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Reduction is a crucial stage in the surgical treatment of bone fractures. The detailed fracture information of the 
patient can be obtained from computed tomography (CT) scans before surgery and enable physicians to plan 
preoperative reduction, to reduce the operation time and thus increase the probability of getting satisfactory 
results. The primary purpose of this paper is to design a computer-aided automatic registration method of frac-
ture point cloud data, so as to simplify the fracture reduction process. In this paper, we propose an integrated 
fracture reduction system was introduced. The system enables direct semi-automatic processing from CT im-
ages to fracture reduction. First, a 3D fracture models is reconstructed from CT images by using the modified 
Marching Cube (MC) algorithm and is discretized to generate a point cloud. Second, the K-dimensional (KD) 
tree algorithm is used to cluster and segment the point clouds to identify different fracture fragments. Last, 
through the combination algorithm of Normal Distributions Transform (NDT) and modified Iterative Closest 
Point (ICP), the coarse alignment and fine registration of point clouds are achieved step by step. This method 
has been successfully applied to the reduction of tibial fracture. In the tests performed, the processing time of 
each step, the point cloud and the 3D model after registration are displayed. The semi-automatic integrated 
system based on preoperative CT scanning is used to realize fracture reduction, which provides a feasible foun-
dation for minimally invasive and accurate fracture reduction surgery.
KEYWORDS: Computer-assisted preoperative planning, Bone reduction, Point cloud, Bone registration, Iter-
ative closest point (ICP) algorithm, Surgical robot

1. Introduction
People of all ages are at risk of fractures, especially the 
long bones of the human limbs play an essential role 
in our lives as levers for human movement. Fractures 
are a common type of bodily injury, and most patients 
can recover with timely and appropriate treatment. 
However, due to the unreasonable treatment process, 
some patients may suffer delayed fracture healing, 
fracture nonunion, infection, and other surgical com-
plications. In fracture treatment, reduction, fixation, 
and training are three essential stages.
We focus on the fracture reduction stage, and the 
other two stages are outside the scope of this study. 
The computer simulation process of preoperative 3D 
fracture reduction is mainly divided into four steps: 
reconstruction of 3D fracture model, identification of 
fracture fragments, registration of fracture fragments 
and analysis of results [20, 11, 10].
Three-dimensional model reconstruction has the ad-
vantage of intuitively and accurately representing the 
patients’ skeletons and is widely used in orthopedic 
diagnosis, surgical planning, training and learning, 
surgery simulation, and implant selection [21].
Effective identification of fractured areas allowed for 
a better understanding of patient fractures and ob-
tained a clear division of the fracture boundary, which 
involved the segmentation of bone fragments. In the 
previous literature, the proposed reduction method is 
usually by extracting some feature points in the frac-
ture area or by interaction for registration at a later 

stage [3, 4]. This feature information can be used for 
repositioning based on the distance minimization al-
gorithm, thus improving the reduction result [28, 26, 
29, 25, 19, 13].
In previous work, different methods have been proposed 
for fracture reduction. Several works propose the reduc-
tion of fractures by computing, matching, and recording 
fracture areas. Other works design human-computer in-
teraction tools or use the healthy contralateral bone as 
a reference during fracture reduction. The following in-
troduction analyzes the most relevant jobs and discuss-
es main merits and drawbacks of each approach.

2. Related Work
Several human-computer interaction methods have 
been proposed to extract contour information from 
craniofacial fracture regions. Chowdhury et al. [4] 
proposed a computer 3D reconstruction method for 
mandibular multi-segment fractures based on CT 
image sequences. The maximum weight mapping 
matching algorithm identified the fracture surface, 
and then the corresponding fracture surface was reg-
istered by the iterative closest point (ICP) algorithm. 
Chowdhury et al. [6] extended this work and proposed 
a variant of this method, which is used to establish the 
corresponding relation of a given fracture surface to 
optimize the calculation of the nearest point in the 
ICP algorithm. Constraints derived from the volume 
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matching process continuously monitor the perfor-
mance of 3D reconstruction.
The method devised by Winkelbach et al. [28] is suit-
able for reducing cylindrical fragments. However, it 
cannot be used when the fracture is not in the diaphy-
seal region, or the fracture line is approximately par-
allel to the bone axis. Winkelbach et al. [27] developed 
this approach to the automatic registration of bone 
fragments of arbitrary form. An effective Random 
Sample Consistency (RANSAC) algorithm is pre-
sented, which estimates the attitude and evaluates 
the matching quality by randomly selecting a pair of 
points. The algorithm is executed iteratively until a 
good match is obtained. However, the user needs to 
define additional constraints, which is often difficult 
because some prior knowledge is required.
Willis et al. [26] presented a reconstruction technique 
for comminuted fractures of long bones based on sta-
tistical methods. In this approach, binary classifica-
tion is performed using a hybrid model consisting of 
two Gaussian probability distributions, allowing the 
separation of intact and fractured regions of each 
bone fragment. This method requires manual identi-
fication of possible corresponding fracture surfaces 
and automatic alignment of bone fragments with a 
modified ICP algorithm, which was tested in a single 
tibial fracture case, but accuracy was not assessed.
Zhou et al. [29] selected a two-class Bayesian classifier 
that realized the separation of broken and intact sur-
faces based on the intensity value at the vertex of the 
surface. The performance of this algorithm is validated 
in a clinical tibial plateau case obtained from CT and 
several artificial fractures based on bone replicas.
Moghari and Abolmaesumi [17] proposed a technique 
for automatically registering multiple bone frag-
ments of fractures, a global registration method guid-
ed by the statistical anatomical atlas model. Using 
the local point descriptor, the fracture fragments are 
initially aligned with the generated atlas. This local 
point descriptor is robust to identify a group of poten-
tial corresponding points between the fragments and 
the mean atlas model. Then the global registration 
algorithm is used to fine-tune the alignment between 
the fractures and the mean atlas model. The proposed 
global alignment method showed high precision in a 
cadaver study, but collecting anatomical atlas models 
will be a significant challenge.

