
Information Technology and Control 2024/4/531016

Instability Hazard Effect 
of Mined-out Areas Near 
the Mining Site by Fusion 
InSAR and PSO-BP  
Rock Mechanical 
Parameter Inversion

ITC 4/53
Information Technology  
and Control
Vol. 53 / No. 4/ 2024
pp. 1016-1027
DOI 10.5755/j01.itc.53.4.37133

Instability Hazard Effect of Mined-out Areas Near the Mining Site by Fusion 
InSAR and PSO-BP Rock Mechanical Parameter Inversion

Received 2024/04/30 Accepted after revision 2024/07/18

HOW TO CITE: Yuan, L., Chen, D., Li, S., Wang, G., Li, Y., Peng, J., Qi, Z. (2024). Instability Hazard 
Effect of Mined-out Areas Near the Mining Site by Fusion InSAR and PSO-BP Rock Mechanical 
Parameter Inversion. Information Technology and Control, 53(4), 1016-1027. https://doi.
org/10.5755/j01.itc.53.4.37133

Corresponding author: Lism@kust.edu.cn 

Liwei Yuan, Di Chen 
Faculty of Public Safety and Emergency Management, Kunming University of Science and Technology,  
Kunming, China

Sumin Li 
Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, China

Guolong Wang
Faculty of Public Safety and Emergency Management, Kunming University of Science and Technology, 
Kunming, China

Yanlin Li 
Yongshan Jinsha Lead-Zinc Mine Co., Ltd., Zhaotong, China

Ji Peng, Zhuo Qi 
Faculty of Public Safety and Emergency Management, Kunming University of Science and Technology, 
Kunming, China



1017Information Technology and Control 2024/4/53

Exploring the impact characteristics of near the mining activities on goaf and clarifying the disaster effects of 
instability in the mined-out area are critical research endeavors essential for effectively managing major risk 
hazards inherent to underground mining operations. This study integrates SBAS-InSAR and PSO-BP method-
ologies for inversely analyzing rock mechanical parameters in a lead-zinc deposit and applies the inversion re-
sults through the FLAC3D simulation method to the mining site adjacent to the null zone to study destabilizing 
disaster effects in the mined-out area under the influence of mining disturbance. The simulation aims to analyze 
the evolution process of surrounding rock destruction and instability in empty areas, identify the primary causes 
of disaster effects, develop a risk assessment and judgment model, and prevent accidents from occurring. The 
results of the study show that the integration of SBAS-InSAR and PSO-BP techniques for inverting rock me-
chanical parameters has yielded favorable outcomes in analyzing the destabilizing effect of the gob area near the 
mining site, and more accurately, it obtained the displacement and stress characteristics of the roof and pillars 
in the goaf under the mining disturbance as the mining near the empty area progresses. The simulation results 
demonstrate that influenced by mining disturbance, the maximum principal stress of the ore column in the void 
area significantly increases, primarily appearing as compressive stress. The distribution of the plastic zone in-
dicates notably that the process of plastic deformation of the ore column leading to damage is primarily due to 
maximum shear stress. Evidently, the primary reason for the destabilization of the ore column is the concentra-
tion of stress resulting from mining disturbance, leading to compression and shear damage.FLAC3D simulation 
analysis has conclusively determined that pressure shear damage to the ore column resulting from undermining 
disturbance is the main cause of airspace destabilization in mining. The research methodology and analysis re-
sults provide vital theoretical support for the prevention and control measures against destabilization disasters 
in empty zones near mining sites, holding significant theoretical and practical value.
KEYWORDS: Numerical Simulation, Particle Swarm Optimization, Back-Propagation Neural Network, Com-
putational Modeling.

