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The instance segmentation task has been widely used in remote sensing. However, existing remote sens-
ing instance segmentation models may lead to incomplete mask segmentation in complex and diverse back-
ground environments. In addition, commonly used feature fusion methods struggle to handle instances 
of different sizes well and predominantly suffer from loss of semantic information, failing to segment the 
mask accurately. To solve these problems, we propose a fusion atrous and channel enhancement network  
(FACENet) for the remote sensing image (RSI) instance segmentation. Specifically, we first replace the FPN 
with the FACE-FPN, which produces a more detailed pyramid by increasing the receptive field at the feature 
level. Second, we propose a semantic enhancement module for mining the rich semantic information of the 
underlying features. Then, we enhance the model's adaptability to complex object deformations by introduc-
ing deformable convolution. Experiments on the iSAID, NWPU VHR-10, and HRSID datasets demonstrate 
that our proposed FACENet outperforms SOLOv2 in terms of average accuracy by 5.1%, 12.9%, and 7.6%, 
respectively, and beats other instance segmentation models.
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1. Introduction 
Deep learning, a fast-growing technology, is consid-
ered the most effective remote sensing image pro-
cessing method, unlike conventional methods such 
as artificial recognition. Image processing methods 
based on convolutional neural networks [17] extract 
and process complex abstract features, resulting in 
high recognition accuracy and robustness. Therefore, 
it has been widely used in the field of remote sensing, 
such as image fusion [19], image classification [26], 
object detection [36], semantic segmentation [16], 
and instance segmentation [44].

Instance segmentation can distinguish objects of dif-
ferent categories and individuals of the same category 
in a given image based on individual pixel properties 
[10], i.e., each foreground object has a different mask. 
The instance objects in remote sensing images have 
a range of scales, directions, spectral characteristics, 
and a lot of interfering noise because most of the im-
ages are shot from a top-down perspective and have a 
variety of complicated backgrounds. In Figure 1, there 
is a significant scale difference between the first row 
of densely arranged cars and the roundabout, which 
causes a lack of clarity in the boundary after segmen-

Figure 1
Visual illustration of iSAID results in RSI instance 
segmentation. (a) Original images, (b) GT, (c) Mask 
R-CNN, (d) FACENet
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Instance segmentation can distinguish objects of 
different categories and individuals of the same category 
in a given image based on individual pixel properties 
[10], i.e., each foreground object has a different mask. 
The instance objects in remote sensing images have a 
range of scales, directions, spectral characteristics, and a 
lot of interfering noise because most of the images are 
shot from a top-down perspective and have a variety of 
complicated backgrounds. In Figure 1, there is a 
significant scale difference between the first row of 
densely arranged cars and the roundabout, which causes 
a lack of clarity in the boundary after segmentation. In 
addition, the lighting shadows in the second row make 
the segmentation more difficult. Moreover, insufficient 
visual features determine the instance's boundary and 
shape. For example, the partial display of the harbor and 
ship in the third row can prevent the model from 
accurately assessing the actual scale of the instances. 
These issues make the instance segmentation of RSI 
more challenging. Lin et al. [18] propose Feature 
Pyramid Networks (FPN) to build semantic information 
at different scales using a top-down hierarchical 
structure with side connections. PANet [20] extends FPN 
with a fusion path, making it easier to transfer 
information from the bottom layer to the top layer. 
BiFPN [27] improves detection accuracy by introducing 

learnable weights. Although the methods described 
above are effective in feature fusion, they still 
suffer from inadequate feature fusion [9] and poor 
detection of irregularly shaped objects. 

To address the abovementioned issues, we propose 
fusion atrous and channel enhancement network 
for instance segmentation of RSI. Firstly, we apply 
the FACE-FPN to remote sensing image instance 
segmentation. This approach significantly 
mitigates the attenuation of channel information, 
bolsters the receptive field, and possesses 
remarkable capabilities for multi-scale feature 
extraction and fusion. Secondly, to enhance the 
segmentation performance of the model, we 
propose a semantic enhancement module designed 
to capture richer contextual semantic information 
and nuanced boundary details. Finally, deformable 
convolution is incorporated into the SOLOv2 
header to enhance the network's deformability by 
adding dynamic offsets. Furthermore, 
experimental analysis and comparison of the 
iSAID [41], NWPU VHR-10 [4], and HRSID 
datasets [35] demonstrate the framework's 
effectiveness. 

Our main contributions are summarized as follows: 

1 We introduce FACENet, a multi-scale feature 
fusion network that achieves noise reduction 
and feature refinement by effectively 
bridging contextual semantic and channel 
information across multiple feature levels. 

2 We propose FACE-FPN to improve the 
network's ability to detect and recognize 
multi-scale objects by enhancing the feature 
layer's channel information and receptive 
field range. 

3 We propose a semantic enhancement module 
that effectively harnesses semantic and 
texture information to its fullest potential. 
Furthermore, to enhance the network's 
flexibility, applicability, and ability to adapt 
to a diverse array of complex object shapes, 
we integrate deformable convolution into the 
SOLOv2 detector head. 

4 We experimentally evaluate the proposed 
method on iSAID, NWPU VHR-10, and 
HRSID datasets and demonstrate that 
FACENet performs better in remote sensing 
image segmentation.  
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tation. In addition, the lighting shadows in the second 
row make the segmentation more difficult. Moreover, 
insufficient visual features determine the instance’s 
boundary and shape. For example, the partial display 
of the harbor and ship in the third row can prevent 
the model from accurately assessing the actual scale 
of the instances. These issues make the instance seg-
mentation of RSI more challenging. Lin et al. [18] 
propose Feature Pyramid Networks (FPN) to build 
semantic information at different scales using a top-
down hierarchical structure with side connections. 
PANet [20] extends FPN with a fusion path, making it 
easier to transfer information from the bottom layer 
to the top layer. BiFPN [27] improves detection accu-
racy by introducing learnable weights. Although the 
methods described above are effective in feature fu-
sion, they still suffer from inadequate feature fusion 
[9] and poor detection of irregularly shaped objects.
To address the abovementioned issues, we propose 
fusion atrous and channel enhancement network 
for instance segmentation of RSI. Firstly, we apply 
the FACE-FPN to remote sensing image instance 
segmentation. This approach significantly mitigates 
the attenuation of channel information, bolsters the 
receptive field, and possesses remarkable capabil-
ities for multi-scale feature extraction and fusion. 
Secondly, to enhance the segmentation performance 
of the model, we propose a semantic enhancement 
module designed to capture richer contextual seman-
tic information and nuanced boundary details. Final-
ly, deformable convolution is incorporated into the 
SOLOv2 header to enhance the network’s deforma-
bility by adding dynamic offsets. Furthermore, exper-
imental analysis and comparison of the iSAID [41], 
NWPU VHR-10 [4], and HRSID datasets [34] demon-
strate the framework’s effectiveness.
Our main contributions are summarized as follows:
1 We introduce FACENet, a multi-scale feature fu-

sion network that achieves noise reduction and 
feature refinement by effectively bridging con-
textual semantic and channel information across 
multiple feature levels.