Okada et al. [18] proposed a reduction plan for femoral 
head fracture based on three-dimensional curvature 
analysis, which uses the following three constraints: 
contra-lateral bone, fracture surface, or fracture 
surface constrained by the contra-lateral bone. The 
disadvantage of this method is that when multiple in-
terconnected fragments are obtained through simple 
CT image threshold processing, the surgeon needs to 
separate each bone fragment manually. However, this 
process is often terminated due to noise interference, 
CT resolution, and other factors.
Fürnstahl et al. [6] proposed a computer-aided meth-
od to quantify the critical displacements affecting 
a successful joint repair. Bone reconstruction is 
achieved by multi-segment alignment. In case of large 
displacement, the reconstruction template based on 
the reference humerus is included in the algorithm 
to calculate the best match. The main disadvantage 
is that it requires extensive manual matching and pa-
rameter selection at several stages of the algorithm, 
which is a complex and time-consuming task.
Kronman and Joskowicz [12] proposed a method for 
automatically reducing fracture models. The algo-
rithm identifies the fracture contact surface based 
on the maximum principal curvature of the fragment 
surface and its intensity distribution in CT scanning. 
Then, the two fracture surfaces are aligned by rigid 
registration to obtain virtual fracture reduction. The 
problem is the lack of clinical cases.
Buschbaum et al. [2] created virtual three-dimen-
sional bone fragments from CT scanning. According 
to the calculated surface curvature, strongly curved 
edges are selected, and fracture lines are generated. 
After assigning matching points, compare these frac-
ture lines and calculate the desired target location. 
The experimental datasets are derived from artificial 
bone models and cannot be directly applied to clinical 
cases obtained from medical images.
Paulano-Godino and Jimenez-Delgado [19] proposed 
an automatic method for calculating the contact area 
between two bone fragments and matching bone frag-
ments in complicated fractures. The fracture reduc-
tion process of multiple fragments can be simplified 
to the reduction of numerous paired fragments, and 
the reduction order depends on the value of the auto-
matic matching function.
Vlachopoulos et al. [24] presented a novel approach 
for reconstructing fractures in the proximal humerus. 
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The core idea of this method is to match features be-
tween fragments through a scale-space curvature, al-
lowing calculations based on the corresponding area 
of the fracture line to achieve the correct alignment 
between bone fragments. Their methods use manual 
breakpoint annotation, increasing the running time 
of the algorithm.
Liu et al. [13] proposed a semi-automatic method 
framework to provide technical support for custom-
ized precision medicine. This reduction takes advan-
tage of the cylinder-like characteristics of the long 
bone shaft. It is achieved by eliminating large devia-
tions from the curvature and the normal of the bone 
axis. Because the experiment used an artificial bone 
model, applying it to clinical cases is challenging.
Han et al. [7-9] proposed a single bone fracture re-
duction plan based on statistical shape model (SSM) 
volume representation and a pelvic dislocation re-
duction plan based on statistical pose model (SPM). 
After that, a unified model combining SSM and SPM 
is established, and fracture reduction planning under 
the multi-bone background is proposed. As far as we 
know, this is the first work to solve the restoration 
planning in the context of multiple bones, including 
the description of bone shape and pose. Compared 
with point registration, this method solves the prob-
lems in the volume image domain, thus avoiding the 
definition of point correspondence, and uses oper-
ations between objects (such as intersection and 
union) to achieve better registration regularization. 
The multi-body registration framework has been suc-
cessfully applied to various simulation and clinical 
scenarios requiring user interaction.
Deng et al. [5] presented a semi-automatic data-driv-
en method. A deep neural network was used to gen-
erate synthetic training data, and the final reduction 
position of the fracture was obtained through itera-
tive axis alignment and position alignment, and the 
results were compared with the ICP algorithm.
Luque-Luque et al. [15] proposed a fracture reduction 
method that can be applied to all kinds of bones and 
regions. It identified the intact fracture region and ad-
opted the improved iterative closest point algorithm 
to deal with the distance between fragments. This 
method can deal with large cracks and process com-
plicated or deformed fragments. No specific region or 
case has been considered, so all possible cases and sit-
uations must be obtained and proven.

