štuikys, K. Bespalova, R. Burbaitė

18

DEFINITION 1. In terms of the set-based notion,
meta-interface model)(IMµ of M is the
n-dimensional non-empty (meta-)parameter space P :

=)(IMµ P, (1)

where P },;{ VP= P – the full set of n meta-
parameter names, i.e. ,Pn = V – the ordered set of
all meta-parameter values.

As each meta-parameter)(PPP ii ∈ has its own set
of values Vvvv

qiii ⊂},...,,{
21

, we can write:

,},...,,{:
21

VvvvVP
qiiiii ∈== (2)

where qi – the number of values of meta-parameter

iP . The symbol “:=” means ‘is defined’.

DEFINITION 2. Two meta-parameters iP and jP

(PPP ji ⊆,)(ji ≠) are said to be independent upon
the choice of their values, if any pair of values

},{
td ji vv jjii PvPv

td
∈∈ ,(, where],1[qid ∈ and

],1[mjt∈) can be selected to correctly evaluate the
specification M, when it is executed. Otherwise, the
meta-parameters are dependant upon the choice of
their values.

Sometimes dependent meta-parameters are treated
as interacting (especially in terms of aspects or
features [44]).

Note that this definition defines the one-to-one
dependency in making a choice of meta-parameter
values. The whole space P is used to constructing the
meta-parameter dependency graph),(UPG as follows.
The set of nodes P corresponds to meta-parameters.
The set of edges U is defined as follows: for all i and j

1=iju (meaning the edge exists) iff two parameters

iP and jP are dependable according to DEFINITION

2, otherwise 0=iju (meaning the edge does not exist)

(ji PP , P∈ ,),(jiij PPu = U∈).

DEFINITION 3. In terms of the graph-based
notion, the graph),(UPG is the meta-interface model

)(*
IMµ defined by Eq. (3).

=)(*
IMµ),(UPG . (3)

Firstly,)(*
IMµ is the derivative model that has

been derived from Eq. (1) (it follows from
DEFINITION 1 and DEFINITION 2). Secondly, the
model)(*

IMµ is more precise (as compared to (1))
because it specifies the parameter dependency
explicitly. As it will be clear later, this attribute is key
to identify some useful properties in devising formal
transformation rules. The left part of Fig. 3(a) and (b)
explains the model)(*

IMµ for our running examples
(Variant 1 and Variant 2 respectively).

So far, we have defined the structural models of
the meta-programs M and kM . The behavioural (aka
functional) model of kM is to be understood as
follows. When kM is executed, the ML processor
produces either a set of (k-1)-stage meta-programs, or
a single (k-1)-stage meta-program, each dependent
upon the pre-specified meta-parameter values.

To specify the functional model in designing meta-
meta-programs, we need to introduce some
technological terms such as de-activating label, de-
activating index, active/passive meta-construct.

DEFINITION 4. Meta-construct (i.e. meta-
parameter or meta-function of a meta-language within
the meta-body) is active if it performs the pre-scribed
action at the current stage defined by the meta-
language. Simply, the active meta-construct has no de-
activating label (see Fig. 1(b)).

Note that modern high-level languages (such as
Java, C++, PHP, etc.) have the de-activating labels
(denoted as “\”) to control and change the role of
language constructs during their compilation.

DEFINITION 5. Meta-construct is passive if it
contains the de-activating label (labels) written before
the meta-construct (see Fig. 2 (a)).

Note that if a meta-construct is passive at the
current stage, the ML processor does not interpret the
construct treating it as a target language text.

),(UPG

P1

P2

)),,((EVVG ji

AND OR

2 3 4

P1 values:

P2 values:

),(UPG

P1

P2

)),,((EVVG ji

AND ORNOT

2 3 41

P1 values:

P2 values:

a) b)

Figure 3. The parameter dependency and value interaction graphs for Variant 1 (a) and Variant 2 (b)

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

19

DEFINITION 6. De-activating index is the
adequate number of de-activating labels written before
a meta-construct. The value of the index depends on
the meta-construct’s stage and meta-language used
(see RULE 5 in sub-section 4.4).

DEFINITION 7. De-activating process is the
multi-stage process (in terms of k-stage processing) to
reducing the de-activating index by 1, or changing the
state of a meta-function from the passive state to the
active state.

The ML processor performs the de-activating
process reducing the de-activating index by 1 at the
given stage. Note also that the de-activating process
does not affect semantics (functionality or behaviour)
of a meta-function. The process affects the meta-
function’s state only.

DEFINITION 8. Refactoring is the transformation
process that alters the structure of a program without
altering its observable behaviour [22]. We use this
definition also for the meta-program refactoring.

DEFINITION 9. Reverse transformation of M into
kM)(MM k ←T is the process T of refactoring the

meta-program M so that the model)(*
IMµ (see

DEFINITION 3) is transformed into the multi-stage
meta-interface and the meta-body of M is transformed
into the multi-stage meta-body using the prescribed
transformation rules (see sub-section 4.4).

DEFINITION 10. Forward transformation is the
generating processes G defined as two cases as
follows.

Case 1: 1−→ kk MM G 2−→ kMG …, where 1−kM
is either a single (k-1)-stage meta-program (if a single
choice of meta-parameter values has been taken at
stage k), or a set (subset) of the meta-programs (if
multiple choices have been taken at stage k);

Case 2: RM →G1 , where R is either an instance
of the target program (if a singe choice of meta-
parameters values has been taken), or a set (subset) of
the target programs (if multiple choices have been
taken).

