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Driverless vehicles are the development direction of intelligent transportation. In recent years, the rapid de-
velopment of driverless transportation technology, especially the practical performance of intelligently net-
work-connected driverless vehicles has improved rapidly. However, due to problems with traffic planning,
many roads are still relatively narrow. When an intelligently networked driverless car moves in a narrow area,
the lack of precision in trajectory tracking can easily cause traffic accidents due to small trajectory changes.
In this paper, for the driving characteristics of intelligently networked driverless vehicles in narrow areas, an
improved Faster R-CNN target detection network is proposed that introduces a deep residual network Res-
Net-50, a dual attention mechanism CBAM, and an ROI-Pooling to estimate the position information of driv-
erless vehicles in the video of the traffic scene. Based on the target detection results of driverless vehicles and
the appearance characteristics of vehicles, the novel DeepSORT vehicle tracking algorithm improved by OS-
Net full-scale network and complete intersection over union (CIoU), is employed to derive a vehicle trajectory
within a single camera on areal road. The UA-DETRAC dataset in real scenarios is selected to run experiments,
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and the results demonstrate that the proposed target detection and tracking algorithms perform well, and ef-
fectively realize target detection and trajectory tracking of intelligently internet-connected driverless vehi-
cles in narrow areas, which can help realize the further performance enhancement. The improved DeepSORT
achieves an impressive MOTA of 96.1% and MOTP of 0.115.

KEYWORDS: Driverless vehicles, Trajectory tracking, Narrow area, Intelligent network-connected, Faster

R-CNN, DeepSORT.

1. Introduction

Driverless vehicles have gradually become an import-
ant part of intelligent transportation systems and can
potentially substitute, partially or entirely, the respon-
sibilities associated with human driving. This can en-
hance road capacity for vehicle accommodation and
plays a crucial role in enhancing both the safety and
efficiency of road traffic. The use of driverless technol-
ogy in an intelligent network environment to improve
traffic safety and efficiency has been one of the most
widely researched topics in academia and the indus-
try. In the development process of driverless vehicles,
intelligent networking technology realizes the inter-
connection between vehicles and road traffic infra-
structure, pedestrians, and surrounding vehicles, thus
greatly enhancing the level of vehicle intelligence and
effectively improving the safety of driving [21]. Intel-
ligently network-connected technology can provide
driving assistance information for vehicles, and the
interconnection between vehicles and road infrastruc-
ture can allow the vehicle’s sensors and cameras to ob-
tain information about the surroundings, to adjust its
driving route. It can also provide timely warnings and
alerts when vehicles engage in unsafe driving manner.

Due to issues with traffic planning, many lanes still
have narrow driving areas. The problem faced by
driverless vehicles when moving in narrow areas is
more complex than those in wider areas. Especial-
ly in dynamic traffic environments, wrong decisions
about lane changes, irrational path planning, or in-
effective control algorithms may lead to traffic con-
gestion and accidents, and it is necessary to research
driving problems of intelligently network-connected
driverless vehicles in narrow areas. Vehicle trajecto-
ry tracking, as a key technology of intelligent driving,
can help driverless vehicles evaluate the safety dis-
tance in real-time, so that driverless vehicles can in-
telligently choose driving routes and take emergency
braking measures in unexpected situations to achieve
safe driving [20]. Hence, it becomes crucial to con-

duct studies on technology that tracks the trajectory
of vehicles, ensuring autonomous safe operations.