2 We propose FACE-FPN to improve the network’s 
ability to detect and recognize multi-scale objects 
by enhancing the feature layer’s channel informa-
tion and receptive field range.
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3 We propose a semantic enhancement module that 
effectively harnesses semantic and texture infor-
mation to its fullest potential. Furthermore, to en-
hance the network’s flexibility, applicability, and 
ability to adapt to a diverse array of complex object 
shapes, we integrate deformable convolution into 
the SOLOv2 detector head.

4 We experimentally evaluate the proposed method 
on iSAID, NWPU VHR-10, and HRSID datasets 
and demonstrate that FACENet performs better in 
remote sensing image segmentation.

2. Related Works
2.1. Remote Sensing Image Instance 
Segmentation
In addition to identifying every instance in the image, 
instance segmentation provides more accurate con-
tour information than object detection, which has a 
wide range of applications in several fields. Instance 
segmentation is generally divided into two-stage and 

single-stage approaches, especially the two-stage ap-
proach subdivided into top-down and bottom-up ap-
proaches. Mask R-CNN [11] is a classic two-stage al-
gorithm that adds a mask prediction branch to Faster 
R-CNN [25] to enable instance segmentation. In ad-
dition, the two-stage algorithms are PANet, Cascade 
Mask R-CNN [2], and RefineMask [43]. Single-stage 
algorithms can perform detection and segmentation 
tasks in parallel, allowing for end-to-end result out-
puts such as YOLACT [1], SOLO [31], and QueryInst 
[7]. Table 1 gives an overview of the different instance 
segmentation algorithms.
The above instance segmentation algorithms have 
achieved success in natural and urban scenes. Howev-
er, performance degradation issues arise when these 
methods are directly applied to remote sensing images 
[14], [15]. Fang et al. [6] propose Spectral-Spatial FPN, 
a feature pyramid network for hyperspectral images, 
which integrates spectral and spatial features through 
the bidirectional fusion structure and the attention 
module. To address the severe scale variation problem 
in remote sensing images, Liu et al. [21] proposed a con-
text aggregation network to aggregate global contexts 

Table 1
The overview of different instance segmentation algorithms

Type Algorithm Advantages Disadvantages

Two-stage

Mask R-CNN Semantic Segmentation with Faster R-CNN Rely on frame accuracy

PANet Bottom-up enhancement paths; Adaptive fea-
ture pooling -

MS R-CNN [12] Add the mask scoring strategy -

Cascade Mask R-CNN A cascade detector to refine the features Large Target Edge Prediction 
Roughness

RefineMask Fine-grained features can compensate for the 
loss of specific information Higher computational costs

Single-stage

YOLACT Real-time instance segmentation using the par-
allel processing architecture

Overlap the target position is 
difficult

SOLO Direct segmentation based on the center posi-
tion and object size

Poor accuracy of small target 
detection

QueryInst Build the model using one-to-one correlation 
between query and instance Long training time

CondInst [29] The dynamic network output mask directly Large object instance lack 
segmentation details

Mask2former [3] Introduction of masking techniques and self-at-
tention mechanisms

Inconsistent mask prediction 
between decoder layers
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in the feature, spatial, and instance domains, respec-
tively. LFG-Net [33] captures more texture informa-
tion by enhancing the receptive field of the underlying 
features. Yin et al. [39] exploited atrous residual blocks 
for multilayer and multiscale feature fusion to achieve 
rapid detection. NAS-HRIS [45] implements remote 
sensing image segmentation through neural architec-
ture search, which uses the differentiable searching 
process to learn end-to-end searching rules. Although 
remote sensing image instance segmentation algo-
rithms have achieved remarkable results, most only 
apply to a particular remote sensing scene, such as 
buildings and SAR ships. Therefore, further research 
and exploration of new methods are required to im-
prove the accuracy and generalization of remote sens-
ing image instance segmentation.

2.2. Feature Fusion
A wide range of viewpoints in high-resolution RSI can 
result in dense instances appearing in a small portion 
of a single image, and smaller objects and the contour 
boundaries of an object frequently fail to achieve good 
segmentation when the network extracts features 
[38]. Therefore, enhancing the interaction between 
shallow and high-level features of multi-scale fea-
tures is necessary. In convolutional neural networks, 
the semantic information from shallow features is 
frequently extracted through a limited number of 
convolution kernels. The high-level features gain 
more channels and semantic information as the net-
work grows in depth. However, the learned features 
must be channel downscaled during the fusion pro-
cess, which means the channel and semantic infor-
mation are lost [22]. In addition, direct summation 
of features with significant semantic differences can 
lead to reduced expressiveness and relevance of mul-
tiscale features. To solve these problems, we propose 
FACE-FPN to enhance the channel and semantic 
information representation and perform better seg-
mentation in complex scenarios.

2.3. Atrous Convolution
In image segmentation, convolution and pooling are 
commonly used to reduce the size of the feature map 
and increase the receptive field, and subsequent op-
erations require an up-sample to restore the image 
size [35]. However, the above approach is bound to 
cause information loss, especially in remote sens-

ing scenarios where detailed information is critical. 
Yu et al. [40] propose atrous convolution, which can 
solve the problem. Atrous convolution expands the 
receptive field of the convolution kernel by introduc-
ing an atrous rate and aligning it with the size of the 
output feature map. It allows the model to capture 
more contextual information, thus enhancing the 
network’s understanding of the complex structure of 
RSIs. Furthermore, adjusting atrous rates enhanc-
es the network’s adaptability without increasing the 
number of parameters. However, simple stacking of 
atrous convolutions leads to information loss, which 
harms the segmentation results. Fu et al. [8] use the 
nested cascade model to connect atrous convolutions 
with different atrous rates to provide more practical 
information. Ma et al. [24] adopt the adaptive atrous 
rate strategy so that the network adaptively adjusts 
receptive field size according to the category area. 
To improve accuracy, FLPK-BiSeNet [28] performed 
feature fusion via an atrous pyramid pooling layer.

