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Abstract. The paper presents: (1) a graph-based theoretical background to refactoring a correct heterogeneous 
meta-program into its k-stage representation; (2) the refactoring method; (3) refactoring experiments with tasks taken 
from different domains, including real world tasks, such as meta-programs to teach Computer Science (CS) topics 
using educational robots. Refactoring meta-programs by staging enables to flexibly adapt them to the different context 
of use. To do that (semi-)automatically, we use the contextual information as a priority relation (e.g. highest, lowest, 
etc.) introduced within the meta-program specification. We implement the refactoring method using the so-called 
activating/de-activating label (index) to change the role of meta-language constructs at different stages. The 
contribution of the paper is: (1) applying the known (in programming) staging concept to heterogeneous meta-
programming; (2) a theoretical background, properties and the method to solve tasks of this kind of refactoring. 

Keywords: refactoring; meta-program; meta-parameter; meta-programming; multi-stage heterogeneous meta-
program. 

 

1. Introduction 
Refactoring is the process that takes an existing 

program and transforms it into an improved new 
version. Refactoring changes the program’s structure 
only, without affecting its external behaviour. The 
improvements typically eliminate redundancy, bad 
smell of code [25], improve maintainability and may 
improve performance and reduce space [10, 22]. 

In this paper, we consider refactoring of the 
heterogeneous meta-program into its representation 
which we call k-stage meta-program. In general, meta-
programming is such a programming paradigm that 
deals with program transformations [13], or writing 
programs that generate other programs [3, 15, 16, 23]. 
Powerful meta-programming is essential for 
approaches to automating the software development. 
Most domain-specific languages and many other 
software automation tasks are implemented as 
program generators. At the core of meta-programming 
is the explicit representation and specification of 
domain variability. In the case of heterogeneous meta-
programming, we express variability aspects at a 
higher-level of abstraction through parameters using a 
meta-language, while the base domain functionality 
we express using a target (domain) language. Thus, 
heterogeneous meta-program is a domain program 
generator [44]. 

Similarly to program refactoring, by refactoring a 
meta-program into its k-stage representation, we are 

also seeking for improvements; however, they are of 
the quite different sort. For example, k-stage meta-
program extends generative reuse lifting it to the 
meta-level (qualitative improvement). By constructing 
the k-stage meta-program, we construct a meta-
generator that generates the lower-level meta-
programs. The program generator and meta-generator 
(also known as meta-meta-program) are a value in 
own right, though they cannot be constructed and used 
in any case. Typically the degree of base (functional) 
variability of a domain and its context variability 
predefines the motivated use of meta-programming 
approaches. Usually, at the specification level, 
researchers and practitioners represent variability 
using feature models [7] where variability is modelled 
by variation points and variants. We consider a few 
domains with such features, where meta-
programming-based generators have been approved as 
a relevant technology. Examples are: e-learning,  
e-commerce and components of embedded systems [6, 
44]. 

In the e-learning domain, for example, we use 
multi-stage generative learning objects (Computer 
Science (CS) teaching content that is represented as 
meta-programs [41]). In this case, the k-stage meta-
programs enable to flexibly (automatically) adapt the 
generated content to different context of use (e.g. the 
teacher’s context, such as teaching objectives and 
teaching model, the students’ context (abilities, 
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previous knowledge, etc.), the e-learning environment 
context (use PC only, educational robots [30], etc.)). 

In contrast to program refactoring, the structure of 
k-stage meta-program after refactoring becomes more 
complex as compared to its initial form because we 
need additional facilities to manage staging 
(designer’s viewpoint). However, from the user 
perspective, the k-stage meta-program may look much 
simpler because he/she actually works with the user-
friendly meta-interface that, at each stage, has the 
reduced number of meta-parameters while the 
implementation hides staging fully. In fact, we can 
interpret the k-stage meta-program as a tool to manage 
complexity by compressing information (programs, 
meta-programs) into the single high-level 
specification, and then, sharing the separable parts of 
the specification through the generation process in the 
different context of use. 

The aim of the paper is to propose a theoretically-
grounded method to re-factor a meta-program into its 
k-stage format and approve the method experimentally 
(e.g. equivalence of such transformations) before 
developing the automatic refactoring tool. Such a tool 
serves for changeability (adaptation) and maintenance 
of meta-programs we use in different domains (e.g.  
e-learning in CS [40], e-commerce system design 
[21]). 

The idea of multi-stage programming is not new. 
We have borrowed it from [1, 47, 48]. However, we 
apply it in the new context, the heterogeneous meta-
programming domain, pursuing other aims. We focus 
on generative reuse through the pre-programmed 
anticipated variability (at design time) and possibility 
to flexibly adopting the highly reusable meta-
programs to the different context of use by staging (at 
use time) while other authors focus on performance 
issues. 

We believe that, by introducing k-stage meta-
programs, we can not only gain practical benefits (see 
case study). We are also able to achieve 
methodological aims such as better understanding of 
heterogeneous meta-programs, improving their design 
and maintenance methods and tools. 

The paper’s main contribution is a theoretical 
background of meta-program refactoring that includes: 
formal definitions of basic terms, rules, properties of 
models to perform transformation/refactoring 
processes. We have also obtained the upper bound of 
the number of stages the given meta-program can be 
re-factored into the k-stage representation. On this 
background, we have developed the method to 
refactoring the given correct meta-program into  
k-stage meta-program, thus constructing meta-
generators for particular domains. 

The paper’s structure is as follows. Section 2 
analyses the related work. Section 3 presents the 
informal description of the approach with running 
examples. Section 4 describes the theoretical 
background. Section 5 provides the refactoring 
method along with experimental results. Section 6 

delivers a discussion and evaluates the approach. 
Section 7 concludes the main results. 

2. Related Work 
Manipulation of the program source code is one of 

the main aspects of any software development 
process. As the software content in systems steadily 
increases [4] and the complexity of software grows 
continuously, the manual manipulation becomes ever 
more infeasible. On this account, Batory [9] evaluates 
software trends as “the alarming complexity of 
software and the alarming rate at which software 
complexity is increasing”. It is the reason why 
researches and practitioner make a strong focus on 
higher-level modelling (see e.g. MDA [24], Product 
Line Engineering (PLE) [19, 20]) approaches and 
higher-level programming now. 