Vehicle trajectory tracking in the study of driverless
vehicles is mainly based on real-time environment
modeling, and under certain constraints, the consid-
eration of static or dynamic obstacles in surround-
ings, which directly affect the driving trajectory of
vehicles, can make the vehicle drive stably along the
desired trajectory, which can help enhance the con-
trollability and reduce the incidence of traffic acci-
dents. Therefore, the article researches trajectory
tracking of intelligently network-connected driver-
less vehicles in narrow areas. Target detection for
driverless vehicles is a prerequisite for vehicle tra-
jectory tracking realized in an intelligent network
environment. In the research, conventional visual ve-
hicle detection algorithms rely on the hand-designed
feature processor of the developer, so the processing
effect and the performance of the algorithm will be
affected. Conventional vehicle detection algorithms
are based on statistical methods and various opera-
tors are designed to extract texture information. The
corresponding spectral method is Fourier spectrum
analysis, which specifically refers to identifying the
high-frequency section of the spectrum to pinpoint
the periodicity of images. Directional gradient histo-
grams and Hal features are frequently implemented
detection methods. With the advancement of deep
learning, applications of algorithms to detect targets
in the automotive domain have gained prominence.
These algorithms can be categorized into 2 types:
one-stage detection network (One-Stage) and two-
stage detection network (Two-Stage) [5, 19]. In the
two-stage detection networks, convolutional net-
works are utilized to devise region proposals. These
proposals serve as inputs for the subsequent Convo-
lutional Neural Network (CNN) to extract features.
Subsequently, the extracted features undergo clas-
sification and regression to determine the boundar-
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ies of the predicted targets. The final step involves
eliminating redundant detection targets through
Non-Maximum Suppression (NMS). R-CNN initially
introduced this method, and Faster R-CNN further
refined it, assigning the task of generating candidate
regions to the neural network, marking the inception
of the region candidate network. However, the two-
stage network has a drawback in terms of computa-
tional speed. To address this limitation, the one-stage
network is proposed. Instead of generating candidate
regions, the one-stage network defines boxes of vary-
ing sizes at anchor points within the image. These
anchor frames are then processed through the CNN
for feature extraction, ultimately yielding the proba-
bility of the object class and the coordinate point of
the detected object. The target tracking task can only
be realized after the completion of target detection.
The mainstream algorithms for target tracking use
correlation filtering procedures, including sum-of-
squares filters, Kernelized Correlation Filters (KCF),
and other algorithms based on MOSSE improvement.
Regression-based deep learning frameworks are also
driving the target tracking task. Current multi-tar-
get tracking tasks are more complex and difficult to
model. While single-target tracking operations re-
quire continuous data filtering for a definite target,
multi-target tracking requires the detection of targets
under specific frames and also a correlation of the
same target data between different frames, so there is
still a huge challenge.

As such, the manuscript tackles the previously men-
tioned issues by proposing a trajectory-tracking
method based on deep learning for intelligently net-
work-connected driverless vehicles operating in con-
fined spaces. Its primary contributions are outlined
as follows:

1 Leveraging the deep residual network ResNet-50
to substitute VGG16, the underlying feature ex-
traction network of Faster R-CNN. This substitu-
tion aims to preserve additional information re-
garding vehicle characteristics, thereby enhancing
the feature extraction capability of the network for
driverless vehicles.

2 Introducing the spatial and channel dual attention
mechanism CBAM into Faster R-CNN to enhance
the accuracy of automobile target detection. Addi-
tionally, replacing ROI-Pooling with ROI-Align to
bolster the network’s generalization capability and
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enable precise detection of unmanned vehicles.

3 Employing the OSNet full-scale network to refine
the shallow residual network enhances Deep-
SORT’s capacity to extract distinct features of
driverless vehicles.

4 Optimizing the Intersection over Union (IoU)
matching method in DeepSORT by adopting the
Complete Intersection over Union (CIoU) match-
ing method. This adjustment facilitates accurate
tracking of driverless vehicles by assessing the de-
gree of match between the detection frame and the
bounding regression.

The rest of the article is constructed as follows: The
related work is presented in Section 2. Section 3 pres-
ents the target detection algorithm, which is the pro-
posed algorithm. The trajectory tracking algorithm is
presented in Section 4. Section 5 presents the exper-
imentations. The research is concluded in Section 6.

2. Related Work

The development of intelligent network technology
in recent years has prompted video analysis-based
automotive Multi-object Tracking (MOT) technolo-
gy to gradually become a significant research area in
the field of driverless vehicles [11, 14]. Single-camera
multi-object tracking refers to analyzing the video to
identify and track the targets belonging to different
categories and identities. Current approaches can be
broadly categorized into 2 types: one follows the step-
by-step completion of the detection tracking paradigm,
called Detection-Based Tracking, and the other takes
detection as a prerequisite for tracking, called Detec-
tion-Free Tracking [4]. First, for the former tracking
task, atarget detector is required to process each frame
in the video to detect the target position information in
it. Second, based on the target position information, a
tracker is employed to associate targets between video
frames to achieve continuous tracking of the same tar-
get. In contrast, for the latter tracking task, prior infor-
mation about the position of each target at its first ap-
pearance in the video is required [1]. Then, a separate
tracking algorithm is implemented for each target to
achieve continuous tracking of the target. Many schol-
ars have also researched trajectory tracking of driver-
less vehicles based on the ideas presented by the two
methods and have achieved a great number of results.
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Wu et al. [17] addressed the problem that available
UAV single trackers are difficult to accurately identify
video targets by designing PFN to extract multi-level
features and complete feature aggregation and sub-
sequently introduced a channel transform enhancer
(CTE) to simulate relationship and complete fine-
grained identity prediction. Experiments show that
the method has excellent performance in tracking
self-driving cars. To resolve the UAV tracking accura-
cyproblem, Lietal. [8] devised atracking model with a
focus on behavioral information. This model primari-
ly relies on the long short-term memory (LSTM) net-
work and self-attention network. Simultaneously, it
integrates an association model based on the Hungar-
ian algorithm. The objective is to formulate a trajec-
tory prediction model and forecast paths of individual
vehicles. The test results based on the new dataset of
highway vehicles show that the algorithm has good
robustness and real-time performance. Wang et al.
[15] considered the effect of the false detection prob-
lem of 3D multi-target tracking (MOT) on the effect
of trajectory tracking and designed the fused 3D
MOT framework by combining camera and LiDAR
data to reduce the probability of tracking failure. The
framework contains a motion cost matrix to improve
tracking accuracy, while multi-target tracking has
been accomplished through multi-category cost. Ex-
perimental results on the KITTI test dataset show a
better performance of the framework. Wang et al. [16]
designed the StrongFusionMOT algorithm to achieve
the fusion of 2D and 3D detection through absolute
difference (AD) census to strengthen the robustness,
designed the SDIoU cost function to enhance the cor-
relation accuracy, and introduced a matching mech-
anism that traces back the past trajectories to lower
the error. The outcomes of the StrongFusionMOT ap-
proach demonstrate superiority through the test with
KITTI and real-scene datasets.

