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Satellite remote sensing technology plays a pivotal role in ship monitoring at sea, with ship detection by ar-
tificial intelligence becoming the primary means. However, due to the intricate marine environment and the 
similarity between classes of remote sensing ships, the detection of remote sensing ships still faces significant 
challenges. Existing detection models tend to overlook the loss of fine-grained features of remote sensing ships 
during the deepening of the network. To address this issue, we proposed an enhanced Pyramid for Multi-Scale 
Feature Fusion (PMF) to optimize the YOLOv8 algorithm. After incorporating a fusion of shallow-level fea-
tures into the neck portion of YOLOv8, an adaptive spatial feature fusion approach coupled with a path aggrega-
tion network was employed to process the output features of the backbone network. This integration enhances 
the learning of fine-grained features and addresses the issue of feature loss, a common challenge in existing 
networks. Furthermore, to enhance feature extraction, we introduced an enhanced R-C2f module. Finally, In-
ner-MPDIoU was employed as the bounding box loss to address the issue of missed detections that may arise in 
the context of dense remote sensing ships. Experiments were conducted on FGSC-T, a dataset comprising 22 
classes of ships, to assess the efficacy and viability of the algorithm. In comparison to the original YOLOv8, the 
mAP50, mAP50-95, Recall, and Precision increased by 3.7%, 4.1%, 5.7%, and 2.5%, respectively. Furthermore, 
the detection speed of PMF-YOLOv8 can reach 74 fps, which meets the requirements for real-time detection of 
remote sensing ships.
KEYWORDS: Remote sensing ships, YOLOv8, Feature fusion, Fine-grained detection, Bounding box loss.

1. Introduction
Satellite remote sensing technology has become the 
primary method for monitoring ships at sea due to 
its advantages, such as wider coverage and no need 

for ship communication. Especially with the rise of 
high-resolution remote sensing technology, recogniz-
ing the category and location of ships based on remote 
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sensing images has become a new research hotspot 
[32]. With the help of advanced radar technology, im-
age processing algorithms and artificial intelligence 
technology, the efficient identification and accurate 
classification of maritime targets can be achieved. 
This field of research plays a crucial role in both mili-
tary and civilian sectors, enhancing naval combat ca-
pability and safeguarding national security. Addition-
ally, it has multiple applications in marine resource 
development and maritime traffic management. This 
research promotes scientific and technological prog-
ress, providing more effective means of monitoring 
and managing maritime activities.
Traditional ship detection algorithms typically use 
manual feature extraction and simple classifiers for 
detection. Compared to traditional means of object 
extraction, implementations using deep learning 
methods often provide better results. To improve the 
effectiveness of ship detection while increasing the 
robustness of the network, researchers in the field 
of deep learning in remote sensing image processing 
and object detection usually start from the following 
two key aspects.
On the one hand, remote sensing images are pro-
cessed to exploit the color, texture, shape and other 
information in the images through preprocessing, en-
hancement and feature extraction to more accurately 
distinguish different target classes. In addition, data 
augmentation and model regularization techniques 
[42] are applied. By transforming, augmenting or add-
ing noise to the training data, the variety and amount 
of data can be increased to improve the ability of the 
model to generalize. Meanwhile, regularization tech-
niques such as dropout and L1 / L2 regularization can 
be used to effectively avoid model overfitting and im-
prove the robustness and generalization performance 
of the network.
On the other hand, researchers are also trying dif-
ferent object detection algorithms, and research on 
object detection algorithms includes both one-stage 
and two-stage algorithmic models. Two-stage object 
detection algorithms tend to have higher detection 
accuracy. The so-called two-stage consists of two 
stages: the generation of suggestion frames and the 
classification of the frames in order to filter the pre-
diction frames. Classical network models include 
SPPnet [11], Faster-RCNN [22], etc. One-stage ob-
ject detection algorithms, on the other hand, omit the 

generation of suggestion frames and directly generate 
prediction frames, which greatly improves the detec-
tion speed while maintaining the accuracy as much 
as possible, and is more suitable for real-time moni-
toring requirements [39-40]. The classic single-stage 
object detection algorithms are SSD [19], YOLO [21, 
27], etc.
While two-stage algorithms are slower due to the 
necessity of generating a large number of bounding 
boxes, they exhibit higher detection accuracy and rec-
ognition rates attributed to the increased precision of 
the bounding boxes. Conversely, one-stage algorithms 
operate at a faster pace but may compromise some 
accuracy by directly predicting the object’s location. 
Considering the distinct algorithmic characteristics 
and the demands for precision and real-time perfor-
mance in maritime detection, we have opted for the 
one-stage YOLOv8 model as our foundational frame-
work.
The research on the detection of ships is currently 
encountering several challenges. Firstly, the dimen-
sions of the ship occupy only a small proportion of the 
pixels in the optical remote sensing image, which is 
insufficient for accurate detection.  Furthermore, the 
similarity between ships is often considerable, and 
the distinction between them is not always appar-
ent, which frequently results in erroneous detection. 
Moreover, the dynamic nature of the maritime envi-
ronment necessitates the real-time detection of ships 
to meet high standards.  In order to address the afore-
mentioned issues, researchers have employed a range 
of solution strategies.
Zhou et al. [10] proposed Oriented R-CNN, which 
introduces a rotating detection box in the process of 
feature learning. Li et al. [13] utilized Graph Neural 
Network (GNN) to incorporate ship trajectory in-
formation. Zhang et al. [35] introduced polarization 
fusion networks with geometric feature embedding. 
However, integrating new information entails in-
creased computational load and inference slowdown, 
as well as potential introduction of noise during cal-
culation, ultimately hindering model convergence. 
Ren et al. [23] proposed an efficient lightweight net-
work called YOLO-Lite to effectively improve ship 
detection speed by reducing network layers, however, 
this reduction may compromise the model’s ability to 
capture complex features and diminish its generaliza-
tion capability.
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After the successful application of Transformer mod-
els in natural language processing, they have also 
demonstrated strong performance in computer vi-
sion tasks, from introducing the Transformer archi-
tecture in ViT [5] to fusing multi-scale information in 
CrossViT [2] and improving computational efficiency 
and flexibility in AdaViT [20]. Various innovations 
have driven the utilization of Transformers for vi-
sion tasks. For example, Zheng et al. [43] applied ViT 
to traffic sign recognition, while Tummala et al. [25] 
used ViT for brain tumor classification. Additionally, 
Xu et al. [28] designed the LPSW backbone network 
and SAIEC network framework by incorporating 
the Swin Transformer, and Liu et al. [16] utilized the 
Transformer mechanism to enhance network feature 
extraction with TS2Anet, resulting in higher accura-
cy in remote sensing ship detection.
Despite their outstanding performance, Transformer 
models face challenges such as high computation and 
memory requirements, complex architecture design, 
and reliance on large-scale data, which hinder their 
efficient application in resource-constrained envi-
ronments. Given these limitations and our specific 
focus on limited computing power resources and re-
al-time ship detection requirements, it is evident that 
the Transformer model cannot meet our needs.
Based on this analysis of existing research shortcom-
ings, we aim to address these issues by improving fea-
ture extraction methods, multi-scale feature fusion 
techniques, and optimizing loss function strategies to 
achieve real-time high-precision ship detection.
We proposed an enhanced Pyramid for Multi-Scale 
Feature Fusion (PMF) to optimize the YOLOv8 al-
gorithm. The method presented not only effectively 
improves detection accuracy but also meets real-time 
speed requirements for detection.
The main contributions of this paper are as follows:
1 Integrating fusion into the shallow-level feature 

extraction layer allows the network to effectively 
leverage spatial information from higher-resolu-
tion feature maps, enhancing the learning of de-
tailed features in small-sized targets.