1. Introduction 
The destruction of the mining airspace is one of the 
hazardous sources often faced in the production pro-
cess of underground mines, and the destabilization 
of the mining airspace has an obvious chain effect 
[10,14], the suddenness is difficult to predict and the 
seriousness of the hazards is the characteristics of 
its disasters and accidents, therefore, the use of fast 
and efficient methods and techniques of the stability 
of the mining airspace research, to explore the oc-
currence of null zone destabilization disaster mech-
anism and law appears to be more important and 
urgent, for the prevention and control of empty area 
destabilization disaster, to ensure the safe production 
of mine enterprises, is of great significance [7-8, 15]. 
Secondly, the increasing consumption of mineral re-
sources, makes the mining environment gradually de-
velop horizontally and vertically under the condition 
of limited mineable resources, resulting in a further 
increase in mining difficulty and more and more com-
plicated surrounding rock stress in the mining area. 
At the same time, the peripheral rock of the mining 
area is very prone to accidents such as roof collapse, 

water and sand gushing, and surface settlement under 
the action of rock creep and stress environment, and 
has an obvious chain relationship, and the accidents 
are diverse and very easy to be destabilized by the dis-
turbance of the external environment. The stability of 
the mining area is affected by the complexity of many 
factors, and there is an urgent need to use scientific 
methods to analyze it in depth, to ensure its safety 
and stability. The mining of underground mineral re-
sources is the fundamental cause of the movement of 
the surrounding rock and stress manifestation, using 
simulation technology to analyze the stability of the 
null zone, mainly to explore the mechanism of its in-
ternal stress and plasticity results. With the mining 
process, the stress distribution around the rock body 
will change, which will lead to the destruction of the 
rock layer, especially the mining of the near empty 
area, the rock movement law and disaster control is 
more complex [6], which is mainly the mining of the 
empty area by the adjacent area of the orebody in the 
mining process of disturbance, the coupling between 
the various influencing factors is a more complex 
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mechanism. Huang et al. [4, 6] tested and compared 
the settlement of the tunnel top and the ground sur-
face as well as the settlement of the tunnel vault 
during the excavation process by studying the scaled 
model test of highway tunnel construction under a 
thin ore layer, and conducted stress analysis of the 
tunnel excavated near the mining void area, and the 
results showed that the horizontal coal seam has a 
great influence on the vertical pressure. Wang et al. 
[13] analyzed the movement law of the overlying stra-
ta with the mining of the ore layer under the mining 
void area, where the results showed that the collapse 
zone and fracture zone expand continuously to the 
surface with the mining. There are certain limitations 
in the rock mechanical parameters obtained from in-
door tests for simulation analysis [3, 12]. The com-
monly used means for the study of the null zone are 
similar tests, theoretical analysis and simulation, and 
other technical means [1], the simulation technology 
has a lot of advantages compared with similar tests 
and theoretical analysis methods [6]. However, the 
accuracy of the simulation results is easily affected by 
the value of the rock mechanical parameters, and the 
accuracy and reasonableness of the rock mechanical 
parameters are extremely important, that is the basis 
for the numerical analysis of the stability of the goaf. 
Therefore, there are a large number of scholars com-
bining the existing computer technology and other 
methods to invert the rock mechanical parameters, 
such as Cui et al. [3] proposed a composite model and 
use different models to invert different mechanical 
parameters, to get the proposed composite model for 
the surrounding rock mechanical parameters of the 
inversion of the results of the average error for the 
smaller, inversion trend and the actual displacement 
of highly similar. Liu et al. [9] developed a creep and, 
shrinkage calculation model for elongated cylindri-
cal rock salt caverns based on the complex variable 
theory, and determined the parameters of the creep 
model of rock salt Burgers under real conditions. Pan 
et al. [11] proposed a high-precision back-propagation 
neural network-particle swarm optimization (BP-
PSO) algorithm inversion method to calibrate the mi-
cro-parameters of the cluster-particle logic concrete 
discrete element method model based on data sim-
ilarity. Chen et al. [2] estimated the rock mechanics 
parameters based on semi-supervised support vector 
regression with data similarity. He et al. [5] proposed 
a method to introduce the deep convolution neural 