Arumugam et al. [1] presented a method of virtual 
bone reduction and reconstruction for comminuted 
pelvic fractures using CT scan data set. This included     
segmentation, 3D model optimization and ICP bone 
registration techniques. The accuracy of the recon-
structed bone model was verified by finite element 
method.
From the above work on fracture reduction, we sum-
marize some problems that need to be solved. These 
include automating the reduction process or mini-
mizing human-computer interaction, conducting ex-
periments with real rather than simulated data, and 
developing registration methods that do not rely on 
the contra-lateral bone. We propose a new integrated 
computer-aided system that includes reconstructing 
a 3D fracture bone model using sequential CT imag-
es, generating and segmenting point cloud data of the 
fracture area, and registering the point cloud. The 
aim & scope of the study is to presents an approach 
that attempts to minimize surgeon intervention as 
much as possible, making it closer to an automated 
approach whose sub-steps are mostly mature (stable) 
algorithms. The method, which identifies intact frac-
ture areas and uses an improved ICP algorithm to deal 
with the distance between fragments, can be applied 
to fractures in the long shaft region.
The major novelty and contribution of this paper in-
clude:
 _ The algorithm does not include the extraction of 

feature points, which is often used in previous 
algorithms and increases the complexity of the 
algorithm;

 _ There is no need to use healthy contralateral bone, 
avoiding the scanning of healthy bone and reduc-
ing the damage to the patient;

 _ Improved ICP algorithm and KNN method were 
used to cluster and segment fracture point cloud 
data;

 _ The whole process is semi-automatic, finding the 
right balance between manual and automatic to 
minimize unnecessary human-computer interac-
tion.

The structure of this paper is as follows. Section 2 de-
scribes the experimental data, the software, and the 
proposed fracture reduction algorithm. Section 3 in-
troduces the technical application and experimental 
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results in different stages of fracture reduction. Sec-
tion 4 analyzes and compares the capabilities of the 
algorithms, as well as their limitations and shortcom-
ings. In the last chapter, the completed work is summa-
rized, and the future direction of work has prospected.

3. Methodology
3.1. Ethics Statement
The study was approved by the Ethics Committee of 
the People’s Hospital of Quzhou (ethical identifica-
tion number 075/2022). The responsibilities, com-
position, operating procedures and records of this 
Ethics Review Committee are in accordance with the 
Biological Medicine Involving People Methods for 
Ethical Review of Scientific Research, International 
Ethical Guidelines for Health-related Research In-
volving Humans, Declaration of Helsinki, Good Clin-
ical Practice (GCP) and Guideline for Good Clinical 
Practice of the International Conference on Harmon-
isation (ICH-GCP), and relevant domestic laws and 
regulations. The list of documents reviewed by the 
Ethics Committee includes: (1) Application Form for 
Ethics Review; (2) Research plan; (3) Informed con-
sent for exemption application.
This paper reports a study of archived samples. All data 
were completely anonymous and the Ethics Commit-
tee waived the requirement of informed consent and 
agreed to use the data in the patient’s medical records 
in the study, mainly including the data from the CT 
examination of bone fractures. The archived samples 
were collected in 2016, and the date of this study was 
September 9, 2022. Authors do not have access to infor-
mation that identifies individual participants during 
or after data collection. The study did not involve vul-
nerable groups, no potential harm to the study partici-
pants, no invasive procedures, and all procedures were 
manually signed by the principal applicant.