3. Method
3.1. Overall Architecture
We propose a network that provides as much infor-
mation as possible to address the challenges of the 
low completeness of RSI segmentation and incon-
spicuous contour information in complex scenes. 
Figure 2 illustrates the FACENet structure, which 
builds upon the SOLOv2 framework. Firstly, the net-
work splits the input 
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feature fusion via an atrous pyramid pooling layer. 
3. Method 
3.1. Overall Architecture 
We propose a network that provides as much 
information as possible to address the challenges 
of the low completeness of RSI segmentation and 
inconspicuous contour information in complex 
scenes. Figure 2 illustrates the FACENet structure, 
which builds upon the SOLOv2 framework. 
Firstly, the network splits the input 𝑋𝑋 𝑋 ℝ�×�×� 
into the S × S grid structure and extracts the 
features through the bottom-up backbone to obtain 

hierarchical feature tensors 𝐵𝐵� 𝑋 ℝ
�
��
×���×�� , where 

{1,2,3,4,5}i∈ , {2,4,8,16,32}iS ∈ and 
{64,246,512,1024,2048}iC ∈ . Then, the extracted 

features are fused by FACE-FPN to obtain 
information-rich multi-scale features. Among 
them, the global context information obtained by 
the high-level feature 5B  through the sub-pixel 
context enhancement (SCE) module is weighted in 
the form of weights to the output of FACE-FPN. 
The head is mainly composed of Category, Kernel, 
and Feature branches. Among them, the Category 
branch is primarily responsible for predicting the 
probability of different instance categories of the 
grid, for a dataset of C categories, the output 
dimension of this prediction network is S × S × C. 
The Kernel branch is used to learn the convolution 
kernel  
𝐺𝐺 𝑋 ℝ�×�×� . Specifically, the feature extraction 
process involves four convolutional layers. The 
feature dimension obtained by adding normalized 
coordinates within the initial convolutional layer is 
H × W × (D + 2), and the final convolutional layer 
is used for prediction. Furthermore, introducing 
dynamic offsets gives the kernel features the ability 
to adapt to spatial deformation. The Feature branch 
integrates different layers of features into 1/4 to 
learn the expressive power of mask features. Then, 
the final instance segmentation result is obtained 
by realizing non-maximum suppression through 
efficient Matrix NMS. In our proposed algorithm, 
the original FPN has difficulty extracting adequate 
discriminative information from the noise during 
the fusion process, which can weaken the 
interaction between the high-level semantic and 
the underlying edge contour information. 
Therefore, we integrate FACE-FPN into the 
network instead of the original FPN to enhance the 
information flow between different semantic 
levels, especially to fully integrate high-level 
global information. In addition, we designed a 
pluggable module SEM to explore the detailed 
information of the underlying features and improve 
the edge profile of the instances. 

 into the S × S grid 
structure and extracts the features through the bot-
tom-up backbone to obtain hierarchical feature ten-
sors 
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inconspicuous contour information in complex 
scenes. Figure 2 illustrates the FACENet structure, 
which builds upon the SOLOv2 framework. 
Firstly, the network splits the input 𝑋𝑋 𝑋 ℝ�×�×� 
into the S × S grid structure and extracts the 
features through the bottom-up backbone to obtain 

hierarchical feature tensors 𝐵𝐵� 𝑋 ℝ
�
��
×���×�� , where 

{1,2,3,4,5}i∈ , {2,4,8,16,32}iS ∈ and 
{64,246,512,1024,2048}iC ∈ . Then, the extracted 

features are fused by FACE-FPN to obtain 
information-rich multi-scale features. Among 
them, the global context information obtained by 
the high-level feature 5B  through the sub-pixel 
context enhancement (SCE) module is weighted in 
the form of weights to the output of FACE-FPN. 
The head is mainly composed of Category, Kernel, 
and Feature branches. Among them, the Category 
branch is primarily responsible for predicting the 
probability of different instance categories of the 
grid, for a dataset of C categories, the output 
dimension of this prediction network is S × S × C. 
The Kernel branch is used to learn the convolution 
kernel  
𝐺𝐺 𝑋 ℝ�×�×� . Specifically, the feature extraction 
process involves four convolutional layers. The 
feature dimension obtained by adding normalized 
coordinates within the initial convolutional layer is 
H × W × (D + 2), and the final convolutional layer 
is used for prediction. Furthermore, introducing 
dynamic offsets gives the kernel features the ability 
to adapt to spatial deformation. The Feature branch 
integrates different layers of features into 1/4 to 
learn the expressive power of mask features. Then, 
the final instance segmentation result is obtained 
by realizing non-maximum suppression through 
efficient Matrix NMS. In our proposed algorithm, 
the original FPN has difficulty extracting adequate 
discriminative information from the noise during 
the fusion process, which can weaken the 
interaction between the high-level semantic and 
the underlying edge contour information. 
Therefore, we integrate FACE-FPN into the 
network instead of the original FPN to enhance the 
information flow between different semantic 
levels, especially to fully integrate high-level 
global information. In addition, we designed a 
pluggable module SEM to explore the detailed 
information of the underlying features and improve 
the edge profile of the instances. 
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process involves four convolutional layers. The fea-
ture dimension obtained by adding normalized coor-
dinates within the initial convolutional layer is H × W 
× (D + 2), and the final convolutional layer is used for 
prediction. Furthermore, introducing dynamic offsets 
gives the kernel features the ability to adapt to spatial 
deformation. The Feature branch integrates different 
layers of features into 1/4 to learn the expressive pow-
er of mask features. Then, the final instance segmen-
tation result is obtained by realizing non-maximum 
suppression through efficient Matrix NMS. In our 
proposed algorithm, the original FPN has difficulty 
extracting adequate discriminative information from 
the noise during the fusion process, which can weak-
en the interaction between the high-level semantic 
and the underlying edge contour information. There-
fore, we integrate FACE-FPN into the network in-
stead of the original FPN to enhance the information 
flow between different semantic levels, especially to 
fully integrate high-level global information. In addi-
tion, we designed a pluggable module SEM to explore 

the detailed information of the underlying features 
and improve the edge profile of the instances.

3.2. Multi-scale Feature Fusion Network
Figure 2(a) illustrates our proposed FACE-FPN 
framework. Firstly, the RSI generates rich feature 
representations after the backbone, i.e., 2 5B B: . A 
series of multi-scale features can be generated for 
FPN using 1×1 convolution and upsampling layer by 
layer downward. However, the operations mentioned 
above lead to the loss of channel information, espe-
cially for high-level features. Sub-pixel convolution 
enables the generation of high-resolution features 
from low-resolution features by employing convo-
lution and inter-channel reorganization techniques. 
Additionally, leveraging sub-pixel connections for 
high-level features facilitates learning intricate de-
tails and texture information within pixels, result-
ing in noise reduction and an enhanced resolution of 
the extracted features. Higher resolution shows the 
contours and features of the instance more clear-
ly and helps to segment the target more accurately. 

 
 

 

where  represents 1×1 convolution to reduce channels, 
S denotes sub-pixel convolution with factor r set to 2, 
and i denotes the pyramid levels index. 
Subsequently, the obtained features undergo Atrous 
Spatial Pyramid Pooling (ASPP) to generate richer 
multi-scale information ' '

2 4F F: . 5B  is transmitted by 
the SCE module to fully utilize high-level features and 
then integrate with 2 4P P:  to obtain the integrated map 
I. Features 2 5R R:  are generated by interpolation and 
maximum pooling, where features 2 4R R:  are 
constructed as feature layers at each scale by a top-down 
hierarchy with ' '

2 4F F:  side connections. The process of 

decoupling I into the feature R is as follows: 
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The decoupled features are fused at multiple scales 
with contextual information captured at different 
scales, enabling the consideration of objects of 
varying scales and shapes. In addition, the channel 
weights extracted from I by the channel attention 
guidance (CAG) module act on the constructed 
feature layers to generate the final multi-scale 
features, respectively.
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The structure of FACENet. FACE-FPN maps the semantic information to the integrated map I by SCE and weights the features R 
using CAG. S denotes sub-pixel convolution 
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3.2.1. Atrous Spatial Pyramid Pooling 
ASPP comprises multiple parallel dilation convolutions 
with varying dilation rates to obtain more scale feature 
information by broadening the network's receptive field. 
Figure 2(b) depicts the module, which includes a 1×1 
convolution and three dilation convolutions with 
different dilation rates, respectively. Furthermore, global 
average pooling, convolution, and upsampling 
operations integrate global contextual information into 
the feature map. Finally, the features generated from the 
above parallel operations are concatenated together, and 
their channel number is recovered by 1×1 convolution. 