network (DCNN) technique into the drilling process 
to continuously estimate rock field strength parame-
ters, with the results validated in engineering.
For the current rock mechanical parameter inversion, 
the data samples are mainly based on one-sided data 
monitoring results, which is not only costly but also 
has a large subjectivity for the deployment of moni-
toring points, which has a certain impact on the ac-
curacy of the final results. Therefore, the use of a 
reasonable and effective rock mechanical parameter 
inversion method is a problem worth exploring, based 
on the above deficiencies of the traditional rock me-
chanical parameter inversion method. In this study, 
a method is proposed to combine the advantages of 
the current InSAR monitoring technology, which 
can comprehensively monitor the ground surface 
in all weather conditions and has low cost, with the 
powerful nonlinear data generalization and mapping 
ability of the PSO-BP neural network. SBAS-InSAR 
(Small Baseline Subset Interferometric Synthetic 
Aperture Radar) combined with PSO-optimized BP 
neural network fusion technology is used to analyze 
the inversion of rock mechanical parameters of each 
rock layer in the study section of the research area, 
aiming to demonstrate the reliability and feasibility 
of SBAS-InSAR combined with PSO (Particle Swarm 
Optimization) optimized BP neural network in the in-
version of rock mechanical parameters. At the same 
time, combined with the current near-empty zone 
mining has brought more challenges to the safety and 
stability of the mining zone, it is urgent to study the 
occurrence mechanism and law of the destabilization 
disaster of the mining zone under near-empty zone 
mining. Therefore, based on the inversion results 
of SBAS-INSAR and PSO-BP neural network algo-
rithms, combined with FLAC3D numerical simulation 
technology, this article explores the instability disas-
ter effect of empty zone under the influence of mining 
in near goaf, and analyzes the stress and displacement 
changes of surrounding rock under the influence of 
mining in near null area, aiming to explore the for-
mation and development law of instability disaster in 
near mined-out area under the influence of mining.
This paper adopts SBAS-INSAR technology com-
bined with PSO-BP neural network algorithm to in-
vert the mechanical parameters of the overlying rock 
body in the mining airspace, which is convenient, fast 
and reliable to solve the parameter problem of rock 
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body mechanics in the process of analyzing the stabil-
ity of the mining airspace using numerical simulation 
technology.

2. Background 
2.1. Geological Conditions 

The study area is located in a lead-zinc mine in Yong-
shan County, Yunnan Province. The strata are main-
ly divided into Quaternary, Cambrian Qiongzhusi 
Formation, Cambrian Meishucun Formation Dahai 
Section, Cambrian Meishucun Formation Zhongy-
icun Section, Cambrian Meishucun Formation Xi-
aoweitoushan Section, the Ediacaran Dengying For-
mation the first sub-section of the fifth section, the 
second sub-section of the fifth section.
The pre-mining orebody is mainly Phosphate Ore 
with an average dip angle of 8°; the occurrence ele-
vation of phosphate rock is between 1180 m and 1260 
m and the thickness of the orebody is between 1.89 m 
and 9.9 m, with an average thickness of 5.91 m. The 
mining method is mainly room and pillar mining.

2.2. The Spatial Relationship Between the 
Empty Area and the Pre-mining Area 

The pre-mining range 1 and the pre-mining range 
2 are close to the goaf, and the pre-mining range 1 is 
connected with the empty zone in the northeast di-

rection, and the distance between the two is close. 
The pre-mining area 2 is located in the southeast di-
rection of the mined-out area, and its main part has a 
certain distance from the goaf. The average elevation 
of the ore body in pre-mining scope 1 is around 1180m, 
and the vertical average thickness of the block section 
is 4.24m; the elevation of the ore body in pre-mining 
scope 2 is from 1216m to 1233m, and the vertical aver-
age thickness of the block section is 3.96m. The lowest 
point of the mining area has an elevation of 1180m, and 
the highest point has an elevation of 1240m. (Figure 1).

Figure.1  
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Figure 1 
Spatial Position Relationship Between Goaf and Pre-mining 
Area

3. Inversion of Rock Mechanical 
Parameters Based on SBAS-InSAR 
and PSO-BP
This article selected four factors, including bulk, 
Poisson, cohesion, and friction, for inversion anal-
ysis. These factors are derived from the Quaternary 
Formation, the Cambrian Formation, and the Edi-
acaran Dengying Formation for a total of 12 factors. 
Therefore, the (L27312) orthogonal experimental table 
was selected in designing the orthogonal. In the se-
lection of the parameter range, considering that the 
stratigraphic distribution of the same mining area is 
roughly the same, the rock body mechanical parame-
ters of the neighboring mines can be used as a refer-
ence for determining the inversion parameter inter-

val. Combined with the distribution of the geological 
stratigraphic environment of the entire mining area, 
the parameter range of the mining section studied in 
this article is mainly determined with reference to 
the rock body parameters of other mining sections 
in the study area, the parameter range determined in 
this dissertation (Table 1).
Since this mining zone has been formed for three 
years, with time the mining zone will undergo creep 
deformation causing surface settlement, therefore, to 
obtain the surface deformation of the mining zone in 
the study area, the FLAC3D numerical simulation soft-
ware will be used to analyze the creep of the mining 
zone. According to the Burgers-Mohr-Coulomb model 
selected for this paper, the roof, surrounding rock and 
mine house, and pillars of the mining void area were 
assigned to the Burgers intrinsic model, and the rest 