Meta-programming is just the case. It is a higher-
level programming paradigm which deals of how 
manipulating programs as data. The result of the 
manipulation is the lower-level program. There are 
many different views to understand, to study or to deal 
with this approach (reader can learn more from [44]). 
For example, according to Veldhuizen [37], meta-
programming can be seen as a program generalization 
and generation technique. The meta-programming 
taxonomies [12, 35] provide a systemized knowledge 
on the topic. Sheard [35] reviews also research 
challenges, describes formal meta-programming 
systems and their role in program generation. Meta-
programming also contributes to complexity 
management. The more we use program generators, 
the less code we need to write manually. Hence, the 
more complex software systems can be developed. 
Furthermore, their quality is better, and time-to-market 
is shorter. 

In large, meta-programming is the domain to 
research model transformations too. Mens et al. [33] 
state in this regard that the term “model 
transformation” encompasses the term “program 
transformation” since a model can range from the 
abstract analysis models, over more concrete design 
models, to very concrete models of the source code. 
Visser [13] presents a taxonomy that considers two 
major groups of transformations: translation and 
rephrasing. Winter [38] identifies seven major bi-
directional goals of program transformation: clarity, 
efficiency, computability, simplicity, functionality, 
translation, and computation. Cordy and Sarkar [18] 
demonstrate that meta-programs can be derived from 
higher-level specifications using second order source 
transformations. Trujillo et al. [32] describe ideas to 
generate meta-programs from abstract specifications 
of synthesis paths. The execution of such a meta-
program code synthesizes a target program of a 
product line. Transformation of meta-programs leads 
to the problem of measuring their semantic 
equivalence. 
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Formal and semi-formal description of meta-
programs, meta-programming and related higher-level 
programming methodologies and transformations for 
implementing higher-level programs has been 
intensively studied by many researchers. Though 
meta-programming was known and used for a long 
time in formal logic programming [12], now, however, 
the scope of the application of the meta-programming 
techniques is much wider. These include the domains 
such as programming language implementation, parser 
and compiler generation [29], application and software 
generators [8], product lines, program transformations 
[2], generative reuse, XML-based web applications 
and web component deployment [46]. Many, if not all 
of the presented cases, can be summarized as multi-
stage programming, i.e. the development of programs 
in several different stages. 

Taha was the first to provide a formal description 
for a multi-stage programming language [48]. Staging 
is a program transformation that involves reorganizing 
the program execution into stages. He treats the use of 
the formal language MetaML to develop meta-
programs as multi-stage programming. The concept 
relates to the fundamental principle of information 
hiding through the introduction of a set of abstraction 
levels (stages) aiming at gaining a great deal of 
flexibility in managing the program construction 
process. In this approach (similarly to partial 
evaluation [26]), the program’s performance 
optimization is a main focus. 

However, in the case of heterogeneous meta-
programming, we can use any programming language 
satisfying a set of minimal requirements in the role of 
a meta-language (has abstractions for output, looping, 
etc.) [45]. Application domain and designer’s flavour 
are the most decisive attributes for selecting the 
languages. 

Refactoring is a program transformation aiming at 
improving the structure of a program without 
changing its behaviour [10, 22]. Reader can learn 
more on this topic from the comprehensive survey 
[34]. The paper [31] considers the refactoring problem 
at the level of feature models. As meta-programs 
implement feature models, both topics are equally 
important, but here we focus on the first topic. 

Though there is a great deal effort on program 
refactoring research (see e.g. [5, 34]), to our best 
knowledge, meta-program refactoring is restricted 
either by homogeneous meta-programming (such as 
logic meta-programming [36]), or aspect-oriented 
programming [25]. 

Though our approach has some conceptual 
similarities with the ones discussed above, it has also 
essential differences as follows. We focus on: 1) using 
general-purpose languages as a meta-language for 
heterogeneous meta-programming; 2) staging is 
concerned with the generation stage (but not with the 
execution stage as it is the case in the Taha’s 
approach); 3) automatic adaptation (reuse) through 
generation, but not on program performance. Some 

partial results on meta-program refactoring are also 
given in [39, 43]. 

3. Basic idea and running examples 
Meta-programming and the development of 

heterogeneous meta-programs can be dealt with and 
understood using two general engineering approaches: 
forward engineering and reverse engineering [42]. The 
latter approach enables to re-factor a given 
heterogeneous meta-program and represent it as a  
k-stage meta-specification aiming at developing meta-
meta-programs or meta-generators, or pursuing other 
goals. As the complexity of systems and their 
components is steadily increasing, meta-programs and 
k-stage meta-programs can be seen as tools for 
managing complexity and changeability aiming to 
adapt generated programs to the different context of 
use. 

The use of models constitutes a background for 
transformations. To explain the transformations, we 
first introduce motivating examples, and then the 
structural models of the 1-stage and k-stage meta-
programs. Say, we aim at developing a simple meta-
program for generating a set of the homogeneous 
Boolean equations (they are instances of a target 
program here). We represent two variants of the set as 
follows: 

Variant 1: Y = X1 AND X2; Y = X1 OR X2 OR 
X3 OR X4; Y = X1 AND X2 AND X3; 
Variant 2: Y = NOT (X); Y = X1 AND X2; Y = X1 
OR X2 OR X3 OR X4; Y = X1 AND X2 AND X3. 

The meta-program has to specify the variable 
aspects (i.e. variability) of the domain of Boolean 
equations using a meta-language while the base 
aspects (i.e. commonality) have to be expressed using 
a target language (in our case, the assignment 
statement: the left side variable, symbol “=“, and the 
expression to the right). We code variability by (meta-) 
parameters. For Variant 1 (we explain Variant 2 later), 
there are two parameters: P1 and P2. The first 
(meaning operation) has two values (AND, OR). The 
second (meaning the number of arguments) has 3 
values (2, 3, and 4). In Fig. 1(a), we present the 
1−stage meta-program’s model. In Fig. 1(b), we give 
its full implementation in PHP (used as meta-
language). In Fig. 1(c), we outline the internet-based 
representation of the meta-program as the user sees it. 
The meta-program, when interpreted by the PHP 
processor, can generate any instance on demand from 
the space of possible variants (in our case 2*3=6). The 
generated instance (when P1=AND and P2=3) is 
given at the bottom (see Fig. 1). 