3.2.2. Sub-pixel Context Enhancement 
During the fusion process, since the advanced features 
are standardized to match the number of channels of the 
underlying features, a certain degree of channel and local 
information is inevitably lost. Furthermore, this loss of 
information intensifies with continuous upsampling, 

resulting in the loss of even more semantic details. 
Therefore, the sub-pixel context enhancement 
module is introduced to better use high-level 
feature-rich channel information. Figure 2(a) 
depicts the features undergoing a parallel three-
branch convolution and pooling operation. 
Specifically, the upper branch extracts the local 
information of the features through convolution 
and 2x sub-pixel upsampling operations; The 
middle branch acquires the W × H × 16C features 
through global maximum pooling (GMP) and 1×1 
convolution operations, followed by 4x sub-pixel 
upsampling aiming at obtaining the rich context 
information; The lower branch obtains features 
with the global information through global average 
pooling (GAP) and convolution operations. 
Finally, the three generated features are summed to 
get the final result. SCE expands the receptive field 
range of 5B  and captures effective contextual 
information, enabling the network to utilize the 

Figure 2
The structure of FACENet. FACE-FPN maps the semantic information to the integrated map I by SCE and weights the 
features R using CAG. S denotes sub-pixel convolution
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Precisely, feature 5B  after sub-pixel convolution is 
summed with 4B  after 1×1 convolution to obtain fea-
ture 4F  and, similarly, feature 3F . This process can be 
expressed as:

i i+
i

i

B + S B i =
F

B i =
ϕ
ϕ

1( ) ( ) 3,4
=  ( 2 )

(1)

where ϕ  represents 1×1 convolution to adjust chan-
nels, S  denotes sub-pixel convolution with factor r set 
to 2, and i denotes the pyramid levels index.
Subsequently, the obtained features undergo Atrous 
Spatial Pyramid Pooling (ASPP) to generate richer 
multi-scale information ' '

2 4F F: . 
5B  is transmitted 

by the SCE module to fully utilize high-level features 
and then integrate with 2 4P P:  to obtain the integrat-
ed map I. Features 2 5R R:  are generated by interpo-
lation and maximum pooling, where features 2 4R R:  
are constructed as feature layers at each scale by a 
top-down hierarchy with ' '

2 4F F:  side connections. 
The process of decoupling I into the feature R is as 
follows:
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The decoupled features are fused at multiple scales 
with contextual information captured at different 
scales, enabling the consideration of objects of vary-
ing scales and shapes. In addition, the channel weights 
extracted from I by the channel attention guidance 
(CAG) module act on the constructed feature layers to 
generate the final multi-scale features, respectively.

3.2.1. Atrous Spatial Pyramid Pooling
ASPP comprises multiple parallel dilation convolu-
tions with varying dilation rates to obtain more scale 
feature information by broadening the network’s re-
ceptive field. Figure 2(b) depicts the module, which 
includes a 1×1 convolution and three dilation con-
volutions with different dilation rates, respectively. 
Furthermore, global average pooling, convolution, 
and upsampling operations integrate global contex-
tual information into the feature map. Finally, the 
features generated from the above parallel operations 
are concatenated together, and their channel number 
is recovered by 1×1 convolution.

3.2.2. Sub-pixel Context Enhancement
During the fusion process, since the advanced features 
are standardized to match the number of channels of 
the underlying features, a certain degree of channel 
and local information is inevitably lost. Furthermore, 
this loss of information intensifies with continuous 
upsampling, resulting in the loss of even more seman-
tic details. Therefore, the sub-pixel context enhance-
ment module is introduced to better use high-level 
feature-rich channel information. Figure 2(a) depicts 
the features undergoing a parallel three-branch con-
volution and pooling operation. Specifically, the upper 
branch extracts the local information of the features 
through convolution and 2x sub-pixel upsampling op-
erations; The middle branch acquires the W × H × 16C 
features through global maximum pooling (GMP) and 
1×1 convolution operations, followed by 4x sub-pixel 
upsampling aiming at obtaining the rich context in-
formation; The lower branch obtains features with 
the global information through global average pooling 
(GAP) and convolution operations. Finally, the three 
generated features are summed to get the final result. 
SCE expands the receptive field range of 

5B  and cap-
tures effective contextual information, enabling the 
network to utilize the semantic information of 

5B  ef-
fectively. This process can be described as follows:

5 3 3 5 5 5( ) ( ( )) ( ( ( ))) ( ( ))B S C B S GMP B GAP Bϕ ϕ×= + +SCE (2)

where ϕ  represents 1×1 convolution and S  denotes 
sub-pixel convolution with factor r set to 2. 3 3C ×

 rep-
resents 3×3 convolution.

3.2.3. Channel Attention Guidance Module
To address the aliasing problem of FACE-FPN during 
cross-scale fusion, we introduced the channel atten-
tion guidance module. As shown in Figure 2(a), the 
features perform the GAP and GMP operations sep-
arately in a parallel manner. Then, the obtained fea-
tures are subjected to fully connected layers, and the 
results of the two operations are summed. Finally, the 
sigmoid function obtains the features by fusing the 
contextual information from different spaces. The 
module applies the channel weights extracted from 
the integrated map I to feature R, coalescing the valu-
able information and enhancing the network’s perfor-
mance. The process can be formulated as:

1 2( ) ( ( ( )) ( ( )))I fc AvgPool I fc MaxPool Iσ= +CA (4)

–

–
–

–

–
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Hi = CA(I) ⊙ Ri, (5)

where ()CA  denotes the channel attention guidance 
function, σ  represents the sigmoid function, 1fc  and

2fc  denote a fully connected operator, ⊙ represents 
the dot-product operator, H  is the input of the seg-
mentation head, and i denotes the pyramid levels in-
dex.