3.2. Materials and Methods
Our experiment selected the CT image data of tibial 
fractures from patient. Dedicated software for this 
application was developed using the C++ program-
ming language (Visual Studio 2019, Microsoft, Red-
mond, WA), with Qt 5.15.2 for GUI programming 
(Nokia, Oslo, Norway), the Visualization ToolKit 
(VTK 9.0) for visualization in 3D. Point Cloud Library 

(PCL 1.9.1) is a standalone, large-scale, open project 
in segmentation and registration for 2D/3D image 
and point cloud processing.
This section proposes an improved algorithm for the 
segmentation and registration of broken bone point 
clouds, which provides a feasible technical solution 
for the preoperative planning of fractures. The pro-
posed method mainly consists of three stages. Firstly, 
the 3D fracture model is reconstructed from CT by an 
improved MC algorithm and discretized to generate 
a point cloud. Secondly, the KD-tree algorithm clus-
ters and segments the point clouds to identify differ-
ent fracture bones. Finally, the normal distributions 
transform (NDT) algorithm is used for coarse align-
ment [16], and the improved iterative closest point 
(ICP) algorithm is used for fine registration. In addi-
tion to some necessary parameters such as fracture 
Angle, bone Hounsfield strength threshold need to be 
input, all sub-steps can be set as automatic (non-man-
ual) processing, which effectively improves the auto-
mation degree of the system.

3.3. 3D Reconstruction of Fracture Model
Three-dimensional fracture reconstruction refers to 
modeling the displacement of bone fragments in the 
fracture area and the size of the fragments through 
CT images after a fracture. Doctors can observe frac-
ture information from three-dimensional structures 
and make surgical plans. Two-dimensional x-rays are 
generally taken after fractures, but some occlusions 
are not conducive to our observation and acquisition 
of complex fracture information.
There are generally four categories for 3D reconstruc-
tion using CT images: surface fitting, contour skin-
ning, volume polygonization, and implicit function 
interpolation. Our application uses a fast and simple 
Marching Cubes algorithm based on volumetric poly-
gonization, which allows the high-resolution genera-
tion of large polygon datasets from volumetric data. 
However, this algorithm requires high computational 
costs, and the generated isosurfaces may have holes 
due to ambiguity. The proposed application can han-
dle surfaces with holes by setting multiple isosurface 
values. The detailed steps of the improved marching 
cube algorithm can be found in the reference [22].
The main processes of this part of the work were as 
follows: First, the fractured bone’s cross-sectional 
image was obtained from the CT machine and then 
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imported into the computer. Secondly, the section 
information of the CT image was read through the 
Visualization ToolKit (VTK), and the necessary pa-
rameters were determined. Then three-dimensional 
reconstruction was implemented by the improved 
MC algorithm, which approximated the isosurface 
by a linear difference in the 3D discrete data field. We 
define a threshold in medical image segmentation 
and reconstruction to determine this isosurface. The 
flowchart of the three-dimensional reconstruction 
in this study is shown in Figure 1. During the recon-
struction process, the points cloud data of the bones 
were acquired as training data for identifying and reg-
istering bone fragments in the following sections.

Figure 1
Flowchart of 3D Image Reconstruction

3.4. Fracture Bone Identification
It is essential to identify the fracture area information 
in fracture treatment. The higher the recognition ac-
curacy of the fracture area, the better the result will 
be. However, this complex process requires not only 
segmentation of the bone tissue but also dealing with 
faulty connections of fragments, so prior knowledge is 
often needed. While implementing automated proce-
dures is not always possible, user interaction should 
be minimized as this saves surgical time. We propose 
a k-nearest neighbor (KNN) based method to identify 
point clouds of skeletal fragments. For simplicity, we 
take the segmentation of the first two bone fragments 
as an example. To split multiple bone fragments, re-
peat the process.
When implementing the KNN method, the primary 
consideration is performing a fast k-nearest neighbor 
search for the point cloud data (as described above), 
which is especially important when the feature space 
dimension is large, and the point cloud data capacity 
is large. The simplest implementation of the k-near-
est neighbor method is a linear scan. At this time, the 

distance between the input and training instances 
needs to be calculated. When the training set is large, 
the calculation is time-consuming, and this method is 
not feasible. 
In the implementation of the KNN method, as men-
tioned above, how to perform a fast KNN search on 
point cloud data is the priority, which is more import-
ant when the dimension of feature space and the ca-
pacity of point cloud data are large. The simplest im-
plementation of the KNN method is linear scanning, 
which is usually applied to smaller training sets. For 
large training sets, this approach is computationally 
time-consuming and infeasible. The method based on 
Kd-tree is used to improve the efficiency of the K-near-
est neighbor search. The specific implementation is as 
follows: assuming that the point cloud of the i-1 layer 
is the source point cloud, search for the points closest 
to the upper layer in the current i layer, and judge the 
search result. If the number of point clouds is unique, 
it is the same bone as the upper layer. The flowchart 
of fracture bone identification in this study is shown 
in Figure 2. The proposed KNN is summarised in Al-
gorithm 1. This representation allows us to do fast 
searches in an optimized way, which reduces runtime.

Figure 2 
Flowchart of fracture bone identification
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Algorithm 1. KNN, returning the closest point to point ip in 
the subtree rooted at node N.

