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In the field of deep learning, traditional image classification tasks typically require extensive annotated data-
sets and complex model training processes, which pose significant challenges for deployment on resource-con-
strained edge devices. To address these challenges, this study introduces a few-shot learning method based 
on OpenAI’s CLIP model that significantly reduces computational demands by eliminating the need to run a 
text encoder at the inference stage. By pre-computing the embedding centers of classification text with a small 
set of image-text data, our approach enables the direct use of CLIP’s image encoder and pre-calculated text 
embeddings for efficient image classification. This adaptation not only allows for high-precision classification 
tasks on edge devices with limited computing capabilities but also achieves accuracy and recall rates that close-
ly approximate those of the pre-trained ResNet approach while using far less data. Furthermore, our method 
halves the memory usage compared to other large-scale visual models of similar capacity by avoiding the use 
of a text encoder during inference, making it particularly suitable for low-resource environments. This com-
parative advantage underscores the efficiency of our approach in handling few-shot image classification tasks, 
demonstrating both competitive accuracy and practical viability in resource-limited settings. The outcomes of 
this research not only highlight the potential of the CLIP model in few-shot learning scenarios but also pave a 
new path for efficient, low-resource deep learning applications in edge computing environments.
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1. Introduction
In current deep learning research and applications 
[9, 16], especially in the progress of image classifica-
tion tasks, the issue of data dependency is particu-
larly prominent. The core challenge lies in that most 
efficient and advanced models rely on large-scale, 
accurately annotated datasets for training. This de-
pendency is reflected not only in the enhancement of 
model performance but also in the richness of the fea-
tures that the model can learn and its generalization 
ability [14-15, 23]. However, acquiring these large-
scale annotated datasets requires significant human 
and time costs [17, 25], especially in fields requiring 
precise annotations, such as medical image analysis 
[5, 18]. Furthermore, as the complexity of the model 
structure increases, the demand for data correspond-
ingly rises. Complex model structures can capture 
finer-grained features and improve the accuracy of 
classification, but this also means that more training 
data is needed to avoid overfitting issues [35]. Over-
fitting refers to a model performing well on the train-
ing data but poorly generalizing to new, unseen data. 
Therefore, a large amount of annotated data becomes 
key to improving the model’s generalization ability.
The reliance on large-scale annotated datasets pres-
ents several problems. First, as mentioned earlier, 
collecting, and annotating these datasets is time-con-
suming and costly [11]. Second, in some fields, such 
as the analysis of medical images for rare diseases, 
it may be difficult to obtain sufficient annotated data 
[10]. Finally, even if a large volume of data can be ac-
quired, the quality of annotations may vary, affecting 
the reliability of the training outcomes. To address 
these challenges, researchers have explored various 
methods, including but not limited to transfer learn-
ing [21, 27], few-shot learning [23], and self-super-
vised learning [1]. These approaches aim to reduce 
the dependence on large-scale annotated datasets by 
utilizing pre-trained models, data augmentation gen-
erated by Generative Adversarial Networks (GANs) 
[3], or by designing algorithms capable of learning 
from unannotated data, thereby improving the train-
ing efficiency and generalization ability of the models 
[4]. Nevertheless, enhancing the performance and 
generalization ability of models under limited data 
conditions remains a significant issue in deep learn-
ing research. 

In recent advancements, Few-Shot Learning (FSL) 
has emerged as a focal area of research with the goal 
of training efficient learning models using very lim-
ited data samples [28]. The primary challenge of this 
learning method is to construct a model that can deep-
ly mine and understand the intrinsic characteristics 
of data while being effective in generalization with 
only a handful of samples [6]. In this context, the CLIP 
(Contrastive Language–Image Pre-training) model 
developed by OpenAI, through contrastive learning 
on a vast array of image and text pairs, has demon-
strated its exceptional capability in cross-modal un-
derstanding [22]. The success of the CLIP model has 
introduced new insights into the domain of few-shot 
learning, showing how leveraging cross-modal infor-
mation can enhance a model’s generalization ability 
and learning efficiency when faced with limited data 
[7]. This research has developed a novel technique 
for few-shot image classification based on OpenAI’s 
CLIP model, specifically designed to adapt to re-
source-constrained edge computing environments. 
Compared to traditional deep learning strategies, 
this method optimizes computational requirements 
by eliminating the need for text encoding during in-
ference, significantly reducing computational com-
plexity without compromising high classification 
accuracy. By pre-computing the embedding centers 
of category texts and utilizing the image encoding 
component of the CLIP model for similarity compar-
ison, this technology can efficiently utilize limited 
image-text datasets for precise image classification. 
The design of this method pays special attention to 
the computational and storage resource limitations of 
edge devices, greatly simplifying the complexity and 
cost of deploying advanced deep learning models on 
such devices.