One can predict that the use of the k-stage meta-
program is beneficial when the number of parameters 
is large enough. We can enlarge, for example, the 
variability space of Variant 1 by introducing changes 
for the function name (Y, Z) and for the assignment 
operator (“=”, “:=”). However, even without the 
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Meta-interface 
of Meta-program 

<?php 
 
// here is meta-interface  
 
$P1 = "AND"; 
$P2 = 3; 
 

 

Meta-body 
of Meta-program 

// here is meta-body 
echo "Y = X"."1"; 
for($i = 2; $i <= $P2; $i++) 
echo " $P1 X".$i; 
?> 

 
 
 
 
 

The generated instance:  
a) b) c) 

Figure 1. Meta-program model (a), its full implementation in PHP for Variant 1 (b) and user’s vision (c) 

 

<?php 
 
// here is meta-interface of stage 2 
 
$P2 = 3;  

 
 
 
 

 

 
//here is the meta-body of stage 2 
 
echo "<?\n"; 
echo "\$P1 = \"AND\";\n"; 
echo "echo \"Y= X\".\"1\";\n"; 
echo "for(\$i=2;\$i<=$P2; \$i++)\n"; 
echo "echo \" \$P1 X\".\$i;\n"; 
echo "?>\n"; 
?> 

 

Meta-body of 2-stage as a Black Box 
 
 
 

a) b) c) 

Figure 2. 2-stage meta-program for Variant 1 (a), user’s vision of it (b), model of k-stage meta-program (c) 

enlargement, the given meta-program can be 
rewritten as the 2-stage meta-program (see Fig. 2(a)). 
Fig. 2(b) represents the user’s view of the 2-stage 
meta-program. The role of the symbol “\” is to 
manage interpretation of the target program at stage 2 
(see DEFINITIONS 4-7, for details). Fig. 2(c) 
represents the k-stage meta-program model containing 
the multi-level meta-interface and multi-level meta-
body. 

Though the basic idea is clear from the running 
examples, the transformation is not a trivial task. It 
requires as much as deep insights to study as follows. 

4. Theoretical background of meta-program 
transformations 

4.1. Basic definitions 

Meta-program is a higher-level executable 
specification M (aka program generator), which is 
coded using two languages (meta-language ML and 
target language TL ), to specify and generate a set of 
programs in TL . The ML processor (compiler) is the 
transformation tool to derive or generate programs in 

TL  from the meta-program. To understand the syntax 
(structure) of any meta-program (1-stage, k-stage), it is 
enough to read and study running examples given in 
the paper. As running examples are supplemented by 
the result of executing M, one is also able to 
understand semantics (behaviour) of the meta-
program. However, the deep understanding of meta-
program refactoring necessitates more precise models. 
We introduce them through the following definitions 
and notions. 

We denote 1-, 2-, and k-stage meta-programs as 
1M  (also M), 2M ,…, kM  respectively. Meta-program 

is a structure that consists of the meta-interface and 
the meta-body (see Fig. 1(a)). Also the meta-program 
is a target program generator. The k-stage meta-
program is a structure that consists of the multi-level 
meta-interface and the multi-level meta-body (see 
Fig. 2(c)). The meta-interface (single or the multi-
level) specifies (meta-)parameters and their values. 
The 2-stage meta-program is a meta-meta-program or 
meta-generator. The k-stage meta-program is the meta-
meta-generator. 

As, in fact, parameters play a decisive role in 
refactoring, we need to introduce the following formal 
definitions. 

 

Meta-body as a Black 
Box (invisible part) 

Meta-body of 1-stage as a Black Box 

 

Meta-interface of k-stage meta-program 

Meta-body of k-stage meta-program 

Meta-body of 2-stage meta-program 
 

Meta-interface of 1-stage 
meta-program 

 
Meta-body of 1-stage meta-program 

 

Meta-interface of 2-stage meta-program 

. . .  
. . .  
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DEFINITION 1. In terms of the set-based notion, 
meta-interface model )( IMµ of M  is the  
n-dimensional non-empty (meta-)parameter space P : 

=)( IMµ P, (1) 

where P },;{ VP=  P – the full set of n meta-
parameter names, i.e. ,Pn = V – the ordered set of 
all meta-parameter values.  

As each meta-parameter )( PPP ii ∈ has its own set 
of values Vvvv

qiii ⊂},...,,{
21

, we can write: 

,},...,,{:
21

VvvvVP
qiiiii ∈==  (2) 

where qi – the number of values of meta-parameter  

iP . The symbol “:=” means ‘is defined’. 

DEFINITION 2. Two meta-parameters iP  and jP  

( PPP ji ⊆, )( ji ≠ ) are said to be independent upon 
the choice of their values, if any pair of values

},{
td ji vv  jjii PvPv

td
∈∈ ,( , where ],1[ qid ∈ and

],1[ mjt∈ ) can be selected to correctly evaluate the 
specification M, when it is executed. Otherwise, the 
meta-parameters are dependant upon the choice of 
their values.  

Sometimes dependent meta-parameters are treated 
as interacting (especially in terms of aspects or 
features [44]).  

Note that this definition defines the one-to-one 
dependency in making a choice of meta-parameter 
values. The whole space P is used to constructing the 
meta-parameter dependency graph ),( UPG as follows. 
The set of nodes P corresponds to meta-parameters. 
The set of edges U is defined as follows: for all i and j 

1=iju  (meaning the edge exists) iff two parameters

iP and jP  are dependable according to DEFINITION 

2, otherwise 0=iju  (meaning the edge does not exist) 

( ji PP , P∈ , ),( jiij PPu = U∈ ). 

 

DEFINITION 3. In terms of the graph-based 
notion, the graph ),( UPG is the meta-interface model 

)(*
IMµ defined by Eq. (3). 

=)(*
IMµ ),( UPG . (3) 

Firstly, )(*
IMµ is the derivative model that has 

been derived from Eq. (1) (it follows from 
DEFINITION 1 and DEFINITION 2). Secondly, the 
model )(*

IMµ is more precise (as compared to (1)) 
because it specifies the parameter dependency 
explicitly. As it will be clear later, this attribute is key 
to identify some useful properties in devising formal 
transformation rules. The left part of Fig. 3(a) and (b) 
explains the model )(*

IMµ  for our running examples 
(Variant 1 and Variant 2 respectively). 