2 We adopt FASFF, an enhanced adaptive feature fu-
sion module that employs an adaptive spatial fea-
ture fusion approach.

3 We enhanced the R-C2f module by introducing the 
RFAConv module to address parameter sharing 

issues. This allows for tailored treatments of var-
ious receptive field sizes, improving the network’s 
adaptability to different input features.

4 Inner-MPDIoU is utilized as the bounding box re-
gression loss. MPDIoU excels in handling bound-
ary information and dense targets, while Inner 
accurately evaluates the bounding box overlap de-
gree.

The remaining section of this paper is as follows: Sec-
tion 2 presents some related works. Section 3 introduc-
es the proposed methodology, while Section 4 gives the 
experimental results and analysis. Section 5 concludes 
our work as well as future research directions.

2. Related Work
In this section, we will focus on some research meth-
ods and existing problems proposed by researchers 
for ship detection at sea at this stage, especially the 
processing strategies for multi-scale features.
Typically, conventional ship detection algorithms 
employ manual feature extraction and simple classi-
fiers for detection. Manual feature extraction tech-
niques, such as Scale Invariant Feature Transform 
(SIFT) [7], Histogram of Oriented Gradients (HOG) 
[30], and Speeded Up Robust Features (SURF) [1], 
are used. Common simple classifiers include Support 
Vector Machines (SVMs), Adaptive Boosting, and De-
cision Trees.
However, traditional methods for object detection 
face several challenges and shortcomings. First-
ly, these methods often rely on manually designed 
feature extractors that require domain expertise to 
select and adjust correctly. Secondly, the process of 
manual feature extraction is inefficient and requires 
constant updates and adjustments for different tar-
gets and environmental changes, which limits its ap-
plicability in complex scenarios. Deep learning-based 
object detection algorithms can automatically learn 
and extract key features from images through an end-
to-end learning approach, resulting in stronger gener-
alization and adaptability [31].
Feature Pyramid is an important method for multi-
scale feature fusion [41, 33] in computer vision, which 
plays a key role in object detection tasks. Early Image 
Pyramid techniques generated image pyramids of 
different resolutions for multiscale analysis by pro-
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gressively downsampling an image. However, the 
hand-designed filters and sampling strategies used 
often lacked flexibility and adaptability.
Spatial Pyramid Pooling Network (SPP-Net) proposed 
a spatial pyramid pooling layer, which enabled convo-
lutional neural networks to process input images of 
any size and capture multi-scale features by pooling 
at different scales [11]. However, SPP-Net relied on a 
fixed pooling layer configuration, which could not fully 
adapt to the needs of different tasks and datasets. Sung-
yi Lin et al. [14] proposed FPN (Feature Pyramid Net-
work), which fused deep and shallow features through 
top-down paths and lateral connections to construct 
high-resolution and low-resolution multi-scale feature 
pyramids, greatly improving object detection perfor-
mance. Although FPN significantly improved the per-
formance, it only performed fusion at partial levels of 
the network and might omit some useful information 
at intermediate layers.
Path Aggregation Network (PANet) [18] further im-
proved on FPN by adding bottom-up paths to en-
hance feature fusion so that multi-scale information 
could be better propagated and fused, thus further 
improving the effect of object detection and instance 
segmentation. However, the complex path structure 
of PANet increased the computational overhead and 
implementation difficulty.
Neural Architecture Search Feature Pyramid Net-
work (NAS-FPN) [8] used neural architecture search 
(NAS) to automatically design the feature pyramid 
structure and find the optimal feature fusion strate-
gy, which improved the performance of object detec-
tion tasks. Although NAS-FPN was more automated 
and optimized in design, the NAS process was very 
time-consuming and had high computational re-
source requirements, making it difficult to generalize 
to resource-limited application scenarios.
BiFPN (Bi-directional Feature Pyramid Network) 
[24] further improved the expression ability and com-
putational efficiency of the feature pyramid by intro-
ducing learnable weights to fuse features of different 
scales and using bidirectional feature fusion paths. 
Although BiFPN improved efficiency, it might intro-
duce too many parameters in the feature fusion pro-
cess, complicating the training and inference process.
AugFPN (Augmented FPN) [9] further improved the 
expression ability and detection effect of features by 
introducing a feature enhancement module on the ba-

sis of FPN. However, the enhancement module design 
of AugFPN was complex, increasing the complexity 
of the network structure and the computational cost.
In the task of ship detection at sea, Zhou et al. [44] 
proposed MSSDNet based on YOLOv5, adding FC-
FPN and CSPMRes2 in the process of feature fusion 
to solve the problem of feature loss in the process of 
feature fusion. Chen et al. [4] designed a SAS-FPN 
to adapt to multi-scale ship detection. Yan et al. [29] 
adopted the feature fusion strategy of ReBiFPN to 
effectively capture and enrich multi-scale feature in-
formation. These methods improved the learning of 
multi-scale features of neural networks to a certain 
extent. However, these methods still had some short-
comings in generalization ability, computational cost, 
and real-time requirements in practical applications.
Aiming at the actual needs of ship detection, we im-
proved the structure of YOLOv8n to enhance the ef-
fectiveness of ship detection in optical remote sens-
ing images.
Firstly, in view of the large difference in the size of 
ships and the inter-class similarity of different cate-
gories of ships, we introduced a feature fusion module 
at the large-scale feature extraction position to better 
extract the detailed features of ships. Secondly, in solv-
ing the problem of feature loss, we used the improved 
FASFF, which effectively improved the detection accu-
racy by adding adaptive feature fusion in different net-
work layers. Aiming at the parameter sharing problem 
existing in traditional convolution, we improved C2f 
by using RFAConv. Finally, to more accurately evaluate 
the degree of overlap between object detection boxes, 
we adopted MPDIoU instead of CIOU. 
Compared with the baseline YOLOv8, our model im-
proved the mAP50, MAP50-95, precision, and recall 
by 3.7%, 4.1%, 5.7%, and 2.5%, respectively. Taken to-
gether, our model performs much better in ship detec-
tion and provides a more reliable solution for practi-
cal applications.

3. Methods
This section focuses on the designed network struc-
ture. YOLOv8 is a significant update to YOLOv5, re-
leased on January 10, 2023 by Ultralytics. It introduces 
support for image classification, segmentation, de-
tection, and keypoint detection. Compared to its pre-
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decessor, YOLOv8 offers faster detection speed and 
higher accuracy. The architecture of YOLOv8 consists 
of three components: backbone, Neck, and Head, with 
four versions available: n, s, m, l, and x. The “n” version 
is the lightest and fastest iteration of YOLOv8, while 
the “x” version is the most accurate but slowest [12]. In 
this study, we have selected the lightweight YOLOv8n 
for deployment on embedded devices in later stages. 
The structure of YOLOv8 is depicted in Figure 1.

3.1. PMF-YOLOv8
The network structure of PMF-YOLOv8, as illustrated 
in Figure 2, comprises four distinct components.  These 
include the following: an input module for preprocess-
ing images, a backbone feature extraction module for 

Figure 1 
YOLOv8 structure (at the top) includes C2f module, 
Bottleneck module, SPPF module, the Detect module (in 
the middle) and Conv module (at the bottom)

Figure 2 
Structure of PMF-YOLOv8: In the backbone part, the C2f 
module is replaced by the R-C2f module. In the neck part, 
we add a feature fusion module for shallow features and 
use the PAN-FASFF feature fusion method

capturing image features, a neck module for further 
refining fused features, and a detection header module 
for conducting regression-based object localization.