2. Literature Review
In the realm of deep learning, Few-Shot Learning 
(FSL) has emerged as a pivotal research direction, 
aimed at addressing the challenge of efficiently train-
ing models with only a minimal number of labeled 
samples available. The research efforts in this field 
primarily focus on designing algorithms and mod-
el architectures capable of swiftly adapting to new 
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tasks. (1) Among these, the concept of Meta-Learn-
ing, or “learning to learn,” occupies a central position 
in Few-Shot Learning. Its core idea involves training 
a model to rapidly adapt to new tasks upon encounter-
ing a limited number of samples. The Model-Agnos-
tic Meta-Learning (MAML) algorithm introduced by 
Finn et al. [6] marks a significant milestone, optimiz-
ing the initial parameters of a model to enable rapid 
adaptation to new tasks through a minimal number 
of gradient update steps. MAML and its variants have 
been extensively applied across a variety of Few-Shot 
Learning tasks. (2) In the domain of transfer learn-
ing, models are initially pre-trained on a large-scale 
dataset, followed by the migration of the model to a 
new task characterized by a scant number of labeled 
samples. The efficacy of this approach is predicated 
on the hypothesis that features learned on extensive 
datasets are, to some extent, universal and can facili-
tate rapid learning on new tasks. The work of Yosins-
ki et al. [34] demonstrated that lower-level features of 
deep neural networks are particularly beneficial for 
new tasks. (3) Data augmentation represents a meth-
od to enhance the model’s generalization capabilities 
by artificially increasing the diversity of training sam-
ples. Within the context of Few-Shot Learning, data 
augmentation proves especially beneficial, as it can 
effectively expand a minimal dataset. Wang et al. [29] 
illustrated the potential to enhance model perfor-
mance on few-shot image classification tasks through 
dataset augmentation by proposing a data augmen-
tation method based on a self-attention mechanism. 
(4) Generative models, such as Generative Adversar-
ial Networks (GANs) and Variational Autoencoders 
(VAEs) [8], have been employed to enhance Few-Shot 
Learning. These models can produce new, seemingly 
authentic samples, thereby increasing the quantity 
and diversity of training data. For instance, Antoniou 
et al. (2017) introduced a method utilizing GANs for 
data augmentation to support Few-Shot Learning. 
(5) Self-Supervised Learning represents a learning 
methodology that does not require explicit labeling. 
It trains models by constructing supervision signals 
automatically generated from unlabeled data. Within 
the context of Few-Shot Learning, Self-Supervised 
Learning can be utilized to pre-train models, thereby 
achieving improved performance with limited labeled 
data. He et al. [13] improved the performance of image 
recognition tasks through self-supervised pre-train-