KD-nn-search ( ) ( ), , ,i i ip N q r done⇒
Require: pi is query point and N is the root of the tree in 
which to search. Each internal node N stores two sub-nodes

leftN  and rightN , as well as an index nk  that specifies the
dimension along which N splits the space, and a scalar nd  
that determines the split point between the two sub-trees. 
Ensure: iq  is the nearest neighbor of query point ip , ir  is the 
distance between the point ip  and the point iq , done is true if 
the closest neighbor point has been found.

1: if N is leaf node then
2:    argmin

ii q i iq p q← −

3:    i i ir p q← −

4: else { }is an internal nodeN
5:     [ ]i n nd p k d← −

6:      if 0d <  then
7:        ( ), ,i iq r done ⇐  kd-nn-search ( ),i leftp N
8:       else
9:        ( ), ,i iq r done ⇐  kd-nn-search ( ),i rightp N

10:       end if
11:       if done ≠  true then {Backtracking}
12:           if 0d <  then  {Bounds-overlap-ball test:}

13:
               if the sphere centred at ip  with radius ir  overlaps 
                rightN   then

14:                ' '( , , )i iq r done ⇐  kd-nn-search ( ),i rightp N
15:                 end if
16:            else 
17:                {Bounds-overlap–ball test:}

18:
                if the sphere centred at ip  with radius ir  overlaps 
                 leftN  then

19:                 ' '( , , )i iq r done ⇐  kd-nn-search ( ),i leftp N
20:                 end if
21:             end if

22:             if '
i ir r<  then

23:                 '
i iq q← ,  '

i ir r←

24:              end if
25:         end if         
26: end if    
27:  {Bounds-overlap–ball test:}  
28: if r > distance from ip  to closest boundary to N  then
29:        return ( ), , falsei iq r
30: else       
31:        return ( ), , truei iq r
32: end if

3.5. Registration of Bone Fragments

The purpose of bone reduction is to restore the frac-
tured bone segment to its original anatomical posi-
tion. Our method’s computing strategy for bone frac-
ture reduction combines NDT and a modified ICP 
algorithm. ICP is a commonly used method with high 
accuracy in three-dimensional fracture registration. 
The method needs to provide a good initial value when 
running, that is, rough alignment. Due to the defects 
of the algorithm itself, the final iterative result may 
fall into a local optimum, and the registration speed 
is slow, which cannot achieve the desired effect. NDT 
is a coarse alignment method based on orthogonal 
distribution changes, which determines the optimal 
matching between two point clouds through standard 
optimization technology. Since there is no need to 
calculate and match the corresponding points in the 
alignment process, the advantage is that the process-
ing time is relatively fast, and the disadvantage is that 
the accuracy is relatively low. Therefore, this paper 
proposes a combination of NDT and an improved ICP 
algorithm to improve the accuracy and speed of reg-
istration. First, the NDT algorithm is used for rough 
alignment to obtain transformation parameters, and 
then the modified ICP algorithm combines the trans-
formation parameters for fine registration.
The main framework of the NDT algorithm for the 
rough alignment of point clouds is as follows: (1) The 
acquired fracture point cloud data is divided into sev-
eral three-dimensional cubes of uniform size, and 
each cube contains a certain number of points. (2) 
Point clouds follow Gaussian distribution in the cube, 
and the mean value and covariance matrix of Gauss-
ian distribution parameters of fracture point cloud 
data is obtained. (3) The discrete fracture point cloud 
is represented piecewise in the form of probability 
density, and the representation is required to be con-
tinuous and differentiable. (4) Use the Hessian matrix 
to minimize the probability density function to obtain 
the transformation matrix.
ICP is one of the most classic data processing algo-
rithms. The framework of the method is as follows: 
firstly, the matching point pairs between the source 
point cloud and the target point cloud are obtained; 
secondly, the weight of the matching point pairs is 
allocated according to the needs, and the transfor-
mation matrix is constructed for the matching point 
pairs; thirdly, the source point cloud is matched to the 
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target point cloud by the transformation matrix; and 
finally, the error of the transformed point cloud data is 
estimated by iterative operation until the error-index 
meets the given requirements.
In the research of [14, 23], a new variant of the ICP 
algorithm is obtained by modifying the following two 
parameters: (1) Error metric from point to plane in-
stead of point to point. (2) Linear least square meth-
od is used to approximate the nonlinear optimization 
problem. The distance measurement from point to 
plane is shown in Figure 3. 