Information Technology and Control 2024/4/531020

Table 1 
Selection Range of Rock Mechanics Parameters

Rock 
stratum Qed1 ∈1m Z2dn5

Parameter 
/ level

Bulk/
GPa Poisson Cohesion

/MPa Friction/° Bulk/
GPa Poisson Cohesion/

MPa
Fric-

tion/°
Bulk/
GPa Poisson Cohesion/

MPa
Friction

/°

1 4.9 0.19 0.234 30.46 20.3 0.201 1.4 33.47 40.22 0.255 2.2 36.35

2 5.9 0.24 0.284 35.46 27.3 0.251 1.46 38.47 45.22 0.305 2.25 41.35

3 6.9 0.29 0.334 40.46 34.3 0.301 1.51 43.47 50.22 0.355 2.3 46.35

Figure 2 
Monitoring Line Position

of the rock strata were assigned to the Mohr-Coulomb 
intrinsic model to conduct the creep analysis of the 
mining void area of the study area with a creep time of 
3 years. In the selection of creep parameters, numerical 
simulation is used to determine their values by back-
propagation in combination with the geological survey 
data of the mining area as well as references.
According to the above ontological model, FLAC3D 
was used for numerical analysis and then combined 
with the spatial location of the air-mining area, 10 
monitoring lines were deployed in the area (Figure 2), 
and the SBAS-InSAR monitoring results and numer-
ical simulation results were extracted from these 10 
monitoring lines, and the numerical simulation re-
sults were used as the training set for the subsequent 
training of PSO-BP network algorithm for inversion 
of rock mechanics parameters, test and validation 
set data samples. and validation set data samples, 
according to the orthogonal test parameter combina-
tion data obtained from the surface settlement data 

using BP neural network to establish the mapping re-
lationship between the rock body mechanical param-
eters and surface settlement, and finally through the 
SBAS-InSAR monitoring results as the input data of 
the trained network, and finally obtained a set of in-
version results (Figures 3-4). 
For each monitoring line, 30-35 data points were ex-
tracted, resulting in a total of 312 values for parameter 

Figure 3
The Error of InSAR vs FLAC3D
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Figure 4
The result of InSAR and FLAC3D
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sets, and then the extracted displacement settlements 
were arranged according to the monitoring line num-
bers from 1 to 10 monitoring lines (Figure 4).
According to the numerical simulation results ex-
tracted in the previous section, 312 data in each group 
are used as the number of input samples in the train-
ing, testing, and validation sets of the neural network, 
so this article takes 312 data indicators as the number 
of input units of the neural network. The number of 
neurons of the implicit layer selected in this paper is 
20; this article mainly analyzes the inversion of four 
rock mechanical parameters, such as the bulk, Pois-
son, cohesion, and friction, of three rock layers i.e. the 
quaternary, Cambrian, and the Ediacaran. The main 
purpose of this paper is to invert and analyze four 
rock mechanical parameters, and a total of 12 param-

eter values are needed to be output, so the number of 
output neurons selected in this article is 12.
In the implementation of the PSO-BP algorithm for 
the inversion of rock mechanics parameter, 27 sets of 
312 columns of data totaling 8424 values were used 
as sample data. The first 75% is selected sequentially 
as the training set, 15% as the validation set, and the 
last 15% as the test set of the network. Meanwhile, to 
ensure the accuracy of the parameters obtained from 
the inversion and avoid the randomness and instabil-
ity of the output of the network during the inversion 
process, in this article, when utilizing the PSO-BP 
network inversion method, 30 sets of inversion re-
sults are obtained by cycling 30 times, and the average 
value is selected as the final inversion result obtained 
by this method (Table 2). 