It is clear that Case 1 defines the process of
generating meta-generators while Case 2 defines the
process of program generators.

4.2. Formulation of transformation tasks

Now, having the formal definitions of basic terms,
we are able to formulate tasks we consider in this
paper.

Given: (i) meta-program model (see Fig. 1(a);
Eq. (3) represents the key part of the model), (ii)
specification M that implements the model (i) and
(iii) k-stage meta-program model (see Fig. 2(c)).

Task 1 is to perform the reverse transformation to
refactoring M into the specification kM according to
DEFINITION 9.

Task 2 is to perform the forward transformations
to generating either the lower-level meta-program(s),
or target program(s) according to DEFINITION 10.

4.3. Graph-based background to specify
refactoring

First we identify the conditions and properties to
specify the meta-parameter (further parameter)
dependency graph),(UPG . Let be given the bipartite
graph)),,((EVVG ji (the parameter values interaction
graph) defined for two parameters iP and jP)(ji ≠ as
follows: edges),(

td jidt vve =),(jjii VvVv
td
∈∈

specify the value interaction of the type
div requires

tjv (meaning 1=dte), or the interaction of the type

div excludes
tjv (meaning 0=dte).

We illustrate the bipartite graphs for our running
examples (see the right parts of Fig. 3(a) and (b)). As
the graphs specify the interaction (dependency) among
parameter values, we call them value graphs. The
bipartite value graphs serve to specifying some key
properties of the parameter dependency graph

),(UPG as follows.

PROPERTY 1. It is expressed by Eqs. (4) and (5)
as follows. The parameter dependency graph),(UPG
is the null graph (see Fig. 3(a)) iff for each pair of
parameters ji PP , P∈ (i≠j) their value graphs are
complete bipartite graphs:

)),,(((EVVG jibb∀ is complete) = true, (4)

where (];,1[Bb∈ 2
nCB =); B – the number of

different parameter pairs.
The parameter dependency graph),(UPG is

disconnected (i.e. containing a set of connected
components) iff the following property holds:

)),,(((EVVG jibb∃ is non-complete) = true. (5)

The parameter dependency graph can be expressed
as:


g

i
iGUPG

1
),(

=

= , (;∅=∩ ji GG GGG ji ⊆,) (6)

)(ji ≠ , g is the number of connected components
including isolated nodes (g > 1).

Fig. 4 presents some typical examples of),(UPG :
(a) – all parameters are independent as it is stated by
Variant 1, see Section 3 and Fig. 1(b); (b) on left – the
case indicating groups of dependent parameters as
Variant 2 (e.g. such a case can be derived from
Variant 1 by adding a new value (NOT) for the

V. Štuikys, K. Bespalova, R. Burbaitė

20

function name, see Section 3), on right – there is a
variant with 3 connected components; (c) –
theoretically possible variant when the number of
parameters is equal to 6.

g=2

left
g=3

right
g=3

g=1

a) b) c)

Figure 4. Graphs),(UPG : (a) Variant 1, (b) left - Variant
2, right – other possible variant, (c) theoretically possible

variant when n=6

Connected components GGG ji ⊆, define
constraints (requirements) to specify stages of
refactoring as follows.

PROPERTY 2. The upper bound of the eligible
number of stages maxk to perform refactoring of a
given (correct) meta-program into its k-stage format is
defined by inequality (7):

gk ≤max . (7)

Now we are able to formulate the condition for
solving Task 1.

Statement. Transformations MM k ←T
)1(maxkk ≤< exist iff the dependency graph),(UPG

of M is disconnected, i.e. defined by Eq. (6).
The proof is based on PROPERTY 1 and

PROPERTY 2.

Inference. In fact, Eqs. (8) and (9) give the
number of possible transformations T when k=2 and
k=3, respectively:

,22|| −= gT (8)

.2*33||
1

)1(∑
=

−−=
g

i

igT (9)

Eqs. (8) and (9) can be easily checked on examples
taking into account PROPERTY 5 (see sub-
section 4.4).

4.4. Properties and rules to support refactoring

Properties of the parameter dependency graph
),(UPG are essential to form transformation rules.

This graph, at the meta-program M coding level, can
be constructed due to the following property.

PROPERTY 3. The independent parameters are
expressed through the assignment statements, while
dependent parameters are expressed through the
conditional assignment statements written within the
meta-interface of .M

PROPERTY 4. The connected components
),(UPGGi ⊆]),1[(gi = (see Eq. (6)) represent

groups of independent parameters.

PROPERTY 5. Any combination of parameter
groups (i.e. iG) can be lifted from stage 1 to any stage

k and evaluated there when M is re-factored into kM .
All these properties are based on the background

given in sub-section 4.3, where the dependency
relation (i.e. edges of),(UPG) has been constructing
using the parameter value interaction (i.e. using the
graph)).),,((EVVG ji However, analyzing the real
world meta-programs, we have obtained yet another
kind of the parameter interaction, which we call the
priority-based parameter dependency. We explain that
below.