Figure 3 
The point-to-plane error metric between two surfaces
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Equation (1) is essentially a least squares optimization 
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Given N pairs of point correspondences, we can arrange 
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Equation (1) is essentially a least squares optimiza-
tion problem, which requires only determining the 
values of the six parameters , , , , ,x yt tα β γ  and zt  . How-
ever, since , ,α β  and γ  are the independent variables 
of a nonlinear trigonometric function in a rotation 
matrix R, we approach this nonlinear least squares 
problem with linearization in order to apply the linear 
least squares technique.
In each iteration when an angle 0θ ≈ , approxima-
tions cos 1θ ≈ , sinθ θ≈ , and 2 0θ ≈ can be used. 
Therefore, when , , 0α β γ →  
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which is a standard linear least-squares problem, and 
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Equation (1) is essentially a least squares optimization 
problem, which requires only determining the values of 
the six parameters  , , , , ,x yt tα β γ and zt  . However, since 

, ,α β  and γ  are the independent variables of a nonlinear 
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which is a standard linear least-squares problem, and 
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which is a standard linear least-squares problem, and 
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Equation (1) is essentially a least squares optimization 
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the six parameters  , , , , ,x yt tα β γ and zt  . However, since 
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which is a standard linear least-squares problem, and 
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At each iteration of the ICP algorithm, the standard 
nonlinear least square method is used to solve the rel-
ative position and posture changes that produce the 
minimum point-to-plane error. Then a three-dimen-
sional rigid body transformation matrix is construct-
ed from the linear least square solution.
The subsequent work is to transfer the positioning 
parameters of the point cloud registration to the frac-
ture surgical robot system (such as the Taylor exter-
nal frame), and through the reduction path planning, 
the system performs the reduction and fixation oper-
ations, as shown in Figure 4.

Figure 4 
Surgical robot reduction and fixation of fracture site

The reference system that describes the relative po-
sition of each structural part of the human body in 
space is usually composed of three planes: sagittal 
plane, frontal plane and horizontal plane.
Sagittal plane: The movement of dividing the body 
into left and right halves, forward and backward.
Coronal plane: Divides the body into front and back 
halves, moving side to side.
Horizontal plane: Cut the body into the upper and 
lower halves and twist the motion.
The system described in this paper, where the x, y, and 
z axes correspond to the transverse, coronal, and sag-
ittal planes, respectively.

( ), ( ),x yR Rα β  and ( )zR γ  are rotations of , ,α β  and γ  ra-
dians about the x-axis, y-axis and z-axis, , ,x yt t  and zt  

are the displacement on the x, y, and z axes, respec-
tively. In this paper, the motion control parameters of 
the surgical robot are one-by-one corresponding to 
six parameters such as , ,α β γ  , ,x yt t and zt . 

4. Result
Due to the difference in X-ray absorption degree caused 
by different tissue structures of the human body, the 
nature of tissues can be identified by CT value, and the 
unit of CT value is Hounsfield Unit (HU). The density 
of bone tissue is high, generally above 300HU. Figures 
5-6 represent the 3D image reconstruction of the tibia 
from the 3-Matic Research software and our project, 
which consists of fragments 1-3, respectively. In this 
case, the CT value of the tibial shaft fracture site was 
high, and a threshold of 1200HU was set in the program 
to generate a 3D reconstruction model. As for the gen-
erated visual shapes, there is no significant difference 
between the 3-Matic Research software and our proj-
ect. The three doctors believed that the tibial visible 
shape output by 3D reconstruction in this project could 
meet the clinical application requirements and be in-
tegrated with the subsequent registration algorithm to 
achieve virtual fracture reduction.

Figure 5 
Reconstruction from 3-Matic
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Tables 1-3 show the surface area and surface volume of 
each tibia fragment after 3D reconstruction from 3-Matic 
research software and the program of this project. The data 
in these tables show that our project and 3-Matic Research 
software are similar in the surface dimensions generated, 
with a deviation of less than 1%. The surface area and volume 
of bone segments 1 and 2 are large, representing the proximal 
and distal parts of tibial fractures. The No. 3 bone fragment is 
too small and does not require a reduction in actual clinical 
cases. The error processes involved in our method include 
CT scanning, 3D reconstruction, algorithm convergence, etc. 
As shown in Tables 1-3, the result error of 3D reconstruction 
is 0.5%. There may be some cumulative error. Nevertheless, 
after consulting with a surgeon (an expert in the field), these 
errors were deemed clinically acceptable.
Figure 7 shows the point cloud data acquired in the 3D re-
construction step. An intact point cloud and a locally en-
larged view of the tibial fracture were established.