Figure. 4 

The result of InSAR and FLAC3D 
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Table 2 
The Final Inversion Results of Rock Mechanics Parameters of Each Rock Stratum in The Study Area

Rock 
stratum Qed1 ∈1m Z2dn5

Parameters Bulk/
Pa Poisson Cohesion

/Pa
Friction

/°
Bulk/

Pa Poisson Cohesion
/Pa

Friction 
/°

Bulk/
Pa Poisson Cohesion

/Pa
Friction

/°

Inversion 
results

6.60
E+09 0.232 2.80

E+05 34.023 2.45
E+10 0.272 1.47E+06 36.423 5.03

E+10 0.309 2.22
E+06 42.96

4. Simulation Analysis
Based on the inversion results of SBAS-InSAR and 
PSO-BP rock mechanical parameters, FLAC3D was 
used to study the destabilization hazard of the mining 
zone under the influence of mining in the adjacent void 
zone. A 750m×740m×420m model was established, 
and the mining pillar in the airspace area is 3m×3m, 
with a spacing of 9m. The pre-mining areas 1 and 2 
which of the adjacent null area was mined through 
FLAC3D, to analyze the influence of the mining in the 
airspace area with the mining of the roof and pillar’s 
displacement change, the change rule of the stress and 
the distribution of the plasticized zone. Mining of the 
pre-mining area began with creep calculations using 
the Burgers-Mohr-Coulomb model for the voided area, 
to simulate the stress distribution throughout the en-
vironment in which the voided area is located three 
years after its formation. To investigate the change in 
stress-strain as the excavation proceeds, the solution 
is performed in each stage. Stage 1: Creep solutions 
were performed on the mined-out areas for three years. 
Stage 2: Re-solve the initial stress after closing the 
creep, and excavate the pre-mining area 1 after stress 
equilibrium. Stage 3: Excavation of pre-mining area 2 
after completion of excavation for pre-mining area 1. 
According to the preliminary Simulation results anal-
ysis, under the influence of mining disturbance in the 
adjacent mining airspace area mining column has the 
risk of instability, so to verify the stability of the mining 
airspace area in the case of column instability, numer-
ical simulation of the mining airspace area under the 
conditions of column instability, and then analyze the 
simulation results of the maximum principal stress, 
the maximum shear stress and the distribution of the 
plastic zone, and the effect of the destabilizing disaster 
of the mining zone under the influence of mining in the 
adjacent hollow zone is further studied (Figure 6).With 
the excavation of the adjacent pre-mining area of the 

void zone, the displacement of the roof plate of the void 
zone increased (compare in Figure 6(f )-(g)), indicat-
ing that by the influence of the mining of the adjacent 
pre-mining area of the void zone 1 and pre-mining area 
2, the stress equilibrium formed in the void zone after a 
long time was broken, which disturbed the stress state 
of the original rock layer and led to a further increase 
in the displacement value of the roof plate of the void 
zone and the surrounding rock. The maximum prin-
cipal stress of the pillar increases mainly in compres-
sive stress, and the largest change in principal stress is 
mainly near the pre-mining area 1 of the mining pillar, 
the mining pillar farther from the pre-mining area 1 of 
the mining pillar part of the pillar maximum principal 
stress has changed to a certain extent, but the degree 
of change is not very obvious compared with the closer 
distance down the pillar (compare in Figure 6(i)-(h)). 
Secondly, the minimum principal stress and maximum 
shear stress of the roof plate and ore pillar in the min-
ing area were analyzed (compare in Figure 6(b)-(c)). 
Similarly, the stress variation of the ore pillar and roof 
plate in the part closer to the pre-mining area 1 is more 
obvious, in which the maximum shear stress variation 
of the ore pillar is around 0.5 Mpa. For the analysis of 
the displacement and stress change of the roof plate, 
it was obtained that the displacement change of the 
roof plate was more obvious in the place closer to the 
pre-mining area 1; however, the stress did not show ob-
vious tensile stress phenomenon, and it was mainly af-
fected by the role of the overlying rock pressure and the 
support of the mine pillar in the mining hollow area, 
which showed that the roof plate in the mining hollow 
area was mainly controlled by the pressure.
According to the analysis of simulation results, when 
the mining hollow area column damage destabiliza-
tion after mining hollow area overlying rock layer ap-
peared a large area of plastic zone, most of which has 
been through the surface, and the main plastic zone is 
caused by tensile stress damage (Figure 6(d)-(e)).
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Figure 6 
Numerical Simulation Results of FLAC3D