ing, demonstrating the potential of Self-Supervised 
Learning in leveraging unlabeled data. To reduce the 
dependency on labeled data in video emotion recog-
nition tasks, Sun et al. [26] proposed the HiCMAE 
method based on self-supervised learning, which 
leverages unlabeled audio-visual data to enhance the 
accuracy of audio-visual recognition, achieving sig-
nificant effectiveness.
In the domain of deep learning, particularly in the 
study of cross-modal learning between images and 
text, OpenAI’s CLIP (Contrastive Language–Image 
Pre-training) model has garnered widespread at-
tention. By utilizing a contrastive learning approach 
on a vast dataset of unlabeled images and text, CLIP 
has successfully learned representations that cap-
ture the deep semantic relationships between images 
and text. This unique training strategy endows CLIP 
with a robust generalization capability, enabling it to 
exhibit exceptional performance across a variety of 
image and text-related tasks, such as image classifi-
cation, cross-modal retrieval, and zero-shot learn-
ing. The core advantage of the CLIP model lies in its 
cross-modal understanding capability. By learning 
the correspondence between image content and nat-
ural language descriptions, CLIP as show in Figure 
1 can effectively classify and comprehend images 
without explicit labels. This capability is particularly 
suited to Few-Shot Learning scenarios, where labeled 
data is extremely scarce. CLIP leverages pre-comput-
ed text embeddings as class identifiers, measuring 
the similarity between image embeddings and these 
class embeddings to quickly adapt to new categories, 
thereby significantly reducing the dependency on 
extensive labeled data. Furthermore, CLIP was de-
signed with practicality and flexibility in mind. It can 
process a wide range of image and text inputs with-
out being constrained by specific dataset annotation 
conventions, allowing for easy application in various 
scenarios. Moreover, as CLIP only requires the use of 
an image encoder during inference, eliminating the 
need for a text encoder at the inference stage, this fur-
ther reduces the computational costs of deploying the 
model, especially on resource-constrained edge de-
vices. Recent research efforts have begun to explore 
how to further extend and optimize the CLIP model to 
accommodate a broader range of application require-
ments. For instance, researchers have attempted to 
combine CLIP with other models to enhance per-
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formance on specific tasks, or to develop new train-
ing strategies to improve the model’s understanding 
within specific domains. These efforts not only vali-
date the potent potential of the CLIP model but also 
provide rich insights for future research directions 
and applications. 
Vision Transformer (ViT) [12] signifies a pivotal 
shift from conventional Convolutional Neural Net-
works (CNNs) to Transformer-based approaches in 
the field of computer vision. Introduced by Google 
Research in 2020, ViT has garnered widespread at-
tention due to its straightforward yet efficient archi-
tecture. ViT processes images by segmenting them 
into multiple fixed-size patches, linearly embedding 
these patches into a sequence, and subsequently 
utilizing the Transformer model to handle the se-
quence for feature extraction and classification. The 
principal advantage of this method lies in its ability 
to capture global dependencies, unlike CNNs, which 
are confined to local receptive fields. As the depth 
of the model increases, ViT demonstrates superior 
performance, especially when trained on large-scale 
datasets. Moreover, the architecture of ViT provides 
a new direction for subsequent research, such as the 
incorporation of hierarchical or sparse attention 
mechanisms to enhance efficiency and scalability. 
Currently, ViT has been extensively applied to var-
ious vision tasks, including image classification, 
object detection, and semantic segmentation, high-
lighting its significance and potential in the domain 
of deep learning. Yao et al. [33] proposed a novel 
hybrid deep model named HIRI-ViT, which inte-
grates the features of Vision Transformer and CNN, 
specifically designed for high-resolution inputs. By 
decomposing typical CNN operations into two par-
allel branches, the model enhances cost-efficiency. 
Achieving a top-1 accuracy of 84.3% on the ImageNet 
dataset at a comparable computational cost, the mod-
el has shown an improvement of 0.9% over previous 
models, demonstrating its superior performance in 
high-resolution vision tasks. Xu et al. [32] introduced 
a deep learning approach called HCF-Net, which 
significantly enhances the performance of infrared 
small object detection through the introduction of 
three key modules: Parallelized Patch-Aware Atten-
tion (PPA) module, Dimension-Aware Selective In-
tegration (DASI) module, and Multi-Dilated Chan-
nel Refiner (MDCR) module. These modules utilize 

