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Traditional swarm intelligence optimization methods perform erratically in engineering design due to difficul-
ties in handling nonlinear data, local optimal errors and premature convergence. To address these problems, 
we developed an enhanced Gray Wolf Optimizer (OGWO) that employs Levy flight and elite adversarial-based 
learning methods. We evaluated its effectiveness using 20 benchmark functions and compared it with other 
GWO variants and popular algorithms. The results show that OGWO is superior in terms of convergence speed, 
accuracy, and freedom from stagnation, as confirmed by the Wilcoxon rank sum test. Furthermore, the effec-
tiveness of OGWO in training Multilayer Perceptron (MLP) has been evaluated using the UCL datasets. Finally, 
OGWO has been applied to solve the speed reducer design problem, proving its ability to provide optimal solu-
tions in addressing real-life engineering issues.
KEYWORDS: GWO; OGWO; Lévy flight; Elite opposition-based learning; Multilayer Perceptron; OGWO-MLP; 
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1. Introduction
Engineering design plays a pivotal role in techno-
logical innovation and societal development. Most 
engineering design problems can be defined as op-
timization design issues, which necessitate resolu-
tion through mathematical optimization [12]. Neu-

ral networks, as the foundation of deep learning, 
have extensive applications in numerous scenarios. 
In practical problems, traditional deterministic al-
gorithms like gradient descent [8] are prone to fall 
into high-dimensional local traps. Furthermore, due 
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to factors like time cost, the existence or applicabil-
ity of precise optimizers often becomes impracti-
cal. Hence, a solution capable of finding the optimal 
solution within an acceptable computational time 
is required, making heuristic algorithms a suitable 
method [37]. Concurrently, with societal and tech-
nological advancement, an increasing number of 
complex and challenging optimization problems and 
demands have emerged. According to the “no free 
lunch” theorem, the optimal solution for different 
problems often corresponds to different algorithms 
[22]. In this context, the improvement of heuristic 
methods remains, and increasingly so, necessary. 
Researchers continuously strive to find appropriate 
improvement schemes to enhance the effectiveness 
of heuristic algorithms. Specifically, whether in in-
dustrial design or neural network optimization, it is 
a complex task involving many mathematical mod-
els and variables, parameters. Ordinary heuristic 
algorithms have slow convergence speed and are 
prone to local optima, hence an effective method to 
find the best solution is needed.
The Grey Wolf Optimizer (GWO), created by Mir-
jalili in 2014 [30], mimics the social hierarchy and 
hunting instincts of grey wolves. GWO is widely 
recognized for its outstanding performance and 
simple implementation method, distinguishing it 
from other famous meta-heuristic algorithms such 
as Particle Swarm Optimization (PSO) [38], Genet-
ic Algorithm (GA) [27], and Differential Evolution 
(DE) [26]. GWO, as a powerful optimization tool, 
is relatively simple to implement, with no complex 
arithmetic or parameter settings, which makes it 
useful in many complex problems. Therefore, GWO 
and many other heuristic algorithms are widely fa-
vored by researchers and extensively applied in var-
ious research fields, including but not limited to en-
gineering design, neural network training, computer 
vision, and supply chain planning among various 
complex optimization scenarios. For instance, Yan 
et al. [15] developed a denoising method in the con-
tinuous wave mud pulse transmission process based 
on GWO. Yu et al. [20] developed a variant butterfly 
optimization algorithm, effectively solving four me-
chanical engineering problems and a ten-dimen-
sional process synthesis and design problem. Seetha 
et al. [36] utilized a novel GWO to regulate the pa-
rameters of the neural network model. Xu et al. [40] 

proposed an Adaptive Particle Swarm Optimiza-
tion-Triangle Neural Network (PSO-TNN), signifi-
cantly reducing the error of the neural network. In 
addition, Prokop and Połap [34] developed a hybrid 
GWO algorithm for image stitching, demonstrating 
excellent performance and efficiency.
Despite GWO’s strong competitiveness and wide 
application in various research fields, like other heu-
ristic algorithms, it still has room for improvement 
in terms of convergence ratio, stability, and sensi-
tivity to falling into local optima [24]. To mitigate 
these limitations, researchers have proposed vari-
ous improvement schemes. Yu et al. [17] combined 
beetle tentacle search with the gray wolf algorithm 
for better solutions to high-dimensional problems. 
Nadimi-Shahraki et al. [32] introduced two gaze 
clue learning strategies inspired by gray wolves to 
improve search efficiency. Ahmed et al. [3] devel-
oped a new GWO version integrating a memory 
mechanism, random local search techniques, and 
evolutionary operators for optimized performance. 
Although the above ideas improve GWO from differ-
ent perspectives, there is still room for improvement 
in terms of increasing the convergence speed and 
crossing the local optimum.
In order to address these issues for better applica-
tion to industrial problem solving and training of 
neural networks, this paper introduces an improved 
GWO(OGWO), its performance validated through 
simulations and a Wilcoxon Rank Sum Test against 
three other GWOs. Further tests using UCL Ma-
chine Learning Repository datasets confirmed OG-
WO’s strong compatibility with Multilayer Percep-
tron (MLP). OGWO outperformed traditional GWO 
and other algorithms in precision, convergence 
speed, stability, and neural network training, show-
ing significant application potential. Lastly, OGWO 
effectively solved the gear reducer design problem, 
proving its advantage over traditional methods.
The rest of the paper is organized in the following 
order: Section 2 introduces GWO, Section 3 intro-
duces OGWO and OGWO-MLP, and Sections 4-5 
provide experimental results and discussion. Section 
6 applies OGWO to solve gearbox design problems in 
engineering. Section 7 concludes the paper. Figure 1 
shows the entire workflow. 
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Figure 1
The overall workflow of the whole study

2. Grey Wolf Optimizer
GWO perceives wolf packs as unique particle entities 
within a search space, thereby enabling the solution 
of optimization problems. Let α, β, δ and ω represent 
Alpha, Beta, Delta and member wolves respectively, 
the procedure for adjusting the gray wolf ’s location 
can be articulated in terms of the encircling and hunt-
ing stages. The behavior of gray wolves rounding up 
prey was defined as:
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(6). The culmination of this movement, or in 
other words, the ultimate position of ω, is 
determined by Equation (7). 
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Mutation Based on Lévy 
Flights 

Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
principles of Lévy distribution [11]. In nature, 
the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Figure 2 illustrates the Brownian motion with a 
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demonstrate the case where the object follows a 
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other words, the ultimate position of ω, is 
determined by Equation (7). 

3. Method 
3.1. Enhanced Grey Wolf 

Optimizer 
3.1.1. Leader Hunter 

Mutation Based on Lévy 
Flights 

Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
principles of Lévy distribution [11]. In nature, 
the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Lévy flight in 3D. 

Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
Lévy distribution, both with a step size of 1500 
steps. Figure 3 shows the step trajectory of 
Levy’s flight in 3-dimensions. They clearly 
demonstrate the case where the object follows a 
Lévy distribution random walk. The integration 
of short-range exploratory hops and intermittent 
long-range ambulation contributes to a more 
efficient search strategy [25]. 
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2. Grey Wolf Optimizer 
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random vectors which are modulo random numbers 
within [0, 1]. Once the prey is identified, the wolf pack 
will gradually surround it under the command of the 
three leaders. The distance between each ω and the trio 
of leaders can be calculated using the following formula:
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Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
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the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
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length and direction, as articulated in Equation 
(6). The culmination of this movement, or in 
other words, the ultimate position of ω, is 
determined by Equation (7). 
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pattern of random movement, governed by the 
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described by models of Lévy distributions [39].  
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Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
Lévy distribution, both with a step size of 1500 
steps. Figure 3 shows the step trajectory of 
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of short-range exploratory hops and intermittent 
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described by models of Lévy distributions [39].  

 
Figure 2 

Lévy flight and Brownian walk. 

 
Figure 3 

Lévy flight in 3D. 

Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
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steps. Figure 3 shows the step trajectory of 
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prey is identified, the wolf pack will gradually 
surround it under the command of the three 
leaders. The distance between each 𝜔𝜔𝜔𝜔 and the 
trio of leaders can be calculated using the 
following formula: 

�
𝐷𝐷𝐷𝐷��⃗ 𝑎𝑎𝑎𝑎 = �𝐶𝐶𝐶𝐶1�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼 − �⃗�𝑥𝑥𝑥�
𝐷𝐷𝐷𝐷��⃗ 𝛽𝛽𝛽𝛽 = �𝐶𝐶𝐶𝐶2�⃗�𝑥𝑥𝑥𝛽𝛽𝛽𝛽 − �⃗�𝑥𝑥𝑥�
𝐷𝐷𝐷𝐷��⃗ 𝛿𝛿𝛿𝛿 = �𝐶𝐶𝐶𝐶3�⃗�𝑥𝑥𝑥𝛿𝛿𝛿𝛿 − �⃗�𝑥𝑥𝑥�

 (5) 

�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼 , �⃗�𝑥𝑥𝑥𝛽𝛽𝛽𝛽 , and �⃗�𝑥𝑥𝑥𝛿𝛿𝛿𝛿  denote the current position 
vectors of 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, 𝛿𝛿𝛿𝛿  respectively. 𝐶𝐶𝐶𝐶1 , 𝐶𝐶𝐶𝐶2  𝐶𝐶𝐶𝐶3  are 
random vectors. 

�
�⃗�𝑥𝑥𝑥1 = �⃗�𝑥𝑥𝑥𝑎𝑎𝑎𝑎 − 𝐴𝐴𝐴𝐴1𝐷𝐷𝐷𝐷��⃗ 𝑎𝑎𝑎𝑎
�⃗�𝑥𝑥𝑥2 = �⃗�𝑥𝑥𝑥𝛽𝛽𝛽𝛽 − 𝐴𝐴𝐴𝐴2𝐷𝐷𝐷𝐷��⃗ 𝛽𝛽𝛽𝛽
�⃗�𝑥𝑥𝑥3 = �⃗�𝑥𝑥𝑥𝛿𝛿𝛿𝛿 − 𝐴𝐴𝐴𝐴3𝐷𝐷𝐷𝐷��⃗ 𝛿𝛿𝛿𝛿

 (6) 

�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡 + 1) = 𝑥𝑥𝑥𝑥1+𝑥𝑥𝑥𝑥2+𝑥𝑥𝑥𝑥3
3

 (7) 

In the wolf pack, the individual’s movement 
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(6). The culmination of this movement, or in 
other words, the ultimate position of ω, is 
determined by Equation (7). 

3. Method 
3.1. Enhanced Grey Wolf 

Optimizer 
3.1.1. Leader Hunter 

Mutation Based on Lévy 
Flights 

Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
principles of Lévy distribution [11]. In nature, 
the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Lévy flight and Brownian walk. 

 
Figure 3 

Lévy flight in 3D. 

Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
Lévy distribution, both with a step size of 1500 
steps. Figure 3 shows the step trajectory of 
Levy’s flight in 3-dimensions. They clearly 
demonstrate the case where the object follows a 
Lévy distribution random walk. The integration 
of short-range exploratory hops and intermittent 
long-range ambulation contributes to a more 
efficient search strategy [25]. 
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Lévy distribution, both with a step size of 1500 
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2. Grey Wolf Optimizer 
GWO perceives wolf packs as unique particle 
entities within a search space, thereby enabling 
the solution of optimization problems. Let 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, 
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articulated in terms of the encircling and hunting 
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prey was defined as: 
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towards 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, and 𝛿𝛿𝛿𝛿 is characterized by its step 
length and direction, as articulated in Equation 
(6). The culmination of this movement, or in 
other words, the ultimate position of ω, is 
determined by Equation (7). 
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Mutation Based on Lévy 
Flights 

Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
principles of Lévy distribution [11]. In nature, 
the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
Lévy distribution, both with a step size of 1500 
steps. Figure 3 shows the step trajectory of 
Levy’s flight in 3-dimensions. They clearly 
demonstrate the case where the object follows a 
Lévy distribution random walk. The integration 
of short-range exploratory hops and intermittent 
long-range ambulation contributes to a more 
efficient search strategy [25]. 
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In the wolf pack, the individual’s movement towards 
α, β, and δ is characterized by its step length and direc-
tion, as articulated in Equation (6). The culmination 
of this movement, or in other words, the ultimate po-
sition of ω, is determined by Equation (7).