3.3. Semantic Enhancement Module
We introduce a semantic enhancement module to 
address the challenges posed by the intricate back-
ground of remote sensing images, which often results 
in blurred edges, missing segmentations, and aliased 
masks for instances. The SEM in Figure 2(c) optimiz-
es network performance by capturing finer-grained 
and more detailed semantic information. The pro-
posed module enhances the semantic expression of 
the underlying features by capturing semantic infor-
mation at different scales through three parallel atro-
us convolutions instead of the 1×1 convolution of the 
underlying features. Moreover, the residual connec-
tion can better preserve the local and global informa-
tion of the original features, improving the network’s 
capability to recognize and localize the object. The 
overall process can be mathematically expressed as 
follows:

2( )x Bϕ= (6)

SEM 2 3 3_1 3 3_ 2 3 3_ 3 2( ) ( ( ) ( ) ( ))B C x C x C x Bϕ × × ×= + + +SCE , (7)

where ϕ  represents 1×1 convolution, 3 3_ iC ×  
denotes 

the 3×3 convolution with dilation factor i, where 
1,2,3i = .

3.4. Deformable Convolution
As we know, the object instances in the remote sens-
ing image often encounter problems such as arbitrary 
direction, large-scale span, and irregular shape. How-
ever, vanilla convolution is less sensitive to object 
shape changes, and the generalization ability is insuf-
ficient to significantly boost the model’s capability to 
segment geometric shape changes of object instanc-
es in complex scenarios. Therefore, DCNv2 [46] is 
merged into the head to learn the geometric deforma-
tions of the instances by introducing dynamic offsets 
in the receptive field, and weights are added to each 

sampling point to improve the model’s ability to mod-
el complex deformation changes. Figure 3 illustrates 
the schematic of deformable convolution.
For a feature at feature map p  is ( )y p , the formula is 
shown in Equation (8):

semantic information of 
5B effectively. This process can 

be described as follows:
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where  represents 1×1 convolution and S denotes sub-
pixel convolution with factor r set to 2. 3 3C  represents 
1×1 convolution.

3.2.3. Channel Attention Guidance Module
To address the aliasing problem of FACE-FPN during 
cross-scale fusion, we introduced the channel attention 
guidance module. As shown in Figure 2(a), the features 
perform the GAP and GMP operations separately in a 
parallel manner. Then, the obtained features are
subjected to fully connected layers, and the results of the 
two operations are summed. Finally, the sigmoid 
function obtains the features by fusing the contextual 
information from different spaces. The module applies 
the channel weights extracted from the integrated map I 
to feature R, coalescing the valuable information and 
enhancing the network’s performance. The process can 
be formulated as:

1 2( ) ( ( ( )) ( ( )))I fc AvgPool I fc MaxPool I= +CA (4)

( )i iH I R= CA e , (5)

where ()CA denotes the channel attention guidance 
function,  represents the sigmoid function, 1fc and 2fc
denote a fully connected operator, e represents the dot-
product operator, H is the input of the segmentation 
head, and i denotes the pyramid levels index.

3.3. Semantic Enhancement Module
We introduce a semantic enhancement module to 
address the challenges posed by the intricate background 
of remote sensing images, which often results in blurred 
edges, missing segmentations, and aliased masks for 
instances. The SEM in Figure 2(c) optimizes network 
performance by capturing finer-grained and more 
detailed semantic information. The proposed module 
enhances the semantic expression of the underlying 
features by capturing semantic information at different 
scales through three parallel atrous convolutions instead
of the 1×1 convolution of the underlying features.
Moreover, the residual connection can better preserve 
the local and global information of the original features,
improving the network's capability to recognize and
localize the object. The overall process can be 
mathematically expressed as follows:

2( )x B= (6)

2 3 3_1 3 3_ 2 3 3_3 2( ) ( ( ) ( ) ( ))B C x C x C x B   = + + +SCE , (7)

where  represents 1×1 convolution, 3 3_ iC 
denotes the

3×3 convolution with dilation factor i, where 1,2,3i = .

3.4. Deformable Convolution

As we know, the object instances in the remote
sensing image often encounter problems such as 
arbitrary direction, large-scale span, and irregular 
shape. However, vanilla convolution is less 
sensitive to object shape changes, and the
generalization ability is insufficient to significantly
boost the model's capability to segment geometric
shape changes of object instances in complex
scenarios. Therefore, DCNv2 [46] is merged into
the head to learn the geometric deformations of the 
instances by introducing dynamic offsets in the 
receptive field, and weights are added to each
sampling point to improve the model's ability to 
model complex deformation changes. Figure 3
illustrates the schematic of deformable convolution.
Figure 3
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For a feature at feature map p is ( )y p , the formula
is shown in Equation (8):

1
( ) ( )

k k

K

k k p m
k

y p x p p
=

=  + +  V V , (8)

where K denotes the number of sampling positions 
of the convolution kernel; k and kp denote the 
weight of the kth position and the pre-set offset,
respectively;

kpV and 
kmV represent the learnable 

offset of the kth position and the modulation scalar, 
respectively; and ( )

kk px p p+ +V is the feature 
value after the offset at p .

3.5. Loss Function
The loss function consists of two parts, the 
category and the mask prediction losses, and is 
calculated as shown in Equation (9).

cate maskL L L= + , (9)

where the category loss function is Focal Loss. The 
mask prediction loss function is Dice Loss [33],
which aims to solve the problem of positive and 
negative sample imbalances.  is set to 3. 
Equation (10) is the formula for the mask
prediction loss function maskL .
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For a feature at feature map p is ( )y p , the formula is 
shown in Equation (8): 
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where K denotes the number of sampling positions of the 
convolution kernel; kω  and kp  denote the weight of the 
kth position and the pre-set offset, respectively; △�� and 
△��  represent the learnable offset of the kth position 
and the modulation scalar, respectively; and 𝑥𝑥(𝑝𝑝 + 𝑝𝑝� +
△��) is the feature value after the offset at p . 

3.5. Loss Function 
The loss function consists of two parts, the category and 
the mask prediction losses, and is calculated as shown in 
Equation (9). 

cate maskL L Lλ= + , (9) 

where the category loss function is Focal Loss. The mask 
prediction loss function is Dice Loss [Error! Reference 
source not found.], which aims to solve the problem of 
positive and negative sample imbalances. 𝜆𝜆 is set to 3. 
Equation (10) is the formula for the mask prediction loss 
function maskL . 
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where [ / ]i k S= , 𝑗𝑗 = 𝑘𝑘𝑚𝑚𝑘𝑘𝑑𝑑 𝑘𝑘, 𝑁𝑁���  is the number of 
positive samples, p ∗  and m ∗  denote the category and 
mask truth values, respectively, 1 for the indicator 
function, and maskd  represents the Dice Loss, calculated 
as shown in Equation (11). 
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4. Experiment 

4.1. Experimental Details 
Our experimental environment is Ubuntu 20.04, based 
on MMDetection, an open-source detection toolkit 
developed by PyTorch, and the experimental hardware 
platform uses an AMD Ryzen 9 5900HX and an Nvidia 
GTX3080 GPU. During training, SGD was used as the 
model optimizer, with the initial learning rate set to 
0.0025, momentum to 0.9, and weight decay set to 
0.0001. 