multi-scale and multi-level feature extraction strate-
gies to improve the capability of feature capture and 
fusion, effectively addressing the identification and 
localization of small targets, particularly in complex 
background infrared images. Liu et al. [19] developed 
a Hierarchical Feature Fusion Attention Network 
(HFANet), specifically designed to classify fluores-
cence intensity and distribution patterns in glomer-
ular immunofluorescence images. By integrating 
the Hierarchical Feature Fusion Attention (HFA) 
module, the network leverages shallow texture fea-
tures to enhance deep semantic features, optimizing 
feature extraction and information fusion efficiency. 
HFANet employs weighted concatenation of feature 
maps from different hierarchies to emphasize more 
discriminative regions, and, in conjunction with the 
Intensity Equalization (IE) algorithm, U-Net++, and 
Grad-CAM, it constructs a computer-aided diagnos-
tic system that significantly enhances the classifica-
tion accuracy of fluorescence features, performing 
comparably to senior pathologists.
In this study, the comparison between the proposed 
method and traditional machine learning techniques 
such as Support Vector Machines (SVMs) [2] and 
fully trained deep learning approaches like Convolu-
tional Neural Networks (CNNs) reveals significant 
advantages and some potential drawbacks of CLIP 
in addressing few-shot learning challenges. The 
pre-training mechanism of CLIP enables it to com-
prehend a vast array of visual concepts, allowing it 
to adapt effectively to new tasks with limited anno-
tated data, thereby demonstrating its exceptional 
cross-modal capabilities and generalization perfor-
mance. However, the pre-training of CLIP is relatively 
challenging. In contrast, SVMs are renowned for their 
theoretical maturity and efficiency on small-scale 
datasets, yet they face limitations in processing large-
scale datasets and in feature engineering. Meanwhile, 
CNNs exhibit strong adaptability and feature ex-
traction prowess in image classification tasks through 
their ability to learn hierarchical features of images 
automatically, albeit this depends on the availability 
of extensive training data and significant computa-
tional resources. This comparison not only highlights 
the potential of CLIP in the domain of few-shot learn-
ing but also underscores considerations regarding 
resource and data availability, providing a basis for 
selecting the most suitable approach.
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3. Method
This study employed a mixed-methods research de-
sign, integrating both quantitative and qualitative ap-
proaches, to evaluate the efficacy of the CLIP model 
in few-shot learning scenarios. The primary objective 
was to assess the model’s performance across diverse 
categories and to understand its learning capabilities 
under conditions of limited data availability.
For data collection, the study utilized three distinct 
datasets: “Animals with Attributes 2” (AwA2), the 
SUN Database, and the Wiki Art dataset. The AwA2 
dataset, known for its rich attribute labels and broad 
representation of animal species, was particularly 
suitable for few-shot learning experiments. The SUN 
Database provided a diverse range of scene images, 
while the Wiki Art dataset included a comprehen-
sive collection of artworks. The combination of these 
datasets allowed for extensive coverage of both visual 
and textual materials, thereby facilitating a thorough 
evaluation of the CLIP model’s performance. A subset 
of 10 animal species, each represented by 10 images, 
was selected from the AwA2 dataset. For each im-
age, 20 relevant attributes were identified and used 
to generate textual descriptions. These descriptions 
were then encoded into embeddings using the CLIP 

Figure 1
The CLIP (Contrastive Language-Image Pre-training) 
model employs a compound encoding structure that 
simultaneously utilizes a text encoder and an image encoder 
to understand and correlate visual images with descriptive 
texts. Specifically, the text encoder processes input text data, 
converting it into high-dimensional feature vectors, while the 
image encoder transforms input images into corresponding 
feature vectors. At the core of the model, these feature 
vectors from the two different encoders interact within a 
contrastive learning framework to compute their similarity

Figure 2
This figure illustrates the workflow of the proposed 
method. The left side shows the training process, which is 
deployed on a server. After obtaining the text classification 
centers, these centers vector are transferred to the edge 
device, where they are used in conjunction with CLIP’s 
image encoder for classification