Take, for example, the Line Follower task [17] that
was implemented as a meta-program to describe
different aspects of using educational NXT Robots to
teach CS topics. We express these aspects through the
following parameters (their values are in square
brackets) [40]:

1. Teaching method (T): [project-based, problem-
based];

2. Algorithm (A) type to follow the line by the
Robot: [A1, A2, A3, A4] (e.g. A1 means the
line following by zigzags using the only one
light sensor);

3. 1st Light sensor (L1): [S1, S2, S3, S4] (Si
means inputs of the NXT Intelligent Brick
[27]);

4. 2nd Light sensor (L2): [S1&S2, S1&S3,
S1&S4, S2&S3, S2&S4, S3&S4];

5. Selected Motor (S): [A&B, B&C, A&C] (A, B,
C: outputs of the NXT Intelligent Brick, or
names of motors);

6. Velocity (V) of motors in % calculated of
maximum value: [10, 20, 30].

It seems that there is no other way to define the
priority-based relation of parameters as taking into
account the application context (i.e. semantics of the
task). It can be introduced, for example, through
categorizing parameters according to their priority
levels. How many priority levels are needed? It
depends upon the domain task and the intension of
meta-designer whose responsibility is, at the design
phase, to develop a meta-program and to anticipate the
possible variants for the context adaptation to be
provided by the user through refactoring, at the use
phase. In general case, there might be the following
priority levels: highest (HL), intermediate (IL), lowest
(LL), and null priority. It is convenient to model the
priority levels by colouring the nodes of the connected
components using 4 colours as follows: black (for
HL), dark (for IL), moderate dark (for LL) and white
(for null priority). Fig. 5(b) illustrates colouring of the
priority-based graph),(* UPG for the Line Follower
task.

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

21

1G

2G

3G

),(UPG

S

L1 L2

V

A

T

*
1G

*
2G

*
3G

),(* UPG

S

L1 L2

V

A

T

 - HL
 - IL
 - LL

Legend:

 - no priority

*
1G

*
2G

*
3G

),(* UPG

S

L1 L2

V

A

T

a) b) c)

Figure 5. Graph G(P,U): (a) – no priority (1-stage case), (b) – with priority nodes, (c) – with priority connected components

PROPERTY 6. If a connected component
)),((*** UPGGG ii ⊂ has a coloured node (see Fig. 5(b)),

then the remaining nodes of the connected component
*
iG have the same colour (colour with a highest

priority, see Fig. 5(c)) because, according to
PROPERTY 5, they will appear at the same stage.

Now we are able to connect the parameter priority
with stages because the number of a stage is actually
its priority. For example, stage k is the highest and
stage 1 is the lowest.

Thus, the following rule is valid.

RULE 1. The HL-coloured connected component
*
iG (if any) has to be allocated to stage k, and the

LL- coloured connected components *
iG (if any) have

to be assigned to stage 1. The IL-coloured connected
component(s) *

jG (if any) should be assigned in the
stages between stages 1 and k. If there are no such
stages, the graphs *

jG are moved to stage 1.
Returning to our example and applying RULE 1,

we have the following feasible assignments of
connected components to stages.

Case 1 (when k=3 due to Eq. (7)): T - at stage 3;
(S, V) – at stage 1; and (L1, A, L2) – at stage 2 (see
also Table 4, #S 6).

Case 2 (when k=2): T - at stage 2; (S, V) and (L1,
A, L2) – at stage 1 (see also Table 3, #S 6).

Case 1 is the most relevant assignment because of
the task logic: the teacher selects the teaching model
first, then the algorithms to be taught and, finally, the
pure technical characteristics of the teaching
environment.

PROPERTY 7. The priority relation such as HL,
IL, and LL is the context-based information to govern
the adaption process in using domain generators and
meta-generators.

Indeed, by selecting the value of the parameter T,
teacher adapts the teaching model to his\her needs; by
selecting the type of an algorithm (parameter A),
teacher makes adaptation of the teaching content to
different groups of students.

CONSTRAINT 1. The priority relation (if any)
should be indicated in the meta-interface by the meta-

designer using comments written before each
parameter use.

This information will be used by refactoring tool
(method). What will happen if there was not
introduced the full list of priorities, or the priority
relation has been missed at all? In the first case, a
given priority (say HL, or LL) is still useful
information in selecting stages (due to RULE 1) but
not enough. If there is no priority at all and with
regard to the fact that the parameter space is not
changed in refactoring (only permutation is
performed), the following question can be raised.
What is better in constructing re-factorings (meaning
selecting stages): either to have “more meta-
generators and less generators”, or “less meta-
generators and more generators”? As generators are
“closer to user” in the sense that they produce
programs directly to integrate them into the user’s
system, from this perspective, the better variant is
“less meta-generators and more generators”. This
reasoning leads to the following heuristic rule that
specifies how many groups of parameters (presented
as connected components iG) should be allocated to
each non-allocated stage remaining after applying
RULE 1.

RULE 2. If, after applying RULE 1, the number of
non-allocated stages k*<g* (where g* is the number of
yet non-allocated connected components), then the
assignment is as follows:

(a) one connected component for each non-allocated
stage, except stage 1, is allocated and

(b) g*– k*+1 connected components for stage 1
(whether or not the stage has the allocated
parameters) are allocated.

(c) If k*=g*, then there is the only one group for
each stage (see Fig. 5(c)).

When all parameters are allocated to stages, the
refactoring process can be already performed as it is
specified by the next rules.

RULE 3. If, after applying RULE 1, the number of
non-allocated stages k*<g* (where g* is the number of
yet non-allocated connected components), then either
calculate all possible assignments (if computational
resources are not a matter), or let user define the
assignments.