Although the mentioned algorithms have made
breakthroughs in multi-target tracking, there is a
lack of relevant research on the trajectory tracking
of intelligently network-connected driverless vehi-
cles in narrow areas. In the article, we present a tra-
jectory-tracking algorithm based on deep learning
to achieve the tracking of intelligently network-con-
nected autonomous vehicles in confined spaces. The
goal is to advance driverless vehicle technology in
narrow road conditions.
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3. Target Detection Model for
Intelligently Network-connected
Driverless Vehicles in Narrow Areas
based on an Improved Faster R-CNN
3.1. Faster R-CNN

Fast R-CNN employs the construction of an ROI
pooling layer to extract feature regions and accom-
plishes feature classification through the SoftMax
function. The Faster R-CNN algorithm represents
an optimization over the Fast R-CNN foundation. It
serves as an end-to-end deep learning model for tar-
get detection, enabling the training of the entire algo-
rithm within a single framework. Utilizing the addi-
tion of the neural network Region Proposal Network
(RPN), Faster R-CNN facilitates edge extraction,
thereby enhancing both the model’s time efficiency
and the accuracy of target detection. This approach
directly acquires candidate regions, further improv-
ing model effectiveness and target detection accuracy
[9]. Figure 1 illustrates the fundamental structure of
Faster R-CNN.

The specific workflow of Faster R-CNN is as follows
[2]:

Step 1: Feature Extraction. Initially, the image under-
goes CNN processing to extract its feature data, re-
sulting in a corresponding feature map. Subsequently,
the obtained feature map feeds into the Region Pro-
posal Network (RPN) to generate candidate regions.

Step 2: Candidate Box Generation. The RPN’s role
involves producing candidate regions on the feature
map, followed by binary classification of anchor box-
es via the SoftMax function normalization. Further
refinement of anchor boxes occurs through bounding
box regression, enhancing the precision of proposal
boxes.

Step 3: ROI Pooling. Proposal boxes acquired in the
previous step, along with feature images from step 1,
undergo aggregation in the ROI-Pooling layer. This
process maps proposal boxes back to the feature
maps, yielding Proposal Feature Maps. These maps
are then fed into the fully connected layer for propos-
al categorization.

Step 4: Classification Regression. Boundary regres-
sion utilizes the target feature maps to compute prob-
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Figure 1
The fundamental structure of Faster R-CNN
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ability information for different target categories.
The boundary regression network determines the
precise location of the target object, resulting in de-
tection outcomes.

Although Faster R-CNN can realize high-precision
detection, it still has the following drawbacks: (1)
The VGG16 network structure in the original mod-
el suffers from the problem of having many network
parameters but few layers, which is prone to gradi-
ent vanishing. (2) The existence of 2-times rounding
quantization in ROI-Pooling will cause a loss of accu-
racy. Aiming at these problems, the manuscript pro-
poses improvements to Faster R-CNN.

3.2. Improvement of Faster R-CNN

3.2.1. Selection of Feature Extraction Network

Faster R-CNN can better extract the features on the
image, making the extracted features of paper disease
finer, thus optimizing the subsequent detection effi-
ciency.