4.2. Datasets 
The iSAID dataset contains 2086 high-resolution images 
with 15 categories. Since the scale ratio of the original 
images of this dataset varies a lot, the original images are 
cropped to 800×800, and the training, validation, and test 
sets obtained are 18100, 5896, and 19377, respectively. 
The NWPU VHR-10 dataset is a 10-category geospatial 
object detection dataset created by Northwestern 
Polytechnical University, which consists of 650 positive 

samples and 150 negative samples containing only 
background. The dataset was augmented using the 
data augmentation method RandAugment [Error! 
Reference source not found.] and randomly 
divided into training and test sets in a ratio of 7:3. 
The HRSID dataset, which contains 5604 SAR 
images and 16951 instances, is used for ship 
detection and segmentation. The image size is 
800×800 with resolutions of 0.5m, 1m, and 3m, 
and the training and test sets are 3642 and 1962, 
respectively. 

4.3. Assessment of Indicators 
We evaluate the model using COCO metrics, 
which include average precision (AP), AP50, AP75, 
APS, APM, and APL. Specifically, AP denotes the 
AP at different IoU thresholds, AP50 and AP75 
denote the AP values at IoU thresholds of 0.50 and 
0.75. The corresponding symbols APS, APM, and 
APL indicate the average precision for small, 
medium, and large-size objects. 

4.4. Main results 
In this section, we analyze the model's 
performance qualitatively and quantitatively. First, 
we conduct comparison experiments on three 
datasets. Then, we conduct enough ablation 
experiments on the NWPU VHR-10 and HRSID 
datasets to confirm our model's validity. 

4.4.1. Comparative Experiment Results on 
iSAID 
Table 2 compares the results of our method and 
other popular instance segmentation methods, 
including top-down methods (Mask R-CNN, Mask 
Scoring R-CNN, YOLACT), cascade methods 
(PointRend [Error! Reference source not found.] 
and Cascade Mask R-CNN), direct methods 
(RDSNet [Error! Reference source not found.], 
SOLO, and SOLOv2 [Error! Reference source 
not found.]), and query-based methods 
(QueryInst). The comparison results indicate that 
our method improves SOLOv2 performance by 
5.1%, 5.0%, and 6.2% in AP, AP50, and AP75, 
respectively. Furthermore, our model outperforms 
other mainstream methods when dealing with 
complex scenarios, with a clear advantage over 
different single-stage algorithms. The last two 
columns assess the model's complexity in terms of 
parameter count and computation. The comparison 
results show that our approach achieves higher 
accuracy despite the absence of a discernible 
advantage in terms of model complexity. High 
accuracy means that the model can capture and 
recognize detailed information in the image more 
accurately, reducing the possibility of missing 
segmentation and false alarms, which is crucial for 
real-world application scenarios that demand high-
precision data. Since the high spatial resolution of 
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images of this dataset varies a lot, the original images are 
cropped to 800×800, and the training, validation, and test 
sets obtained are 18100, 5896, and 19377, respectively. 
The NWPU VHR-10 dataset is a 10-category geospatial 
object detection dataset created by Northwestern 
Polytechnical University, which consists of 650 positive 

samples and 150 negative samples containing only 
background. The dataset was augmented using the 
data augmentation method RandAugment [Error! 
Reference source not found.] and randomly 
divided into training and test sets in a ratio of 7:3. 
The HRSID dataset, which contains 5604 SAR 
images and 16951 instances, is used for ship 
detection and segmentation. The image size is 
800×800 with resolutions of 0.5m, 1m, and 3m, 
and the training and test sets are 3642 and 1962, 
respectively. 

4.3. Assessment of Indicators 
We evaluate the model using COCO metrics, 
which include average precision (AP), AP50, AP75, 
APS, APM, and APL. Specifically, AP denotes the 
AP at different IoU thresholds, AP50 and AP75 
denote the AP values at IoU thresholds of 0.50 and 
0.75. The corresponding symbols APS, APM, and 
APL indicate the average precision for small, 
medium, and large-size objects. 

4.4. Main results 
In this section, we analyze the model's 
performance qualitatively and quantitatively. First, 
we conduct comparison experiments on three 
datasets. Then, we conduct enough ablation 
experiments on the NWPU VHR-10 and HRSID 
datasets to confirm our model's validity. 

4.4.1. Comparative Experiment Results on 
iSAID 
Table 2 compares the results of our method and 
other popular instance segmentation methods, 
including top-down methods (Mask R-CNN, Mask 
Scoring R-CNN, YOLACT), cascade methods 
(PointRend [Error! Reference source not found.] 
and Cascade Mask R-CNN), direct methods 
(RDSNet [Error! Reference source not found.], 
SOLO, and SOLOv2 [Error! Reference source 
not found.]), and query-based methods 
(QueryInst). The comparison results indicate that 
our method improves SOLOv2 performance by 
5.1%, 5.0%, and 6.2% in AP, AP50, and AP75, 
respectively. Furthermore, our model outperforms 
other mainstream methods when dealing with 
complex scenarios, with a clear advantage over 
different single-stage algorithms. The last two 
columns assess the model's complexity in terms of 
parameter count and computation. The comparison 
results show that our approach achieves higher 
accuracy despite the absence of a discernible 
advantage in terms of model complexity. High 
accuracy means that the model can capture and 
recognize detailed information in the image more 
accurately, reducing the possibility of missing 
segmentation and false alarms, which is crucial for 
real-world application scenarios that demand high-
precision data. Since the high spatial resolution of 

(10)

where [ / ]i k S= , modj k S= , posN  is the number of 
positive samples, p∗  and m∗  denote the category and 
mask truth values, respectively, 1 for the indicator 
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function, and maskd  represents the Dice Loss, calcu-
lated as shown in Equation (11).
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4. Experiment
4.1. Experimental Details
Our experimental environment is Ubuntu 20.04, 
based on MMDetection, an open-source detection 
toolkit developed by PyTorch, and the experimental 
hardware platform uses an AMD Ryzen 9 5900HX and 
an Nvidia GTX3080 GPU. During training, SGD was 
used as the model optimizer, with the initial learning 
rate set to 0.0025, momentum to 0.9, and weight decay 
set to 0.0001.

4.2. Datasets
The iSAID dataset contains 2086 high-resolution 
images with 15 categories. Since the scale ratio of the 
original images of this dataset varies a lot, the origi-
nal images are cropped to 800×800, and the training, 
validation, and test sets obtained are 18100, 5896, and 
19377, respectively.
The NWPU VHR-10 dataset is a 10-category geospa-
tial object detection dataset created by Northwestern 
Polytechnical University, which consists of 650 pos-
itive samples and 150 negative samples containing 
only background. The dataset was augmented using 
the data augmentation method RandAugment [5] and 
randomly divided into training and test sets in a ratio 
of 7:3.
The HRSID dataset, which contains 5604 SAR imag-
es and 16951 instances, is used for ship detection and 
segmentation. The image size is 800×800 with reso-
lutions of 0.5m, 1m, and 3m, and the training and test 
sets are 3642 and 1962, respectively.