3. Method
3.1. Enhanced Grey Wolf Optimizer
3.1.1. Leader Hunter Mutation Based on Lévy 
Flights
Lévy flight essentially refers to a Markovian pattern 
of random movement, governed by the principles of 
Lévy distribution [11]. In nature, the behavior of many 
organisms can be described by models of Lévy distri-
butions [39]. 
Figure 2 illustrates the Brownian motion with a uni-
form distribution and the Lévy flight with a Lévy dis-
tribution, both with a step size of 1500 steps. Figure 3 
shows the step trajectory of Levy’s flight in 3-dimen-
sions. They clearly demonstrate the case where the 
object follows a Lévy distribution random walk. The 
integration of short-range exploratory hops and inter-
mittent long-range ambulation contributes to a more 
efficient search strategy [25].
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Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy distri-
bution exhibits heavy-tailed characteristics and has a 
significantly larger search range, making it more suit-
able for global search [39].
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2. Grey Wolf Optimizer 
GWO perceives wolf packs as unique particle 
entities within a search space, thereby enabling 
the solution of optimization problems. Let 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, 
𝛿𝛿𝛿𝛿  and 𝜔𝜔𝜔𝜔 represent Alpha, Beta, Delta and 
member wolves respectively, the procedure for 
adjusting the gray wolf’s location can be 
articulated in terms of the encircling and hunting 
stages. The behavior of gray wolves rounding up 
prey was defined as: 

𝐷𝐷𝐷𝐷��⃗ = �𝐶𝐶𝐶𝐶�⃗�𝑥𝑥𝑥𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) − �⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)� (1) 
�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) − 𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷��⃗ , (2) 

where 𝐷𝐷𝐷𝐷��⃗  denotes the distance between the gray 
wolf and the prey，�⃗�𝑥𝑥𝑥 and �⃗�𝑥𝑥𝑥𝑝𝑝𝑝𝑝  are the position 
vectors of the prey and the gray wolf, 
respectively. 𝐶𝐶𝐶𝐶  and 𝐴𝐴𝐴𝐴  are the coefficient 
vectors, which are computed by the following 
equation: 

𝐴𝐴𝐴𝐴 = 2�⃗�𝑎𝑎𝑎𝑟𝑟𝑟𝑟1 − �⃗�𝑎𝑎𝑎 (3) 
𝐶𝐶𝐶𝐶 = 2𝑟𝑟𝑟𝑟2, (4) 

where �⃗�𝑎𝑎𝑎  is the convergence factor decreases 
linearly from 2 to 0 with the number of iterations. 
𝑟𝑟𝑟𝑟1  and 𝑟𝑟𝑟𝑟2  are random vectors which are 
modulo random numbers within [0, 1]. Once the 
prey is identified, the wolf pack will gradually 
surround it under the command of the three 
leaders. The distance between each 𝜔𝜔𝜔𝜔 and the 
trio of leaders can be calculated using the 
following formula: 

�
𝐷𝐷𝐷𝐷��⃗ 𝑎𝑎𝑎𝑎 = �𝐶𝐶𝐶𝐶1�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼 − �⃗�𝑥𝑥𝑥�
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𝐷𝐷𝐷𝐷��⃗ 𝛿𝛿𝛿𝛿 = �𝐶𝐶𝐶𝐶3�⃗�𝑥𝑥𝑥𝛿𝛿𝛿𝛿 − �⃗�𝑥𝑥𝑥�

 (5) 
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vectors of 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, 𝛿𝛿𝛿𝛿  respectively. 𝐶𝐶𝐶𝐶1 , 𝐶𝐶𝐶𝐶2  𝐶𝐶𝐶𝐶3  are 
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�
�⃗�𝑥𝑥𝑥1 = �⃗�𝑥𝑥𝑥𝑎𝑎𝑎𝑎 − 𝐴𝐴𝐴𝐴1𝐷𝐷𝐷𝐷��⃗ 𝑎𝑎𝑎𝑎
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 (6) 

�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡 + 1) = 𝑥𝑥𝑥𝑥1+𝑥𝑥𝑥𝑥2+𝑥𝑥𝑥𝑥3
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In the wolf pack, the individual’s movement 
towards 𝑎𝑎𝑎𝑎, 𝛽𝛽𝛽𝛽, and 𝛿𝛿𝛿𝛿 is characterized by its step 
length and direction, as articulated in Equation 
(6). The culmination of this movement, or in 
other words, the ultimate position of ω, is 
determined by Equation (7). 

3. Method 
3.1. Enhanced Grey Wolf 

Optimizer 
3.1.1. Leader Hunter 

Mutation Based on Lévy 
Flights 

Lévy flight essentially refers to a Markovian 
pattern of random movement, governed by the 
principles of Lévy distribution [11]. In nature, 
the behavior of many organisms can be 
described by models of Lévy distributions [39].  
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Lévy flight in 3D. 

Figure 2 illustrates the Brownian motion with a 
uniform distribution and the Lévy flight with a 
Lévy distribution, both with a step size of 1500 
steps. Figure 3 shows the step trajectory of 
Levy’s flight in 3-dimensions. They clearly 
demonstrate the case where the object follows a 
Lévy distribution random walk. The integration 
of short-range exploratory hops and intermittent 
long-range ambulation contributes to a more 
efficient search strategy [25]. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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flight step length possesses an infinite mean and vari-
ance [1], hence effectively enhancing the search effi-
ciency of the algorithm. Inspired by this, Lévy flight 
can also be utilized to simulate the foraging behavior 
of grey wolves. In this paper, we introduce the Lévy 
flight step length into the α individuals among the grey 
wolf pack. The mutated Alpha wolves can fully inte-
grate the random walk characteristics of Lévy distri-
bution, balancing exploration and exploitation. At the 
same time, the heavy-tailed property of Lévy flight en-
hances the exploration capability of the Alpha wolves 
in the later stage of the search space, preventing pre-
mature convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function of 
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the α wolf as the leader of the wolf pack, and improves 
the overall exploration capability. The updated posi-
tion of the mutated α is represented as follows:

 
Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗
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Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 
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Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 
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to the elites is: 
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𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗
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antagonistic solution and they are obtained by: 
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Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 
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Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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  are 0.5.
The novel strategy of α wolf mutation position update, 
which is based on the Lévy flight mechanism, enhanc-
es the range and diversity of the population [41] This 
approach, leveraging the learning mechanism from 
the alpha wolf, notably boosts the global search ca-
pacity of the wolf population, thereby offering a sig-
nificant improvement over the original position up-
date method.

3.1.2. Elite opposition-based learning
Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based on 
estimations and respective counter-estimations [10]. 
This is achieved by creating a counter-population 
using the elite individuals from the existing popula-
tion [9]. The definition of the elite inverse solution is 
predicated on the presumption that the current pop-
ulation’s most exceptional individual is the elite [16]:
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wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
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The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 
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𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
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Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normal

Cauchy

Levy

(10)

 
Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 
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𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗
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antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
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Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normal

Cauchy

Levy

(11)

 
Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
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Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normal

Cauchy

Levy

,
where 

 
Figure 4 
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Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿

𝑡𝑡𝑡𝑡

2
− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Inspired by the original elite reverse learning, a learn-
ing strategy is proposed in this article, with α, β, and 
δ wolves serving as the elite individuals. The specific 
program is divided into three plans. The first part is 
designed to make all individuals learn from the α wolf:

 
Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿
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𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normal

Cauchy

Levy

(14)

Equation (20) defines the learning of individuals from 
α wolves, and all wolves generate reverse individuals 
based on the alpha wolf, for β and δ, with the following 
two strategies:

 
Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗
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𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Figure 4 

Comparison of stable distribution. 

Figure 4 presents the differences between Lévy, 
Gaussian, and Cauchy distributions, the Lévy 
distribution exhibits heavy-tailed characteristics 
and has a significantly larger search range, 
making it more suitable for global search [39]. 
Lévy flight is utilized in the Cuckoo Search 
algorithm to simulate the flight paths of birds. 
This Lévy-based flight step length possesses an 
infinite mean and variance [1], hence effectively 
enhancing the search efficiency of the algorithm. 
Inspired by this, Lévy flight can also be utilized 
to simulate the foraging behavior of grey wolves. 
In this paper, we introduce the Lévy flight step 
length into the 𝑎𝑎𝑎𝑎  individuals among the grey 
wolf pack. The mutated Alpha wolves can fully 
integrate the random walk characteristics of Lévy 
distribution, balancing exploration and 
exploitation. At the same time, the heavy-tailed 
property of Lévy flight enhances the exploration 
capability of the Alpha wolves in the later stage 
of the search space, preventing premature 
convergence of the algorithm. Therefore, the 
introduction of Lévy flight enhances the function 
of the 𝑎𝑎𝑎𝑎 wolf as the leader of the wolf pack, and 
improves the overall exploration capability. The 
updated position of the mutated 𝑎𝑎𝑎𝑎  is 
represented as follows: 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1) = �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼�1 + 𝑟𝑟𝑟𝑟3 ⊕ 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(0,𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑟𝑟4 ⊕

𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆)�,                     (8) 

where ⊕ denotes the multiplication of entries, 
�⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 + 1)  is the position before the Alpha 
mutation, �⃗�𝑥𝑥𝑥𝛼𝛼𝛼𝛼  is the position after the Alpha 
mutation, and the value of 𝑟𝑟𝑟𝑟3, 𝑟𝑟𝑟𝑟4 are 0.5. 

The novel strategy of 𝛼𝛼𝛼𝛼 wolf mutation position 
update, which is based on the Lévy flight 
mechanism, enhances the range and diversity of 
the population [41] This approach, leveraging 
the learning mechanism from the alpha wolf, 
notably boosts the global search capacity of the 

wolf population, thereby offering a significant 
improvement over the original position update 
method. 

3.1.2. Elite opposition-based 
learning 

Elite Opposition-based learning is an innovative 
technique in intelligent computing [9]. It is based 
on estimations and respective counter-
estimations [10]. This is achieved by creating a 
counter-population using the elite individuals 
from the existing population [9]. The definition 
of the elite inverse solution is predicated on the 
presumption that the current population’s most 
exceptional individual is the elite [16]: 

𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,1𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,2𝑡𝑡𝑡𝑡 , … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖′,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (9) 

then for any 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , the inverse result with respect 
to the elites is: 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = �𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,1𝑡𝑡𝑡𝑡 , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,2𝑡𝑡𝑡𝑡 , … , 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 � (10) 
𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑘𝑘�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  (11) 

𝐺𝐺𝐺𝐺 = 1,2, … ,𝐺𝐺𝐺𝐺, 

where 𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟 (0,1), 𝐺𝐺𝐺𝐺  represents the 
population size of the stock, 𝑟𝑟𝑟𝑟  signifies the 
dimensionality of 𝑥𝑥𝑥𝑥 . 𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗

𝑡𝑡𝑡𝑡 𝜖𝜖𝜖𝜖�𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� , 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  and 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡  are the lower and upper bounds of the 
antagonistic solution and they are obtained by: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = min (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 ) (12) 
𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = max�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 �. (13) 

Inspired by the original elite reverse learning, a 
learning strategy is proposed in this article, with 
𝛼𝛼𝛼𝛼 , 𝛽𝛽𝛽𝛽 , and 𝛿𝛿𝛿𝛿  wolves serving as the elite 
individuals. The specific program is divided into 
three plans. The first part is designed to make all 
individuals learn from the 𝛼𝛼𝛼𝛼 wolf: 

𝐺𝐺𝐺𝐺1𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 2𝑥𝑥𝑥𝑥𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡 − 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 . (14) 

Equation (20) defines the learning of individuals 
from α wolves, and all wolves generate reverse 
individuals based on the alpha wolf, for β and δ, 
with the following two strategies: 

𝐺𝐺𝐺𝐺2𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (15) 

𝐺𝐺𝐺𝐺3𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝐿𝐿𝐿𝐿(𝜆𝜆𝜆𝜆) ⊕ �𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 + 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 −
𝑥𝑥𝑥𝑥𝛽𝛽𝛽𝛽
𝑡𝑡𝑡𝑡 +𝑥𝑥𝑥𝑥𝛿𝛿𝛿𝛿
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− 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 � (16) 

Equations (21)-(22) determine the two ways in 
which β and δ co-direct individuals.  

The optimal reverse solution will arise between 
these three approaches. With this approach, all 
individuals fully reference the position of the 
leader wolf and generate rich versions of the 
inverse, which not only maximizes the use of the 
leader’s information but also gives the inverse 
solution a variety of choices. 
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Equations (21)-(22) determine the two ways in which 
β and δ co-direct individuals. 
The optimal reverse solution will arise between these 
three approaches. With this approach, all individu-
als fully reference the position of the leader wolf and 
generate rich versions of the inverse, which not only 
maximizes the use of the leader’s information but also 
gives the inverse solution a variety of choices.