V. Štuikys, K. Bespalova, R. Burbaitė

22

RULE 4. Refactoring of meta-interface is done
first and then refactoring of meta-constructs within the
meta-body follows. The first action is implemented by
lifting parameters to allocated stages (replacing their
location within the meta-interface). The second action
is modelled by inserting the de-activating index before
meta-functions that are related to lifted parameters.

RULE 5. De-activating index (see DEFINI-
TION 6), is defined by Eq. (10) (also see Fig. 2(a)):

Index = 0, for stage k; 1, for stage (k-1), etc.

and ∑
−

=

2

0
2

k

a

a , for stage 1. (10)

Table 1 explains the use of de-activating process
and presents the index value to ensure refactoring of
meta-constructs for PHP (note that (10) is also valid
for Java and C++).

Table 1. Examples of using de-activating for PHP

Where
applied Examples in PHP Index

value
In stage 3 $P1 = "AND"; 0
In stage 2 echo "\$P2 = 3;"; 1

In stage 1 echo "echo \"\\\$P3 =
Y;\";"; 3

Further we identify the use of RULES 1, 2 and 4

as Strategy 1 to describe the refactoring method in
Section 5. Strategy 1 enables to produce the only one
solution of Task 1. We use also Strategy 2 (RULE 3)
for investigation some properties of refactoring (such
as checking equivalence of transformations,
complexity evaluation [39, 43]). Strategy 2 enables to
produce a set of solutions (see Tables 3 and 4). If the
number g is less than the “magic 7” (also known as
Miller’s cognitive complexity [14]), then we are able
to produce and check all possible transformations (see
also Eqs. (8) and (9)). Otherwise, we need to restrict
the number of possible solutions.

5. Refactoring method and experiments

5.1. Step-wise description of the method
The following assumptions are accepted: i) the

given meta-program or M is correct; ii) the parameter
space of M is pre-specified in advance and cannot be
changed; iii) each stage must have at least one
parameter or one group of related parameters; iv) the
priority-based relationship should be introduced by the
domain expert or by meta-designer indicating the
priority, e.g. as a comment before each assignment
statement within the meta-interface of M .

Let us be given the specification M and the
required number of stage)1(00 >kk for .M The method
we describe below is given as a sequence of steps
being supported by devised RULES to solve Task 1.

Step 1. Make choice of strategy (Strategy 1 or
Strategy 2); .∅=kM

Step 2. Analyze the meta-interface of M , construct
the graph),(UPG , its connected components

iG (if any) and identify g.

Step 3. If priority relation=true then change the
graph),(UPG into),(* UPG by introducing
priorities.

Step 4. If 0kg > then go to Step 6 (meaning the
solution exists) else go to Step 5.

Step 5. 100 −= kk ; go to Step 4 until ;10 ≠k
otherwise go to Step 8 (meaning there is no
solution).

Step 6. If Strategy 1 then do
If priority relation=true then do

Sort connected components iG by priority in
decreasing order;
Assign the ordered connected components to stages
according to RULE 1;
Identify yet non-allocated stages end do

If non-allocated stages =true then do
 apply RULE 2;
 apply RULE 4 and RULE 5 to perform
refactoring; perform fulfilling kM ; end do;

end if;
Step 7. If Strategy 2 then do
 apply RULE 3;
 for each assignment given by RULE 3,
 apply RULE 4 and RULE 5 and form a set of
re-factorings;

end do
Step 8. End.

5.2. Methodology and results of experiments
The methodology we have chosen to provide

experiments includes the following steps: (a) selection
of application domains, target (domain) languages and
meta-languages; (b) identification of the scope of
experiments; (c) solving Task 2 through experiments;
(d) evaluation of the experiments. We have found the
following requirements relevant for step (a): domains
and their languages are to be as simple as possible,
but, on the other hand, they are to be related to real
applications; though we have repeated our experi-
ments using two meta-languages aiming to clarify
their impact on transformation characteristics such as
complexity, we present the results only for one meta-
language (PHP) here. On this account, four domains
under investigation were selected: abstract strings
generated using alphabet {0, 1} (not presented here);
test-frames based on the alphabet {0, 1, X} that are

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

23

. .
 .

k
rM

kM1

}{)1(−k
rM

}{)1(
1

−kM

. .
 .

. .
 .

}{ 1
1M

}{ rR

}{ 1R

G

G

G

G

G

G

G

T

T

Task 1
Refactoring (reverse

transformation)

Task 2
Generation (forward

transformation)


s

s
RR 11}{ =

1M

s
R1

srR

∀

∀
}{ 1

rM

∀

∀

k k-1 1 0


s

rs
RR =}{ 1

}{R

Legend: G–single generation;
 {X}–set of X;
 ∀G – multiple generation for each member of X;
 stage 0–denotes instances

Figure 6. k-stage transformation/generation processes within the same meta-parameter space

used in hardware testing to compact input vectors
[11]; the so-called L-systems that play extremely
important role in designing interfaces of systems [28];
CS topics (learning programs) for educational robots
[40]. All selected domains (except the first) are
characterized by the great degree of variability.