model’s text encoder, forming the main dataset for 
subsequent model training.
The proposed method set up the CLIP model to pro-
cess both text and image inputs through a sophisticat-
ed embedding comparison mechanism, leveraging a 
few-shot learning framework to enhance the model’s 
classification accuracy under limited data conditions. 
Initially, the model employed separate but intercon-
nected encoders to encode textual descriptions and 
images into a shared high-dimensional embedding 
space. Textual descriptions of each category—typi-
cally synthesized from multiple samples to enrich se-
mantic understanding—were encoded to form “class 
center embeddings,” which served as the central 
reference points for each category in the dataset. To 
calculate these class centers, we typically averaged 
the embeddings of several representative text sam-
ples for each class. This process helped to reduce the 
variability and noise of individual samples, resulting 
in more stable and representative class descriptors. 
For images, each input image was independently en-
coded into the same embedding space. Once the tex-
tual class centers were established, the model entered 
the inference stage. The main task during this phase 
was to match new image samples with the established 
textual class centers to determine the classification 
of the images. The specific process was as follows: 
During the inference phase, for each test image, the 
model used the image encoder to transform it into an 
embedding representation. This allowed the image 
to be compared with the textual class centers in the 
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same high-dimensional space, accurately reflecting 
the visual features of the image to facilitate effective 
matching with the text embeddings. Next, the model 
calculated the similarity between the image embed-
ding and each class center embedding, typically using 
cosine similarity as the metric. The model then com-
puted a similarity score for each category. Finally, 
the model determined the classification of the image 
based on the similarity scores, typically choosing the 
class center with the highest similarity to the image 
embedding as the predicted category of the image.
Experiment I: Animal Species Recognition Based 
on the “Animals with Attributes 2” (AwA2) Dataset.
The “Animals with Attributes 2” (AwA2) [30] data-
set provides a rich set of attribute labels for animal 
species, making it suitable for demonstrating the ap-
plication of few-shot learning in animal species rec-
ognition. AwA2 includes 50 animal species and 85 
attributes. Image classification assisted by attribute 
labels can significantly enhance the understanding 
and protection of biodiversity. 1) Data Collection: 
We select 10 animal species from the AwA2 dataset 
and use 20 attribute columns to construct textual 
descriptions, employing LLM through prompt engi-
neering to form sentences from multiple attributes. 
For example, we choose animals with attributes 
such as the ability to fly, aquatic lifestyle, hooves, 
nocturnal activity, stripes, spots, etc. Each animal is 
provided with 10 representative images. 2) Genera-
tion of Classification Centers: Using the text encod-
er of the CLIP model, we convert the textual descrip-
tions of each animal into embedding vectors, serving 
as the classification centers for few-shot learning. 
This step is crucial in enabling us to perform effec-
tive classification with a minimal amount of data. 3) 
Experimental Procedure: After obtaining the classi-
fication centers for the 10 categories, we select 5,00 
sample images as the test dataset, which includes 
images of the 10 animal species. During the testing 
phase, each image to be classified is converted into 
an embedding vector through CLIP’s image encoder. 
For each image, we calculate the similarity between 
its embedding vector and the 10 classification cen-
ters, determining the image’s category based on the 
nearest classification center in terms of similarity. 
4) Performance Evaluation: We assess the classifica-
tion accuracy of the model on the 5,00 test images to 
determine the model’s efficacy in the task of animal 
species recognition.

Experiment II: Scene Recognition in the SUN Da-
tabase Using Few-Shot Learning.
This experiment aims to classify scenes in the SUN 
dataset [31] using few-shot learning (FSL), augmented 
by text descriptions generated for this purpose. These 
descriptions encompass specific attributes present in 
the scenes, such as objects and lighting conditions. 
1 Data Collection and Text Description Generation: 

From the SUN database, we selected 10 different 
outdoor scene categories, such as “urban streets” 
and “natural lakes.” For each category, we carefully 
chose 10 representative images. We utilized a large 
language model, GPT-3.5, to generate detailed text 
descriptions for each selected image. These de-
scriptions not only mention the main category (e.g., 
“urban streets” or “natural lakes”) but also include 
specific attributes observed in the images, such 
as weather conditions, main objects (cars, trees, 
buildings), the time of day, and lighting conditions. 
The goal is to create rich descriptive captions that 
reflect the complexity and diversity of real-world 
environments.

2 Generation of Classification Centers: Using the 
text descriptions, we apply the text encoder of 
CLIP to transform these detailed descriptions into 
high-dimensional embedding vectors.