3.1.3. Greedy Selection Strategy
Greedy strategy is a strategy that selects the option 
that currently seems best at each decision point, 
without considering the long-term implications, and 
focuses on the best option immediately available. In-
spired by the greedy strategy in the DE algorithm and 
the pitch adjustment method in the cuckoo algorithm 
[2], Each gray wolf incorporates the following greedy 
selection:

3.1.3. Greedy Selection 
Strategy 

Greedy strategy is a strategy that selects the 
option that currently seems best at each decision 
point, without considering the long-term 
implications, and focuses on the best option 
immediately available. Inspired by the greedy 
strategy in the DE algorithm and the pitch 
adjustment method in the cuckoo algorithm [2], 
Each gray wolf incorporates the following 
greedy selection: 

�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡 + 1) = �𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥
(𝑡𝑡𝑡𝑡), 𝑓𝑓𝑓𝑓�𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)� < 𝑓𝑓𝑓𝑓��⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)� 
�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), 𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒

, (17) 

where 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) represents the inverse solution 
that minimizes the fitness after 𝑡𝑡𝑡𝑡 iterations and 
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) is obtained in 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺{1,2,3}. As we 
all know, Lévy flight is characterized by long-

distance movement and randomness, so as the 
algorithm iterates, the search space will continue 
to increase, and elite opposition-based learning 
will also augment the population. This type of 
greedy strategy not only balances the diversity 
of the late-stage population to a certain extent, 
but also adheres to the "natural selection" law of 
grey wolves in the natural world. Individuals 
with superior mutations or better performances 
will have the chance to survive, continuing to 
find higher quality solutions. 

3.1.4. The Pseudo-Code of 
the Proposed CGWO 
Optimizer 

The pseudo-code for OGWO is shown as in 
Algorithm 1 

Algorithm 1  
1. Determine the initial population size N and number of iterations T 
2. Randomly generate the initial population of wolves 
3. Initialize the position of populations randomly 
4. Get the fitness of each wolf 
5. 𝑋𝑋𝑋𝑋𝛼𝛼𝛼𝛼= the fittest wolf 
6. 𝑋𝑋𝑋𝑋𝛽𝛽𝛽𝛽= the second best wolf 
7. 𝑋𝑋𝑋𝑋𝛿𝛿𝛿𝛿= the third best wolf 
8. For t = 1 : T 
9.    for i = 1 : N 
10.      Update the position of 𝛼𝛼𝛼𝛼 by Equation (8) 
11.      Perform Elite Opposition-based learning by Equations (14)-(16) 
12.      Perform Greedy strategy by Equation (17) 
13.    end 
14.    Update the 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽, and 𝛿𝛿𝛿𝛿  
15.    The best fitness = 𝑋𝑋𝑋𝑋𝛼𝛼𝛼𝛼 
16. End 

3.1.5. Complexity Analysis 
For time complexity，For OGWO, suppose we 
have 𝑁𝑁𝑁𝑁 grey wolves, each of which needs to 
optimize a 𝐷𝐷𝐷𝐷-dimensional problem and then 
perform 𝑇𝑇𝑇𝑇  iterations. In each iteration, each 
grey wolf needs to update its position, which 
takes 𝑂𝑂𝑂𝑂(𝐷𝐷𝐷𝐷)  time. Thus, each iteration takes 
𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷) time. If 𝑇𝑇𝑇𝑇 iterations are performed, 
then the total time complexity will be 𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇 ∗
𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷), which is consistent with GWO. 
For the space complexity, it is obvious that the 
space complexity in the case of the same 𝑁𝑁𝑁𝑁 
and 𝐷𝐷𝐷𝐷 are both 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷), occupying the same 
amount of space. Comprehensive analysis 

shows that OGWO improves the utilization of 
time and space. 

 

3.2. OGWO-MLP 
3.2.1. Multilayer Perceptron 

The Multilayer Perceptron (MLP) is a 
computational model imitating biological neural 
systems, adept at handling nonlinear, noise-
impacted data [28]. MLP comprises numerous 
interconnected neurons in a cascading, graph-
like structure, divided into input, hidden, and 
output layers [6]. Each neuron, excluding the 
input layer, uses a non-linear activation function 
for information transmission and processing. 

(17)

where 

3.1.3. Greedy Selection 
Strategy 

Greedy strategy is a strategy that selects the 
option that currently seems best at each decision 
point, without considering the long-term 
implications, and focuses on the best option 
immediately available. Inspired by the greedy 
strategy in the DE algorithm and the pitch 
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where 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) represents the inverse solution 
that minimizes the fitness after 𝑡𝑡𝑡𝑡 iterations and 
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) is obtained in 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖�⃗�𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺{1,2,3}. As we 
all know, Lévy flight is characterized by long-

distance movement and randomness, so as the 
algorithm iterates, the search space will continue 
to increase, and elite opposition-based learning 
will also augment the population. This type of 
greedy strategy not only balances the diversity 
of the late-stage population to a certain extent, 
but also adheres to the "natural selection" law of 
grey wolves in the natural world. Individuals 
with superior mutations or better performances 
will have the chance to survive, continuing to 
find higher quality solutions. 

3.1.4. The Pseudo-Code of 
the Proposed CGWO 
Optimizer 

The pseudo-code for OGWO is shown as in 
Algorithm 1 

Algorithm 1  
1. Determine the initial population size N and number of iterations T 
2. Randomly generate the initial population of wolves 
3. Initialize the position of populations randomly 
4. Get the fitness of each wolf 
5. 𝑋𝑋𝑋𝑋𝛼𝛼𝛼𝛼= the fittest wolf 
6. 𝑋𝑋𝑋𝑋𝛽𝛽𝛽𝛽= the second best wolf 
7. 𝑋𝑋𝑋𝑋𝛿𝛿𝛿𝛿= the third best wolf 
8. For t = 1 : T 
9.    for i = 1 : N 
10.      Update the position of 𝛼𝛼𝛼𝛼 by Equation (8) 
11.      Perform Elite Opposition-based learning by Equations (14)-(16) 
12.      Perform Greedy strategy by Equation (17) 
13.    end 
14.    Update the 𝛼𝛼𝛼𝛼, 𝛽𝛽𝛽𝛽, and 𝛿𝛿𝛿𝛿  
15.    The best fitness = 𝑋𝑋𝑋𝑋𝛼𝛼𝛼𝛼 
16. End 

3.1.5. Complexity Analysis 
For time complexity，For OGWO, suppose we 
have 𝑁𝑁𝑁𝑁 grey wolves, each of which needs to 
optimize a 𝐷𝐷𝐷𝐷-dimensional problem and then 
perform 𝑇𝑇𝑇𝑇  iterations. In each iteration, each 
grey wolf needs to update its position, which 
takes 𝑂𝑂𝑂𝑂(𝐷𝐷𝐷𝐷)  time. Thus, each iteration takes 
𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷) time. If 𝑇𝑇𝑇𝑇 iterations are performed, 
then the total time complexity will be 𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇 ∗
𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷), which is consistent with GWO. 
For the space complexity, it is obvious that the 
space complexity in the case of the same 𝑁𝑁𝑁𝑁 
and 𝐷𝐷𝐷𝐷 are both 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁 ∗ 𝐷𝐷𝐷𝐷), occupying the same 
amount of space. Comprehensive analysis 

shows that OGWO improves the utilization of 
time and space. 

 

3.2. OGWO-MLP 
3.2.1. Multilayer Perceptron 

The Multilayer Perceptron (MLP) is a 
computational model imitating biological neural 
systems, adept at handling nonlinear, noise-
impacted data [28]. MLP comprises numerous 
interconnected neurons in a cascading, graph-
like structure, divided into input, hidden, and 
output layers [6]. Each neuron, excluding the 
input layer, uses a non-linear activation function 
for information transmission and processing. 
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position-based learning will also augment the popu-
lation. This type of greedy strategy not only balances 
the diversity of the late-stage population to a certain 
extent, but also adheres to the “natural selection” law 
of grey wolves in the natural world. Individuals with 
superior mutations or better performances will have 
the chance to survive, continuing to find higher qual-
ity solutions.

3.1.4. The Pseudo-Code of the Proposed CGWO 
Optimizer

The pseudo-code for OGWO is shown as in Algorithm 1

Algorithm 1 

Determine the initial population size N and number 
of iterations T

Randomly generate the initial population of wolves

Initialize the position of populations randomly

Get the fitness of each wolf

Xα= the fittest wolf

Xβ = the second best wolf

Xδ = the third best wolf

For t = 1 : T

   for i = 1 : N

     Update the position of α by Equation (8)

    Perform Elite Opposition-based learning by Equa-
tions (14)-(16)

     Perform Greedy strategy by Equation (17)

   end

   Update the α, β, and δ 

   The best fitness = Xα

End

3.1.5. Complexity Analysis
For time complexity, For OGWO, suppose we have  N 
grey wolves, each of which needs to optimize a D-di-
mensional problem and then perform T iterations. 
In each iteration, each grey wolf needs to update its 
position, which takes O(D) time. Thus, each iteration 
takes (O(N ∗ D) time. If T iterations are performed, 
then the total time complexity will be (O(T ∗ N ∗ D), 
which is consistent with GWO.

For the space complexity, it is obvious that the space 
complexity in the case of the same N and D are both 
(O(N ∗ D), occupying the same amount of space. Com-
prehensive analysis shows that OGWO improves the 
utilization of time and space.

3.2. OGWO-MLP
3.2.1. Multilayer Perceptron
The Multilayer Perceptron (MLP) is a computation-
al model imitating biological neural systems, adept at 
handling nonlinear, noise-impacted data [28]. MLP 
comprises numerous interconnected neurons in a 
cascading, graph-like structure, divided into input, 
hidden, and output layers [6]. Each neuron, excluding 
the input layer, uses a non-linear activation function 
for information transmission and processing. Heu-
ristic algorithms serve as efficient tools for replacing 
gradient-based learning algorithms in neural network 
training [29]. In this research, OGWO fine-tunes the 
network parameters, including weights and biases, 
enhancing the network’s performance. Figure 7 de-
picts an MLP’s three-layer structure.

Figure 5
Architecture of a multi-Layer perceptron

Heuristic algorithms serve as efficient tools for 
replacing gradient-based learning algorithms in 
neural network training [29]. In this research, 
OGWO fine-tunes the network parameters, 
including weights and biases, enhancing the 
network's performance. Figure 7 depicts an 
MLP's three-layer structure. 

 
Figure 5 

Architecture of a multi-Layer perceptron. 

Figure 5 depicts an MLP's three-layer 
structure,where 𝐺𝐺𝐺𝐺, 𝑗𝑗𝑗𝑗 ,𝑘𝑘𝑘𝑘 respectively denote the 
indices of the input layer, hidden layer, and 
output layer, 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙  is defined as the connection 
weight from the  𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡ℎ  neuron in the (𝑙𝑙𝑙𝑙 − 1)𝑡𝑡𝑡𝑡ℎ 
layer to the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ neuron in the 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡ℎ layer.  

 
3.2.2. Combination of OGWO 

and MLP 
The training process unfolds through four 
pivotal stages: data preprocessing, model 
training, performance evaluation, and result 
prediction [7]. The whole process is shown in the 
Figure 6. The OGWO-based network training 
process is employed for a classification task. 
Once the weights and biases are established, 
they allow the network to predict outputs for 
various inputs. The model’s performance is 
enhanced by dynamically adjusting weight 
parameters and leveraging the unique features 
of the hidden layer structure, thereby improving 
classification accuracy. In this approach, the 
structure of each wolf is mapped to the weights 
and biases of a neural network, as shown in the 
Figure 7. 

 
Figure 6 

Schematic diagram of OGWO-MLP. 

 
Figure 7 

Mapping of an OGWO solution. 

3.2.3. Performance Evaluation 
Metrics 

The evaluation adopts an array of standard 
performance metrics, such as accuracy, 
precision, recall, and the F1 score [5]. These 
metrics stem from the four components of the 
confusion matrix, which include True Positives 
(TP), False Positives (FP), True Negatives (TN), 
and False Negatives (FN). To further illustrate 
performance, the Area Under the Curve (AUC) 
for the Receiver Operating Characteristics (ROC) 
curve is also calculated. The definition formulas 
are as follows: 

• Accuracy: The ratio of correct predictions to 
the total number of instances.  