So far, we have defined the structural models of 
the meta-programs M and kM . The behavioural (aka 
functional) model of kM is to be understood as 
follows. When kM is executed, the ML processor 
produces either a set of (k-1)-stage meta-programs, or 
a single (k-1)-stage meta-program, each dependent 
upon the pre-specified meta-parameter values. 

To specify the functional model in designing meta-
meta-programs, we need to introduce some 
technological terms such as de-activating label, de-
activating index, active/passive meta-construct.  

DEFINITION 4. Meta-construct (i.e. meta-
parameter or meta-function of a meta-language within 
the meta-body) is active if it performs the pre-scribed 
action at the current stage defined by the meta-
language. Simply, the active meta-construct has no de-
activating label (see Fig. 1(b)).  

Note that modern high-level languages (such as 
Java, C++, PHP, etc.) have the de-activating labels 
(denoted as “\”) to control and change the role of 
language constructs during their compilation. 

DEFINITION 5. Meta-construct is passive if it 
contains the de-activating label (labels) written before 
the meta-construct (see Fig. 2 (a)). 

Note that if a meta-construct is passive at the 
current stage, the ML processor does not interpret the 
construct treating it as a target language text.  

 
 

),( UPG  

P1

P2
 

)),,(( EVVG ji  

AND OR

2 3 4

P1 values:

P2 values:

 

),( UPG  

P1

P2
 

)),,(( EVVG ji  

AND ORNOT

2 3 41

P1 values:

P2 values:

 

a) b) 

Figure 3. The parameter dependency and value interaction graphs for Variant 1 (a) and Variant 2 (b)



Refactoring of Heterogeneous Meta-Program into k-stage Meta-Program 

19 

DEFINITION 6. De-activating index is the 
adequate number of de-activating labels written before 
a meta-construct. The value of the index depends on 
the meta-construct’s stage and meta-language used 
(see RULE 5 in sub-section 4.4). 

DEFINITION 7. De-activating process is the 
multi-stage process (in terms of k-stage processing) to 
reducing the de-activating index by 1, or changing the 
state of a meta-function from the passive state to the 
active state. 

The ML processor performs the de-activating 
process reducing the de-activating index by 1 at the 
given stage. Note also that the de-activating process 
does not affect semantics (functionality or behaviour) 
of a meta-function. The process affects the meta-
function’s state only. 

DEFINITION 8. Refactoring is the transformation 
process that alters the structure of a program without 
altering its observable behaviour [22]. We use this 
definition also for the meta-program refactoring. 

DEFINITION 9. Reverse transformation of M into 
kM )( MM k ←T is the process T of refactoring the 

meta-program M so that the model )(*
IMµ (see 

DEFINITION 3) is transformed into the multi-stage 
meta-interface and the meta-body of M is transformed 
into the multi-stage meta-body using the prescribed 
transformation rules (see sub-section 4.4). 

DEFINITION 10. Forward transformation is the 
generating processes G defined as two cases as 
follows. 

Case 1: 1−→ kk MM G 2−→ kMG …, where 1−kM  
is either a single (k-1)-stage meta-program (if a single 
choice of meta-parameter values has been taken at 
stage k), or a set (subset) of the meta-programs (if 
multiple choices have been taken at stage k); 

Case 2: RM →G1 , where R is either an instance 
of the target program (if a singe choice of meta-
parameters values has been taken), or a set (subset) of 
the target programs (if multiple choices have been 
taken). 

It is clear that Case 1 defines the process of 
generating meta-generators while Case 2 defines the 
process of program generators. 

4.2. Formulation of transformation tasks  

Now, having the formal definitions of basic terms, 
we are able to formulate tasks we consider in this 
paper. 

Given: (i) meta-program model (see Fig. 1(a); 
Eq. (3) represents the key part of the model), (ii) 
specification M that implements the model (i) and 
(iii) k-stage meta-program model (see Fig. 2(c)). 

Task 1 is to perform the reverse transformation to 
refactoring M into the specification kM according to 
DEFINITION 9. 

Task 2 is to perform the forward transformations 
to generating either the lower-level meta-program(s), 
or target program(s) according to DEFINITION 10. 

4.3. Graph-based background to specify 
refactoring 

First we identify the conditions and properties to 
specify the meta-parameter (further parameter) 
dependency graph ),( UPG . Let be given the bipartite 
graph )),,(( EVVG ji (the parameter values interaction 
graph) defined for two parameters iP and jP )( ji ≠ as 
follows: edges ),(

td jidt vve =  ),( jjii VvVv
td
∈∈  

specify the value interaction of the type 
div requires 

tjv (meaning 1=dte ), or the interaction of the type  

div excludes 
tjv (meaning 0=dte ). 

We illustrate the bipartite graphs for our running 
examples (see the right parts of Fig. 3(a) and (b)). As 
the graphs specify the interaction (dependency) among 
parameter values, we call them value graphs. The 
bipartite value graphs serve to specifying some key 
properties of the parameter dependency graph 

),( UPG as follows. 

PROPERTY 1. It is expressed by Eqs. (4) and (5) 
as follows. The parameter dependency graph ),( UPG
is the null graph (see Fig. 3(a)) iff for each pair of 
parameters ji PP , P∈ (i≠j) their value graphs are 
complete bipartite graphs: 

)),,((( EVVG jibb∀ is complete) = true, (4) 

where ( ];,1[ Bb∈ 2
nCB = ); B – the number of 

different parameter pairs. 
The parameter dependency graph ),( UPG is 

disconnected (i.e. containing a set of connected 
components) iff the following property holds: 

)),,((( EVVG jibb∃ is non-complete) = true. (5) 

The parameter dependency graph can be expressed 
as: 


g

i
iGUPG

1
),(

=

= , ( ;∅=∩ ji GG  GGG ji ⊆,  ) (6) 

)( ji ≠ , g is the number of connected components 
including isolated nodes (g > 1). 

Fig. 4 presents some typical examples of ),( UPG : 
(a) – all parameters are independent as it is stated by 
Variant 1, see Section 3 and Fig. 1(b); (b) on left – the 
case indicating groups of dependent parameters as 
Variant 2 (e.g. such a case can be derived from 
Variant 1 by adding a new value (NOT) for the 
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function name, see Section 3), on right – there is a 
variant with 3 connected components; (c) – 
theoretically possible variant when the number of 
parameters is equal to 6.  