5. Discussion
1 To verify the rationality and accuracy of the inver-

sion results. The correlation coefficient is used to 
analyze the correlation between the SBAS-InSAR 
monitoring results and the simulation results, and 
the correlation between the two sets of data is de-
termined by calculating the Pearson correlation 
coefficient of the two sets of data (Figure 7(e)). 
The results show that there is a good correlation 
between the inversion sample data. The network 
performance and calculated data results are dis-
cussed as a way to analyze the reliability of the re-
sults (Figure 7(f )). During the training process of 
the inversion network, the fit of the training set, 
validation set, test set, and overall data is superior, 
with a fit of 99%, which can meet the requirements 
when inverting rock mechanical parameters. For 
the calculation results, the error analysis is main-
ly used to discuss the reliability, according to the 
RMSE plot analysis (Figure 7(a)-(d)), Which are 
fluctuating within a certain range, indicating that 
the inversion results are still relatively stable and 
reliable. The RMSE all fluctuates with a certain 
period, which precisely indicates that the change 

of regression accuracy during the network train-
ing process when the network is being trained will 
have a certain impact on the stability of the inver-
sion results.
In this article, although the FLAC3D numerical sim-
ulation process is used to simulate the displace-
ment and strain under the influence of mining in 
the adjacent air zone, and certain conclusions have 
been obtained. However, for the more microscop-
ic rock damage mechanism has not yet been ex-
plored, the use of FLAC3D numerical calculations, 
only simulated the general macro-basic laws, for 
the deeper causal mechanism of the investigation 
needs to be strengthened.

2 According to the discussion on the simulation of 
displacement stress and plastic zone distribution 
before and after mining in the pre-mining area, it is 
obtained that the displacement of the roof plate and 
pillars in the mining hollow area changed signifi-
cantly, in which the maximum displacement value 
of the roof plate in the Z direction increased from 
11.283 mm to 11.418 mm, and the maximum dis-
placement value of the Y direction increased from 
7.5713 mm to 7.8245 mm; and the deformation of the 
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Figure 7
Analysis of Inversion Result Data

pillar near the pre-mining area 1 was larger than that 
of the other pillars. Secondly, several aspects such 
as maximum principal stress, minimum principal 
stress, maximum shear force, and minimum shear 
force of the ore column in the mining hollow area are 
analyzed and discussed, and according to the simu-
lation results, it is obtained that with the mining of 
the pre-mining area, the maximum principal stress, 
minimum principal stress, maximum shear force 
and minimum shear force of the ore column change 
significantly. Finally, the analysis of the mine pillar 
and the plastic zone of the roof plate in the hollow 
area after mining in the pre-mining area shows that 
the plastic zone of the mine pillar is affected by the 

compression and shear damage and the plastic zone 
of the mine pillar is close to the pre-mining area 
1 part of the mine pillar has obvious plastic zone 
penetration, and the plastic zone of the roof plate 
is mainly concentrated in the area around the mine 
pillar and is mainly for the tensile damage and shear 
damage. It can be seen that the roof is less affected 
by mining in the pre-mining area, so the risk of roof 
instability is less than that of the pillars. To verify 
whether the destabilization of the mining pillar in 
the airspace area can lead to the overall destabiliza-
tion of the goaf, the stability change of the airspace 
area was simulated after the loss of the bearing ca-
pacity of the pillar.

6. Conclusion
1 The inversion results of rock body mechanical pa-

rameters carried out by SBAS-InSAR and PSO-BP 
technology were used to analyze the destabilizing 
disaster effect of the mining area under the influ-
ence of mining disturbance in the adjacent airspace 
area achieved good results. In the PSO-BP network 
training of the regression fit goodness of R were 
0.994, 0.997, 0.992, the fitting effect can meet the re-
quirements of inversion, the sample data and results 
are analyzed. It shows that the inversion effect of the 
mechanical parameters of the rock body in the min-
ing hollow area using this method is reliable.