Accuracy = TP+TN
TP+TN+FP+FN

 (18) 

• Precision: The ratio of correctly predicted 
positive cases to all predicted positive instances. 

Precision = TP
TP+FP

 (19) 

• Recall: The percentage of accurately identified 
positive outcomes from the total pool of actual 
positive instances. 
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3.2.3. Performance Evaluation 
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The evaluation adopts an array of standard 
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performance, the Area Under the Curve (AUC) 
for the Receiver Operating Characteristics (ROC) 
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are as follows: 

• Accuracy: The ratio of correct predictions to 
the total number of instances.  

Accuracy = TP+TN
TP+TN+FP+FN

 (18) 

• Precision: The ratio of correctly predicted 
positive cases to all predicted positive instances. 

Precision = TP
TP+FP

 (19) 

• Recall: The percentage of accurately identified 
positive outcomes from the total pool of actual 
positive instances. 

Input Layer
Hidden Layers

Output Layer

𝐺𝐺𝐺𝐺1

𝐺𝐺𝐺𝐺2

𝐺𝐺𝐺𝐺3

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑗𝑗𝑗𝑗1

𝑗𝑗𝑗𝑗2

𝑗𝑗𝑗𝑗3

𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺

𝑘𝑘𝑘𝑘1

𝑘𝑘𝑘𝑘2

𝑘𝑘𝑘𝑘3

𝑘𝑘𝑘𝑘𝐺𝐺𝐺𝐺

𝑒𝑒𝑒𝑒𝐺𝐺𝐺𝐺1𝑗𝑗𝑗𝑗1 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗1𝑘𝑘𝑘𝑘1

Row Data
EDA

preprocessing

Test Dataset

Training Dataset

Learning 
Algorithm

Validated 
Model

Class Labels

New Data
Class 

Labels

Application Evaluation

𝐺𝐺𝐺𝐺1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1

𝑗𝑗𝑗𝑗1

𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺′

𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺2

𝑘𝑘𝑘𝑘
𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺′ 𝑘𝑘𝑘𝑘

𝒘𝒘𝒊𝒊𝟏𝟏𝒋𝒋𝟏𝟏 𝒘𝒘𝒊𝒊𝒏𝒏𝟏𝟏𝒋𝒋𝒏𝒏𝟐𝟐
𝒘𝒘𝒋𝒋𝟏𝟏𝒌𝒌 𝒘𝒘𝒋𝒋𝒏𝒏𝟐𝟐𝒌𝒌

𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1

𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺′

𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝐺𝐺𝐺𝐺2

𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘

𝒃𝒃𝒋𝒋𝟏𝟏 𝒃𝒃𝒌𝒌

 is defined as the 
connection weight from the jth  neuron in the (l –1)th  
layer to the kth neuron in the lth  layer. 

3.2.2. Combination of OGWO and MLP
The training process unfolds through four pivotal 
stages: data preprocessing, model training, perfor-
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mance evaluation, and result prediction [7]. The 
whole process is shown in the Figure 6. The OG-
WO-based network training process is employed for 
a classification task. Once the weights and biases are 
established, they allow the network to predict out-
puts for various inputs. The model’s performance is 
enhanced by dynamically adjusting weight parame-
ters and leveraging the unique features of the hidden 
layer structure, thereby improving classification ac-
curacy. In this approach, the structure of each wolf is 
mapped to the weights and biases of a neural network, 
as shown in the Figure 7.

3.2.3. Performance Evaluation Metrics
The evaluation adopts an array of standard perfor-
mance metrics, such as accuracy, precision, recall, 
and the F1 score [5]. These metrics stem from the four 
components of the confusion matrix, which include 
True Positives (TP), False Positives (FP), True Nega-
tives (TN), and False Negatives (FN). To further illus-
trate performance, the Area Under the Curve (AUC) 
for the Receiver Operating Characteristics (ROC) 
curve is also calculated. The definition formulas are 
as follows:
 _ Accuracy: The ratio of correct predictions to the 
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are as follows: 

• Accuracy: The ratio of correct predictions to 
the total number of instances.  

Accuracy = TP+TN
TP+TN+FP+FN

 (18) 

• Precision: The ratio of correctly predicted 
positive cases to all predicted positive instances. 

Precision = TP
TP+FP

 (19) 

• Recall: The percentage of accurately identified 
positive outcomes from the total pool of actual 
positive instances. 
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 _ Precision: The ratio of correctly predicted positive 
cases to all predicted positive instances.

Heuristic algorithms serve as efficient tools for 
replacing gradient-based learning algorithms in 
neural network training [29]. In this research, 
OGWO fine-tunes the network parameters, 
including weights and biases, enhancing the 
network's performance. Figure 7 depicts an 
MLP's three-layer structure. 

 
Figure 5 

Architecture of a multi-Layer perceptron. 

Figure 5 depicts an MLP's three-layer 
structure,where 𝐺𝐺𝐺𝐺, 𝑗𝑗𝑗𝑗 ,𝑘𝑘𝑘𝑘 respectively denote the 
indices of the input layer, hidden layer, and 
output layer, 𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑙𝑙𝑙𝑙  is defined as the connection 
weight from the  𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡ℎ  neuron in the (𝑙𝑙𝑙𝑙 − 1)𝑡𝑡𝑡𝑡ℎ 
layer to the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ neuron in the 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡ℎ layer.  

 
3.2.2. Combination of OGWO 

and MLP 
The training process unfolds through four 
pivotal stages: data preprocessing, model 
training, performance evaluation, and result 
prediction [7]. The whole process is shown in the 
Figure 6. The OGWO-based network training 
process is employed for a classification task. 
Once the weights and biases are established, 
they allow the network to predict outputs for 
various inputs. The model’s performance is 
enhanced by dynamically adjusting weight 
parameters and leveraging the unique features 
of the hidden layer structure, thereby improving 
classification accuracy. In this approach, the 
structure of each wolf is mapped to the weights 
and biases of a neural network, as shown in the 
Figure 7. 

 
Figure 6 

Schematic diagram of OGWO-MLP. 

 
Figure 7 

Mapping of an OGWO solution. 

3.2.3. Performance Evaluation 
Metrics 

The evaluation adopts an array of standard 
performance metrics, such as accuracy, 
precision, recall, and the F1 score [5]. These 
metrics stem from the four components of the 
confusion matrix, which include True Positives 
(TP), False Positives (FP), True Negatives (TN), 
and False Negatives (FN). To further illustrate 
performance, the Area Under the Curve (AUC) 
for the Receiver Operating Characteristics (ROC) 
curve is also calculated. The definition formulas 
are as follows: 

• Accuracy: The ratio of correct predictions to 
the total number of instances.  

Accuracy = TP+TN
TP+TN+FP+FN

 (18) 

• Precision: The ratio of correctly predicted 
positive cases to all predicted positive instances. 

Precision = TP
TP+FP

 (19) 

• Recall: The percentage of accurately identified 
positive outcomes from the total pool of actual 
positive instances. 
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(19)

 _ Recall: The percentage of accurately identified 
positive outcomes from the total pool of actual 
positive instances.

Recall = TP
TP+FN

 (20) 

• F1 Score: The harmonic mean of Precision and 
Recall, providing a balanced measure between 
these two metrics. 

F1 Score = 2 × Precision×Recall
Precision+Recall

 (21) 

• AUC-ROC Curve: The ROC curve is a 
probability graph that illustrates the ability of a 
model to distinguish between classes.  

FPR = FP
FP+TN

 (22) 

4. Simulation Experiment and 
Result Analysis 

The research involves three primary 
experimental investigations:  

(1) The first compares the enhanced OGWO with 
other models and the standard GWO in 30 and 
500 dimensions. 

(2) The second validates OGWO's superior 
performance against other advanced GWOs. 

(3) The third uses a Wilcoxon rank-sum test to 
statistically differentiate OGWO's performance 
from other algorithms tested in Experiment (1). 

 

4.1. Experimental Setup 
Test function selection is pivotal for the 
validation and comparative analysis of 
optimization algorithms [19]. This paper utilizes 
20 diverse benchmark test functions [13] to 
evaluate the improved algorithm's performance, 
including global search capability, convergence 
precision, and efficiency. 𝑓𝑓𝑓𝑓1 to 𝑓𝑓𝑓𝑓9 test precision 
as they are unimodal and challenging to 
converge to the optimum. 𝑓𝑓𝑓𝑓10  to 𝑓𝑓𝑓𝑓16 , being 
multimodal with multiple extrema, test the 
algorithm's global search capability. The last 
functions are fixed, low-dimensional ones. This 
selection strategy ensures a balanced, unbiased 
assessment of the algorithm's overall 
performance. 

Table 1 lists the names, search ranges, and 
optimal solutions for all 20 benchmark functions. 
These tests were conducted using a population 
size of 20 and a maximum of 250 iterations. Each 
function was independently tested 25 times on a 

PC with a 13th Gen Intel Core i9, 16GB RAM, 
Windows 11, using MATLAB R2023b. 

Table 1 

The test functions. 
NO
.  

Names Search ranges 
Optimal 
solutions 

1 Sphere [−100,100] 0 

2 
Schumer 
Steiglitz 

[−10,10] 0 

3 Powell Sum [−1,1] 0 

4 
Rotated hyper-
ellipsoid 

[−65.536,65.536] 0 

5 SchwefelsP2.21 [−10,10] 0 
6 Quartic [−1.28,1.28] 0 
7 Rosenbrock [−30,30] 0 

8 Streched V Sine 
Wave 

[−10,10] 0 

9 Brown [−1,4] 0 
10 Csendes [−1,1] 0 
11 Wavy [-𝜋𝜋𝜋𝜋,𝜋𝜋𝜋𝜋] 0 
12 Ackley [−32,32] 0 
13 Rastrigin [−5.12,5.12] 0 
14 Zakharov [−5,10] 0 
15 Griewank [−600,600] 0 
16 Pinter [−10,10] 0 
17 Matyas [−10,10] 0 
18 Rotated Ellipse [−500,500] 0 
19 Shekel [−10,10] −10.5364 
20 Periodic [−10,10] 0.9 

4.2 Comparison of OGWO 
with Other Optimizer 

Experiment (1) assesses the performance of 
OGWO through a comparative analysis with 
other intelligent algorithms, namely Seagull 
Optimization Algorithm (SOA), Dandelion-
Optimizer (DO), Gravitational Search Algorithm 
(GSA), Moth-Flame Optimization Algorithm 
(MFO), Liver Cancer Algorithm (LCA), and the 
standard GWO. The comparative evaluation is 
based on each optimizer's highest, average 
value, and standard deviation. Table 2 
encapsulates the results, with the superior 
outcomes for each function emphasized in bold. 

To further illustrate the advantages of OGWO, 
the convergence curves of all algorithms on each 
test function are shown in Figure 5. 

 

Table 2 

Test results of Experiment (1). 
NO. Dimension Results SOA DO GSA MFO LCA GWO OGWO 
1 30 Best 1.2059e-04 6.3479e-03 2.8101e+02 3.7780e+02 3.3326e-03 1.0944e-10 2.3478e-

(20)

 _ F1 Score: The harmonic mean of Precision and 
Recall, providing a balanced measure between 
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these two metrics.

Recall = TP
TP+FN

 (20) 

• F1 Score: The harmonic mean of Precision and 
Recall, providing a balanced measure between 
these two metrics. 

F1 Score = 2 × Precision×Recall
Precision+Recall

 (21) 

• AUC-ROC Curve: The ROC curve is a 
probability graph that illustrates the ability of a 
model to distinguish between classes.  

FPR = FP
FP+TN

 (22) 

4. Simulation Experiment and 
Result Analysis 

The research involves three primary 
experimental investigations:  

(1) The first compares the enhanced OGWO with 
other models and the standard GWO in 30 and 
500 dimensions. 

(2) The second validates OGWO's superior 
performance against other advanced GWOs. 

(3) The third uses a Wilcoxon rank-sum test to 
statistically differentiate OGWO's performance 
from other algorithms tested in Experiment (1). 