The improvements made to PMF-YOLOv8 are as fol-
lows: 
1 The addition of feature fusion to the shallow-level 

feature extraction layer allows for full utilisation of 
the spatial information provided by higher resolu-
tion feature maps. This enables the network to ef-
fectively learn the detailed features of small-sized 
targets. Additionally, the shallow-level network typi-
cally contains more fine-grained features, effectively 
addressing the issue of inter-class similarity of ships. 

2 We introduce the FASFF, an improved adaptive 
feature fusion module. FASFF uses an adaptive 
spatial feature fusion method, which enables the 
model to select the most useful features at each 
spatial location, filter out conflicting information, 
enhance scale invariance, and improve the accura-
cy of detecting ship targets. 

3 The R-C2f module is introduced to solve the pa-
rameter sharing problem that exists in traditional 
convolution. The network employs the RFAConv 
module to provide different treatments for vari-
ous regions and sizes of receptive fields, thereby 
enhancing the network’s expressive power. This 
makes the network more flexible and better able to 
adapt to different input features, further improving 
the detection of ships. 
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4 InnerMPDIoU is introduced. Compared to CIOU, 
MPDIoU performs better in handling boundary 
information and dense targets. InnerMPDIoU can 
more accurately evaluate the degree of overlap of 
object detection frames, effectively solving the prob-
lem of leakage that may occur during ship detection.

3.2. Feature Pyramid
SSD is a one-stage target detector that first attempted 
to extract information from multiple feature scales in a 
bottom-up manner in order to simultaneously predict 
the target category and location [19]. The Feature Pyr-
amid Network (FPN) is a deep neural network archi-
tecture designed to solve multi-scale object detection. 
Its core objective is to obtain rich semantic informa-
tion at different scales by constructing bottom-up and 
top-down feature propagation paths [14]. FPN aims 
to build a multi-scale feature pyramid to achieve this 
goal. The bottom-up path extracts low-level features, 
while the top-down path transfers high-level semantic 
information to the low-level through up-sampling and 
feature fusion. This design enables FPN to be more 
accurate and effective in dealing with multi-scale tar-
gets. FPN has become an important technique in the 
field of object detection and semantic segmentation. 
By processing features at different scales effectively, 
FPN enhances the model’s capability to adjust to scale 
changes and multi-scale targets, thereby improving the 
detection task’s performance [15].
While FPN addresses the issue of feature loss at vari-
ous scales, the top-down feature propagation process, 
particularly during multilevel feature fusion, may still 
result in information loss or blurring. As a result, the 
Path Aggregation Network (PAN) was developed. PAN 
is a deep neural network structure that aims to solve 
the problem of multiscale feature fusion. It is mainly 
used for object detection and semantic segmentation 
tasks. The core goal of PAN is to integrate feature infor-
mation at different levels effectively. This is achieved 
by introducing a path aggregation module to improve 
the model’s ability to perceive the target. Specifically, 
PAN combines bottom-up and top-down feature prop-
agation paths, and utilizes lateral connectivity and 
up-sampling operations to achieve effective feature 
fusion and retention.  This design enables PAN to gen-
erate feature pyramids with richer semantic informa-
tion, leading to better performance in object detection 
and semantic segmentation tasks [18]. Furthermore, 
PAN incorporates a path aggregation module that fa-

cilitates the fusion and retention of features at vari-
ous levels through bottom-up and top-down feature 
propagation paths, as well as lateral connectivity and 
up-sampling operations. This design allows PAN to 
handle multi-scale features more flexibly and enhanc-
es the model’s ability to perceive the target. The Neck 
component of YOLOv8 maintains the style of YOLOv5 
and also employs the concept of PAN.
Based on the significant size difference between var-
ious types of ships and the abundance of small target 
ships, we introduce a feature fusion layer for small 
targets into the original YOLOv8 structure, based on 
PAN. The shallow-level feature extraction layer re-
tains a relatively high image resolution, allowing for 
more spatial information in the higher-resolution 
feature map to facilitate better learning of detailed 
features of small-size targets. Furthermore, the net-
work’s shallow-level layers tend to capture more fine-
grained features, which are essential for understand-
ing the shape and texture of small targets. Therefore, 
we have constructed a feature pyramid PAN-4 that 
excels in extracting features from small targets, effec-
tively enhancing their detection. This structure also 
enables the network to better differentiate between 
ship classes with high similarity. The structure of the 
feature pyramid is shown in Figure 3.

Figure 3
The original PAN structure of YOLOv8 (at the top), and the 
PAN-4 structure with a shallow feature extraction layer 
added in PMF-YOLOv8 (at the bottom)

3.3. FASFF Module
The FASFF model, an improved version of ASFF 
(Adaptively Spatial Feature Fusion), is illustrated in 
Figure 4. It employs an adaptive spatial feature fusion 
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technique to effectively filter out conflicting informa-
tion and enhance scale invariance, thereby enhancing 
the accuracy of ship detection. This approach enables 
the model to dynamically select the most relevant 
features at each spatial location and determine the 
most important feature hierarchies for final predic-
tion based on contextual information at each feature 
location and scale. The core concept of FASFF lies in 
adaptively learning the fusion spatial weight of each 
scale feature map, which involves two main steps: fea-
ture resizing and adaptive feature fusion [17].

Feature resizing
To begin, we denote the feature map of level l reso-
lution as xl, with l ∈[1, 4] in Figure 4. For each level l, 
it is necessary to adjust the feature maps of different 
resolutions to match the shape of xl. This is because 
the features of each level of YOLOv8 have varying res-
olutions and channel numbers. Therefore, we must 
utilize up-sampling and down-sampling strategies for 
the feature maps of different levels.

Figure 4
Structure of the FASFF

Adaptive feature fusion
The process of feature fusion is shown in Equation (1), 
where  
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The convolution operation is a fundamental com-
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the traditional convolution structure is constrained 
by the fixed size of the convolution kernel, limiting 
its ability to fully capture diverse feature information 
across different positions in the receptive field area. 
This constraint hinders the network’s expressive 
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this issue, researchers have proposed innovative 
solutions such as dilated convolution, which intro-
duces an adjustable receptive field by incorporating 
holes between convolution kernels [34]. Additionally, 
the pyramid convolution structure enhances multi-
scale feature perception through fusion of multi-scale 
convolution kernels [6]. Furthermore, deep learning 
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dence on external information [26] and improving 
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mance benefits, self-attention mechanisms also incur 
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In this paper, we improve the YOLOv8n model by in-
troducing RFAConv [36] as an alternative to self-at-
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RFAConv is integrated with C2f to form the R-C2f 
structure and focuses more on spatial characteristics 
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The specific process of RFAConv is shown in Figure 5. 
Firstly, Group Conv is utilized for spatial feature ex-
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convolution kernel is employed to extract features, 
where each 3×3 window represents a receptive field 
slider. After extracting the receptive field features, the 
original features are mapped into a new feature space. 
It has been demonstrated that network performance 
can be enhanced by learning attention maps to inter-
act with receptive field feature information. However, 
interacting with each receptive field feature may in-
troduce additional computational overhead. To ad-
dress this issue, AvgPool is employed to aggregate the 
global information of each receptive field feature.