3 Experimental Process: We collected an additional 
5,00 images from the SUN database as a test data-
set. For each image in the test set, we used CLIP’s 
image encoder to generate the corresponding em-
bedding vector. Then, we determined the catego-
ry assignment by computing the cosine similarity 
between the embedding vectors of the test images 
and the two predefined classification centers. The 
nearest classification center determines the cate-
gory allocation.

4 Performance Evaluation: The model’s perfor-
mance is evaluated based on its classification accu-
racy over 5,00 test images, focusing on how well it 
can generalize the representations learned from a 
limited set of initial examples to a broader, unseen 
image collection.

Experiment III: Artwork Style Classification with 
CLIP and Few-Shot Learning.
Artwork style classification presents a complex chal-
lenge within computer vision, aiming to identify and 
categorize artworks by their artistic styles. Utiliz-
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Figure 3
Representative samples from the WikiArt dataset. This figure showcases a selection of artworks included in the WikiArt 
dataset, illustrating the diversity and breadth of the collection. The dataset encompasses a wide range of art styles, 
periods, and genres, providing a comprehensive overview of historical and contemporary art

ing OpenAI’s CLIP model, this task is approached 
through few-shot learning, with a dataset comprising 
various art styles across 27 distinct folders. 
1 Data Preparation: The dataset, sourced from Wiki-

Art [20] (Figure 3), is organized into folders repre-
senting different art styles. Attributes such as file-
name, artist, genre, and a synthesized description. 
A balanced sample across styles ensures equitable 
representation. 

2 Textual Feature Computation: CLIP’s text encoder 
is deployed to convert generated artwork descrip-
tions into high-dimensional vectors. These vectors 
create a centroid for each art style, correlating tex-
tual and visual characteristics of the artworks. 

3 Classification Experiment: Images are processed 
using CLIP’s image encoder, and their feature vec-
tors are compared with text feature centroids. Art-
works are classified into genres based on the high-
est similarity score with these centroids. 

4 Evaluation and Visualization: Classification per-
formance is measured using accuracy and preci-
sion metrics. Confusion matrices and bar charts 
provide visual insights into the model’s perfor-
mance, highlighting strengths and areas for im-
provement in distinguishing art styles.

4. Results
1 As shown in Table 1, in the recent experiment 

utilizing the “Animals with Attributes 2” (AwA2) 
dataset for animal species recognition through 
Few-Shot Learning and CLIP, the classification 
accuracies for ten animal species were examined. 
The results are as follows: Deer (0.82), Bobcat 
(0.43), Pig (0.89), Lion (0.32), Mouse (0.70), Ze-
bra (0.85), Collie (0.78), Walrus (0.69), Raccoon 
(0.72), and Cow (0.80). These outcomes highlight 
a significant variance in the model’s ability to ac-
curately classify different animal species based 
on minimal examples and textual descriptions. 
The high accuracies observed for species like the 
Pig (0.89) and Zebra (0.85) indicate the model’s 
strong generalization capability when distinctive 
attributes are well-represented within the textu-
al descriptions and image features. Conversely, 
lower accuracies in species such as the Bobcat 
(0.43) and Lion (0.32) suggest challenges in cap-
turing and differentiating subtle or complex at-
tributes that distinguish these species, possibly 
due to similarities in their natural habitats, be-
haviors, or physical characteristics that are not as 
explicitly captured in the attributes. The experi-
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ment underscores the potential and limitations of 
Few-Shot Learning in recognizing animal species 
with varied accuracies across different classes. 
The high classification accuracies for certain spe-
cies demonstrate the effectiveness of combining 
CLIP’s image and text encoders to understand 
complex relationships between visual represen-
tations and textual attributes.

2 The results of Experiment 2 indicate that scenes 
with distinct features and those easily distin-
guishable through textual descriptions (such as 
“archways” and “beaches”) demonstrated higher 
classification accuracy. The uniqueness and visu-
al characteristics of these scenes were effectively 
captured and transformed into model-utilizable 
information through textual descriptions, thereby 
enhancing recognition precision.