 

4.1. Experimental Setup 
Test function selection is pivotal for the 
validation and comparative analysis of 
optimization algorithms [19]. This paper utilizes 
20 diverse benchmark test functions [13] to 
evaluate the improved algorithm's performance, 
including global search capability, convergence 
precision, and efficiency. 𝑓𝑓𝑓𝑓1 to 𝑓𝑓𝑓𝑓9 test precision 
as they are unimodal and challenging to 
converge to the optimum. 𝑓𝑓𝑓𝑓10  to 𝑓𝑓𝑓𝑓16 , being 
multimodal with multiple extrema, test the 
algorithm's global search capability. The last 
functions are fixed, low-dimensional ones. This 
selection strategy ensures a balanced, unbiased 
assessment of the algorithm's overall 
performance. 

Table 1 lists the names, search ranges, and 
optimal solutions for all 20 benchmark functions. 
These tests were conducted using a population 
size of 20 and a maximum of 250 iterations. Each 
function was independently tested 25 times on a 

PC with a 13th Gen Intel Core i9, 16GB RAM, 
Windows 11, using MATLAB R2023b. 

Table 1 

The test functions. 
NO
.  

Names Search ranges 
Optimal 
solutions 

1 Sphere [−100,100] 0 

2 
Schumer 
Steiglitz 

[−10,10] 0 

3 Powell Sum [−1,1] 0 

4 
Rotated hyper-
ellipsoid 

[−65.536,65.536] 0 

5 SchwefelsP2.21 [−10,10] 0 
6 Quartic [−1.28,1.28] 0 
7 Rosenbrock [−30,30] 0 

8 Streched V Sine 
Wave 

[−10,10] 0 

9 Brown [−1,4] 0 
10 Csendes [−1,1] 0 
11 Wavy [-𝜋𝜋𝜋𝜋,𝜋𝜋𝜋𝜋] 0 
12 Ackley [−32,32] 0 
13 Rastrigin [−5.12,5.12] 0 
14 Zakharov [−5,10] 0 
15 Griewank [−600,600] 0 
16 Pinter [−10,10] 0 
17 Matyas [−10,10] 0 
18 Rotated Ellipse [−500,500] 0 
19 Shekel [−10,10] −10.5364 
20 Periodic [−10,10] 0.9 

4.2 Comparison of OGWO 
with Other Optimizer 

Experiment (1) assesses the performance of 
OGWO through a comparative analysis with 
other intelligent algorithms, namely Seagull 
Optimization Algorithm (SOA), Dandelion-
Optimizer (DO), Gravitational Search Algorithm 
(GSA), Moth-Flame Optimization Algorithm 
(MFO), Liver Cancer Algorithm (LCA), and the 
standard GWO. The comparative evaluation is 
based on each optimizer's highest, average 
value, and standard deviation. Table 2 
encapsulates the results, with the superior 
outcomes for each function emphasized in bold. 

To further illustrate the advantages of OGWO, 
the convergence curves of all algorithms on each 
test function are shown in Figure 5. 

 

Table 2 

Test results of Experiment (1). 
NO. Dimension Results SOA DO GSA MFO LCA GWO OGWO 
1 30 Best 1.2059e-04 6.3479e-03 2.8101e+02 3.7780e+02 3.3326e-03 1.0944e-10 2.3478e-

(21)

 _ AUC-ROC Curve: The ROC curve is a probability 
graph that illustrates the ability of a model to 
distinguish between classes. 

Recall = TP
TP+FN

 (20) 

• F1 Score: The harmonic mean of Precision and 
Recall, providing a balanced measure between 
these two metrics. 

F1 Score = 2 × Precision×Recall
Precision+Recall

 (21) 

• AUC-ROC Curve: The ROC curve is a 
probability graph that illustrates the ability of a 
model to distinguish between classes.  

FPR = FP
FP+TN

 (22) 

4. Simulation Experiment and 
Result Analysis 

The research involves three primary 
experimental investigations:  

(1) The first compares the enhanced OGWO with 
other models and the standard GWO in 30 and 
500 dimensions. 

(2) The second validates OGWO's superior 
performance against other advanced GWOs. 

(3) The third uses a Wilcoxon rank-sum test to 
statistically differentiate OGWO's performance 
from other algorithms tested in Experiment (1). 

 

4.1. Experimental Setup 
Test function selection is pivotal for the 
validation and comparative analysis of 
optimization algorithms [19]. This paper utilizes 
20 diverse benchmark test functions [13] to 
evaluate the improved algorithm's performance, 
including global search capability, convergence 
precision, and efficiency. 𝑓𝑓𝑓𝑓1 to 𝑓𝑓𝑓𝑓9 test precision 
as they are unimodal and challenging to 
converge to the optimum. 𝑓𝑓𝑓𝑓10  to 𝑓𝑓𝑓𝑓16 , being 
multimodal with multiple extrema, test the 
algorithm's global search capability. The last 
functions are fixed, low-dimensional ones. This 
selection strategy ensures a balanced, unbiased 
assessment of the algorithm's overall 
performance. 

Table 1 lists the names, search ranges, and 
optimal solutions for all 20 benchmark functions. 
These tests were conducted using a population 
size of 20 and a maximum of 250 iterations. Each 
function was independently tested 25 times on a 

PC with a 13th Gen Intel Core i9, 16GB RAM, 
Windows 11, using MATLAB R2023b. 

Table 1 

The test functions. 
NO
.  

Names Search ranges 
Optimal 
solutions 

1 Sphere [−100,100] 0 

2 
Schumer 
Steiglitz 

[−10,10] 0 

3 Powell Sum [−1,1] 0 

4 
Rotated hyper-
ellipsoid 

[−65.536,65.536] 0 

5 SchwefelsP2.21 [−10,10] 0 
6 Quartic [−1.28,1.28] 0 
7 Rosenbrock [−30,30] 0 

8 Streched V Sine 
Wave 

[−10,10] 0 

9 Brown [−1,4] 0 
10 Csendes [−1,1] 0 
11 Wavy [-𝜋𝜋𝜋𝜋,𝜋𝜋𝜋𝜋] 0 
12 Ackley [−32,32] 0 
13 Rastrigin [−5.12,5.12] 0 
14 Zakharov [−5,10] 0 
15 Griewank [−600,600] 0 
16 Pinter [−10,10] 0 
17 Matyas [−10,10] 0 
18 Rotated Ellipse [−500,500] 0 
19 Shekel [−10,10] −10.5364 
20 Periodic [−10,10] 0.9 

4.2 Comparison of OGWO 
with Other Optimizer 

Experiment (1) assesses the performance of 
OGWO through a comparative analysis with 
other intelligent algorithms, namely Seagull 
Optimization Algorithm (SOA), Dandelion-
Optimizer (DO), Gravitational Search Algorithm 
(GSA), Moth-Flame Optimization Algorithm 
(MFO), Liver Cancer Algorithm (LCA), and the 
standard GWO. The comparative evaluation is 
based on each optimizer's highest, average 
value, and standard deviation. Table 2 
encapsulates the results, with the superior 
outcomes for each function emphasized in bold. 

To further illustrate the advantages of OGWO, 
the convergence curves of all algorithms on each 
test function are shown in Figure 5. 

 

Table 2 

Test results of Experiment (1). 
NO. Dimension Results SOA DO GSA MFO LCA GWO OGWO 
1 30 Best 1.2059e-04 6.3479e-03 2.8101e+02 3.7780e+02 3.3326e-03 1.0944e-10 2.3478e-

(22)

4. Simulation Experiment and Result 
Analysis
The research involves three primary experimental in-
vestigations: 
1 The first compares the enhanced OGWO with oth-

er models and the standard GWO in 30 and 500 di-
mensions.

2 The second validates OGWO’s superior perfor-
mance against other advanced GWOs.

3 The third uses a Wilcoxon rank-sum test to sta-
tistically differentiate OGWO’s performance from 
other algorithms tested in Experiment (1).

4.1. Experimental Setup
Test function selection is pivotal for the validation 
and comparative analysis of optimization algorithms 
[19]. This paper utilizes 20 diverse benchmark test 
functions [13] to evaluate the improved algorithm’s 
performance, including global search capability, con-
vergence precision, and efficiency. f1 to f9 test preci-
sion as they are unimodal and challenging to converge 
to the optimum. f10 to f16, being multimodal with mul-
tiple extrema, test the algorithm’s global search capa-
bility. The last functions are fixed, low-dimensional 
ones. This selection strategy ensures a balanced, un-
biased assessment of the algorithm’s overall perfor-
mance.
Table 1 lists the names, search ranges, and optimal 
solutions for all 20 benchmark functions. These tests 
were conducted using a population size of 20 and a 
maximum of 250 iterations. Each function was inde-
pendently tested 25 times on a PC with a 13th Gen In-
tel Core i9, 16GB RAM, Windows 11, using MATLAB 
R2023b.

Table 1
The test functions

NO. Names Search ranges Optimal 
solutions

1 Sphere [–100, 100] 0
2 Schumer Steiglitz [–10, 10] 0
3 Powell Sum [–1,1] 0

4 Rotated  
hyper-ellipsoid [–65.536, –65.536] 0

5 SchwefelsP2.21 [–10, 10] 0
6 Quartic [–1.28, 1.28] 0
7 Rosenbrock [–30, 30] 0

8 Streched V Sine 
Wave [–10, 10] 0

9 Brown [–1,4] 0
10 Csendes [–1,1] 0
11 Wavy [-π, π] 0
12 Ackley [–32, 32] 0
13 Rastrigin [–5.12, 5.12] 0
14 Zakharov [–5, 10] 0
15 Griewank [–600, 600] 0
16 Pinter [–10, 10] 0
17 Matyas [–10, 10] 0
18 Rotated Ellipse [–500, 500] 0
19 Shekel [–10, 10] –10.5364
20 Periodic [–10, 10] 0.9

4.2. Comparison of OGWO with Other 
Optimizer
Experiment (1) assesses the performance of OGWO 
through a comparative analysis with other intelligent 
algorithms, namely Seagull Optimization Algorithm 
(SOA), Dandelion-Optimizer (DO), Gravitational 
Search Algorithm (GSA), Moth-Flame Optimization 
Algorithm (MFO), Liver Cancer Algorithm (LCA), 
and the standard GWO. The comparative evaluation 
is based on each optimizer’s highest, average value, 
and standard deviation. Table 2 encapsulates the re-
sults, with the superior outcomes for each function 
emphasized in bold.
To further illustrate the advantages of OGWO, the 
convergence curves of all algorithms on each test 
function are shown in Figure 5.
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Table 2
Test results of Experiment (1).