Figure 5
Structure of the RFAConv

In this context, gi×i denotes a grouping convolution 
with a size of i × i, where k represents the size of the 
convolution kernel, Norm refers to normalization, X 
represents the input feature maps, and F is obtained 
by multiplying the attention map Arf with the trans-
formed receptive-field spatial feature Frf .
RFAConv has the capability to enhance the detection 
of intricate features of ships by modulating the weight 
distribution across various receptive fields. Moreover, 
it can dynamically generate spatial features of the re-
ceptive field and flexibly adjust its shape and range 
based on the convolution kernel size. This adaptabil-
ity allows RFAConv to accommodate diverse sizes of 
ships effectively. The RFAConv technique is utilized 
to enhance the C2f module, resulting in the creation 
of R-C2f as depicted in Figure 6.

Subsequently, the 1×1 group convolution operation is 
used for information interaction. Finally, the softmax 
function emphasizes the importance of each feature 
in the receptive field features. The calculation pro-
cess of RFA Refers to Equation (3).

 F=Softmax �gi×i�AvgPool(X)�� 

×ReLU �Norm �gk×k(X)�� =Arf×Frf.
(3)

Figure 6
Structure of the R-C2f: Compared with the original 
Bottleneck, the improved R-Bottleneck introduces the 
RFAConv

3.5. Loss Function
The YOLOv8 loss function comprises a categoriza-
tion loss (VFL Loss) and a regression loss (CIOU Loss 
+ DFL).  The VFL Loss utilizes cross-entropy loss to 
predict the target category and rapidly direct the net-
work’s focus to the target location.  The regression 
loss is composed of two components: CIOU Loss and 
DFL.  The CIoU Loss function optimizes the predic-
tion of the ground truth by considering factors such as 
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location, size, and shape.  Meanwhile, the DFL func-
tion enhances detection accuracy and efficiency by 
optimizing the probability of predicted locations to 
the two locations closest to the label.  This approach 
helps the network focus on the target location more 
quickly.  These loss functions aim to improve the per-
formance of the YOLOv8 model in object detection 
tasks while maintaining computational efficiency.
When the predicted bounding box and the ground 
truth bounding box do not intersect, Intersection over 
Union (IoU) cannot accurately reflect the distance re-
lationship between the two. To address this issue, Dis-
tance IoU (DIoU) takes into account the distance be-
tween the the predicted bounding box and the ground 
truth bounding box, the overlap area, and the scale re-
lationship. DIoU is calculated using Equation (4). 
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These loss functions aim to improve the 
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detection tasks while maintaining 
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When the predicted bounding box and the 
ground truth bounding box do not intersect, 
Intersection over Union (IoU) cannot 
accurately reflect the distance relationship 
between the two. To address this issue, 
Distance IoU (DIoU) takes into account the 
distance between the the predicted bounding 
box and the ground truth bounding box, the 
overlap area, and the scale relationship. DIoU 
is calculated using Equation (4).  

LDIoU=1-IoU+ ρ2(b,bgt)
c2 .                                         (4) 

The centroids of the the predicted bounding 
box and the ground truth bounding box are 

(4)

The centroids of the the predicted bounding box and 
the ground truth bounding box are denoted as b and  
bgt, respectively. The Euclidean distance between the 
two centroids is represented by ρ, and c represents 
the diagonal length of the smallest outer rectangle of 
predicted bounding box and the ground truth bound-
ing box. CIoU takes into account the aspect ratio of 
predicted bounding box and the ground truth bound-
ing box based on DIoU. The computation of CIOU is 
shown in Equations (5)-(7). 
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α is the weight parameter, v is used to measure the 
consistency of the aspect ratio. The width and 
height of the ground truth bounding box are 
represented by 𝑤𝑤��  and ℎ�� , respectively, while the 
width and height of the predicted bounding box are 
represented by wp and hp. 
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When the center point of the predicted bounding 
box and the ground truth coincide and the aspect 
ratio is the same, the CIOU loses its effect. 
Therefore, we adopt the more advanced MPDIoU, 
as shown in Figure7, to replace the CIOU. The 
MPDIoU takes the geometric characteristics of the 
bounding box into full consideration and achieves 
regression on the bounding box by minimizing the 
distances between the predicted bounding box and 
the ground truth bounding box's upper-left corner-
to-upper-left corner and lower-right corner-to-
bottom-right corner points. The computation of 

LMPDIoU=1-IOU+ d1
2

h2+h2 + d2
2

h2+w2  ,
                                      (8) 

d1
2=(x1

B-x1
A)2+(y1

B-y1
A)2 ,                                                     (9) 

d2
2=(x2

B-x2
A)2+(y2

B-y2
A)2 ,                                                   (10) 

where d1 denotes the distance between the upper 
left corner of the predicted bounding box and the 
ground truth, and d2 denotes the distance between 
the lower right corner of the predicted box and the 
ground truth. h and w denote the height and width 

of the feature map, respectively. 

We introduce InnerMPDIoU, which is an 
improvement over CIOU. MPDIoU performs 
better in dealing with boundary information 
and dense targets, while Inner can more 
flexibly reflect the overlapping region 
between two boxes. Overall, InnerMPDIoU 
can more accurately assess the degree of 
overlap between object detection boxes, 
reducing the risk of missed detections. 

 

4. Experiments  
4.1 Experimental Environment and Datasets 

The hardware CPU used in this experiment is 
12th Gen Intel (R) Core (TM) i9-12900HX 2.30 
GHz, and the GPU is NVIDIA GeForce RTX 
3080 Ti with 32GB RAM. The software 
environment is CUDA12.3, torch version 
1.12.0+cu113, python version 3.9.18, and the 
operating system is Windows 11. 

In the experiment, the batchsize is 64, the 
epoch is 200, the lr0 is 0.01, the lrf is 0.01 and 
the weight decay coefficient is 0.0005. The 
mosaic data augmentation technology is 
turned on during the training process, and the 
mosaic data augmentation is turned off in the 
last ten rounds. 

In the experiment, the ship images used for 
model training are from the public datasets: 
FGSC [37], FGSD [3] and ShipRSImageNet 
[38]. Based on FGSC, due to its extremely 
unbalanced data volume between categories, 
some data sets were screened in the other two 
data sets to supplement and delete FGSC. The 
resulting dataset FGSC-T, as shown in Table 1., 
contains 22 categories with a total of 3867 
images and 4416 ships. MakeSense was used 
to annotate the dataset. Split into training, 
validation, and test sets in an 8:1:1 ratio. 

4.2 Metric 

To assess the effectiveness of the improved 
model, we utilize accuracy (P), recall (R), 
Average Precision (AP), mean Average 

P=
TP

TP+FP
 , 
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where TP, TN, FP and FN stand for true 
positive, true negative, false positive and false 
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where d1 denotes the distance between the upper left 
corner of the predicted bounding box and the ground 
truth, and d2 denotes the distance between the lower 
right corner of the predicted box and the ground truth.  
h and w denote the height and width of the feature map, 
respectively.
We introduce InnerMPDIoU, which is an improve-
ment over CIOU. MPDIoU performs better in dealing 
with boundary information and dense targets, while 
Inner can more flexibly reflect the overlapping region 
between two boxes. Overall, InnerMPDIoU can more 
accurately assess the degree of overlap between object 
detection boxes, reducing the risk of missed detections.