 
 

  
 

  

 
g=2 

left 
g=3 

right 
g=3 

 
g=1 

a) b) c) 

Figure 4. Graphs ),( UPG : (a) Variant 1, (b) left - Variant 
2, right – other possible variant, (c) theoretically possible 

variant when n=6 

Connected components GGG ji ⊆, define 
constraints (requirements) to specify stages of 
refactoring as follows. 

PROPERTY 2. The upper bound of the eligible 
number of stages maxk to perform refactoring of a 
given (correct) meta-program into its k-stage format is 
defined by inequality (7): 

gk ≤max . (7) 

Now we are able to formulate the condition for 
solving Task 1. 

Statement. Transformations MM k ←T  
)1( maxkk ≤< exist iff the dependency graph ),( UPG

of M is disconnected, i.e. defined by Eq. (6).  
The proof is based on PROPERTY 1 and 

PROPERTY 2. 

Inference. In fact, Eqs. (8) and (9) give the 
number of possible transformations T when k=2 and 
k=3, respectively: 

,22|| −= gT  (8) 

.2*33||
1

)1(∑
=

−−=
g

i

igT  (9) 

Eqs. (8) and (9) can be easily checked on examples 
taking into account PROPERTY 5 (see sub-
section 4.4).  

4.4. Properties and rules to support refactoring 

Properties of the parameter dependency graph 
),( UPG are essential to form transformation rules. 

This graph, at the meta-program M coding level, can 
be constructed due to the following property.  

PROPERTY 3. The independent parameters are 
expressed through the assignment statements, while 
dependent parameters are expressed through the 
conditional assignment statements written within the 
meta-interface of .M   

PROPERTY 4. The connected components 
),( UPGGi ⊆ ]),1[( gi =  (see Eq. (6)) represent 

groups of independent parameters.  

PROPERTY 5. Any combination of parameter 
groups (i.e. iG ) can be lifted from stage 1 to any stage 

k and evaluated there when M is re-factored into kM . 
All these properties are based on the background 

given in sub-section 4.3, where the dependency 
relation (i.e. edges of ),( UPG ) has been constructing 
using the parameter value interaction (i.e. using the 
graph )).),,(( EVVG ji However, analyzing the real 
world meta-programs, we have obtained yet another 
kind of the parameter interaction, which we call the 
priority-based parameter dependency. We explain that 
below. 

Take, for example, the Line Follower task [17] that 
was implemented as a meta-program to describe 
different aspects of using educational NXT Robots to 
teach CS topics. We express these aspects through the 
following parameters (their values are in square 
brackets) [40]: 

1. Teaching method (T): [project-based, problem-
based]; 

2. Algorithm (A) type to follow the line by the 
Robot: [A1, A2, A3, A4] (e.g. A1 means the 
line following by zigzags using the only one 
light sensor); 

3. 1st Light sensor (L1): [S1, S2, S3, S4] (Si 
means inputs of the NXT Intelligent Brick 
[27]); 

4. 2nd Light sensor (L2): [S1&S2, S1&S3, 
S1&S4, S2&S3, S2&S4, S3&S4]; 

5. Selected Motor (S): [A&B, B&C, A&C] (A, B, 
C: outputs of the NXT Intelligent Brick, or 
names of motors); 

6. Velocity (V) of motors in % calculated of 
maximum value: [10, 20, 30]. 

It seems that there is no other way to define the 
priority-based relation of parameters as taking into 
account the application context (i.e. semantics of the 
task). It can be introduced, for example, through 
categorizing parameters according to their priority 
levels. How many priority levels are needed? It 
depends upon the domain task and the intension of 
meta-designer whose responsibility is, at the design 
phase, to develop a meta-program and to anticipate the 
possible variants for the context adaptation to be 
provided by the user through refactoring, at the use 
phase. In general case, there might be the following 
priority levels: highest (HL), intermediate (IL), lowest 
(LL), and null priority. It is convenient to model the 
priority levels by colouring the nodes of the connected 
components using 4 colours as follows: black (for 
HL), dark (for IL), moderate dark (for LL) and white 
(for null priority). Fig. 5(b) illustrates colouring of the 
priority-based graph ),(* UPG for the Line Follower 
task. 
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Figure 5. Graph G(P,U): (a) – no priority (1-stage case), (b) – with priority nodes, (c) – with priority connected components 

PROPERTY 6. If a connected component 
)),(( *** UPGGG ii ⊂  has a coloured node (see Fig. 5(b)), 

then the remaining nodes of the connected component 
*
iG have the same colour (colour with a highest 

priority, see Fig. 5(c)) because, according to 
PROPERTY 5, they will appear at the same stage. 

Now we are able to connect the parameter priority 
with stages because the number of a stage is actually 
its priority. For example, stage k is the highest and 
stage 1 is the lowest. 

Thus, the following rule is valid. 

RULE 1. The HL-coloured connected component 
*
iG (if any) has to be allocated to stage k, and the  

LL- coloured connected components *
iG  (if any) have 

to be assigned to stage 1. The IL-coloured connected 
component(s) *

jG (if any) should be assigned in the 
stages between stages 1 and k. If there are no such 
stages, the graphs *

jG  are moved to stage 1. 
Returning to our example and applying RULE 1, 

we have the following feasible assignments of 
connected components to stages. 

Case 1 (when k=3 due to Eq. (7)): T - at stage 3; 
(S, V) – at stage 1; and (L1, A, L2) – at stage 2 (see 
also Table 4, #S 6). 

Case 2 (when k=2): T - at stage 2; (S, V) and (L1, 
A, L2) – at stage 1 (see also Table 3, #S 6). 

Case 1 is the most relevant assignment because of 
the task logic: the teacher selects the teaching model 
first, then the algorithms to be taught and, finally, the 
pure technical characteristics of the teaching 
environment. 

PROPERTY 7. The priority relation such as HL, 
IL, and LL is the context-based information to govern 
the adaption process in using domain generators and 
meta-generators. 

Indeed, by selecting the value of the parameter T, 
teacher adapts the teaching model to his\her needs; by 
selecting the type of an algorithm (parameter A), 
teacher makes adaptation of the teaching content to 
different groups of students. 

CONSTRAINT 1. The priority relation (if any) 
should be indicated in the meta-interface by the meta-

designer using comments written before each 
parameter use. 