The disadvantage of the VGG16 network structure is
that the network parameters are many but the num-
ber of layers is small, while the ResNet-50 network is
adeep CNN based on residual units, and the structure
of residual units can be observed in Figure 2. Given an
input x to the residual network, the initial convolu-
tional layer conducts a convolution operation on the
input. Subsequently, the second convolutional layer
repeats the convolution operation on the preceding

result. The outcome involves adding the convolution
result to the original input x, yielding the ultimate
output F(x)+x. When the CNN has the gradient dis-
persion problem, F(x)=0, the input and output are
mapped to a constant mapping. The advantage of the
residual network is that the information in the front
layers is directly added to the back layers by connect-
ing directly across the layers, thus effectively over-
coming the problems of gradient vanishing and gradi-
ent explosion, and also making the algorithm easier to
train and converge.

Figure 2
Residual element structure

x
Identity

Weight layer Weight layer

F(x) F(x)+x

The VGG16 feature selection network comprises 13
convolutional layers, with each followed by a pooling
layer for feature map pooling. The repetition of pool-
ing operations can potentially lead to the detriment
of feature information. In Figure 3, the architecture
of the substituted ResNet-50 network is illustrated.
This alternative network integrates only 2 pooling
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Figure 3
A structure of ResNet-50
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layers, mitigating the issue of information loss asso-
ciated with multiple pooling and preserving a greater
amount of image feature information.

3.2.2. CBAM

CBAM serves as an attention module designed for
feed-forward CNNs. It integrates spatial and channel
attention mechanisms to emphasize crucial features
in the feature map while filtering out non-essential
ones. Illustrated in Figure 4 is the configuration of the
CBAM module, encompassing both CAM and SAM.

Figure 4
CBAM module
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CAM module: The channel hierarchy remains unal-
tered, while the spatial hierarchy undergoes reduc-
tion. Illustrated in Figure 5, the initial step involves
executing MaxPool and AvgPool operations in par-
allel on the input feature images to aggregate spatial
information within the feature maps. This process
generates 2 distinct spatial descriptions, represent-
ing average-pooled features and maximally-pooled
features, respectively. The feature map size transi-
tions from Cx H xW to Cxl1x1, followed by input
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Figure 5
A CAM module
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into a shared MLP module to produce 2 outputs. The
shared network encompasses a hidden layer, with the
hidden activation size set to R, where r denotes
the reduction ratio. Subsequently, the two outputs
undergo summation, and the channel attention out-
put is derived through a sigmoid activation function.
This result is then multiplied with the original image
to revert to the size Cx H xW . The rationale behind
utilizing maximum pooling is to encode the most
prominent features, allowing compensatory encoding
of the average-pooled features. Simultaneous incor-
poration of these 2 features significantly enhances
the network’s representational power, surpassing the
efficacy of relying on a singular pooling feature.

The CAM can be expressed by Equation (1).

M (F) = sigmoid(MLP(AvgPool(F))+

+ MLP(MaxPool(F))) = o
= sigmoid (W, Wy  Fie )|+ 71 (o  Fie ),

where F denotes the input feature. The sigmoid de-
notes the activation function. The weights belong-
ing to MLP W, € R“™C as well as W, € R/ are
shared by 2 inputs.

A SAM module: The spatial hierarchy remains unal-
tered, while the channel hierarchy undergoes com-
pression. As depicted in Figure 6, the results derived
from the channel attention module undergo sequen-
tial maximum pooling and average pooling operations
aligned with the CAM. These outcomes are inter-
linked to form a valid feature descriptor, resulting in 2
feature maps that are then seamlessly integrated. Fol-
lowing this, a 7x7 convolution operation is executed,
yielding a single-channel feature map. The output of
the spatial attention is subsequently derived through
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Figure 6
A SAM module
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the application of a sigmoid function. Finally, this re-
sult is multiplied with the original image to revert to
the size Cx HxW.

The SAM can be expressed by Equation (2).

Mg(F) =sigmoid /™ ([ AvgPool(F); MaxPool(F)])) =
= sigmoid([FS JFS ])

avg > max

@
where f7’<7 denotes a 7x7 convolution kernel.

3.2.3. Replacement of ROI-Pooling

Within Faster R-CNN, the RPN network produc-
es candidate frames of varying sizes. To standard-
ize the sizes of these diverse candidate frames, the
ROI-Pooling layer is incorporated, facilitating uni-
formity through feature pooling. There are 2 round-
ing quantizations in ROI-Pooling, the first one is to
quantize the positional coordinates of the input can-
didate frames’ floating-point numbers into integers,
and the second one is to divide the quantized candi-
date regions into MxM cells evenly, and then round
the edges of each cell to quantize them. The first time
is to quantize the positional coordinates of the input
candidate frame floats into integers, and the sec-
ond time is to divide the quantized candidate region
into MxM cells, and then round the edges of each
cell. These 2 quantization operations can easily in-
troduce position errors in the measurement frame.
This issue becomes less apparent when detecting
small targets, ultimately leading to areduction in de-
tection accuracy. The research focuses on detecting
driverless cars, where the planar geometric area of
the car in the camera occupies a small portion of the
photo and involves a limited number of image pixels.
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To address this, ROI-Align is employed to enhance
the network’s generalization ability.