4. Experiments 
4.1. Experimental Environment and Datasets
The hardware CPU used in this experiment is 12th 
Gen Intel (R) Core (TM) i9-12900HX 2.30 GHz, and 
the GPU is NVIDIA GeForce RTX 3080 Ti with 32GB 
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RAM. The software environment is CUDA12.3, torch 
version 1.12.0+cu113, python version 3.9.18, and the 
operating system is Windows 11.
In the experiment, the batchsize is 64, the epoch is 
200, the lr0 is 0.01, the lrf is 0.01 and the weight decay 
coefficient is 0.0005. The mosaic data augmentation 
technology is turned on during the training process, 
and the mosaic data augmentation is turned off in the 
last ten rounds.
In the experiment, the ship images used for model 
training are from the public datasets: FGSC [37], FGSD 
[3] and ShipRSImageNet [38]. Based on FGSC, due to 
its extremely unbalanced data volume between cate-
gories, some data sets were screened in the other two 
data sets to supplement and delete FGSC. The result-
ing dataset FGSC-T, as shown in Table 1., contains 22 
categories with a total of 3867 images and 4416 ships. 
MakeSense was used to annotate the dataset. Split into 
training, validation, and test sets in an 8:1:1 ratio.

4.2. Metric

To assess the effectiveness of the improved model, 
we utilize accuracy (P), recall (R), Average Precision 
(AP), mean Average Precision (mAP), and the param-
eter count as evaluation metrics. Precision (P) and re-
call (R) are calculated using Equations (11)-(12).
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where TP, TN, FP and FN stand for true positive, true 
negative, false positive and false negative, respectively.
The expression formula of average precision (AP) and 
mean average precision (mAP) is shown in Equations 
(13)-(14).
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and mean average precision (mAP) is shown in 
Equations (13)-(14). 
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where, AP represents the area under the curve with 
Precision as the ordinate and Recall as the abscissa; 
mAP is the average of AP values for all categories. 

 

4.3 Comparative Experiments of Modules 

In order to validate the efficacy of the modules, we 
conducted comparative experiments on various 
multi-scale feature processing methods, 
improvements in the Conv module, and the 
addition of improved convolutions at different 
positions. 

To verify the effectiveness of the FASFF method for 
multi-scale features, we compared it with BiFPN, 
ASF (currently mainstream in target detection), as 
well as RepGFPN and CCFM. These four methods 
were evaluated on dataset FGSC-T. The results in 
Table 2 show that while BiFPN and CCFM have 
fewer parameters, our model outperforms them 
significantly across all metrics except parameter 
count. RepGFPN and ASF-YOLO improve model 
effectiveness to some extent but fall short of our 
model in terms of mAP50, mAP50-95, Precision and 
Recall. 

In order to assess the efficacy of RFAConv, we 
conducted comparative experiments with four 

convolution methods on the FGSC-T dataset: 
Omni-Dimensional Dynamic Convolution 
(ODConv), proposed in 2022; Switchable 
Atrous Convolution (SAConv), proposed in 
2021; Deformable Convolution v4 (DCNv4), 
proposed in 2024; and Spatial and Channel 
Reconstruction Convolution (SCConv), 
proposed in 2023. As illustrated in Table 3, our 
model outperforms several other 
convolutional methods in terms of mean 
average precision (mAP50), mean average 
precision (mAP50-95), precision, and recall on 
the FGSC-T dataset, despite a slight increase in 
the number of parameters. 

Furthermore, we have attempted to integrate 
RFAConv modules at various points in the 
network. The Bottleneck module comprises 
two Conv modules, which we have designated 
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illustrated in Table 4, replacing the Conv1 
module of the Bottleneck with RFAConv has a 
negligible impact on the model's performance, 
comparable to that of a model with only a 
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both Conv modules with RFAConv has a 
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The expression formula of average precision (AP) 
and mean average precision (mAP) is shown in 
Equations (13)-(14). 
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where, AP represents the area under the curve with 
Precision as the ordinate and Recall as the abscissa; 
mAP is the average of AP values for all categories.

4.3. Comparative Experiments of Modules
In order to validate the efficacy of the modules, we 
conducted comparative experiments on various 
multi-scale feature processing methods, improve-
ments in the Conv module, and the addition of im-
proved convolutions at different positions.
To verify the effectiveness of the FASFF method for 
multi-scale features, we compared it with BiFPN, 
ASF (currently mainstream in target detection), as 
well as RepGFPN and CCFM. These four methods 
were evaluated on dataset FGSC-T. The results in Ta-
ble 2 show that while BiFPN and CCFM have fewer 
parameters, our model outperforms them significant-
ly across all metrics except parameter count. RepG-
FPN and ASF-YOLO improve model effectiveness to 
some extent but fall short of our model in terms of 
mAP50, mAP50-95, Precision and Recall.
In order to assess the efficacy of RFAConv, we conduct-
ed comparative experiments with four convolution 
methods on the FGSC-T dataset: Omni-Dimensional 
Dynamic Convolution (ODConv), proposed in 2022; 
Switchable Atrous Convolution (SAConv), proposed in 
2021; Deformable Convolution v4 (DCNv4), proposed 
in 2024; and Spatial and Channel Reconstruction Con-
volution (SCConv), proposed in 2023. As illustrated in 
Table 3, our model outperforms several other convo-
lutional methods in terms of mean average precision 
(mAP50), mean average precision (mAP50-95), preci-
sion, and recall on the FGSC-T dataset, despite a slight 
increase in the number of parameters.
Furthermore, we have attempted to integrate RFA-
Conv modules at various points in the network. The 
Bottleneck module comprises two Conv modules, 
which we have designated as Conv1 and Conv2, re-
spectively. As illustrated in Table 4, replacing the 
Conv1 module of the Bottleneck with RFAConv has a 
negligible impact on the model’s performance, com-
parable to that of a model with only a replacement 
of Conv2. However, replacing both Conv modules 
with RFAConv has a detrimental effect on the mod-
el’s detection capabilities. This is due to the fact that 
RFAConv assigns a specific weight to each sensation 
by introducing an attentional mechanism. Howev-
er, excessive repetition of RFAConv result in the re-
peated processing of information, which may lead to 
the model learning noisy rather than useful features, 
and ultimately reduce the overall performance of the 
model.
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Table 1
The target counts per category.

Category Number Category Number Category Number Category Number

Aircraft 170 Combat boat 279 Tarawa-class 88 Oil tanker 184

Destroyer 564 Auxiliary ship 287 Assault ship 158 Fishing boat 130

Landing 109 Container ship 101 Command 90 Passenger ship 110

Frigate 322 Car carrier 72 Submarine 279 Gas ship 94

Transport dock 92 Hovercraft 120 Medical ship 315

Cruiser 310 Bulk carrier 394 Barge 54

Table 2
Comparative experiments of different feature fusion methods for multi-scale features

model mAP50 mAP50-95 Precision Recall Parameters

BiFPN 0.804 0.713 0.706 0.755 2792887

RepGFPN 0.827 0.730 0.733 0.841 3295339

CCFM 0.786 0.680 0.763 0.744 1973803

ASF-YOLO 0.825 0.722 0.718 0.830 3060854

ours 0.833 0.742 0.749 0.832 4387652

Table 3
Comparison experiments of different convolution modules

model mAP50 mAP50-95 Precision Recall Parameters

ODConv 0.817 0.721 0.754 0.807 6862210

SAConv 0.838 0.743 0.795 0.761 6885914

DCNv4 0.843 0.749 0.764 0.810 6684439

SCConv 0.831 0.742 0.781 0.776 6698609

ours 0.850 0.760 0.813 0.802 6870928

Table 4
Comparison experiments of adding convolutions at different positions in the Bottleneck module