Formally, L-systems [28] are a string-rewriting
grammar expressed as an ordered triplet (U, ω, H),
where: U – alphabet, i.e., a set of symbols (variables)
that can be replaced by other symbols; ω – start
symbol, also called axiom or initiator, defining the
initial state of the system (ω ∈ U); H – set of
production rules defining the way variables can be
replaced by a combination of other variables
iteratively (H ⊂ U × U*).

Program generation (see Task 2 to the right of the
dotted line in Fig. 6) is based on the multi-level
forward transformations processes. These processes
are supported by PHP processor. They are completely
automatic.

The aim of experiments is to show that using the
method (see sub-section 5.1) for different domains the
following property holds:

})){}({(]),1[(3,2 RRiriik =∀∀ ∈= is true, (11)

where 
s

ii s
RR = (see also Fig. 6); R is the set of

all instances derived from ;1M
siR is the set of all

instances derived from k
iM . Figure 6 outlines the

schematic view of experiments we have carried out
(see also the mode Strategy 2 within the method).
Stage 0 presents overall instances derived from
different branches (meta-programs).

The result of solving Task 1 is a set of all single
k-stage meta-programs (from 1 to r), where 1 means
some k-stage meta-program with one parameter and
r – the number of all possible permutations of
parameters at stage k.

The relationship, say, s rr s
RR =}{ means the

writing (concatenation) of generation results into the
same file numbered by r.

We present results in Tables 2-4 below. Table 2
gives some characteristics of 1M as data to solve
Task 1. Note that dependent parameters and their
values are given in parentheses (see, e.g. (2, 3, 4) and
(4, 4, 6) in line S# 6 of Table 2 and sub-section 4.4).

Table 3 presents results (Task 1 and Task 2) of all
possible transformations 1M into]),1[(riM k

i ∈ and
generation when k=2. Table 4 presents results of the
same transformations and generation when k=3. As it
is clear from comparison of the number of generated
instances given in Tables 2-4, this number is the same.
Note that this property is not enough to approve
equivalence of such transformations. We have also
checked the coincidence of the content of instances
within all files formally interpreted here as {R},
{R1},…, {Rr} (see Fig. 6) using the Excel facilities
(Conditional Formatting) for checking the identity of
the files. In all such cases the full identity of instances
within files was obtained (the order of instances
within file was different only). Therefore, we were
able to conclude that the equivalence condition (Eq.
(11)) holds, meaning that the transformations

321 MMM →→ TT are semantics preserving
structural transformations, or refactoring. Note that the
partial results (21 MM →T) for other domains
using a slightly different methodology were described
in [39, 43].

Tables 2-4 contain also the results of using the
method, when Strategy 1 and priority relations were
applied, to define a concrete refactoring for solving
real tasks. Priority relations are helpful to identify how
to assign parameters (or groups of parameters
represented as graphs),(* UPG in Fig. 5) to stages.
For example, we have presented the results of
applying Strategy 1 in columns 4-6 (see Tables 2-4).

As we could not be able to reveal semantics of
parameters in Tables (parameters and their values are
expressed by abstract numbers here), we recommend
(for clearness) to connect the result of Line follower 2
(see sample 6 given in bold in Tables 3 and 4) with the

V. Štuikys, K. Bespalova, R. Burbaitė

24

Table 2. Characteristics of 1-stage meta-programs 1M

S# Name of MP
of meta-
para-
meters

Dependent meta-
parameters given
by numbers

of values (for
each parameter) Priority relation

of generated instances
R (}{1 RM →G)

1 L-system 4 No (5,4,4,4) 3-null; 1- LL 320 =5*4*4*4
2 Test frame 5 No (2,2,2,2,2) 5-null 32=2*2*2*2*2

3 Calibration of NXT
robot 4 No (3,4,3,3) 1-HL; 3- null 108=3*4*3*3

4 Calibration of NXT
robot with context 5 No (2,3,4,3,3) 1-HL; 1-IL; 3-LL 216=2*3*4*3*3

5 Line follower 1 5 2,3 (2,(4,20),3,4) 1-HL; 2-IL; 2-LL 960=2*(2*10+2*10)*3*4

6 Line follower 2 6 (2,3,4) (2,(4,4,6),3,3) 1-HL; 3-IL;
1-LL;1-null 360=2*(2*4+2*6)*3*3

7 Ornament’s design 3 No (2,3,2) 3-null 12=2*3*2

Table 3. Characteristics of M 1 refactoring into k-stage meta-programs when k=2 (samples 1&2 are omitted since they are in [39])

S# Name of MP
Total # M 2
derived
from M 1

of meta-
parameters
of M

2

of meta-
parameters
of M

1

Total # of
generated M 1

from all M 2

Total # of generated
Instances from M 1

Equivalency
condition
(see Eq.(11))

3 Calibration of NXT
robot 7

1-HL 3-null 3 108=3*(4*3*3) true

1-HL, 1-null 2-null 12 =3*4 108=12*(3*3) true

4 Calibration of NXT
robot with context 2 1-HL 1-IL, 3-LL 2 216=2*(3*4*3*3) true

5 Line follower 1 2 1-HL 2-IL, 2-LL 2 960 =2*((2*10+2*10)*3*4) true

6 Line follower 2 2 1-HL 3-IL, 1-LL,
1-null 2 360 =2*(2*4+2*6)*3*3 true

7 Ornament’s design 6
1-null 2-null 2 12=2*(3*2) true
2-null 1-null 6=2*3 12=6*(2) true

Table 4. Characteristics of M 1 refactoring into k-stage meta-programs when k=3

S# Name of MP

Total
M 3

derived
from M 1

of
meta-
para-
meters
 of M

3

of
meta-
para-
meters
of M

2

of meta-
parameters
of M

1

Total # of
generated
M 2 from
all M 3

Total # of
generated M 1

from all M 2

Total # of
generated
instances from
all M 1

Equivalency
condition
(see Eq.
(11))