This information will be used by refactoring tool 
(method). What will happen if there was not 
introduced the full list of priorities, or the priority 
relation has been missed at all? In the first case, a 
given priority (say HL, or LL) is still useful 
information in selecting stages (due to RULE 1) but 
not enough. If there is no priority at all and with 
regard to the fact that the parameter space is not 
changed in refactoring (only permutation is 
performed), the following question can be raised. 
What is better in constructing re-factorings (meaning 
selecting stages): either to have “more meta-
generators and less generators”, or “less meta-
generators and more generators”? As generators are 
“closer to user” in the sense that they produce 
programs directly to integrate them into the user’s 
system, from this perspective, the better variant is 
“less meta-generators and more generators”. This 
reasoning leads to the following heuristic rule that 
specifies how many groups of parameters (presented 
as connected components iG ) should be allocated to 
each non-allocated stage remaining after applying 
RULE 1. 

RULE 2. If, after applying RULE 1, the number of 
non-allocated stages k*<g* (where g* is the number of 
yet non-allocated connected components), then the 
assignment is as follows:  

(a) one connected component for each non-allocated 
stage, except stage 1, is allocated and  

(b) g*– k*+1 connected components for stage 1 
(whether or not the stage has the allocated 
parameters) are allocated. 

(c)  If k*=g*, then there is the only one group for 
each stage (see Fig. 5(c)). 

When all parameters are allocated to stages, the 
refactoring process can be already performed as it is 
specified by the next rules. 

RULE 3. If, after applying RULE 1, the number of 
non-allocated stages k*<g* (where g* is the number of 
yet non-allocated connected components), then either 
calculate all possible assignments (if computational 
resources are not a matter), or let user define the 
assignments. 
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RULE 4. Refactoring of meta-interface is done 
first and then refactoring of meta-constructs within the 
meta-body follows. The first action is implemented by 
lifting parameters to allocated stages (replacing their 
location within the meta-interface). The second action 
is modelled by inserting the de-activating index before 
meta-functions that are related to lifted parameters.  

RULE 5. De-activating index (see DEFINI-
TION 6), is defined by Eq. (10) (also see Fig. 2(a)): 

Index = 0, for stage k; 1, for stage (k-1), etc. 

and ∑
−

=

2

0
2

k

a

a , for stage 1. (10) 

Table 1 explains the use of de-activating process 
and presents the index value to ensure refactoring of 
meta-constructs for PHP (note that (10) is also valid 
for Java and C++). 

Table 1. Examples of using de-activating for PHP  

Where 
applied Examples in PHP Index 

value 
In stage 3 $P1 = "AND"; 0 
In stage 2 echo "\$P2 = 3;"; 1 

In stage 1 echo "echo \"\\\$P3 = 
Y;\";"; 3 

 
Further we identify the use of RULES 1, 2 and 4 

as Strategy 1 to describe the refactoring method in 
Section 5. Strategy 1 enables to produce the only one 
solution of Task 1. We use also Strategy 2 (RULE 3) 
for investigation some properties of refactoring (such 
as checking equivalence of transformations, 
complexity evaluation [39, 43]). Strategy 2 enables to 
produce a set of solutions (see Tables 3 and 4). If the 
number g is less than the “magic 7” (also known as 
Miller’s cognitive complexity [14]), then we are able 
to produce and check all possible transformations (see 
also Eqs. (8) and (9)). Otherwise, we need to restrict 
the number of possible solutions. 

5. Refactoring method and experiments 

5.1. Step-wise description of the method 
The following assumptions are accepted: i) the 

given meta-program or M is correct; ii) the parameter 
space of M is pre-specified in advance and cannot be 
changed; iii) each stage must have at least one 
parameter or one group of related parameters; iv) the 
priority-based relationship should be introduced by the 
domain expert or by meta-designer indicating the 
priority, e.g. as a comment before each assignment 
statement within the meta-interface of M . 

Let us be given the specification M and the 
required number of stage )1( 00 >kk for .M The method 
we describe below is given as a sequence of steps 
being supported by devised RULES to solve Task 1. 

Step 1. Make choice of strategy (Strategy 1 or 
Strategy 2); .∅=kM  

Step 2. Analyze the meta-interface of M , construct 
the graph ),( UPG , its connected components

iG (if any) and identify g. 

Step 3. If priority relation=true then change the 
graph ),( UPG into ),(* UPG  by introducing 
priorities. 

Step 4. If 0kg > then go to Step 6 (meaning the 
solution exists) else go to Step 5. 

Step 5. 100 −= kk ; go to Step 4 until ;10 ≠k  
otherwise go to Step 8 (meaning there is no 
solution). 

Step 6. If Strategy 1 then do 
If priority relation=true then do 

Sort connected components iG by priority in 
decreasing order; 
Assign the ordered connected components to stages 
according to RULE 1; 
Identify yet non-allocated stages end do 

If non-allocated stages =true then do 
 apply RULE 2; 
 apply RULE 4 and RULE 5 to perform 
refactoring;  perform fulfilling kM ;  end do; 

end if; 
Step 7. If Strategy 2 then do 
 apply RULE 3; 
 for each assignment given by RULE 3, 
  apply RULE 4 and RULE 5 and form a set of  
re-factorings;  

end do 
Step 8. End. 

5.2. Methodology and results of experiments 
The methodology we have chosen to provide 

experiments includes the following steps: (a) selection 
of application domains, target (domain) languages and 
meta-languages; (b) identification of the scope of 
experiments; (c) solving Task 2 through experiments; 
(d) evaluation of the experiments. We have found the 
following requirements relevant for step (a): domains 
and their languages are to be as simple as possible, 
but, on the other hand, they are to be related to real 
applications; though we have repeated our experi-
ments using two meta-languages aiming to clarify 
their impact on transformation characteristics such as 
complexity, we present the results only for one meta-
language (PHP) here. On this account, four domains 
under investigation were selected: abstract strings 
generated using alphabet {0, 1} (not presented here); 
test-frames based on the alphabet {0, 1, X} that are 
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Figure 6. k-stage transformation/generation processes within the same meta-parameter space 

used in hardware testing to compact input vectors 
[11]; the so-called L-systems that play extremely 
important role in designing interfaces of systems [28]; 
CS topics (learning programs) for educational robots 
[40]. All selected domains (except the first) are 
characterized by the great degree of variability. 