2 Analyze the destabilization disaster of the hollow 
zone under the influence of mining disturbance 
in the adjacent hollow zone, and the results show 
that the pressure-shear damage of the ore column 
under the mining disturbance is the main reason 
for the destabilization of the hollow zone. Under 
the influence of mining disturbance in the near 
mining area, the displacement of mine pillar and 
roof plate in the hollow zone changes obviously 
with the influence of mining in the pre-mining 
area 1 and pre-mining area 2, and the main influ-
ence range is the part close to the pre-mining area 
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1. According to the analysis results, the main risk 
of destabilization of the hollow zone under the 
influence of mining disturbance near the hollow 
zone may be caused by the destabilization of the 
ore column.
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Appendice: Pseudocode of the 
Algorithm

1: // Clear  workspace, and close all figures.

2: // Read data from Excel files:

3: // Prepare training and testing data:
 input_train = data1(:, 1:n)
 output_train = data2(:, 1:n)
 input_test = data1(:, n+1:end)
 output_test = data2(:, n+1:end)

4: // Normalize the input and output training data:

  normalized_input_train, input_norm_params = 
normalize(input_train, 0, 1)

 normalized_output_train, output_norm_params 
= normalize(output_train, 0, 1)

5: // Define the number of nodes:
  input_nodes = number_of_rows(normalized_in-

put_train)
   output_nodes = number_of_rows(normalized_

output_train)

6: // Construct the neural network:
     net = create_network(normalized_input_train, 

normalized_output_train, hidden_nodes, ‘tan-
sig’, ‘purelin’, ‘trainlm’)

     net.train_params.epochs = 1000
     net.train_params.learning_rate = 0.1
     net.train_params.goal = 0.00001

7: // Initialize PSO algorithm parameters:

8: // Calculate the total number of nodes:
     total_nodes = input_nodes * hidden_nodes + hid-

den_nodes + hidden_nodes * output_nodes + out-
put_nodes

8: // Initialize particles and velocities:
      for each particle in population:
      particle = 5 * random_values(total_nodes)
       velocity = random_values(total_nodes)
       fitness = calculate_fitness(particle, input_nodes, 

hidden_nodes, output_nodes, net, normalized_
input_train, normalized_output_train)

9: // Determine initial global and individual bests:
   best_fitness, best_index = minimum(fitness)
     global_best = particles[best_index]
     individual_bests = particles
     individual_best_fitnesses = fitness
     global_best_fitness = best_fitness

10: // Perform PSO optimization:
    for generation in 1 to max_generations:

         for each particle in population:
       w = w_max - (w_max - w_min) * generation / 

max_generations
         velocity = update_velocity(velocity, c1, c2, in-

dividual_best, global_best, particle, w)
         particle = update_position(particle, velocity, 

pop_max, pop_min)
           if random_value > 0.9:

               randomize_particle(particle)
         fitness = calculate_fitness(particle, input_

nodes, hidden_nodes, output_nodes, net, 
normalized_input_train, normalized_out-
put_train)

           if fitness < individual_best_fitness:
               individual_best = particle
              individual_best_fitness = fitness

           if fitness < global_best_fitness:
               global_best = particle
              global_best_fitness = fitness
            record_best_fitness(generation, global_

best_fitness)
     x = global_best

11: // Assign optimized weights and biases to the neu-
ral network:
    w1 = extract_weights(x, 1, input_nodes * hidden_

nodes)
    B1 = extract_weights(x, input_nodes * hidden_

nodes + 1, hidden_nodes)    
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    w2 = extract_weights(x, input_nodes * hidden_
nodes + hidden_nodes + 1, hidden_nodes * out-
put_nodes)

    B2 = extract_weights(x, input_nodes * hidden_
nodes + hidden_nodes + hidden_nodes * output_
nodes + 1, output_nodes)

   set_network_weights(net, w1, B1, w2, B2)

12: // Train the neural network:
     net, training_performance = train_network(net, 

normalized_input_train, normalized_output_train)

13: // Perform prediction using the trained network:
   normalized_input_forecast = apply_normaliza-

tion(data3, input_norm_params)
    output_forecast = simulate_network(net, nor-

malized_input_forecast)
    final_output = reverse_normalization(output_

forecast, output_norm_params)

End

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