1 L-system 12
1-null 1-null 1-null, 1-LL 5 20=4*4 320=20*(4*4) true
2-null 1-null 1-LL 20=5*4 80=20*(4) 320=80*(4) true

2 Test frame 150
1-null 2-null 2-null 2 8=2*(2*2) 32=8*(2*2) true
2-null 1-null 2-null 4=2*2 8=4*(2) 32=8*(2*2) true

3 Calibration of
NXT robot 12

1(HL) 1-null 2-null 3 12=3*(4) 108=12*(3*3) true
1(HL) 2-null 1-null 3 36=3*(4*3) 108=36*(3) true

4
Calibration of
NXT robot with
context

1 1(HL) 1(IL) 3-LL 2 6=2*(3) 216=6*(4*3*3) true

5 Line follower 1 1 1(HL) 2(IL) 2-LL 2 80=
2*(2*10+2*10) 960=80*(3*4) true

6 Line follower 2 1 1(HL) 3(IL) 1-LL, 1-null 2 40= 2*(2*4+2*6) 360=40*3*3 true

7 Ornament’s
design 6

1-null 1-null 1-null 2 6=2*(3) 12=6*(2) true
1-null 1-null 1-null 3 6=3*(2) 12=6*(2) true

S – sample; MP – meta-program; M 1 - 1-stage meta-program; M 2 - 2-stage meta-program; M 3 - 3-stage meta-program; HL –
highest level; IL –intermediate level; LL –lowest level: null – no priority.

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

25

description given in sub-section 4.4 (Case 2 and
Case 1) and Fig. 5.

As we could not be able to reveal semantics of
parameters in Tables (parameters and their values are
expressed by abstract numbers here), we recommend
(for clearness) to connect the result of Line follower 2
(see sample 6 given in bold in Tables 3 and 4) with the
description given in sub-section 4.4 (Case 2 and
Case 1) and Fig. 5.

We summarize the experimental results as follows:
1) the hypothesis that those transformations (1M into

2M or 3M) are actually refactoring is true; 2) there is
a large enough space for selecting program instances
for adaptation for a concrete context of use; 3) the
priority–based information is helpful for this
adaptation in solving real world tasks.

6. Discussion and evaluation
The necessity of refactoring to transform the given

correct heterogeneous meta-program into its k-stage
format arises due to practical and theoretical reasons.
The practical needs have come from our extensive
experiments in using NXT educational robots [30] in
the real teaching setting (school) to teach CS topics.
Aiming at the increase of efficiency and flexibility in
the content preparation and continuous changes (by
both teacher and students), we describe the content as
meta-programs. Because of the extremely wide
e-learning context (social, pedagogical, technological
characteristics of Robots, tasks specificity, etc.), meta-
programs may contain a large number of parameters.
Due to the necessity of managing changeability and
adaptation of the teaching content to the context of use
(we do that using context-based priority relation here),
we have found refactoring of meta-programs into the
k-stage meta-programs as a relevant and beneficial
technology. The practical benefits are not restricted by
one domain. We have obtained the similar observation
in other domains of great importance, such
e-commerce [21, 44].

The basic results of the paper can be summarized
as follows.

1. The theoretical background introduced and
experiments we have carried out approved the
hypothesis that the meta-program refactoring into
k-stage meta-program is the semantics preserving
transformation.

2. Though we have not considered the
development of the meta-program here (it was given
as input in describing the proposed method), the
concept of staging is also useful to better
understanding the development process due to the
possibility of its systemizing. For example, in
developing a meta-program, a designer is able to
introduce parameters into the specification gradually,
in stages, making testing after each stage, thus, in this
way, simplifying the procedure.

3. The key idea of the method to transform a meta-
program into its k-stage structure is based on the de-
activation/activation mechanism (process) to de-
activate/activate the adequate constructs at the suitable
stage of the given specification. A meta-language must
have the constructs (features) to ensure the realization
of the mechanism.

4. The benefits of the approach are: a) it provides a
theoretical background to develop meta-program
refactoring tools; b) it enables to construct a set of the
lower-level generators that are derived from the
k-stage meta-program; c) it extends the known multi-
stage programming concept applying it in another
context of use, i.e. in the heterogeneous meta-
programming domain; d) it contributes to better un-
derstandability of heterogeneous meta-programming
domain; e) it extends the generative reuse, though in a
narrow and specific way.

5. The method has some limitations too. First, its
use is restricted by heterogeneous meta-programs
only. Second, there are some difficulties in applying
de-activating index when the number of stages is more
than 3. The reason is the significant decrease of
readability of such meta-specifications (meta-
designer’s view) because of the abnormal growth of
the de-activating index value (e.g. when k = 4,
index = 7 for such languages as PHP, Java, C++).
However, the refactoring tool hides (eliminates) this
deficiency. Finally, it is difficult to form the precise
criteria for refactoring due to the task complexity and
context dependency upon the application task.