Location mAP50 mAP50-95 Precision Recall Parameters

Conv1 0.849 0.758 0.817 0.794 6870928

Conv1+Conv2 0.840 0.752 0.811 0.777 6907216

Conv2(ours) 0.850 0.760 0.813 0.802 6870928
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Table 5
Ablation results

yolov8n PAN-4 FASFF R-C2f InnerMPDIoU mAP50 mAP50-95 Precision Recall Parameters

√ × × × × 0.827 0.720 0.779 0.769 3015138

√ √ × × × 0.832 0.737 0.773 0.79 4055416

√ √ √ × × 0.842 0.748 0.818 0.769 6834640

√ √ √ √ × 0.850 0.760 0.813 0.802 6870928

√ √ √ √ √ 0.864 0.761 0.804 0.826 6870928

√ × √ × × 0.833 0.742 0.749 0.832 4387652

√ × × √ × 0.829 0.730 0.789 0.801 3051426

√ × × × √ 0.831 0.724 0.81 0.762 3015138

4.4. Ablation Experiments
To further verify the effectiveness of the proposed 
method, four sets of ablation experiments, as shown 
in Table 5, are designed to analyze different improved 
methods. mAP50, MAP50-95, P and R are used as ex-
perimental evaluation indicators to comprehensively 
evaluate the performance of the model under different 
improved conditions, and to deeply understand the ad-
vantages and limitations of the model, so as to provide 
guidance for further optimization of the model. 
As is shown in Table 5, firstly, we add a feature fusion 
for the shallow-level feature extraction layer. Since 
the shallow-level feature extraction layer relatively 
retains the high resolution of the image, the feature 
map with higher resolution can provide more spatial 
information, so that the network can better learn the 
detailed features of small-size objects. In addition, 
the shallow-level network tends to have more fine-
grained features, which are crucial for understanding 
the shape and texture of small objects. Therefore, ac-
cording to the data in Table 5, after adding this layer, 
the mAP50 of the model increased from the original 
82.7% to 83.2%, and the MAP50-75 increased from 
the original 72% to 73.7%.
On this basis, before detection head, we introduce 
FASFF. FASFF adopts an adaptive spatial feature fu-
sion method, which can effectively filter out conflict 
information and enhance scale invariance to improve 
the accuracy of ship detection. This method allows 
the model to adaptively select the most useful fea-
tures at each spatial location, and flexibly determine 
which feature hierarchies are most important for 
the final prediction according to the context of each 

feature location and scale. The experimental results 
show that after the introduction of the FASFF mod-
ule, the precision of ship detection is improved from 
77.3% to 81.8%, and the improvement is about 4.5%. In 
addition, the mAP50 increased from 83.2% to 84.2%, 
and the MAP50-95 increased from 73.7% to 74.8%. 
These results show that the introduction of this mod-
ule significantly improves the detection performance 
of the model.
We introduce the R-C2f module to address the issue 
of parameter sharing in traditional convolutions. The 
module includes RFAConv, which allows for differ-
ent processing of various regions and sizes of recep-
tive fields during the feature extraction stage. This 
improves the network’s expression ability and flexi-
bility to adapt to different input features, ultimately 
enhancing the detection of ships. The experimental 
results indicate that the addition of the RF-C2f mod-
ule increased the recall rate of ship detection from 
76.9% to 80.2%, resulting in an improvement of about 
3.2%, without significantly reducing the accuracy of 
ship detection. Additionally, mAP50 increased from 
84.2% to 85.0%, and MAP50-95 increased from 74.8% 
to 76.0%, with an increase of 0.8% and 1.2%, respec-
tively. The data demonstrates that the implementa-
tion of the R-C2f module significantly enhances the 
performance index for detecting ships.
Finally, we introduce Inner-MPDIoU. Compared to 
CIOU, MPDIoU performs better in processing bound-
ary information and dense targets, and can more ac-
curately evaluate the degree of overlap between ob-
ject detection boxes. Inner allows for more flexibility 
in reflecting overlapping areas between two boxes.



Information Technology and Control 2024/4/531216

Figure 8
YOLOv8 confusion matrix (at the top) and the improved 
PMF-YOLOv8 confusion matrix (at the bottom)

Figure 9
P-R curve of YOLOv8(at the top) and P-R curve of 
improved PMF-YOLOv8(at the bottom)

The results show that after the introduction of In-
ner-MPDIoU, despite a slight decrease in accura-
cy, the recall rate increased from 80.2% to 82.6%, an 
improvement of approximately 2.4%. Moreover, the 
mAP50 increased from 85.0% to 86.4%, which is a 
1.4% increase.

Compared to the baseline YOLOv8n, the mAP50 im-
proved by 3.7%, MAP50-95 improved by 4.1%, recall 
improved by 5.7%, and accuracy improved by 2.5%. By 
comparing the confusion matrix shown in Figure 8 
with the P-R curve shown in Figure 9, it is evident that 
our model achieves better detection results. To pro-
vide a more comprehensive illustration of the superi-
ority of our model, as shown in Figure 10, we selected 
the detection results of some scenes for comparison.
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Figure 10
Visualization of detection effect. original image (at the 
top), YOLOv8 detection (in the middle), PMF-YOLOv8 
detection (at the bottom)

In addition, we conducted ablation experiments for 
individual modules. As is shown in Table 5, the de-
tection accuracy is improved to some extent by incor-
porating different modules. In practical applications, 
appropriate models can be selected based on different 
task scenarios and requirements.

4.5. Comparison with Other Advanced Models
To evaluate the performance of our model, we con-
ducted comparative experiments on the FGSC-T 
dataset using classic object detection algorithms such 
as Faster R-CNN, SSD, mainstream detection models 
YOLOv5s and YOLOv7-tiny, as well as the recently 
proposed models YOLOR-W6, RTDETR-R18, and 
Gold-YOLOn. In addition to mAP50, mAP50-95, Pre-
cision, and Recall, we included Parameters and the 
size of the model’s weight file as evaluation metrics. 
From the data in Table 6, it is evident that our model 
outperforms the traditional SSD and Faster R-CNN 
models. Compared to the YOLOv5s model, our mod-
el improves mAP50, mAP50-95, Precision, and Re-
call by 1.5%, 2.5%, 3.0%, and 0.4%, respectively, while 
also having fewer parameters and a smaller weight 
file size. Although YOLOv7-tiny shows good perfor-
mance in terms of lightweight characteristics, its per-
formance in maritime vessel detection is significantly 
inferior to our model. 
For the YOLOR-W6 model, mAP50 and mAP50-95 
are lower by 1.3% and 1.8%, respectively, compared to 
our model, and it has a substantially larger number of 
parameters. Additionally, when compared to the re-
cently proposed model RTDETR-R18 (2023), which 

Table 6
Comparison experiments with Faster R-CNN, SSD, YOLOv5s, YOLOv7tiny, and YOLOR-W6

Models Precision Recall mAP50 mAP 50-95 Parameters (/106) Weight (MB)

Faster R-CNN \ \ 76.5 68.3 72 108

SSD \ \ 72.3 \ 24.0 92.1

YOLOv5s 77.4 82.2 84.9 73.6 7.1 13.6

YOLOv7tiny 69.8 72.1 76.3 65.2 6.1 11.7

YOLOv8n 77.9 76.9 82.7 72.0 3.0 5.95

YOLOR-W6 \ \ 85.1 74.3 79.2 151.8

Rtdetr-r18 82.1 75.6 85.7 73.2 20.1 48.6

Gold-YOLOn 78.3 80.1 82.2 72.4 5.6 11.2

Ours 80.4 82.6 86.4 76.1 6.8 13.4
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uses ResNet18 as its backbone, our model’s Preci-
sion is 1.7% lower, but our Recall is 5.0% higher, with 
mAP50 and mAP50-95 being 0.7% and 2.7% higher, 
respectively. Furthermore, our model has significant-
ly fewer parameters and a smaller weight file size than 
RTDETR-R18.
Compared to the model Gold-YOLOn (2023), al-
though Gold-YOLOn has fewer parameters and a 
smaller weight file size, our model surpasses it in 
mAP50, mAP50-95, Precision, and Recall by 4.2%, 
3.7%, 2.1%, and 2.5%, respectively. 
The comparative analysis above demonstrates that 
our model exhibits superior performance in the task 
of maritime vessel detection.