The ROI-Align structure overcomes the quantization
errors inherent in the ROI-Pooling structure. This
is achieved by preserving the original floating-point
scores and utilizing a bilinear interpolation algorithm
to compute the pixel scores corresponding to the
floating-point numbers of the image coordinates. The
aim is to minimize quantization errors as much as
possible. Unlike ROI-Align, ROI-Pooling introduces
errors during the operation process since it relies on
quantization operations. Consequently, ROI-Align’s
avoidance of quantization operations results in an en-
hancement of detection accuracy.

3.3. The Model Architecture of the Improved
Faster R-CNN

The Faster R-CNN algorithm for detecting multiple
targets in the context of vehicle recognition mirrors
the fundamental structure of the Faster R-CNN algo-
rithm, as elucidated in Figure 7. Image data, including
labeling information, undergo processing within the
feature extraction backbone network, resulting in the
extraction of the image’s feature map. This feature
map serves as the input for the region candidate net-
work, generating frames that are potential candidates
for targets. These frames are then amalgamated with
the feature map and directed into the domain-of-in-
terest pooling layer, thereby ensuring a harmonized
feature dimensionality. Ultimately, the fully con-
nected layer receives multiple feature maps of stan-
dardized size, culminating in the conclusive steps of
classification prediction and positional regression.
Within the comprehensive framework, an uninter-
rupted flow of data extends from the input image to
the final determination of the target’s position and
category. This design enables the end-to-end training
of the entire model, fostering a seamless integration
of the training and reasoning processes.

The network model’s overall optimization loss func-
tion comprises 2 primary elements: the classification
loss and the regression loss. These components are
derived by comparing the network’s predicted target
categories with the manually labeled information on
the location and detection frames of vehicles. This
optimization process aims to enhance the network’s
proficiency in detecting vehicle targets. The initial
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Figure 7
A model structure of the improved Faster R-CNN
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loss function employed for computing the categoriza-
tion loss is defined by

Z_(yi log P +(1-y,)log1-P)

L =- R
N

c

3

where N, denotes the number of candidate boxes
generated by the regional candidate network. £, rep-
resents the rate at which the candidate box with the
serial number ¢ predicts the category to be a vehicle
in the outcome of the network. y, Represents the real
data of the candidate box with serial number i. The
second loss function is employed to compute the lo-
cation regression loss is defined as follows.

kS (B =B
Lr:ZJ’ Ll( ) @
NV
2
o, iflakl
Sp= 2 s ®)
2x| x|-1 .
———— ,otherwise

where N, represents the total number of candidate
boxes. g, represents the predicted score of the posi-
tion of the candidate box with the serial number i in
the outcome of the network, which includes the coor-
dinates of the four boundary points of the candidate
box. g’ represents the real data of the candidate box

with serial number i. The total loss for training the
whole model is the weighted sum of the classification
loss as well as the regression loss defined by

L=L +oL, ®

where @ represents the weight parameter.

The training of the enhanced Faster R-CNN model
involves 2 distinct stages. The initial stage focuses
on training the feature extraction backbone network,
while the subsequent stage is dedicated to the training
of the region candidate network. The reason for doing
soisthat although the region candidate network shares
some of the convolutional layer parameters with the
backbone network, the roles of the 2 networks are not
the same, and alternate training can make each part
play its role better, and ultimately enhance the detec-
tion capability of the whole framework.

4. Trajectory Tracking Model for
Intelligently Network-connected
Driverless Vehicles in Narrow Areas
based on an Improved DeepSORT
4.1.DeepSort

DeepSort stands out as a target-tracking algorithm
rooted in deep learning principles, amalgamating
deep learning and the conventional Sort algorithm
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Figure 8
The DeepSORT process
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for multi-target tracking within video sequences [3].
More up-to-date research can be found [6, 7, 12]. To
enhance tracking performance, DeepSort introduces
cascade matching on the foundation of the Sort track-
ing algorithm. The architectural representation of
DeepSortis depicted in Figure 8.

The fundamental steps of DeepSort, outlined in [13],
are as follows:

1 Employ the improved Faster R-CNN proposed in
Section 3 to identify the driverless car within the
image and retrieve the corresponding target detec-
tion frame.

2 Perform a cascaded matching by aligning the target
detection frame with the prediction frame project-
ed by the Kalman prediction from the preceding
frame.

3 Reassess the matching results by re-evaluating In-
tersection over Union (IOUs) for failed detection
frames and prediction frames within the cascade
matching.