4.3. Assessment of Indicators
We evaluate the model using COCO metrics, which 
include average precision (AP), AP50, AP75, APS, APM, 
and APL. Specifically, AP denotes the AP at different 
IoU thresholds, AP50 and AP75 denote the AP values at 
IoU thresholds of 0.50 and 0.75. The corresponding 

symbols APS, APM, and APL indicate the average preci-
sion for small, medium, and large-size objects.

4.4. Main results
In this section, we analyze the model’s performance 
qualitatively and quantitatively. First, we conduct 
comparison experiments on three datasets. Then, we 
conduct enough ablation experiments on the NWPU 
VHR-10 and HRSID datasets to confirm our model’s 
validity.

4.4.1. Comparative Experiment Results on iSAID
Table 2 compares the results of our method and oth-
er popular instance segmentation methods, includ-
ing top-down methods (Mask R-CNN, Mask Scoring 
R-CNN, YOLACT), cascade methods (PointRend [13] 
and Cascade Mask R-CNN), direct methods (RDSNet 
[30], SOLO, and SOLOv2 [32]), and query-based meth-
ods (QueryInst). The comparison results indicate that 
our method improves SOLOv2 performance by 5.1%, 
5.0%, and 6.2% in AP, AP50, and AP75, respectively. Fur-
thermore, our model outperforms other mainstream 
methods when dealing with complex scenarios, with a 
clear advantage over different single-stage algorithms. 
The last two columns assess the model’s complexity 
in terms of parameter count and computation. The 
comparison results show that our approach achieves 
higher accuracy despite the absence of a discernible 
advantage in terms of model complexity. High accu-
racy means that the model can capture and recognize 
detailed information in the image more accurately, 
reducing the possibility of missing segmentation and 
false alarms, which is crucial for real-world applica-
tion scenarios that demand high-precision data. Since 
the high spatial resolution of remote sensing images 
makes it possible for even subtle mis-segmentation to 
cause significant real-world ground errors, high accu-
racy can support more refined applications. In addi-
tion, our method does not exhibit model complexity far 
beyond that of other algorithms but instead achieves 
high accuracy based on a certain level of complexity 
that can be applied to real-world remote sensing image 
applications.

4.4.2. Comparative Experiment Results on NWPU 
VHR-10 and HRSID
Tables 3 and 4 present the model’s quantitative analy-
sis of the NWPU VHR-10 and HRSID datasets. Com-
pared to the baseline SOLOv2 model, our optimized 
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Methods AP AP50 AP75 APS APM APL Params(M) FLOPs

Mask R-CNN 35.4 59.2 37.7 17.2 41.3 47.4 63.17 351.64

Mask Scoring R-CNN 35.5 58.4 37.6 17.3 41.3 47.2 79.729 337.92

PointRend 33.4 56.3 35.1 16.0 39.4 45.3 60.215 181.248

Cascade Mask R-CNN 34.4 57.5 36.5 16.5 40.3 46.2 96.09 470.0

YOLACT [37] 22.3 43.3 19.9 8.4 31.8 40.4 54.286 91.716

RDSNet [42] 29.3 51.3 29.5 12.6 40.2 47.9 62.04 228.42

QueryInst 28.6 46.8 30.4 12.5 35.5 43.7 196.608 250.88

Luo et al. [23] 29.4 54.5 27.8 15.5 37.8 42.0 43.83 -

SOLO 24.7 44.9 24.2 7.9 32.7 47.8 54.91 442.13

SOLOv2 31.1 54.2 31.4 13.7 38.3 43.1 65.84 284.44

Ours 36.2 59.2 37.6 15.7 43.6 52.4 93.28 379.85

Table 2
Segmentation performance on iSAID dataset

Table 3
Segmentation performance on NWPU VHR-10 dataset

Methods AP AP50 AP75 APS APM APL

YOLACT 41.6 75.2 39.6 23.4 39.7 54.3

QueryInst 38.3 61.2 40.0 19.2 37.0 50.2

SOLO 14.2 20.9 15.0 14.2 17.1 28.6

SOLOv2 32.9 56.4 31.8 13.1 27.3 47.7

Ours 45.8 74.8 44.4 23.3 42.6 55.7

Table 4
Segmentation performance on HRSID dataset

Methods AP AP50 AP75 APS APM APL

YOLACT 33.3 65.4 31.5 33.7 37.3 14.2

SOLO 34.8 61.0 39.1 33.2 50.0 19.6

SOLOv2 33.3 59.3 37.6 32.5 42.0 17.4

Ours 40.9 68.9 48.2 38.6 61.2 29.8

approach achieves a remarkable enhancement in 
performance, boasting a 12.9% increase in accuracy 
on the NWPU VHR-10 dataset and a 7.6% improve-
ment on the HRSD dataset. It achieves 4.2% and 6.1% 
performance gains compared to the sub-optimal al-

gorithm. Moreover, FACENet consistently surpasses 
SOLOv2 across multiple evaluation metrics, includ-
ing AP50, AP75, and across varying scales (APS, APM, 
and APL), unequivocally demonstrating the superiori-
ty and efficacy of the algorithm.
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4.4.3. Ablation Study
To validate our model’s efficacy and robustness, we 
meticulously evaluated each constituent module on 
different datasets. As demonstrated in Tables 5 and 6, 
our network achieves an AP of 45.8% and 40.9% on the 
two respective datasets, showcasing our approach’s 
remarkable performance and adaptability. More spe-
cifically, our FACE has improved AP performance by 
4.8% and 5.4%. In addition, with the combined assis-
tance of SEM and FACE-FPN, our network enhances 
the AP performance by 7.8% and 6.9%, respectively, as 
they both improve and interact with the information 
flow of high-level and bottom-level features. Further-
more, dynamic offsets allow for a more extensive cov-
erage area, encompassing the entire of the instance’s 
features and pertinent background information. This 
approach is pivotal for the network to adeptly handle 