NO. Dimension Results SOA DO GSA MFO LCA GWO OGWO

1

30
Best

Mean
Std

1.2059e-04
1.2065e-03
1.1196e-03

6.3479e-03 
2.3211e-02
1.3864e-02

2.8101e+02
1.3474e+03
6.3360e+02

3.7780e+02
3.5061e+03
4.4108e+03

3.3326e-03 
1.0998e+00
2.5628e+00

1.0944e-10
1.3853e-09
2.4579e-09

2.3478e-129
1.8054e-102
9.0120e-102

500
Best

Mean
Std

1.5895e+02
4.9532e+02
2.2300e+02

4.5892e+04
7.2025e+04
1.3131e+04

2.6298e+05
2.7755e+05
6.7875e+03

1.2358e+06
1.3213e+06
3.7116e+04

2.7912e-01
8.9029e+00
1.1911e+01

9.4378e+01
1.5831e+02
3.6832e+02

1.2768e-118
3.9848e-93
1.6435e-92

2

30
Best

Mean
Std

3.7301e-11
2.0429e-08
5.3805e-08

1.1929e-08
5.0143e-07
8.0078e-07

3.0545e-02
8.9497e-01
1.2132e+00

1.1744e+01
8.8287e+01
7.4943e+01

3.5864e-11
4.0911e-06
9.2785e-06

1.0794e-22
1.8674e-18
7.1588e-18

8.0414e-245
2.9529e-206

0

500
Best

Mean
Std

6.0507e+01
4.7411e+02
4.5989e+02

2.6205e+04 
5.2470e+04 
1.7024e+04

2.5216e+03
3.2953e+03
4.9397e+02

6.6907e+05
7.3586e+05
3.0672e+04

2.3540e-10
1.7179e-04
6.9723e-04

2.7001e-01
1.2161e+00
7.8817e-01

3.1794e-224
1.6413e-171

0

3

30
Best

Mean
Std

1.3116e-26
4.0619e-13
2.0213e-12

2.7435e-12
4.5624e-11
7.2546e-11

7.9290e-08
4.0396e-05
9.5883e-05

4.2408e-07
3.8193e-03
1.4963e-02

6.0845e-10
2.34506e-06
6.2423e-06

6.8726e-48
5.6250e-40
1.6578e-39

1.5993e-236 
2.8045e-200

0

500
Best

Mean
Std

1.0289e+00
2.3208e+00
6.8121e-01

2.0654e-02
1.3621e-01
7.5303e-02

5.5243e-03
2.0786e-01
3.1601e-01

4.3216e-01
1.2179e+00
4.8503e-01

2.1142e+00
6.3413e+00
6.7224e-01

1.8449e-09
1.2609e-07
2.1455e-06

2.8830e-239
3.1436e-207

0

4

30
Best

Mean
Std

3.1592e-04
1.0057e-02
1.8116e-02

4.4673e+02
3.6825e+02
2.3439e+02

2.6853e+02
2.0242e+03
1.9032e+03

9.3973e+02
2.7533e+04
3.5069e+04

1.1257e+02
3.1656e+03
3.3822e+03

8.6593e+00
1.1257e+01
8.8870e+02

6.4926e-126 
1.4044e-99
7.0214e-99

500
Best

Mean
Std

1.3875e+04
4.3885e+04
2.1213e+04

1.5347e+06
2.1979e+06
3.4820e+05

7.8193e+06
8.8189e+06
5.6275e+05

1.2439e+08
1.3581e+08
4.4541e+06

1.9354e+02
6.2351e+05
7.6904e+05

8.4484e+03
1.2771e+04
3.0796e+03

2.0538e-115
3.2464e-89
1.6229e-88

5

30
Best

Mean
Std

2.4918e-02
2.0841e-01
2.5127e-01

1.2905e-01
1.0655e+00
6.6695e-01

2.1632e+00
3.4579e+00
7.3941e-01

5.7451e+00
7.5052e+00
7.1413e-01

2.3213e+00
5.5091e+00
1.3682e+00

2.5205e-03
2.4181e-02
1.0243e-02

1.8487e-63
5.3256e-52
2.5086e-51

500
Best

Mean
Std

9.8932e+00
9.9352e+00
2.1051e-02

9.3087e+00
8.8225e+00
1.3641e+00

3.2678e+00
3.5491e+00
2.0246e-01

9.8118e+00
9.9102e+00
3.9006e-02

3.0013e-03
1.3820e-02
8.2015e-03

6.5897e+00
7.5603e+00
4.7679e-01

3.7436e-59
3.0194e-43
1.3810e-42

6

30
Best

Mean
Std

9.5758e-04
1.1427e-02
8.5948e-03

1.4090e-02
6.4081e-02
8.2544e+02

5.3834e-01
9.4812e+00
9.7105e+00

5.9375e-01
4.4384e+00
7.9760e+00

1.0907e-04
1.6489e-04
1.4899e-03

1.9020e-03
6.9048e-03
3.5274e-03

1.0273e-04
1.8110e-03
1.1289e-03

500
Best

Mean
Std

2.2794e+00
1.5313e+01
8.9996e+00

8.5250e+02
2.4391e+03
2.2031e-02

7.8452e+03 
1.1332e+04
1.6336e+03

4.1907e+04
4.7361e+04
2.3750e+03

2.3481e-04
7.0332e-03
1.0442e-02

5.5929e-01
8.8042e-01
1.8828e-01

3.1604e-04
6.3332e-03
5.5553e-03

7

30
Best

Mean
Std

2.7829e+01
8.3642e+01
4.8253e-01

3.2533e+02
2.8698e+02
4.3014e+02

3.4588e+02
3.7250e+03
4.3445e+03

5.7035e+04
7.5285e+06
2.2066e+07

7.8129e+03 
1.5242e+06 
1.7726e+06

2.6563e+01 
1.3140e+01
1.6145e-01

2.6058e+01 
2.7830e+01
8.7745e-01

500
Best

Mean
Std

1.8046e+05
3.7201e+06
3.6734e+06

1.4869e+08
3.6559e+08
2.325e+08

2.0361e+07
2.7674e+07
3.9734e+06

5.5608e+09
6.0062e+09
2.2534e+08

1.8121e+09
2.7491e+09
5.0624e+08

2.8486e+00
1.0203e+02
1.3390e+02

4.9794e+02
4.9816e+02
1.4213e-01
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8

30
Best

Mean
Std

1.1492e+01
1.1754e+01
1.5213e-01

4.2873e+00
8.6653e+00
2.2086e+00

4.4161e+00
6.8893e+00
1.6049e+00

7.9337e+00
1.1716e+01

2.0048e+00

2.0238e-01
1.0975e+00
7.9016e-01

2.3267e+00
7.1220e+00
4.0482e+00

1.3633e-30 
1.1427e-04
5.7134e-04

500
Best

Mean
Std

2.0964e+02
2.0986e+02
6.7348e-02

3.1860e+02
4.1597e+02
6.2931e+01

2.4800e+02
2.6775e+02
1.1764e+01

5.3405e+02
5.7688e+02
1.8564e+01

4.5249e+00
1.5205e+01
7.0196e+00

1.3739e+02
2.0782e+02
4.0630e+01

2.3382e-28
5.9727e-14
2.9222e-13

9

30
Best

Mean
Std

3.6482e-08
9.7361e-07
6.7524e-07

2.1004e-05
9.0549e-05
6.3605e-05

5.9571e+01
1.3395e+01
1.7083e+01

4.2123e+00
2.1005e+01
2.3158e+01

3.8640e-05
1.0912e-03
1.1579e-03

7.1168e-13
3.5534e-12
4.1363e-12

8.8864e-120
5.8272e-88
2.9136e-87

500
Best

Mean
Std

1.5490e+02
9.3033e+12
3.0403e+13

1.4004e+04
3.4667e+08
8.6968e+08

1.1029e+05
2.3596e+05
8.3566e+04

4.5945e+13
4.3618e+15
1.2664e+16

1.7168e-03
1.8775e-02
1.2533e-02

4.2640e+00
4.6231e+01
5.9921e+01

3.6929e-110
1.5796e-77
7.8981e-77

10

30
Best

Mean
Std

1.0516e-20
6.4550e-15
2.3065e-14

4.2958e-13
7.7261e-11
1.7789e-10

1.2280e-05
2.4234e-01
4.1946e-01

1.8736e-04
5.0595e-02
2.3107e-01

4.2707e-21
1.5538e-14
6.1583e-14

3.1620e-33
1.1884e-28
5.0709e-28

0
1.2087e-307

0

500
Best

Mean
Std

2.6548e-02
3.4970e-01
2.9017e-01

3.5213e+00
6.7958e+00
2.3393e+00

1.8289e+01
3.3769e+01
1.0407e+01

8.6660e+01
9.7434e+01
4.7388e+00

1.5513e-17
3.8818e-13
1.6277e-12

3.4632e-06
3.8083e-05
3.4257e-05

0
9.9589e-264

0

11

30
Best

Mean
Std

6.7306e-03
1.7838e-01
1.4585e-01

1.2178e-01
2.2215e-01
7.2864e-02

5.3656e-01
6.8194e-01
7.6946e-02

3.7309e-01
4.7446e-01
5.8337e-02

5.5686e-06
3.4021e-01
3.9463e-01

5.1573e-02
1.6520e-01
8.5145e-02

0
0
0

500
Best

Mean
Std

1.4030e-02
1.2218e-01
1.6852e-01

4.1653e-01
4.9593e-01
6.2433e-02

6.9596e-01
7.2713e-01
1.7761e-02

8.0549e-01
8.2880e-01
1.2499e-02

1.1813e-06
1.1150e-01
3.1624e-01

2.5998e-01
3.1999e-01
4.7609e-02

0
0
0

12

30
Best

Mean
Std

1.9959e+01
1.9962e+01
1.4294e-03

1.7288e-02
3.1333e-01
5.5123e-02

1.3479e+00
2.8017e+00
8.5535e-01

4.9861e+00
1.5066e+01
5.0890e+00

1.0069e-02
2.4145e-01
2.2597e-01

2.0583e-06 
6.2656e-06
3.1054e-06

4.4409e-16 
4.4409e-16

0

500
Best

Mean
Std

1.9967e+01
1.9967e+01
6.0907e-05

1.0996e+01
1.2620e+01
7.9673e-01

1.2053e+01
1.2641e+01
2.7325e-01

2.0337e+01
2.0508e+01
7.3743e-02

1.3809e-02
2.6924e-01
2.8926e-01

1.5075e+00
1.9696e+00
2.0700e-01

4.4409e-16 
4.4409e-16

0

13

30
Best

Mean
Std

5.1480e-04
1.5671e+01
1.5822e+01

8.8398e+00
5.4401e+01
3.4467e+01

3.9821e+01
6.7961e+01
2.0934e+01

1.2835e+02
1.7915e+02
3.6781e+01

5.8635e-04
1.0259e+01
5.0334e+01

2.5815e+00
2.0656e+01
3.1685e+01

0
0
0

500
Best

Mean
Std

7.1157e+01
1.6539e+02
7.0852e+01

2.6992e+03
3.4299e+03
3.7456e+02

3.4638e+03
3.6317e+03
9.7054e+01

7.3556e+03
7.5392e+03
9.0560e+01

8.6293e-02
7.2332e+00
1.7225e+01

4.8255e+02
7.0714e+02
1.1080e+02

0
0
0

14

30
Best

Mean
Std

1.9086e-02
8.8565e-01
1.2135e+00

1.6903e+00
1.3371e+01
1.1454e+01

1.6711e+02
2.4385e+02
6.8951e+01

2.7648e+02
4.9884e+02
1.1122e+02

2.7553e-01
1.1800e+01
2.1325e+01

3.5335e-02
7.8302e-01
7.9381e-01

2.5166e-118
1.1491e-76
5.4611e-76

500
Best

Mean
Std

4.0472e+03
7.9745e+03
1.9045e+03

4.6316e+03
5.6907e+03
5.9319e+02

5.0447e+19
8.7816e+19
2.4647e+19

1.7956e+04
1.9673e+04
9.8494e+02

1.2938e+04
1.7249e+11
4.5311e+11

3.1465e+03
4.1563e+03
4.6377e+02

6.5231e-104 
3.0630e-65
1.5199e-64

Table 2 (continuation)
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Figure 8
Convergence diagrams of Experiment (1)

NO. Dimension Results SOA DO GSA MFO LCA GWO OGWO

15

30
Best

Mean
Std

2.4711e-04
5.2305e-02
8.2999e-02

3.2735e-02
7.9883e-02
3.2052e-02

1.3847e+02
2.0645e+02
3.4185e+01

2.7688e+00
3.0674e+01
3.7657e+01

1.2929e-02
4.9993e-01
3.2324e-01

5.3100e-10
1.2591e-02
1.6339e-02

0
0
0

500
Best

Mean
Std

2.1772e+00
4.4565e+00
2.0190e+00

4.9738e+02
6.9746e+02
1.3934e+02

1.0551e+04
1.1228e+04
2.4017e+02

9.7295e+02
1.1085e+04
1.1909e+04

1.3173e-01
7.7338e-01
4.1203e-01

2.0299e+00
2.5189e+01
3.4874e-01

0
0
0

16

30
Best

Mean
Std

5.0540e-04
5.9091e+00
2.9470e+01

6.8484e+01
9.7768e+02
7.3526e+02

1.1883e+03
1.9675e+03
5.8223e+02

3.2928e+03
5.7820e+03
1.6184e+03

1.8043e-01
2.2117e+01
2.8285e+01

1.2635e-08
4.2587e-07
5.7638e-07

1.9304e-126
3.9669e-99
1.9703e-98

500
Best

Mean
Std

2.1131e+04
5.9258e+04
2.4290e+04

2.9357e+06
3.5119e+06
3.6427e+05

1.3038e+06
1.4146e+06
5.8097e+04

4.8318e+06
5.0745e+06
1.4205e+05

1.0465e+04
3.5060e+04
3.4759e+04

4.0788e+04
7.5742e+04
2.0589e+04

1.3278e-115
5.5672e-93
2.7834e-92

17 2
Best

Mean
Std

3.7656e-42
3.2694e-32
1.4798e-31

1.0898e-22
2.0977e-16
6.4720e-16

1.1118e-22
3.8090e-20
3.1679e-20

9.3309e-41
7.7350e-09
2.3585e-08

6.0832e-08
3.9446e-06
4.8125e-06

2.7076e-54
2.2043e-40
8.4076e-40

3.4730e-189 
2.1780e-151
1.0888e-150

18 2
Best

Mean
Std

6.5811e-49
8.1686e-32
3.1480e-41

8.7132e-18
3.5542e-15
6.2006e-15

2.7562e-19
1.1413e+02
3.6398e+02

1.2246e-47
5.9586e-41
2.2435e-40

8.0594e-02
2.0359e+00
1.9245e+00

1.1751e-84
2.9234e-64
1.1060e-64

2.2036e-209 
2.0874e-165

0

19 4
Best

Mean
Std

1.1143e-02
1.1143e-02
1.7705e-18

1.1143e-02
1.1143e-02
1.7705e-18

1.1143e-02
1.1164e-02
1.0398e-04

1.1143e-02
1.1164e-02
1.0398e-04

1.1143e-02
1.1143e-02
1.7705e-18

1.1143e-02
1.1393e-02
2.6509e-04

2.2205e-77
1.2697e-58
5.9572e-58

20 2
Best

Mean
Std

0.9
9.5634e-01
5.0971e-02

0.9
9.6800e-01
4.7609e-02

9.3195e-01
9.9485e-01
1.6751e-02

0.9
9.8000e-01
4.0825e-02

0.9
1.0104e+0
8.3111e-02

0.9
9.2826e-01
4.6253e-02

0.9
0.9

3.3993e-16

1.9703e-98 

500 

Best 
Mean 
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2.1131e+04 
5.9258e+04 
2.4290e+04 