4 Assess whether the detection and prediction
frames satisfy the conditions based on the match-
ing outcome.

5 Revise the status of the target.

The core component of DeepSort, known as cascade
matching, operates as follows: it initially identifies
the detection frame A representing the driverless
vehicle within the image, leveraging the enhanced
Faster R-CNN. Subsequently, it employs the Kalman

filter to forecast the target’s motion from the preced-
ing frame, yielding the prediction frame B. Next, it in-
tegrates the detection frame A and prediction frame
B along the target’s motion trajectory. These frames
are then fed into both the pedestrian reentry system
and the driverless vehicle re-recognition network,
facilitating the extraction of feature vectors for the
pedestrian detection frame and prediction frame, re-
spectively. Additionally, A as well as B undergo input
into the pedestrian re-recognition network, enabling
the extraction of feature vectors A and B for the driv-
erless vehicle detection frame and prediction frame,
correspondingly. The calculation of the minimum co-
sine distance between feature vectors A and B is per-
formed utilizing Equation (7):

a0, j)=min{1-2] 50| 4" R}, @

where 4 ; denotes the feature vector in the j-th detec-
tion frame and )*k represents the k-th feature vector
stored in the tracker. Afterward, we calculate the Ma-
halanobis distance (square) between the detection
frames based on detection frames A and B. Afterward,
the Mahalanobis distance (square) matrix is calculat-
ed between detection frames A and B by Equation (8).

4?2, j) = (dj _yi)T O'i_l (dj —}i) R ®

where d ; represents the eigenvector of a data point, y;
shows the mean vector of the data set, and o, denotes
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the covariance matrix of the data set. The cost matrix
is constructed based on the minimum cosine distance
matrix and Mahalanobis distance matrix to construct
the cost matrix.

i, j)=(1-o)d" (i, )+ d® (i, ), ©)

where @ denotes the weight coefficient. The cost ma-
trix is employed to represent the degree of match be-
tween each detected character frame and the predict-
ed target position. Optimal matching is performed
based on the cost matrix through the Hungary-aware
algorithm to associate each detected target frame
with its corresponding predicted target.

4.2. Improvement of DeepSort

4.2.1. The Improvement of Appearance
Characterization

During the trajectory tracking of smart grid-connect-
ed driverless vehicles in narrow areas, the algorithm
utilizes the appearance model to match the moving
target when the target is occluded by objects for along
time. To attain more robust and efficient appearance
features, the article introduces the full-scale network
OSNet into the DeepSORT tracking algorithm to
achieve a more accurate correlation between trajec-
tory and detection.

The OSNet full-scale network is based on residual
blocks to realize full-scale feature learning, and the
generated multi-scale feature maps are fused by the

Figure ©
The structure of the OSNet network
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channel weights generated by the Aggregation Gate
(AG) dynamically. Furthermore, an additional crucial
design tenet of the OSNet network involves crafting
a lightweight architecture. To accomplish this, the
standard convolution is deconstructed into point
convolution and deep convolution within the support
building module. Figure 9 illustrates the configura-
tion of the OSNet network.

4.2.2. Optimization of IoU Matching Algorithm

In the matching process of the DeepSORT algorithm,
the result of matching through IoU is calculated by
implementing the Hungarian algorithm to calculate
its cost matrix and search for the optimal matching to
judge the degree of matching when it is in a non-con-
firmation state.

Typically, IoU offers a more accurate portrayal of the
relationship between 2 entities. However, it exhibits
a lack of sensitivity to transformations in the target
scale, particularly in the case of unmanned car tar-
gets susceptible to interference from similar targets.
Moreover, when there is no overlap between the de-
tection and the prediction frames, IoU remains con-
sistently at 0, leading the algorithm to interpret the
target as vanished, rendering further judgments im-
possible.

To address this issue, the research incorporates a
Complete Intersection over Union (CIoU), augment-
ing ToU with a penalty term. CIoU factors in scale
information regarding the overlap, center distance,
and aspect ratio of the bounding box. Importantly, it
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retains the capability to indicate the movement di-
rection of the bounding box even in scenarios where
there is no overlap between target boxes. This en-
hancement serves to refine IoU matching and over-
come the limitations posed by the previous scenarios.

Therefore, the computational process of CIoU match-
ing is chosen in the trajectory tracking matching pro-
cess as

CloU = 10U - 22T

—p (10)
_ loU
= 1< 10U)+n a
) 2
4 wh w
n =—| arctan —arctan— | , 12
7’ h® h

where p? is the Euclidean distance between the two
centers of the predicted and real frames. X and Y de-
note the predicted bounding box and the real bound-
ing box, respectively. [ represents the length of the
shortest diagonal encompassing the predicted and
real frames, v denotes a parameter for trade-off, and
17 represents a parameter measuring the similarity of
aspect ratios.