Formally, L-systems [28] are a string-rewriting 
grammar expressed as an ordered triplet (U, ω, H), 
where: U – alphabet, i.e., a set of symbols (variables) 
that can be replaced by other symbols; ω – start 
symbol, also called axiom or initiator, defining the 
initial state of the system (ω ∈ U); H – set of 
production rules defining the way variables can be 
replaced by a combination of other variables 
iteratively (H ⊂ U × U*). 

Program generation (see Task 2 to the right of the 
dotted line in Fig. 6) is based on the multi-level 
forward transformations processes. These processes 
are supported by PHP processor. They are completely 
automatic. 

The aim of experiments is to show that using the 
method (see sub-section 5.1) for different domains the 
following property holds: 

})){}({( ]),1[(3,2 RRiriik =∀∀ ∈= is true, (11) 

where 
s

ii s
RR = (see also Fig. 6); R is the set of 

all instances derived from ;1M
siR is the set of all 

instances derived from k
iM . Figure 6 outlines the 

schematic view of experiments we have carried out 
(see also the mode Strategy 2 within the method). 
Stage 0 presents overall instances derived from 
different branches (meta-programs). 

The result of solving Task 1 is a set of all single  
k-stage meta-programs (from 1 to r), where 1 means 
some k-stage meta-program with one parameter and  
r – the number of all possible permutations of 
parameters at stage k. 

The relationship, say, s rr s
RR =}{ means the 

writing (concatenation) of generation results into the 
same file numbered by r. 

We present results in Tables 2-4 below. Table 2 
gives some characteristics of 1M as data to solve 
Task 1. Note that dependent parameters and their 
values are given in parentheses (see, e.g. (2, 3, 4) and 
(4, 4, 6) in line S# 6 of Table 2 and sub-section 4.4).  

Table 3 presents results (Task 1 and Task 2) of all 
possible transformations 1M into ]),1[( riM k

i ∈ and 
generation when k=2. Table 4 presents results of the 
same transformations and generation when k=3. As it 
is clear from comparison of the number of generated 
instances given in Tables 2-4, this number is the same. 
Note that this property is not enough to approve 
equivalence of such transformations. We have also 
checked the coincidence of the content of instances 
within all files formally interpreted here as {R}, 
{R1},…, {Rr} (see Fig. 6) using the Excel facilities 
(Conditional Formatting) for checking the identity of 
the files. In all such cases the full identity of instances 
within files was obtained (the order of instances 
within file was different only). Therefore, we were 
able to conclude that the equivalence condition (Eq. 
(11)) holds, meaning that the transformations 

321 MMM →→ TT are semantics preserving 
structural transformations, or refactoring. Note that the 
partial results ( 21 MM →T ) for other domains 
using a slightly different methodology were described 
in [39, 43]. 

Tables 2-4 contain also the results of using the 
method, when Strategy 1 and priority relations were 
applied, to define a concrete refactoring for solving 
real tasks. Priority relations are helpful to identify how 
to assign parameters (or groups of parameters 
represented as graphs ),(* UPG in Fig. 5) to stages. 
For example, we have presented the results of 
applying Strategy 1 in columns 4-6 (see Tables 2-4). 

As we could not be able to reveal semantics of 
parameters in Tables (parameters and their values are 
expressed by abstract numbers here), we recommend 
(for clearness) to connect the result of Line follower 2 
(see sample 6 given in bold in Tables 3 and 4) with the  
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Table 2. Characteristics of 1-stage meta-programs 1M  

S# Name of MP 
# of meta-
para-
meters 

Dependent meta-
parameters given 
by numbers 

# of values (for 
each parameter) Priority relation 

# of generated instances 
R    ( }{1 RM →G ) 

1 L-system 4 No (5,4,4,4) 3-null; 1- LL 320 =5*4*4*4 
2 Test frame 5 No (2,2,2,2,2) 5-null 32=2*2*2*2*2 

3 Calibration of NXT 
robot 4 No (3,4,3,3) 1-HL; 3- null 108=3*4*3*3 

4 Calibration of NXT 
robot with context 5 No (2,3,4,3,3) 1-HL; 1-IL; 3-LL 216=2*3*4*3*3 

5 Line follower 1 5 2,3 (2,(4,20),3,4) 1-HL; 2-IL; 2-LL 960=2*(2*10+2*10)*3*4 

6 Line follower 2 6 (2,3,4)  (2,(4,4,6),3,3) 1-HL; 3-IL;  
1-LL;1-null 360=2*(2*4+2*6)*3*3 

7 Ornament’s design 3 No (2,3,2) 3-null 12=2*3*2 

 

Table 3. Characteristics of M 1 refactoring into k-stage meta-programs when k=2 (samples 1&2 are omitted since they are in [39]) 

S# Name of MP 
Total # M 2  
derived 
from M 1 

# of meta-
parameters 
of M 

2 

# of meta-
parameters 
of M 

1 

Total # of 
generated M 1 

from all M 2 

Total # of generated 
Instances from M 1 

Equivalency 
condition 
(see Eq.(11)) 

3 Calibration of NXT 
robot 7 

1-HL 3-null 3 108=3*(4*3*3) true 

1-HL, 1-null 2-null 12 =3*4 108=12*(3*3) true 

4 Calibration of NXT 
robot with context 2 1-HL 1-IL, 3-LL 2 216=2*(3*4*3*3) true 

5 Line follower 1 2 1-HL 2-IL, 2-LL 2 960 =2*((2*10+2*10)*3*4) true 

6 Line follower 2 2 1-HL 3-IL, 1-LL, 
1-null 2 360 =2*(2*4+2*6)*3*3 true 

7 Ornament’s design 6 
1-null 2-null 2 12=2*(3*2) true 
2-null  1-null 6=2*3 12=6*(2) true 

 

Table 4. Characteristics of M 1 refactoring into k-stage meta-programs when k=3 

S# Name of MP 

Total  
# M 3 

derived 
from M 1 

# of 
meta-
para-
meters 
 of M 

3 

# of 
meta-
para-
meters 
of M 

2 

# of meta-
parameters 
of M 

1 

Total # of 
generated 
M 2 from 
all M 3 

Total # of 
generated M 1 

from all M 2 

Total # of 
generated 
instances from 
all M 1 

Equivalency 
condition 
(see Eq. 
(11)) 