7. Conclusion
1. The graph-based approach has been found as a

relevant basis to theoretically approving the proposed
method to solve the meta-program refactoring
problem. Both theoretical and practical results
obtained provide sufficient information to build
refactoring tools.

2. Though we have obtained the conditions of
resolving the problem in general case and we have
identified the upper bound on the needed number of
stages to refactoring a heterogeneous meta-program
into the k-stage format, the refactoring process cannot
be completely automatic, if the context of refactoring
is not fully described.

3. As the refactoring context is highly dependent
on the application domain, in the case of the partial
description of the context information, the method can
ensure automatic refactoring by providing all possible
variants, if the cognitive complexity does not exceed
the boundary of the ‘magic 7 problem’. This bound
has been selected to reduce/save computational
resources in our experiments.

4. From the user’s perspective, refactoring raises
the abstraction level of transformations because, at a
higher stage, he/she uses a less amount of information,
which is presented in the user-friendly format. From
the meta-designer’s perspective, refactoring-based

V. Štuikys, K. Bespalova, R. Burbaitė

26

transformation preserves approximately the same
abstraction level.

References
[1] A. Cisternino. Multi-Stage and Meta-Programming

Support in Strongly Typed Execution Engines, PhD
Thesis, 2003.
http://phd.di.unipi.it/theses/phdthesis_cisternino.pdf

[2] A. Ludwig, D. Heuzerouth. Metaprogramming in the
Large. In: G. Butler and S. Jarzabek (Eds.). Generative
and Component-Based Software Engineering, LNCS
2001, Vol. 2177, 178-187.

[3] A. Ortiz. An introduction to metaprogramming. Linux
Journal, 2007, Vol. 158, 1-6.

[4] B. Boehm. Some Future Trends and Implications for
Systems and Software Engineering Processes. Systems
Engineering, 2006, Vol. 9, No. 1, 12-29.

[5] B. D. Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde,
H. Stenten, S. Demeyer, T. Mens. A Discussion on
Refactoring in Reseaerch and Practice. Technical
Report, University of Antwerp, 2004.

[6] C. Birtolo, D. De Chiara, M. Ascione, R. Armenise.
A Generative Approach to Product Bundling in the
e-Commerce Domain. In: The 3rd World Congress on
Nature and Biologically Inspired Computing – NaBIC,
Spain, 2011, pp. 169-175.

[7] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In H. Obbink and K. Pohl
(eds.). 9th Int. Software Product Line Conf., LNCS
3714, Springer, 2005, pp. 7-20.

[8] D. Batory. Product-line architectures. Invited
Presentation, Smalltalk and Java in Industry and
Practical Training, Erfurt, Germany, 1998, pp. 1-12.

[9] D. Batory. Program Refactoring, Program Synthesis,
and Model-Driven Development. Invited Presentation
at European Joint Conferences on Software Theory
and Practice of Software (ETAPS) Compiler
Construction Conference, 2007, pp. 3-12.

[10] D. Thomas. Refactoring as Meta Programming?
Journal of Object Technology, 2005, Vol. 4, No. 1,
7−12.

[11] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Functional test generation remote tool. In: 8th
Euromicro Conference on Digital System Design
(DSD'05), 2005, pp. 192-195.

[12] E. Pasalic. The Role of Type Equality in Meta-
Programming. PhD thesis, Oregon Health and
Sciences University, OGI School of Science and
Engineering, 2004.

[13] E. Visser. A survey of strategies in rule-based program
transformation systems. Journal of Symbolic
Computation, 2005, Vol. 40, No. 1, 831-873.

[14] G. Miller. The Magic Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information. The Psychological Review, March, 1956.

[15] H. A. de Jong, P. A Olivier. Generation of abstract
programming interfaces from syntax definitions. The
Journal of Logic and Algebraic Programming, 2004,
Vol. 59, No. 1, 35-61.

[16] J. Eckhardt, R. Kaiabachev, E. Pasalic, K. Swadi,
W. Taha. Implicitly Heterogeneous Multi-Stage
Programming for FPGAs. Journal of Computational
Information Systems, 2010, Vol. 6, No. 14, 4915-4922.

[17] J. A. Gray. Toeing the Line: Experiments with Line-
following Algorithms. Technical Report, 2003.
http://www.fll-freak.com/misc/01-jgray_report.pdf.

[18] J. R. Cordy, M. S. Sarkar. Metaprogram
Implementation by Second Order Source
Transformation. Workshop at Generative
Programming and Component Engineering
Conference (GPCE'04), Vancouver, Canada, 2004,
pp. 5-6.

[19] K. Pohl, G Böckle, F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. New York, Inc., Secaucus, NJ, Springer-
Verlag, 2005.

[20] K. C. Kang, J. Lee, P. Donohoe. Feature-Oriented
Product Line Engineering. IEEE Software, 2002,
Vol. 19, No. 4, 58-65.

[21] K. Valinčius, V. Štuikys, R. Damaševičius.
Understanding of E-commerce IS through Feature
Models and Their Metrics. In: IADIS International
Conference Information Systems, 13-15 March, Lisbon,
Portugal, 2013, pp. 55-62.

[22] M. Fowler, K. Beck, J. Brant, W. Opdyke,
D. Roberts. Refactoring: Improving the Design of
Existing Code, Addison Wesley. 1999.
http://www.refactoring.com.