8" and h¥' denote the width and height of the real
frame, respectively. w and 4 represent the width and
height of the predicted frame, respectively.

When m is 0, indicating that there is no intersection
between the two, then the IoU will not directly re-
move the bounding regression box, but through the
minimum enclosing box to calculate the minimum
diagonal distance c between the bounding regression
box and the detection box, the larger the ¢ indicates
that the 2 frames are farther away from each other.
pz(—)z(’Y) is always greater than O and less than 1 and
/

un is non-negative. The smaller the CIoU value, the
worse the match, and vice versa.

In the process of driverless vehicle trajectory track-
ing, the CIoU matching method is employed to pin-
point the degree of match between the Kalman pre-
diction and the detection results, which can reduce
the phenomenon of state reconfirmation when the
tracking process spans a large period, and decrease
the number of ID switching.
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5. Experimental Analysis

5.1. Data Source and Experimental
Environment

The dataset, the UA-DETRAC, consists of 10 hours of
video shot with a CannonEOS 550D camera at 24 dif-
ferent locations in Beijing and Tianjin, China [10] and
is recorded at 25 (ps) per second with a resolution of
960x540 pixels, thus the video has more than 140,000
frames in the UA-DETRAC dataset, with 8,250 ve-
hicles manually annotated and a total of 1.21 million
labeled object bounding boxes, as shown in Figure 10.

The experimental environment is the lab host CPU
model Intel Xeon(R) CPU E5-2686 v4 with 2.30 GHz,
16 GBx2 RAM, the GPU GeForce RTX 2080 Ti, the
operating system Windows 10 64-bit system, and the
framework Pytorch.

Figure 10
UA-DETRAC dataset
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5.2. Evaluation Metrics for Algorithm
Performance

The experiments are mainly categorized into target
detection and trajectory tracking of intelligently net-
work-connected driverless vehicles in a narrow area,
and the evaluation metrics commonly implemented
for these 2 tasks are presented in this section.

5.2.1. Evaluation Metrics for Target Detection

The main classification metrics used for vehicle tar-
get detection are Precision, Recall, and F-measure,
which can be expressed in [18]:



Information Technology and Control

.. TP
Precision = — 13)
TP+FP
Recall = P 14)
TP+FN
2 x Precision x Recall
F-measure = — 15)
Precision + Recall

True Positive, TP, signifies correct positive predic-
tions, while False Positive, FP, denotes incorrect
positive predictions. False Negative, FN, captures
instances of missed positive predictions. The higher
these three metrics are, the more accurate the target
detection model is to classify the target of the detec-
tion frame.

The Mean Average Precision (mAP) serves as a cru-
cial metric for assessing the comprehensive effective-
ness of a target detection algorithm. mAP calculates
the average precision across all classes and can be
computed by Equation (16).

P
mAP = m , 16)
N, classes
where P, Tepresents the sum of the accuracies of
all classes belonging to the test set. N j, ., represents
the number of target classes in the test set.

5.2.2. Evaluation Metrics for Trajectory Tracking

Intelligently internet-connected driverless vehicles
in narrow areas mainly realize trajectory tracking by
multi-target tracking within a single camera, which
aims to differentiate each target from the others in
each frame of the video, assign a unique identity ID
to each moving target for identification, and record
the motion trajectories of these targets at the same
time. The article employs mainstream MOT evalua-
tion metrics to assess the trajectory tracking perfor-
mance. The evaluation metrics for trajectory tracking
adhere to the standards set by the MOT evaluation
criteria. The calculation for Multiple Object Tracking
Accuracy (MOTA) is defined by Equation (17).

Z(FP+ FN+IDs)

ZGT ’

MOTA=1- an
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where FP indicates the total number of wrongly de-
tected vehicle targets, and FN indicates the total
number of omitted vehicle targets. The identity of
the target vehicle in the tracking trajectory is ideally
unique, but due to the complexity of the real scenar-
io, the tracking algorithm will always make mistakes.
IDs (ID Switch) represent the total number of times
that the identity ID is assigned to the vehicle in the
statistical trajectory is jumped. ZGT represents the
total number of vehicle targets. The closer the value of
MOTA is to 1, the higher the accuracy and better the
performance of the tracking algorithm.

Multiple Object Tracking Precision (MOTP) denotes
the degree of mismatch between the labeled and pre-
dicted frames of the actual tracked target and is calcu-
lated by Equation (18).