Table 5
Effects on NWPU VHR-10 dataset

Baseline SEM FACE-FPN DCNv2 AP AP50 AP75 APS APM APL

√ 32.9 56.4 31.8 13.1 27.3 47.7

√ √ 34.0 57.7 33.0 14.3 29.7 41.0

√ √ 37.7 63.9 37.0 14.8 34.8 44.6

√ √ 34.8 60.9 32.6 10.9 31.1 43.4

√ √ √ 40.7 67.9 40.3 23.0 36.5 50.6

√ √ √ √ 45.8 74.8 44.4 23.3 42.6 55.7

Table 6
Effects on HRSID dataset

Baseline SEM FACE-FPN DCNv2 AP AP50 AP75 APS APM APL

√ 33.3 59.3 37.6 32.5 42.0 17.4

√ √ 38.9 67.0 45.0 37.3 53.6 17.2

√ √ 38.7 66.6 44.9 36.9 56.8 16.8

√ √ 35.3 61.5 40.8 34.0 49.0 12.7

√ √ √ 40.2 68.0 47.8 38.2 59.3 25.0

√ √ √ √ 40.9 68.9 48.2 38.6 61.2 29.8

objects exhibiting intricate geometrical deforma-
tions, enhancing its capability to accurately segment 
and comprehend diverse shapes and configurations 
within complex scenes. In conclusion, our proposed 
algorithm effectively boosts the RSI instance seg-
mentation performance, demonstrating its superior-
ity and potential for real-world applications.
The semantic enhancement module fully exploits the 
semantic information, allowing the network to achieve 
more delicate segmentation effects. We validate our 
proposed method by performing an ablation exper-
iment on the SEM. Table 7 clearly illustrates that the 
single branch and parallel structures fail to capture in-
tricate feature information with a high degree of gran-
ularity. Conversely, a reasonable residual structure is 
crucial in optimizing the network’s performance to ex-
tract and utilize features more efficiently.
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To verify the detection and segmentation perfor-
mance of FACE-FPN, we choose several advanced 
FPN structures for comparative analysis. Table 8 
demonstrates the poor segmentation of these FPNs 
with an AP value that is even lower than that of va-
nilla FPN. It also shows that although these FPNs 
have exhibited commendable performance on natu-
ral images, they have poor transmission capability on 
remote sensing images. FACE-FPN achieves a prom-
ising 4.8% AP increment compared to vanilla FPN, 
demonstrating the rationality and effectiveness of the 
structure.

4.4.4. Qualitative Results
In this section, we perform visual analysis, and the 
visualization results demonstrate the validity and ra-
tionality of our proposed model for RSI instance seg-
mentation. The rectangles marked blue, green, yel-
low, and purple represent aliasing masks, poor masks, 
missing segmentation, and false alarms.
iSAID: Figure 4 displays the results of our visual-
ization on the iSAID dataset. Notably, other example 

Table 7
Comparison of different semantic components in SEM

Baseline SEM AP AP50 AP75 APS APM APL

√ Case 1 32.2 55.1 30.4 9.9 28.1 41.6

√ Case 2 31.3 53.7 28.4 13.3 26.4 41.8

√ Case 3 33.9 56.2 34.9 12.2 29.3 41.8

√ SEM* 32.8 56.4 30.4 14.2 27.5 42.0

√ SEM 34.0 57.7 33.0 12.3 29.7 41.0

Table 8
Comparison of different FPNs

Methods AP AP50 AP75 APS APM APL

FPN 32.9 56.4 31.8 13.1 27.3 47.7

HRFPN 29.2 51.2 29.6 8.7 24.0 45.2

PAFPN 31.3 53.2 31.0 10.2 26.1 46.2

BiFPN 17.0 23.7 19.7 1.2 9.7 39.5

FACE-FPN 37.7 63.9 37.0 14.8 34.8 44.6

segmentation models struggle to deliver satisfactory 
results when confronted with challenging scenar-
ios featuring small or densely packed segmenta-
tion objects, as exemplified in rows 3, 4, 5, and 6. In 
stark contrast, our model excels in these situations, 
demonstrating its robustness and capability to seg-
ment even the most intricate details accurately. 
Moreover, conventional models often suffer from 
inadequate edge segmentation and the generation 
of aliased masks in scenarios where a single object 
dominates the scene or a significant scale disparity 
exists between different classes, as seen in the first 
and last rows. Conversely, our model excels in these 
complex conditions, delivering superior segmen-
tation outcomes. In conclusion, the visualization 
results demonstrate the superiority of the FACEN-
et algorithm in complex remote sensing scenarios, 
achieving finer-grained segmentation.
NWPU VHR-10: The visual segmentation effects of 
our proposed FACENet and SOLOv2 are compared 
in Figure 5. Our observations show that the original 
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Figure 4
Visualization results on iSAID. (a) GT, (b) Mask R-CNN, (c) Mask Scoring R-CNN, (d) PointRend, (e) Cascade Mask 
R-CNN, (f ) QueryInst, (g) SOLOv2, (h) Ours
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In this section, we perform visual analysis, and the 
visualization results demonstrate the validity and 

rationality of our proposed model for RSI instance 
segmentation. The rectangles marked blue, green, 
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SOLOv2 exhibited challenges in accurately detect-
ing objects within scenes characterized by small and 
densely packed objects, leading to missed detections. 
Fortunately, our innovative FACENet framework ef-
fectively addresses these limitations in remote sens-
ing instance segmentation, ensuring more compre-
hensive and accurate segmentation.
HRSID: The outcomes of our visualization on the HR-
SID dataset are displayed in Figure 6. The second line 
of results underscores a common challenge encoun-

tered when processing coasts with intricate interfer-
ence: the ship’s proximity to the shoreline often blurs 
the boundary contour, rendering it indistinguishable 
from the background and resulting in suboptimal seg-
mentation outcomes. Conversely, FACENet stands 
out by its ability to precisely identify and character-
ize the ship within the segmentation boundary, even 
in these complex scenarios. Moreover, our method 
performs better when the ship boundary is irregular, 
dense, or the object is tiny.

(a) (b) (c) (d) (e) (f ) (g) (h)
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Figure 5
Visualization results on NWPU VHR-10

Figure 6
Visualization results on HRSID
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iSAID: Figure 4 displays the results of our 
visualization on the iSAID dataset. Notably, other 
example segmentation models struggle to deliver 
satisfactory results when confronted with challenging 
scenarios featuring small or densely packed 
segmentation objects, as exemplified in rows 3, 4, 5, 

and 6. In stark contrast, our model excels in these 
situations, demonstrating its robustness and capability 
to segment even the most intricate details accurately. 
Moreover, conventional models often suffer from 
inadequate edge segmentation and the generation of 
aliased masks in scenarios where a single object 
dominates the scene or a significant scale disparity 
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iSAID: Figure 4 displays the results of our 
visualization on the iSAID dataset. Notably, other 
example segmentation models struggle to deliver 
satisfactory results when confronted with challenging 
scenarios featuring small or densely packed 
segmentation objects, as exemplified in rows 3, 4, 5, 

and 6. In stark contrast, our model excels in these 
situations, demonstrating its robustness and capability 
to segment even the most intricate details accurately. 
Moreover, conventional models often suffer from 
inadequate edge segmentation and the generation of 
aliased masks in scenarios where a single object 
dominates the scene or a significant scale disparity 
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5. Conclusion
We propose the FACENet for remote sensing image 
instance segmentation. Firstly, we replace FPN with 
FACE-FPN, intending to utilize the channel and de-
tailed information of multilevel features fully. Sec-
ondly, SEM enhances the semantic representation of 
features by capturing finer-grained semantic infor-
mation. Then, to make the network more sensitive to 
the geometric deformation of instances in complex 
scenes, deformable convolution is introduced to im-
prove the network performance. Finally, the exper-
iments demonstrate that our proposed FACENet 
produces reliable segmentation results in complex 
scenarios, particularly avoiding the problems of alias-
ing masks, poorly segmented masks, missing segmen-
tation, and false alarms to some extent, and achieving 
more delicate segmentation. In the future, we will fur-
ther optimize the network to enhance small objects’ 
detection and segmentation effects.
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