1 L-system 12 
1-null 1-null 1-null, 1-LL 5 20=4*4 320=20*(4*4) true 
2-null 1-null 1-LL 20=5*4 80=20*(4) 320=80*(4) true 

2 Test frame 150 
1-null 2-null 2-null 2 8=2*(2*2) 32=8*(2*2) true 
2-null 1-null 2-null 4=2*2 8=4*(2) 32=8*(2*2) true 

3 Calibration of 
NXT robot 12 

1(HL) 1-null 2-null 3 12=3*(4) 108=12*(3*3) true 
1(HL) 2-null 1-null 3 36=3*(4*3) 108=36*(3) true 

4 
Calibration of 
NXT robot with 
context 

1 1(HL) 1(IL) 3-LL 2 6=2*(3) 216=6*(4*3*3) true 

5 Line follower 1 1 1(HL) 2(IL) 2-LL 2 80= 
2*(2*10+2*10) 960=80*(3*4) true 

6 Line follower 2 1 1(HL) 3(IL) 1-LL, 1-null 2 40= 2*(2*4+2*6) 360=40*3*3 true 

7 Ornament’s 
design 6 

1-null 1-null 1-null 2 6=2*(3) 12=6*(2) true 
1-null 1-null 1-null 3 6=3*(2) 12=6*(2) true 

S – sample; MP – meta-program; M 1 - 1-stage meta-program; M 2  - 2-stage meta-program; M 3  - 3-stage meta-program; HL –
highest level; IL –intermediate level; LL –lowest level: null – no priority. 
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description given in sub-section 4.4 (Case 2 and 
Case 1) and Fig. 5. 

As we could not be able to reveal semantics of 
parameters in Tables (parameters and their values are 
expressed by abstract numbers here), we recommend 
(for clearness) to connect the result of Line follower 2 
(see sample 6 given in bold in Tables 3 and 4) with the 
description given in sub-section 4.4 (Case 2 and 
Case 1) and Fig. 5. 

We summarize the experimental results as follows: 
1) the hypothesis that those transformations ( 1M into 

2M or 3M ) are actually refactoring is true; 2) there is 
a large enough space for selecting program instances 
for adaptation for a concrete context of use; 3) the 
priority–based information is helpful for this 
adaptation in solving real world tasks. 

6. Discussion and evaluation 
The necessity of refactoring to transform the given 

correct heterogeneous meta-program into its k-stage 
format arises due to practical and theoretical reasons. 
The practical needs have come from our extensive 
experiments in using NXT educational robots [30] in 
the real teaching setting (school) to teach CS topics. 
Aiming at the increase of efficiency and flexibility in 
the content preparation and continuous changes (by 
both teacher and students), we describe the content as 
meta-programs. Because of the extremely wide  
e-learning context (social, pedagogical, technological 
characteristics of Robots, tasks specificity, etc.), meta-
programs may contain a large number of parameters. 
Due to the necessity of managing changeability and 
adaptation of the teaching content to the context of use 
(we do that using context-based priority relation here), 
we have found refactoring of meta-programs into the 
k-stage meta-programs as a relevant and beneficial 
technology. The practical benefits are not restricted by 
one domain. We have obtained the similar observation 
in other domains of great importance, such  
e-commerce [21, 44]. 

The basic results of the paper can be summarized 
as follows. 

1. The theoretical background introduced and 
experiments we have carried out approved the 
hypothesis that the meta-program refactoring into  
k-stage meta-program is the semantics preserving 
transformation. 

2. Though we have not considered the 
development of the meta-program here (it was given 
as input in describing the proposed method), the 
concept of staging is also useful to better 
understanding the development process due to the 
possibility of its systemizing. For example, in 
developing a meta-program, a designer is able to 
introduce parameters into the specification gradually, 
in stages, making testing after each stage, thus, in this 
way, simplifying the procedure. 

3. The key idea of the method to transform a meta-
program into its k-stage structure is based on the de-
activation/activation mechanism (process) to de-
activate/activate the adequate constructs at the suitable 
stage of the given specification. A meta-language must 
have the constructs (features) to ensure the realization 
of the mechanism. 

4. The benefits of the approach are: a) it provides a 
theoretical background to develop meta-program 
refactoring tools; b) it enables to construct a set of the 
lower-level generators that are derived from the  
k-stage meta-program; c) it extends the known multi-
stage programming concept applying it in another 
context of use, i.e. in the heterogeneous meta-
programming domain; d) it contributes to better un-
derstandability of heterogeneous meta-programming 
domain; e) it extends the generative reuse, though in a 
narrow and specific way. 

5. The method has some limitations too. First, its 
use is restricted by heterogeneous meta-programs 
only. Second, there are some difficulties in applying 
de-activating index when the number of stages is more 
than 3. The reason is the significant decrease of 
readability of such meta-specifications (meta-
designer’s view) because of the abnormal growth of 
the de-activating index value (e.g. when k = 4,  
index = 7 for such languages as PHP, Java, C++). 
However, the refactoring tool hides (eliminates) this 
deficiency. Finally, it is difficult to form the precise 
criteria for refactoring due to the task complexity and 
context dependency upon the application task. 

7. Conclusion 
1. The graph-based approach has been found as a 

relevant basis to theoretically approving the proposed 
method to solve the meta-program refactoring 
problem. Both theoretical and practical results 
obtained provide sufficient information to build 
refactoring tools. 

2. Though we have obtained the conditions of 
resolving the problem in general case and we have 
identified the upper bound on the needed number of 
stages to refactoring a heterogeneous meta-program 
into the k-stage format, the refactoring process cannot 
be completely automatic, if the context of refactoring 
is not fully described. 

3. As the refactoring context is highly dependent 
on the application domain, in the case of the partial 
description of the context information, the method can 
ensure automatic refactoring by providing all possible 
variants, if the cognitive complexity does not exceed 
the boundary of the ‘magic 7 problem’. This bound 
has been selected to reduce/save computational 
resources in our experiments. 

4. From the user’s perspective, refactoring raises 
the abstraction level of transformations because, at a 
higher stage, he/she uses a less amount of information, 
which is presented in the user-friendly format. From 
the meta-designer’s perspective, refactoring-based 
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transformation preserves approximately the same 
abstraction level. 
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