2.9357e+06 
3.5119e+06 
3.6427e+05 

1.3038e+06 
1.4146e+06 
5.8097e+04 

4.8318e+06 
5.0745e+06 
1.4205e+05 

1.0465e+04 
3.5060e+04 
3.4759e+04 

4.0788e+04 
7.5742e+04 
2.0589e+04 

1.3278e-
115 
5.5672e-93 
2.7834e-92 

17 2 

Best 
Mean 
Std 

3.7656e-42 
3.2694e-32 
1.4798e-31 

1.0898e-22 
2.0977e-16 
6.4720e-16 

1.1118e-22 
3.8090e-20 
3.1679e-20 

9.3309e-41 
7.7350e-09 
2.3585e-08 

6.0832e-08 
3.9446e-06 
4.8125e-06 

2.7076e-54 
2.2043e-40 
8.4076e-40 

3.4730e-
189 
2.1780e-
151 
1.0888e-
150 

18 2 

Best 
Mean 
Std 

6.5811e-49 
8.1686e-32 
3.1480e-41 

8.7132e-18 
3.5542e-15 
6.2006e-15 

2.7562e-19 
1.1413e+02 
3.6398e+02 

1.2246e-47 
5.9586e-41 
2.2435e-40 

8.0594e-02 
2.0359e+00 
1.9245e+00 

1.1751e-84 
2.9234e-64 
1.1060e-64 

2.2036e-
209 
2.0874e-
165 
0 

19 4 
Best 
Mean 
Std 

1.1143e-02 
1.1143e-02 
1.7705e-18 

1.1143e-02 
1.1143e-02 
1.7705e-18 

1.1143e-02 
1.1164e-02 
1.0398e-04 

1.1143e-02 
1.1164e-02 
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1.1143e-02 
1.1143e-02 
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1.1143e-02 
1.1393e-02 
2.6509e-04 

2.2205e-77 
1.2697e-58 
5.9572e-58 

20 2 
Best 
Mean 
Std 

0.9 
9.5634e-01 
5.0971e-02 

0.9 
9.6800e-01 
4.7609e-02 

9.3195e-01 
9.9485e-01 
1.6751e-02 

0.9 
9.8000e-01 
4.0825e-02 
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1.0104e+0 
8.3111e-02 

0.9 
9.2826e-01 
4.6253e-02 

0.9 
0.9 
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10
4

SOA DO GSA MFO LCA GWO OGWO

0 50 100 150 200 250

Iteration number

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Sphere

0 50 100 150 200 250

Iteration number

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

10
50

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Schumer Steiglitz

0 50 100 150 200 250

Iteration number

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Powell Sum

0 50 100 150 200 250

Iteration number

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Rotated hyper-ellipsoid

0 50 100 150 200 250

Iteration number

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

SchwefelsP2.21

0 50 100 150 200 250

Iteration number

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Quartic

0 50 100 150 200 250

Iteration number

10
0

10
2

10
4

10
6

10
8

10
10

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Rosenbrock

0 50 100 150 200 250

Iteration number

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Streched V Sine Wave

0 50 100 150 200 250

Iteration number

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Brown

Table 2 (continuation)



279Information Technology and Control 2025/1/54

1.9703e-98 

500 

Best 
Mean 
Std 

2.1131e+04 
5.9258e+04 
2.4290e+04 

2.9357e+06 
3.5119e+06 
3.6427e+05 

1.3038e+06 
1.4146e+06 
5.8097e+04 

4.8318e+06 
5.0745e+06 
1.4205e+05 

1.0465e+04 
3.5060e+04 
3.4759e+04 

4.0788e+04 
7.5742e+04 
2.0589e+04 

1.3278e-
115 
5.5672e-93 
2.7834e-92 

17 2 

Best 
Mean 
Std 

3.7656e-42 
3.2694e-32 
1.4798e-31 

1.0898e-22 
2.0977e-16 
6.4720e-16 

1.1118e-22 
3.8090e-20 
3.1679e-20 

9.3309e-41 
7.7350e-09 
2.3585e-08 

6.0832e-08 
3.9446e-06 
4.8125e-06 

2.7076e-54 
2.2043e-40 
8.4076e-40 

3.4730e-
189 
2.1780e-
151 
1.0888e-
150 

18 2 

Best 
Mean 
Std 

6.5811e-49 
8.1686e-32 
3.1480e-41 

8.7132e-18 
3.5542e-15 
6.2006e-15 

2.7562e-19 
1.1413e+02 
3.6398e+02 

1.2246e-47 
5.9586e-41 
2.2435e-40 

8.0594e-02 
2.0359e+00 
1.9245e+00 

1.1751e-84 
2.9234e-64 
1.1060e-64 

2.2036e-
209 
2.0874e-
165 
0 

19 4 
Best 
Mean 
Std 

1.1143e-02 
1.1143e-02 
1.7705e-18 

1.1143e-02 
1.1143e-02 
1.7705e-18 

1.1143e-02 
1.1164e-02 
1.0398e-04 

1.1143e-02 
1.1164e-02 
1.0398e-04 

1.1143e-02 
1.1143e-02 
1.7705e-18 

1.1143e-02 
1.1393e-02 
2.6509e-04 

2.2205e-77 
1.2697e-58 
5.9572e-58 

20 2 
Best 
Mean 
Std 

0.9 
9.5634e-01 
5.0971e-02 

0.9 
9.6800e-01 
4.7609e-02 

9.3195e-01 
9.9485e-01 
1.6751e-02 

0.9 
9.8000e-01 
4.0825e-02 

0.9 
1.0104e+0 
8.3111e-02 

0.9 
9.2826e-01 
4.6253e-02 

0.9 
0.9 
3.3993e-16 
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Figure 8 

Convergence diagrams of Experiment (1). 

The results of Experiment (1) show that OGWO 
performs well in both high and low dimensional 
cases. Basically, it exhibits the smallest values in 
the results of all the tested functions and even 
reaches the theoretical optimum in some of the 
tested functions. This highlights the 
effectiveness of the proposed improvements to 
OGWO. 

4.3. Comparison of OGWO 
with Other Improved GWOs 

To delve deeper into the performance of OGWO, 
this section selects three improved GWO 
algorithms, namely G-NHGWO [4], I-GWO [33], 
and VAGWO [35], for performance comparison 
experiments with OGWO. The experimental (2) 
results are shown in Table 3, and the best 
experimental results are highlighted in bold. 

Figure 9 provides a visual representation of the 
performance comparison among the four 
enhanced GWO algorithms. 

Table 3 

0 50 100 150 200 250

10
-300

10
-200

10
-100

10
0

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Csendes

Iteration number

0 50 100 150 200 250

Iteration number

10
-20

10
-15

10
-10

10
-5

10
0

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Wavy

0 50 100 150 200 250

Iteration number

10
-15

10
-10

10
-5

10
0

10
5

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Ackley

0 50 100 150 200 250

Iteration number

10
-15

10
-10

10
-5

10
0

10
5

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Rastrigin

0 50 100 150 200 250

Iteration number

10
-80

10
-60

10
-40

10
-20

10
0

10
20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Zakharov

0 50 100 150 200 250

Iteration number

10
-20

10
-15

10
-10

10
-5

10
0

10
5

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Griewank

0 50 100 150 200 250

Iteration number

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Pinter

0 50 100 150 200 250

Iteration number

10
-150

10
-100

10
-50

10
0

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Matyas

0 50 100 150 200 250

Iteration number

10
-200

10
-150

10
-100

10
-50

10
0

10
50

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Rotated Ellipse

0 50 100 150 200 250

Iteration number

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Shekel

0 50 100 150 200 250

Iteration number

0.9

0.95

1

1.05

1.1

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Periodic

Figure 8 (continuation)



Information Technology and Control 2025/1/54280

The results of Experiment (1) show that OGWO per-
forms well in both high and low dimensional cases. 
Basically, it exhibits the smallest values in the results 
of all the tested functions and even reaches the theo-
retical optimum in some of the tested functions. This 
highlights the effectiveness of the proposed improve-
ments to OGWO.

4.3. Comparison of OGWO with Other 
Improved GWOs
To delve deeper into the performance of OGWO, this 
section selects three improved GWO algorithms, 
namely G-NHGWO [4], I-GWO [33], and VAGWO 
[35], for performance comparison experiments with 
OGWO. The experimental (2) results are shown in 

Table 3, and the best experimental results are high-
lighted in bold.
Figure 9 provides a visual representation of the per-
formance comparison among the four enhanced 
GWO algorithms.
The analysis of the results of Experiment (2) shows 
that OGWO has excellent performance compared 
with the other three improved GWOs, such as being 
able to break through the local optimum, converging 
significantly faster and reaching the theoretical opti-
mum, and maintaining the highest solution accuracy 
and stability even for fixed low-dimensional bench-
mark functions. This shows that OGWO has a great 
improvement in the overall performance.

NO. Dimension Results G-NHGWO I-GWO VAGWO OGWO

1 30
Best

Mean
Std

1.2906e-03
5.5781e-03
3.3315e-03

3.6175e-11
1.7010e-10
1.4864e-10

5.7695e+00
1.3718e+01
4.9219e+00

2.3478e-129
1.8054e-102
9.0120e-102

2 30
Best

Mean
Std

5.5550e-09
6.0182e-08
7.0857e-08

2.2276e-11
1.2187e-18
2.5770e-18

1.4664e-03
2.3017e-02
2.5987e-02

8.0414e-245
2.9529e-206

0

3 30
Best

Mean
Std

2.4276e-23
1.0643e-19
3.3339e-19

1.2159e-47
3.5437e-39
1.7434e-38

4.7884e-13
4.3400e-11
9.1353e-11

1.5993e-236 
2.8045e-200

0

4 30
Best

Mean
Std

5.2884e-03
2.0787e-02
1.0557e-02

8.1975e-11
1.2150e-09
1.2934e-09

4.1375e+01
8.2467e+01
3.5986e+01

6.4926e-126 
1.4044e-99
7.0214e-99

5 30
Best

Mean
Std

1.0180e-01
1.8330e-01
5.4715e-02

2.3287e-03
9.8167e-03
7.7014e-03

4.1569e-01
8.0730e-01
2.4849e-01

1.8487e-63
5.3256e-52
2.5086e-51

6 30
Best

Mean
Std

3.9811e-03
1.0130e-02
4.5175e-03

2.3950e-03
7.6234e-03
3.4619e-03

3.0991e-02
8.0270e-02
3.5034e-02

1.0273e-04
1.8110e-03
1.1289e-03

7 30
Best

Mean
Std

2.8560e+01
3.0239e+01
2.9384e+00

2.5149e+01
2.6632e+01
9.8596e-01

2.3200e+02
5.8741e+02
2.8849e+02

2.6058e+01 
2.7830e+01
8.7745e-01

Table 3
Test results of Experiment (2)
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NO. Dimension Results G-NHGWO I-GWO VAGWO OGWO