[23] M. G. J. van den Brand, P. E. Moreau, J. J. Vinju.
A generator of efficient strongly typed abstract syntax
trees in Java. IEE Proceedings - Software, 2005,
pp. 70-78.

[24] MDA. OMG Model Driven Architecture.
www.omg.org/mda.

[25] M. Zhang, N. Baddoo, P. Wernick, T. Hall.
Improving the Precision of Fowler’s Definitions of
Bad Smells. 32nd Annual IEEE Software Engineering
Workshop, IEEE, 2009, pp. 161-166.

[26] N. D. Jones, C. K., Gomard, P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall, 1993.

[27] NXT User Guide. http://cache.lego.com.
[28] P. Prusinkiewicz, A. Lindenmayer. The Algorithmic

Beauty of Plants. New York, Springer-Verlag, 1990.
[29] P.D. Terry. Compilers and Compiler Generators: An

Introduction with C++. International Thomson
Computer Press, 1997.

[30] R. Burbaitė, V. Štuikys, R. Marcinkevicius. The
LEGO NXT Robot-based e-Learning Environment to
Teach Computer Science Topics. Electronics and
Electrical Engineering, 2012, Vol. 18, No. 9, 113-116.

[31] S. Trujillo, D. Batory, O. Diaz. Feature Refactoring a
Multi-Representation Program into a Product Line.
Proceedings of the 5th international conference on
Generative programming and component engineering,
New York, NY, 2006, pp. 191-200.

[32] S. Trujillo, M. Azanza, O. Díaz. Generative
Metaprogramming. Proc. of 6th Int. Conf. on
Generative Programming and Component Eng. (GPCE
2007), Salzburg, Austria, October 1-3, 2007, pp.
105−114.

[33] T. Mens, K. Czarnecki, P. Van Gorp. A Taxonomy
of Model Transformations. Electronic Notes in
Theoretical Computer Science, 2006, Vol. 152,
125−142.

[34] T. Mens, T. Tourw. A Survey of Software
Refactoring. IEEE Transactions on Software.
Engineering, 2004, Vol. 30, No. 2, 126-139.

http://cache.lego.com/

Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program

27

[35] T. Sheard. Accomplishments and Research
Challenges in Meta-Programming. Proc. of 2nd Int.
Workshop on Semantics, Application, and
Implementation of Program Generation (SAIG’2001),
Florence, Italy. LNCS 2196, Springer, 2001, pp. 2-44.

[36] T. Tourwe, T. Mens. Identifying Refactoring
Opportunities Using Logic Meta Programming. In:
Software Maintenance and Reengineering, 2003.
Proceedings. Seventh European Conference on. IEEE,
2003, pp. 91-100.

[37] T. L. Veldhuizen. Tradeoffs in Metaprogramming.
Proc. In: Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based
program manipulation. ACM, 2006, pp. 150-159.

[38] V. L. Winter. Program Transformation: What, How
and Why. In: Wah, B.W. (Ed.): Wiley Encyclopedia of
Computer Science and Engineering. John Wiley &
Sons, Inc. 2004.

[39] V. Štuikys, K. Bespalova. Methodology and
Experiments to Transform Heterogeneous Meta-
Program into Meta-Meta-Programs. In: The 18th
international conference on information and software
technologies (ICIST 2012). September 13-14, Kaunas,
Lithuania, 2012, pp. 210-225.

[40] V. Štuikys, R. Burbaitė, R. Damaševičius. Teaching
of Computer Science topics using meta-programming-
based GLOs and LEGO robots. Informatics in
Education, 2013, Vol. 12, No. 1, 125-142.

[41] V. Štuikys, R. Burbaite. Two-Stage Generative
Learning Objects. Information and Software

Technologies, Communications in Computer and
Information Science, 2012, Vol. 319, 332-347.

[42] V. Štuikys, R. Damaševičius, G. Ziberkas, K.
Valinčius. Understanding of heterogeneous multi-
stage meta-programs. Information Technology and
Control, 2012, Vol. 41, No. 1, 23-32.

[43] V. Štuikys, R. Damaševičius. Equivalent
Transformations of Heterogeneous Meta-Programs.
Informatica, 2013, Vol. 24, No. 2, 315-337.

[44] [V. Štuikys, R. Damaševičius. Meta-Programming
and Model-Driven Meta-Program Development:
Principles, Processes and Techniques. Springer, 2013.

[45] V. Štuikys, R. Damaševičius. Meta-programming
Techniques for Designing Embedded Components for
Ambient Intelligence. In: T. Basten, M. Geilen, H. de
Groot (eds.), Ambient Intelligence: Impact on
Embedded System Design. Kluwer Academic
Publishers, 2003, pp. 229-250.

[46] W. Löwe, M. Noga. Metaprogramming Applied to
Web Component Deployment. Electronic Notes in
Theoretical Computer Science, 2002, Vol. 65, No. 4,
106-116.

[47] W. Taha. A Gentle Introduction to Multi-stage
Programming. Domain-Specific Program Generation,
Lecture Notes in Computer Science, 2004, Vol. 3016,
30-50.

[48] W. Taha. Multi-Stage Programming: Its Theory and
Applications. PhD thesis, Oregon Graduate Institute of
Science and Technology, 1999.

Received March 2013.

http://link.springer.com/search?facet-author=%22Vytautas+%C5%A0tuikys%22
http://link.springer.com/search?facet-author=%22Renata+Burbaite%22