Ddi
MOTP =2 18)

20

where t represents the current number of frames. d 4
represents the degree of overlap between the predicted
frame and the real labeled frame of the i-th matching pair
in frame ¢. Q, represents the number of actual matches
between the predicted frame and the real labeled frame
in frame . MOTP is implemented to gauge the position-
al error in the results of the tracking algorithm, and the
lower the value is, the better the tracking algorithm per-
forms.

5.3. Experimental Results

5.3.1. Experimental Results for Target Detection

The primary aim of assessing the performance of
the target detection algorithm lies in evaluating the
accuracy of algorithmic detection within the data-
set. Therefore, it becomes imperative to appraise the
metrics’ performance, including Precision, Recall,
F-measure, and mAP, for YOLOv3, Faster R-CNN,
and the enhanced Faster R-CNN introduced in the
research, as depicted in Figure 11.

As depicted in Figure 11, YOLOvV3 attains a mAP of
87.15%, Precision of 76.74%, Recall of 78.69%, and
F-measure of 77.7% in the test set. In comparison to
YOLOvV3, Faster R-CNN demonstrates enhanced de-
tection accuracy, boasting a 3.38% increase in mAP
and surpassing YOLOvV3 in the remaining metrics.
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Figure 11
Experimental results for target detection
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Evaluation metrics

The enhanced Faster R-CNN, introduced in the re-
search, achieves notable results in the test set: 95.64%
in mAP, 87.63% in Precision, 89.64% in Recall, and
88.62% in F-measure. This marks a substantial ad-
vantage over the preceding 2 algorithms, showcasing
superior detection accuracy and heightened reliabil-
ity. The improved Faster R-CNN lays a robust foun-
dation for subsequent trajectory-tracking endeavors.

5.3.2. Experimental Results for Trajectory
Tracking

The primary objective of assessing tracking algo-
rithms is to evaluate their accuracy in tracking tar-
gets within a given dataset. The data utilized for
detection comprises the target detection outcomes
derived from the Faster R-CNN algorithm. The track-
ing accuracy results, as derived from SORT, Deep-
SORT, and the enhanced DeepSORT proposed in the
research, are presented in Table 1.

Table 1 reveals that SORT achieves a MOTA of 85.4%
and an MOTP of 0.173, respectively. In contrast,
DeepSORT demonstrates a higher MOTA of 89.0%
and a lower MOTP of 0.157. These metrics indicate
a noteworthy enhancement in MOTA by 3.6% and a
decrease in MOTP by 0.016 when compared to SORT.
These improvements underscore the exceptional per-
formance of the DeepSORT algorithm in trajectory
tracking. Notably, the introduction of the appearance
feature metric in DeepSORT contributes to the boost-
ed tracking accuracy.
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Moving on to the improved DeepSORT, it achieves
an impressive MOTA of 96.1% and MOTP of 0.115. In
comparison to DeepSORT, this represents a further
3.6% improvement in MOTA and a 0.016 reduction
in MOTP, highlighting a substantial advantage. This
improvement suggests an enhanced capability in ap-
parent feature extraction by DeepSORT and effective
optimization of the matching algorithm. Consequent-
ly, the improved algorithm enhances the tracking ef-
fectiveness for vehicle targets by minimizing identi-
ty switching and increasing stability throughout the
tracking process, ultimately improving the complete-
ness of the vehicle trajectory.

Table 1
Experimental results for trajectory tracking

Algorithms MOTA MOTP
SORT 85.4% 0173
DeepSORT 89.0% 0.157
Improved Deep-
al .
SORT 96.1% 0.115

In summary, the proposed algorithms have good per-
formance in practical applications and can be effec-
tively implemented for trajectory tracking of intel-
ligently network-connected driverless vehicles in a
narrow area, which contributes to progressing driv-
erless vehicle technology.

6. Conclusion

The manuscript introduces an enhanced target detec-
tion network based on Faster R-CNN for addressing
the challenge of intelligent grid-connected driverless
cars navigating through narrow spaces.

The proposed network incorporates ResNet-50,
CBAM, and ROI-Pooling to amplify overall perfor-
mance and enhance target detection accuracy. Addi-
tionally, an algorithm, comprising OSNet and CIoU, is
integrated into the improved DeepSORT framework.
This integration serves to boost feature extraction
capabilities and optimize the matching algorithm, en-
abling precise tracking of vehicle trajectories utiliz-
ing a single camera in real road scenarios.
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The findings highlight the notable accuracy achieved
by the proposed target detection algorithm and the
high precision in trajectory tracking.

Comparative analysis reveals superior application
performance. The proposed approach effectively facil-
itates target detection and trajectory tracking of intel-
ligently network-connected driverless vehicles within
confined spaces. This achievement contributes to ad-
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