Figure 6 
Reconstruction from our work

Table 1
Tibial Fracture No. 1 Fragment Surface Dimensions

Description 3-Matic 
Research

Our 
Project

Deviation 
(%)

Volume (mm3) 109172.3702 108626.5083 0.5%

Area (mm2) 32697.6110 32534.1230 0.5%

Table 2 
Tibial Fracture No. 2 Fragment Surface Dimensions

Description 3-Matic 
Research Our Project Deviation 

(%)

Volume (mm3) 86102.9648 85672.4500 0.5%

Area(mm2) 23940.7108 23821.0073 0.5%

Table 3 
Tibial Fracture No. 3 Fragment Surface Dimensions

Description 3-Matic 
Research Our Project Deviation 

(%)

Volume (mm3) 198.1217 197.1312 0.5%

Area (mm2) 228.5883 227.4455 0.5%

Figure 7 
Generated fracture point cloud data: (a) An intact tibial fracture point 
cloud, (b) a Locally enlarged view of the fractured bone point cloud

Figure 8 
Identification results of bone fragmentation point set in fracture area 
(a case of female tibial oblique fracture): (a) Unseparated tibial fracture 
point cloud data, (b) Fracture point cloud data after separation, differ-
ent bone segments are displayed in different colors, (c) Proximal point 
cloud of tibial fracture, and (d) Distal point cloud of tibial fractures
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Figure 9 
The result of the proposed algorithm processing: (a) The 
registration results of point cloud data, (b) Three-dimensional 
reconstruction model of tibial fracture after registration

The algorithm described in the methods section has 
been successfully applied to identify tibia fractures in 
the area, as shown in Figure 8. 
The tibial bone is mainly composed of cortical bone 
and cancellous bone, in which the cancellous bone 
has a lower strength and is located at both ends of the 
tibia, while the cortical bone has a higher strength and 
is located in the middle of the tibia. The adjustment of 
CT values presents different imaging effects, so there 
is a cavity phenomenon at both ends of the tibia in this 
paper. This is a clinical case of a fracture of the middle 
tibia, and the cavitation phenomenon does not affect 
the accuracy of virtual reduction.
The CT stack contains an oblique fracture of the tibia, 
and 637 slices form it with dimensions 230*230 mm 
and 0.7999 mm spacing. Table 4 summarizes the pa-
rameters of the CT stack used as input for the exper-
iment.
For the reduction of tibial shaft fractures, the method 
based on the combination of NDT and ICP performed 
well. As shown in Figure 9(a), there were suitable 
matches between bone fragments. The three-dimen-
sional reconstruction after fracture reduction is in 
Figure 9(b).

The three steps involved in the experimental algo-
rithm, namely 3D reconstruction, broken bone iden-
tification, and point cloud registration, are evaluated 
for their efficiency, and the running time is given in 
Table 5.

Table 4 
The Data Specification of the Experiment

Category Slice 
Quantity Format Size(mm) Slice 

Spacing

Tibia(female) 637 230*230 0.7999

Table 5 
Running time at each step

#vertices Time (in a sec)
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10070 24136 24.635 0.384 22.712 1.918 48.649

It takes approximately 48s to run the entire process 
using Visual Studio 2019 on a workstation equipped 
with an Intel(R) Core(TM) I7-7820HQ CPU at 2.9ghz 
and an NVIDIA Quadro M1200.

5. Discussion
In virtual fracture reduction, semi-automatic meth-
ods require the user to identify and pair points on the 
fracture surfaces to be reduced by minimizing the 
squared sum of distances between the points. How-
ever, since there are usually no distinguished ana-
tomical landmarks on the fracture surface interface, 
the localization and pairing of the matching points is 
also errorprone and time-consuming. Consequently, 
automatic virtual bone fracture reduction is highly 
desirable. Automated methods are usually done by 
inputting geometric models of fracture fragments or 
raw CT scan data. It identifies the point cloud data in 
each fracture fragment, performs a 3D reconstruc-
tion, and aligns them by iterating the nearest point 
rigid registration. The resulting transformation is ap-
plied to the fracture fragment to produce the position 
and orientation of the reduced fracture. An automat-
ed  approach has been proposed, from bone segmen-
tation to 3D reconstruction, to identification of frac-
tured bones, and finally to registration. Therefore, it 
applies to real bones from clinical studies rather than 
artificial bones. 
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3D image reconstruction is a challenge because the 
model of long human bones is very different from oth-
er models. From the point of view of medical diagno-
sis, it is unnecessary to know the exact reduction de-
tails excessively. In clinical practice, one of the most 
important purposes of fracture fixation is to reduce 
the length and alignment of the bone, which can re-
store the function of the long bone. The MC method 
can meet the requirements of accuracy and high ef-
ficiency. The tibial model reconstructed by the MC 
algorithm is similar to the model obtained by 3-math-
ematical medical software. For the quantitative anal-
ysis of the two models, the data of the tibia model 
reconstructed by the MC algorithm can be saved in 
stereolithography (STL) format. Then the files can be 
imported into Geomagic for comparison.
A method of automatic identification of fractured 
bones is proposed in this paper. Unlike other meth-
ods presented in references [4, 17, 21], our approach 
avoids calculating the curvature of point clouds and 
manually determining the initial position among 
fracture segments, which is tedious and a waste of 
time. Sometimes, due to the low intensity of trabecu-
lar tissue, it is even impossible to segment it from CT 
images with the parameters of the CT scanner. Tibia 
consists of cortical bone and cancellous bone, among 
which cortical bone has high strength and is not easy 
to deform, cancellous bone has low strength, and tis-
sue deformation is easy to occur in fracture. When 
there is a mixture of cortical and cancellous bone in 
the fracture, the surgeon usually extracts the point 
cloud information of the bone tissue by setting mul-
tiple strength values, and gradually calculates the re-
duction information of the fracture.
In terms of registration, compared with most previ-
ous methods, our method combines the respective 
advantages of NDT coarse registration algorithm and 
improved ICP fine registration algorithm. In the algo-
rithm program, the threshold of distance parameter 
is set to determine whether the initial alignment is 
necessary for different fracture types. In particular, in 
the presence of crush and rotation injuries, bone frag-
ments move or rotate significantly relative to their 
original position. The experimental results show that 
the method is robust when there is a small displace-
ment between the initial locations of broken bone 
fragments, and the initial alignment has no signifi-