5. Conclusion
We present the enhanced PMF-YOLOv8 model, 
which utilizes a feature fusion method that combines 
an improved path aggregation network with an adap-
tive spatial feature fusion approach. Furthermore, we 
introduce the R-C2f module and the Inner-MPDIoU 
loss function. These enhancements effectively tackle 
the problem of feature loss during the learning pro-
cess in the existing model, rectify the limitations of 
previous research that does not fully exploit the shal-
low features of remote sensing ships, and enable more 
accurate detection of remote sensing ships.
Compared to the baseline YOLOv8, our model im-
proves mAP50, MAP50-95, precision, and recall by 

3.7%, 4.1%, 5.7%, and 2.5%, respectively. This indi-
cates that our improved method enhances model per-
formance.
We also conducted comparative experiments with 
other advanced models, including Faster R-CNN, 
SSD, YOLOv5s, YOLOv7tiny, and YOLOR-W6. Our 
model outperforms these models with an mAP50 
improvement of 9.9%, 14.1%, 1.5%, 10.1%, and 1.3%, 
respectively. Additionally, mAP50 increased by 7.8%, 
12.3%, 2.5%, 10.9%, and 1.8%, respectively. The data 
above shows that our model has superior perfor-
mance in detecting ships. 
Furthermore, the PMF is capable of achieving a de-
tection speed of 84 fps, which is sufficient for re-
al-time detection.
In the future, we will further optimize our network 
structure for lightweight performance and reduce the 
number of parameters through techniques such as 
pruning, quantization, and knowledge distillation. The 
convolutional layer structure will also be enhanced 
with depthwise separable convolutions, group convo-
lutions, etc. to minimize computational complexity.

Acknowledgement 
This work was supported by the National Key Labo-
ratory of Electromagnetic Space Safety Foundation 
Program of China (Grant No. 2021JCJQLB055008) 
and the Innovation and Research Institute of Hebei 
University of Technology in Shijiazhuang, Science 
and Technology Cooperation Special Project of Shiji-
azhuang (SJZ ZXC23001). 

References 
1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L. Speeded-Up 

Robust Features (SURF). Computer Vision and Im-
age Understanding, 2008, 110(3), 346-359. https://doi.
org/10.1016/j.cviu.2007.09.014

2. Chen, C.-F. R., Fan, Q., Panda, R. CrossViT: Cross-At-
tention Multi-Scale Vision Transformer for Image 
Classification. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021. https://
doi.org/10.1109/ICCV48922.2021.00041

3. Chen, K., Wu, M., Liu, J., Zhang, C. FGSD: A Dataset for 
Fine-Grained Ship Detection in High-Resolution Sat-
ellite Images. arXiv, March 15, 2020. http://arxiv.org/
abs/2003.06832

4. Chen, Z., Liu, C., Filaretov, V. F., Yukhimets, D. A. Mul-
ti-Scale Ship Detection Algorithm Based on YOLOv7 
for Complex Scene SAR Images. Remote Sensing, 2023, 
15(8), 2071. https://doi.org/10.3390/rs15082071

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, 
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, 
M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. An 
Image Is Worth 16x16 Words: Transformers for Image 
Recognition at Scale. arXiv, June 3, 2021. https://doi.
org/10.48550/arXiv.2010.11929.

6. Duta, I. C., Liu, L., Zhu, F., Shao, L. Pyramidal Convo-
lution: Rethinking Convolutional Neural Networks for 
Visual Recognition. arXiv, June 20, 2020. http://arxiv.
org/abs/2006.11538



1219Information Technology and Control 2024/4/53

7. Fritz, G., Seifert, C., Kumar, M., Paletta. Building Detec-
tion from Mobile Imagery Using Informative SIFT De-
scriptors. Lecture Notes in Computer Science, Springer 
Berlin Heidelberg: Berlin, Heidelberg, 2005, 3540, 629-
638. https://doi.org/10.1007/11499145_64

8. Ghiasi, G., Lin, T.-Y., Pang, R., Le, Q. V. NAS-FPN: 
Learning Scalable Feature Pyramid Architecture for 
Object Detection. arXiv, April 15, 2019. https://doi.
org/10.1109/CVPR.2019.00720

9. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C. AugFPN: 
Improving Multi-Scale Feature Learning for Object De-
tection. In 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), IEEE: Seattle, 
WA, USA, 2020, 12592-12601. https://doi.org/10.1109/
CVPR42600.2020.01261

10. Guoqing, Z., Huang, L., Sun, Q. Improved Oriented 
R-CNN for Fine-Grained Detection of Remote Sensing 
Ship Targets. Computer Engineering and Applications, 
2021, 1-15.

11. He, K., Zhang, X., Ren, S., Sun, J. Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recog-
nition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2015, 37(9), 1904-1916. https://doi.
org/10.1109/TPAMI.2015.2389824

12. Hu, D., Yu, M., Wu, X., Hu, J., Sheng, Y., Jiang, Y., Huang, 
C., Zheng, Y. DGW-YOLOv8: A Small Insulator Tar-
get Detection Algorithm Based on Deformable At-
tention Backbone and WIoU Loss Function. IET Im-
age Processing, 2024, 18(4), 1096-1108. https://doi.
org/10.1049/ipr2.13009

13. Li, T., Xu, H., Zeng, W. Ship Classification Method for 
Massive AIS Trajectories Based on GNN. ournal of 
Physics: Conference Series, 2021, 2025(1), 012024. 
https://doi.org/10.1088/1742-6596/2025/1/012024

14. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, 
B., Belongie, S. Feature Pyramid Networks for Ob-
ject Detection. Computer Vision and Pattern Rec-
ognition, 2017, 2117-2125. https://doi.org/10.1109/
CVPR.2017.106

15. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P. Focal 
Loss for Dense Object Detection. arXiv, February 7, 
2018. https://doi.org/10.1109/ICCV.2017.324

16. Liu, D. TS2Anet: Ship Detection Network Based on 
Transformer. Journal of Sea Research, 2023, 195, 
102415. https://doi.org/10.1016/j.seares.2023.102415

17. Liu, S., Huang, D., Wang, Y. Learning Spatial Fusion 
for Single-Shot Object Detection. arXiv, November 24, 
2019. http://arxiv.org/abs/1911.09516

18. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J. Path Aggregation 
Network for Instance Segmentation. arXiv, September 
18, 2018. https://doi.org/10.1109/CVPR.2018.00913