Conversely, for categories with more complex visu-
al features or higher similarity to other scenes (such 
as “hills” and “campuses”), the model’s classification 
accuracy was relatively lower. This may be due to the 
insufficient distinguishing information contained 
within the textual descriptions of these scenes to sup-
port accurate model classification, or because the di-
versity within the scenes made it challenging for the 
model to learn generalizable features from a limited 
number of samples. Furthermore, the experimental 
results also highlighted the impact of the quality of 
generated textual descriptions on the classification 
task. High-quality, detailed textual descriptions can 
provide the model with richer semantic information, 
thus improving classification accuracy to a certain 
extent. This experiment validated the feasibility of 
combining generated textual descriptions with few-

Table 2
Scene recognition accuracy in sun dataset

alcove alley arch archive attic barn bar beach butte campus

0.85 0.88 0.97 0.84 0.75 0.64 0.75 0.92 0.43 0.62

Table 1
Animal recognition accuracy in AwA2

Deer Bobcat Pig Lion Mouse Zebra Collie Walrus Raccoon cow

0.82 0.43 0.89 0.32 0.70 0.85 0.78 0.69 0.72 0.80

shot learning for the scene classification task in the 
SUN database, demonstrating that the CLIP model 
also achieved viable accuracy rates in few-shot scene 
classification tasks.
3 Experiment 3 initially utilized the text encoder 

from CLIP to obtain text features based on 30 sam-
ples for each category, showcasing the visualiza-
tion of the classification centers. As illustrated in 
the Figure 4, it is apparent that data from different 
categories are effectively distinguished, with clear 
inter-class gaps, proving that few-shot learning 
based on CLIP is entirely feasible.

The accuracy bar (Figure 5) chart intuitively reflects 
the model’s performance across various artistic style 
categories. The accuracy data reveals that certain 
styles, such as “Abstract Expressionism,” “Baroque,” 
and “Northern Renaissance,” demonstrate classifi-
cation accuracies as high as 93%, 100%, and 100%, 
respectively, indicating the model’s strong recogni-
tion capabilities for these styles. This might be due to 
the unique visual features of these styles, which the 
model can effectively learn and recognize. Converse-
ly, some styles like “Expressionism,” “Realism,” and 
“Symbolism” have relatively lower accuracies, at 67%, 
52%, and 72%, respectively, suggesting the model’s 
difficulty in distinguishing these categories, possibly 
because these artistic styles are more subtly varied or 
nuanced in their visual representation, making accu-
rate classification challenging. The bar chart analysis 
reveals that the model excels in identifying distinct 
art genres like Baroque and Northern Renaissance 
with perfect accuracy, struggles with genres that have 
subtler distinctions like Realism, and shows variable 
performance across others.
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Figure 4
This graph shows the t-SNE visualization of text features from artworks, categorized by the CLIP model, with different 
colors indicating various artistic styles. This graph illustrates the CLIP model’s generalization capabilities on the WikiArt 
dataset, effectively categorizing text features from artworks into distinct artistic styles as indicated by the various colors 
in the t-SNE visualization. The model’s ability to discern and group these styles suggests a deep understanding of the 
nuanced differences and similarities within the dataset

Figure 5
This chart concisely depicts the model’s classification accuracy across different artistic styles. The bar graph clearly 
displays the clip model’s performance in distinguishing between ten distinct genres of art, ranging from Abstract 
Expressionism to Symbolism. Notably, the model exhibits high accuracy in genres such as Abstract Expressionism, Art 
Nouveau Modern, and Baroque, indicating a strong capability to recognize and categorize these distinct styles
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The confusion matrix (Figure 6) offers a more de-
tailed method of result analysis, showing how the 
model classifies each artistic style. While “Abstract 
Expressionism” and “Baroque” achieved high recog-
nition accuracies, “Expressionism” was frequently 
misclassified as “Post Impressionism,” highlighting 
the model’s challenges in distinguishing between 
these similar styles. “Realism” was accurately clas-
sified in some instances but was also misidentified 
as “Romanticism” and “Post Impressionism,” which 
may reflect the subtle overlaps in visual features 
among different artistic styles. Achieving an 83% ac-
curacy rate in the final experiment demonstrates that 
the few-shot learning approach based on the CLIP 
model is quite effective. This outcome underscores 