cant effect on the reduction accuracy in such cases. 
However, due to insufficient clinical data, this method 
has not been implemented in high-energy comminut-
ed fractures where large displacements or rotations 
require initial registration.
Our experiments used a case from actual tibial frac-
tures. On the one hand, fewer experimental samples 
were a recurring problem in the literature [29, 6, 18]. 
Based on an actual situation, obtaining CT of cases 
where fractures can be reduced without fixation is 
challenging. On the other hand, there were no pre-
scribed criteria to evaluate the accuracy of fracture 
reduction results. ICP-based registration methods 
can test the accuracy of the final alignment of the 
fracture surface by the mean squared error (MSE) 
[3].  It is mentioned in the supplementary reference 
[14] that the mean robot fracture reduction time is 4 
minutes 13 seconds, compared with the total virtu-
al reduction time of 48 seconds for the method pro-
posed in this paper without involving robot operation, 
which indicates that it is more likely to shorten the ro-
bot reduction time under this approach. In addition, 
the fracture reduction method described in this paper 
uses the surface contour normal vector for axial eval-
uation, hiding points perpendicular to the axis on the 
surface of the point cloud. The experimental results 
show no prominent contour in the area after reduc-
tion, which is only limited to long bone shaft fractures.
Computational efficiency will significantly affect 
preoperative planning and intraoperative surgery, 
which is important in evaluating the feasibility of the 
scheme in clinical practice. The proposed method 
is computationally demanding, but it can be imple-
mented in a reasonable time through graphic process-
ing unit (GPU) acceleration. The total planning time 
mainly depends on the resolution of CT images, the 
fragments’ size, and the fractures’ complexity. This 
experiment’s computational workload is lower than 
simple fractures with tiny pieces.

6. Conclusion
The proposed system is a complete preoperative 
planning system for fracture reduction, which mainly 
includes three steps: 3D reconstruction, broken bone 
identification, and alignment and registration. The 
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whole system has only a small amount of interaction. 
The three-dimensional reconstruction of the fracture 
site is beneficial to the early medical diagnosis, the 
planning of the treatment plan, and the training of the 
trainee, especially for understanding complex com-
minuted fractures. Postoperative reconstruction can 
help inform the outcome of the surgery and improve 
treatment.
The proposed k-nearest neighbor clustering method 
completes the identification of two bone segments 
without calculating the curvature of the fracture 
area or placing seed points. The registration method 
of this paper has been successfully applied to tibial 
fracture cases. The obtained results showed that the 
tested clinical cases achieved successful fracture re-
duction due to no visible overlap or gaps between the 
fragments. The tests show that combining the NDT 
algorithm and the improved ICP algorithm is suitable 
for situations where there is a slight movement of the 
initial position of the bone fragments. In addition, 
the operation of the entire system is time-sensitive 
and only takes a few minutes to implement. Despite 
these results, clinical studies are needed to determine 
whether the approach improves preoperative plan-
ning for fracture reduction.
On the basis of single tibial fracture specimens, the 
method has achieved good reduction effect and is 
suitable for the reduction of long bone fractures. 
However, there may be some specific areas or cases 
that were not considered in this study. It is considered 
necessary to further test the method in further practi-
cal clinical cases.
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CT Computed tomography

MC Marching cube

KD K-dimensional
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3D Three-dimensional
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NDT Normal distributions transform
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STL Stereolithography
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