19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, 
C.-Y., Berg, A. C. SSD: Single Shot MultiBox Detector. 
ECCV 2016. Lecture Notes in Computer Science, 2016, 
9905, 21-37. https://doi.org/10.1007/978-3-319-46448-
0_2

20. Meng, L., Li, H., Chen, B.-C., Lan, S., Wu, Z., Jiang, 
Y.-G., Lim, S.-N. AdaViT: Adaptive Vision Trans-
formers for Efficient Image Recognition. In 2022 
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR); IEEE: New Orleans, LA, 
USA, 2022, 12299-12308. https://doi.org/10.1109/
CVPR52688.2022.01199

21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. You 
Only Look Once: Unified, Real-Time Object Detection. 
Computer Vision and Pattern Recognition, 2016, 779-
788. https://doi.org/10.1109/CVPR.2016.91

22. Ren, S., He, K., Girshick, R., Sun, J. Faster R-CNN: To-
wards Real-Time Object Detection with Region Pro-
posal Networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2017, 39(6), 1137-1149. 
https://doi.org/10.1109/TPAMI.2016.2577031

23. Ren, X., Bai, Y., Liu, G., Zhang, P. YOLO-Lite: An Efficient 
Lightweight Network for SAR Ship Detection. Remote 
Sensing, 2023, 15(15), 3771. https://doi.org/10.3390/
rs15153771

24. Tan, M., Pang, R., Le, Q. V. EfficientDet: Scalable and 
Efficient Object Detection. arXiv, July 27, 2020. https://
doi.org/10.1109/CVPR42600.2020.01079

25. Tummala, S., Kadry, S., Bukhari, S. A. C., Rauf, H. T. 
Classification of Brain Tumor from Magnetic Reso-
nance Imaging Using Vision Transformers Ensembling. 
Current Oncology, 2022, 29(10), 7498-7511. https://doi.
org/10.3390/curroncol29100590

26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 
Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. Atten-
tion Is All You Need. arXiv, August 1, 2023. https://doi.
org/10.48550/arXiv.1706.03762

27. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M. YOLOv7: 
Trainable Bag-of-Freebies Sets New State-of-the-Art 
for Real-Time Object Detectors. Computer Vision and 
Pattern Recognition, 2023, 7464-7475. https://doi.
org/10.1109/CVPR52729.2023.00721

28. Xu, X., Feng, Z., Cao, C., Li, M., Wu, J., Wu, Z., Shang, Y., 
Ye, S. An Improved Swin Transformer-Based Model for 
Remote Sensing Object Detection and Instance Seg-



Information Technology and Control 2024/4/531220

mentation. Remote Sensing, 2021, 13(23), 4779. https://
doi.org/10.3390/rs13234779

29. Yan, Z., Li, Z., Xie, Y., Li, C., Li, S., Sun, F. ReBiDet: An 
Enhanced Ship Detection Model Utilizing ReDet and 
Bi-Directional Feature Fusion. Applied Sciences, 2023, 
13(12), 7080. https://doi.org/10.3390/app13127080

30. Yan, Z., Zemin, Z., Rong, D., Bo, L. Inspection Algorithm 
of Bottle Defects Based on Improved HOG Characteris-
tics. Modern Manufacturing Engineering, 2019, 460(1), 
126.

31. Yin, S. Object Detection Based on Deep Learning: A 
Brief Review. IJLAI Transactions on Science and Engi-
neering, 2023, 1(02), 1-6.

32. Yin, S., Wang, L., Shafiq, M., Teng, L., Laghari, A. A., 
Khan, M. F. G2Grad-CAMRL: An Object Detection and 
Interpretation Model Based on Gradient-Weighted 
Class Activation Mapping and Reinforcement Learn-
ing in Remote Sensing Images. IEEE J. Sel. Top. Appl. 
Earth Observations Remote Sensing, 2023, 16, 3583-
3598. https://doi.org/10.1109/JSTARS.2023.3241405

33. Yin, S., Wang, L., Wang, Q., Ivanovic, M., Yang, J. M2F2-
RCNN: Multi-Functional Faster RCNN Based on Mul-
ti-Scale Feature Fusion for Region Search in Remote 
Sensing Images.

34. Yu, F., Koltun, V. Multi-Scale Context Aggregation by 
Dilated Convolutions. arXiv, April 30, 2016. https://doi.
org/10.48550/arXiv.1511.07122

35. Zhang, T., Zhang, X. A Polarization Fusion Network 
with Geometric Feature Embedding for SAR Ship 
Classification. Pattern Recognition, 2022, 123, 108365. 
https://doi.org/10.1016/j.patcog.2021.108365

36. Zhang, X., Liu, C., Yang, D., Song, T., Ye, Y., Li, K., Song, 
Y. RFAConv: Innovating Spatial Attention and Stand-
ard Convolutional Operation. arXiv, October 12, 2023. 
http://arxiv.org/abs/2304.03198

37. Zhang, X., Lv, Y., Yao, L., Xiong, W., Fu, C. A New Bench-
mark and an Attribute-Guided Multilevel Feature 
Representation Network for Fine-Grained Ship Classi-
fication in Optical Remote Sensing Images. IEEE Jour-
nal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 2020, 13, 1271-1285. https://doi.
org/10.1109/JSTARS.2020.2981686

38. Zhang, Z., Zhang, L., Wang, Y., Feng, P., He, R. ShipR-
SImageNet: A Large-Scale Fine-Grained Dataset for 
Ship Detection in High-Resolution Optical Remote 
Sensing Images. IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sens-
ing, 2021, 14, 8458-8472. https://doi.org/10.1109/
JSTARS.2021.3104230

39. Zheng, Q., Saponara, S., Tian, X., Yu, Z., Elhanashi, 
A., Yu, R. A Real-Time Constellation Image Classifi-
cation Method of Wireless Communication Signals 
Based on the Lightweight Network MobileViT. Cogni-
tive Neurodynamics, 2024, 18(2), 659-671. https://doi.
org/10.1007/s11571-023-10015-7

40. Zheng, Q., Tian, X., Yu, Z., Ding, Y., Elhanashi, A., Sapo-
nara, S., Kpalma, K. MobileRaT: A Lightweight Ra-
dio Transformer Method for Automatic Modulation 
Classification in Drone Communication Systems. 
Drones, 2023, 7(10), 596. https://doi.org/10.3390/
drones7100596

41. Zheng, Q., Zhao, P., Wang, H., Elhanashi, A., Sapon-
ara, S. Fine-Grained Modulation Classification Using 
Multi-Scale Radio Transformer with Dual-Chan-
nel Representation. IEEE Communications Letters, 
2022, 26(6), 1298-1302. https://doi.org/10.1109/
LCOMM.2022.3145647

42. Zheng, Q., Zhao, P., Zhang, D., Wang, H. MR-DCAE: 
Manifold Regularization-Based Deep Convolutional 
Autoencoder for Unauthorized Broadcasting Identi-
fication. International Journal of Intelligent Systems, 
2021, 36(12), 7204-7238. https://doi.org/10.1002/
int.22586

43. Zheng, Y., Jiang, W. Evaluation of Vision Transformers 
for Traffic Sign Classification. Wireless Communica-
tions and Mobile Computing, 2022(1), 3041117. https://
doi.org/10.1155/2022/3041117

44. Zhou, K., Zhang, M., Wang, H., Tan, J. Ship Detection in 
SAR Images Based on Multi-Scale Feature Extraction 
and Adaptive Feature Fusion. Remote Sensing, 2022, 
14(3), 755. https://doi.org/10.3390/rs14030755

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