Figure 6
This matrix provides a detailed view of the model’s performance, showing how each artistic style was classified against 
the others. The image reveals that the CLIP model, despite showing some variability in accurately distinguishing between 
similar artistic genres, generally performs well across a broad spectrum of styles. This indicates a robust capability of the 
model to recognize and categorize diverse artistic expressions effectively, suggesting its utility in applications that require 
nuanced understanding of visual art styles

the model’s capability to leverage limited samples for 
reliable artistic style classification, illustrating the 
potential of CLIP in understanding and categorizing 
complex visual and textual data efficiently. 
In our study, we employed the CLIP model to classify 
images by computing textual sample centers, adapting 
a unique approach that achieves comparable accura-
cy to traditional methods such as pre-trained ResNet 
models. Our method stands out by utilizing only the 
visual encoder during inference, like the operational 
setup of ResNet, significantly lower memory usage 
than the full CLIP model. Specifically, our adaptation 
requires only 1.63 GB of VRAM, considerably less 
than the complete CLIP setup. This efficiency demon-
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strates our method’s capability to maintain high clas-
sification accuracy while optimizing resource usage, 
making it especially suitable for environments with 
restricted computational resources.

5. Conclusion
This study explores a resource-efficient method for 
image classification on edge devices by implementing 
few-shot learning utilizing the OpenAI CLIP model. 
Our experiments validate the feasibility and effective-
ness of employing the CLIP model for few-shot image 
classification tasks, notably in practical applications 
such as artwork detection and scene classification. 
The results of our study indicate that, despite utiliz-
ing only a minimal amount of labeled data, our meth-
od achieves accuracy and recall rates that closely ap-
proximate those of the pre-trained ResNet approach. 
This demonstrates the robust generalization capabil-
ities of the CLIP model and its proficiency in decod-
ing complex image content. A key advantage of our 
methodology is its efficiency in data usage, achieving 
high performance metrics with significantly fewer 
data compared to traditional methods that often rely 
on extensive labeled datasets.
Moreover, by leveraging pre-computed classifica-
tion text embeddings, our approach eliminates the 
need for a text encoder during the inference phase. 
This strategic modification results in a substantial 
reduction in computational demands—specifically 
halving the memory usage compared to other large-
scale visual models of similar capacity. This reduced 
memory footprint significantly enhances the fea-
sibility of deploying our method on resource-con-
strained edge devices. Such an adaptation not only 
maintains accuracy but also offers a more practical 
and efficient solution for real-world applications, es-
pecially in scenarios where computational resourc-
es are limited. 
This advantage renders the method particularly 
suitable for resource-constrained edge devices, of-
fering new possibilities for deep learning applica-
tions within edge computing environments. Fur-
thermore, our study reveals the significant impact 
of the specificity and format of textual descriptions 
on model performance, emphasizing the importance 

of optimizing textual descriptions to enhance clas-
sification efficacy. This insight is crucial not only 
for augmenting the performance of the CLIP model 
but also for understanding how to effectively utilize 
cross-modal information. Despite the positive out-
comes achieved, there remains considerable work 
to enhance model performance and adaptability 
to a broader range of application scenarios. Future 
research could explore various data augmentation 
techniques, optimize the model training process, 
and develop new strategies for more finely tuning 
the pre-computed classification centers. Additional-
ly, further investigation into managing the complex-
ity of the associations between textual descriptions 
and image content, while maintaining efficiency, will 
be key to advancing few-shot learning and its appli-
cation on edge devices. In summary, this research 
demonstrates the potential of few-shot learning 
methods based on the CLIP model for application 
in resource-limited environments, paving new path-
ways for the advancement of deep learning technol-
ogies in the realm of edge computing. We anticipate 
that this method will facilitate the deployment and 
utilization of deep learning technologies in a wider 
array of practical applications, particularly in sce-
narios sensitive to resource consumption.
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