8 30
Best

Mean
Std

5.4818e+00
9.4810e+00
2.1266e+00

3.7778e+00
1.0445e+01
2.6799e+00

5.5583e+00
1.4516e+01
6.1995e+00

1.3633e-30 
1.1427e-04
5.7134e-04

9 30
Best

Mean
Std

5.2562e-06
2.0480e-05
1.4278e-05

1.3123e-14
7.1230e-13
6.6773e-13

5.4780e-03
2.2748e-02
1.0015e-02

8.8864e-120
5.8272e-88
2.9136e-87

10 30
Best

Mean
Std

2.3921e-16
2.4103e-14
5.6388e-14

2.0754e-32
6.9283e-27
1.7412e-26

9.9150e-09
1.7685e-07
1.8796e-07

0
1.2087e-307

0

11 30
Best

Mean
Std

5.8868e-01
6.5696e-01
3.2208e-02

2.4695e-01
5.3808e-01
1.3007e-01

2.5611e-01
5.1071e-01
1.4723e-01

0
0
0

12 30
Best

Mean
Std

8.9525e-03
1.5437e-02
3.5886e-03

1.0715e-06
3.5040e-06
2.8578e-06

1.9324e+00
2.4549e+00
3.3400e-01

4.4409e-16 
4.4409e-16

0

13 30
Best

Mean
Std

2.9110e+01
4.9728e+01
2.8611e+01

1.2002e+01
3.2753e+01
1.3127e+01

4.2236e+01
1.1358e+02
7.4374e+01

0
0
0

14 30
Best

Mean
Std

3.2019e+01
7.5139e+01
2.7508e+01

2.9809e-02
2.7065e-01
3.1064e-01

1.9211e+01
5.0174e+01
2.0277e+01

2.5166e-118
1.1491e-76
5.4611e-76

15 30
Best

Mean
Std

3.9478e-03
4.7360e-02
6.8535e-02

7.4573e-11
6.0799e-03
7.0999e-03

1.0448e+00
1.1562e+00
7.9401e-02

0
0
0

16 30
Best

Mean
Std

8.0661e-02
1.5934e+01
5.3275e+01

1.3323e-08
1.0947e+01
3.7888e+01

5.2269e+02
1.5438e+03
6.8380e+02

1.9304e-126
3.9669e-99
1.9703e-98

17 2
Best

Mean
Std

3.5294e-23
2.8110e-15
9.5772e-15

2.9399e-88
5.7150e-65
2.0734e-64

2.3368e-57
2.8555e-18
1.4228e-17

3.4730e-189 
2.1780e-151
1.0888e-150

18 2
Best

Mean
Std

8.0436e-38
2.4705e-23
1.2164e-22

9.0985e-124
3.2005e-79
1.1701e-78

8.9677e-71
1.3520e-29
6.1021e-29

2.2036e-209 
2.0874e-165

0

19 4
Best

Mean
Std

1.1143e-02
1.1143e-02
1.7705e-18

1.1143e-02
1.1143e-02
1.4395e-04

1.1143e-02
1.1407e-02
5.1146e-04

2.2205e-77
1.2697e-58
5.9572e-58

20 2
Best

Mean
Std

0.9
9.0365e-01
1.4581e-02

0.9
9.0400e-01
2.0000e-02

0.9
9.7036e-01
4.5907e-02

0.9
0.9

3.3993e-16

Table 3 (continuation)
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Figure 9
Convergence diagrams of Experiment (2)
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Figure 9 

Convergence diagrams of Experiment (2). 

The analysis of the results of Experiment (2) 
shows that OGWO has excellent performance 
compared with the other three improved GWOs, 
such as being able to break through the local 
optimum, converging significantly faster and 
reaching the theoretical optimum, and 
maintaining the highest solution accuracy and 
stability even for fixed low-dimensional 
benchmark functions. This shows that OGWO 
has a great improvement in the overall 
performance. 

4.4. Wilcoxon Rank Sum Test 

The Wilcoxon rank-sum test [21], a non-
parametric hypothesis test, was employed in this 
study to compare the OGWO algorithm’s 
performance and feasibility against other 
intelligent optimization algorithms. The test was 
executed at 5% significance level (α=5%) to 
ascertain if a significant disparity existed 
between the outcomes generated by OGWO and 
the other algorithms. Table 4 exhibits the test 
results comparing OGWO and the algorithms 
used in Experiment (1).  

Table 4 

The results of Experiment (3). 
Functions OGWO vs. 

SOA 
OGWO vs.  
DO 

OGWO vs. 
GSA 

OGWO vs. 
MFO 

OGWO vs. 
LCA 

OGWO vs. 
GWO 

1 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 
2 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 
3 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 
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4.4. Wilcoxon Rank Sum Test
The Wilcoxon rank-sum test [21], a non-paramet-
ric hypothesis test, was employed in this study to 
compare the OGWO algorithm’s performance and 
feasibility against other intelligent optimization al-
gorithms. The test was executed at 5% significance 
level (α=5%) to ascertain if a significant disparity ex-
isted between the outcomes generated by OGWO and 

the other algorithms. Table 4 exhibits the test results 
comparing OGWO and the algorithms used in Exper-
iment (1). 
Based on the data in Table 4, we observe that the p-va-
lues associated with the OGWO are predominantly 
lower than the significance level α. This suggests a 
statistically significant variance between the out-
comes of this algorithm and those of its counterparts.

Figure 8 (continuation)
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5. OGWO-MLP Classification Model 
This study employed three unique standard classifi-
cation datasets from the UCL Machine Learning Re-
pository to assess the efficacy of the MLP optimized 
through OWGO. The three datasets are the Tic-Tac-
Toe dataset, the Student Performance dataset and the 
Early Diabetes Risk Dataset, with sample sizes of 958, 
649, and 520, respectively, all of which are binary cat-
egorical datasets.
The GWO-MLP, PSO-MLP, Firefly algorithm-MLP 
(FA-MLP), Fruit fly optimization algorithm- MLP 

Table 4
The results of Experiment (3)

Functions OGWO vs. SOA OGWO vs. DO OGWO vs. GSA OGWO vs. MFO OGWO vs. LCA OGWO vs. GWO

1 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

2 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

3 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

4 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

5 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

6 6.1473e-07+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 4.3415e-03+ 2.0536e-08+

7 6.1473e-07+ 2.1060e-04+ 1.4157e-09+ 1.4157e-09+ 2.5677e-08 + 6.4145e-01-

8 1.4157e-09+ 1.4648e-08+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

9 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

10 2.4712e-10+ 2.4712e-10+ 2.4712e-10+ 2.4712e-10+ 2.4712e-10+ 2.4712e-10+

11 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+

12 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+

13 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+

14 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

15 9.7285e-11+ 9.7285e-02+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+ 9.7285e-11+

16 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

17 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

18 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+ 1.4157e-09+

19 9.7285e-11+ 9.7285e-11+ 1.3762e-10+ 1.3762e-10+ 9.7285e-11+ 7.7271e-10+

20 7.6102e-06 + 1.1013e-06+ 9.7283e-12+ 2.0357e-08+ 9.7285e-11+ 5.1455e-03+

(FOA-MLP) and Rime-ice optimization algo-
rithm-MLP (RIME-MLP) were compared with the 
proposed OGWO-MLP model to validate the accu-
racy of the latter in prediction tasks more effectively. 
Each model underwent a comprehensive process of 
training, optimization, and evaluation. As observed in 
Figure 10, the OGWO-MLP model outperformed the 
others in all prediction tasks. This suggests that the 
MLP trained through OGWO establishes more ideal 
weights and biases [31]. The population size and max-
imum number of iterations for all algorithms were set 
to 5 and 30, respectively. 
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Figure 10
Comparison of test performance on datasets. 6. Solving a Speed 

Reducer Design Problem
With the development of industry, the 
need for optimal design of gearboxes 
is constantly improving. The design of 
a speed reducer is a time-consuming 
and complex problem as it is a anal-
ysis that must be repeated after de-
signing based on dynamic constraints, 
and is currently targeted at minimiz-
ing the weight of the gear set [14, 18].  
Figure 11 shows a typical speed reduc-
er, which is a major key component in 
the gearbox of a mechanical system 
and can also be used in various other 
applications. This task incorporates 
seven key variables: the face width z1, 
the teeth’s module z2, the number of 
pinion teeth z3, the length of the first 
shaft between bearings z4, the second 
shaft between bearings z5, and the 
diameter of the first z6 and second z7 
shafts. 
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Based on the data in Table 4, we observe that the 
𝑝𝑝𝑝𝑝 -values associated with the OGWO are 
predominantly lower than the significance level 
α. This suggests a statistically significant 
variance between the outcomes of this algorithm 
and those of its counterparts. 

5. OGWO-MLP Classification 
Model  

This study employed three unique standard 
classification datasets from the UCL Machine 
Learning Repository to assess the efficacy of the 
MLP optimized through OWGO. The three 
datasets are the Tic-Tac-Toe dataset, the Student 
Performance dataset and the Early Diabetes Risk 
Dataset, with sample sizes of 958, 649, and 520, 
respectively, all of which are binary categorical 
datasets. 

The GWO-MLP, PSO-MLP, Firefly algorithm-
MLP (FA-MLP), Fruit fly optimization 
algorithm- MLP (FOA-MLP) and Rime-ice 
optimization algorithm-MLP (RIME-MLP) were 
compared with the proposed OGWO-MLP 
model to validate the accuracy of the latter in 
prediction tasks more effectively. Each model 
underwent a comprehensive process of training, 
optimization, and evaluation. As observed in 
Figure 10, the OGWO-MLP model outperformed 
the others in all prediction tasks. This suggests 
that the MLP trained through OGWO establishes 
more ideal weights and biases [31]. The 
population size and maximum number of 
iterations for all algorithms were set to 5 and 30, 
respectively.  
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6. Solving a Speed Reducer 
Design Problem 

With the development of industry, the need for 
optimal design of gearboxes is constantly 
improving. The design of a speed reducer is a 
time-consuming and complex problem as it is a 
analysis that must be repeated after designing 
based on dynamic constraints, and is currently 
targeted at minimizing the weight of the gear set 
[14, 18]. Figure 11 shows a typical speed reducer, 
which is a major key component in the gearbox of 
a mechanical system and can also be used in 
various other applications. This task incorporates 
seven key variables: the face width 𝑧𝑧𝑧𝑧1, the teeth’s 
module 𝑧𝑧𝑧𝑧2 , the number of pinion teeth 𝑧𝑧𝑧𝑧3 , the 
length of the first shaft between bearings 𝑧𝑧𝑧𝑧4, the 
second shaft between bearings 𝑧𝑧𝑧𝑧5 , and the 
diameter of the first 𝑧𝑧𝑧𝑧6  and second 𝑧𝑧𝑧𝑧7  shafts. 
Figure 12 provides a cross-sectional diagram, 
clearly labeling these variables. 

 
Figure 11 

Speed reducer. 

 
Figure 12 

Cross-sectional diagram of a speed reducer. 

The objective of the issue is to minimize the total 
weight of the speed reducer, while conforming 
to eleven specific conditions. The restrictions 
encompass the boundaries on the flexural stress 
of the cog teeth, surface strain, lateral distortions 
in shafts a and b from the imparted force, and 
pressure in shafts a and b [23]. The quantitative 
programming representation of the speed 
reducer issue, as evaluated in this research, is 
articulated in the subsequent manner. 

Consider   𝑧𝑧𝑧𝑧̅ = [𝑧𝑧𝑧𝑧1 𝑧𝑧𝑧𝑧2 𝑧𝑧𝑧𝑧3 𝑧𝑧𝑧𝑧4 𝑧𝑧𝑧𝑧5 𝑧𝑧𝑧𝑧6 𝑧𝑧𝑧𝑧7] (31) 
𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)̅ = 0.7854𝑧𝑧𝑧𝑧1𝑧𝑧𝑧𝑧22(3.3333𝑧𝑧𝑧𝑧32 + 14.9334𝑧𝑧𝑧𝑧3 − 43.0934) − 1.508𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧𝑧62 + 𝑧𝑧𝑧𝑧72) + 7.4777(𝑧𝑧𝑧𝑧63 + 𝑧𝑧𝑧𝑧73) +

0.7854(𝑧𝑧𝑧𝑧4𝑧𝑧𝑧𝑧62 + 𝑧𝑧𝑧𝑧5𝑧𝑧𝑧𝑧72)    (32) 
𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺:   𝑔𝑔𝑔𝑔1(𝑧𝑧𝑧𝑧̅) = 27

𝑧𝑧𝑧𝑧1𝑧𝑧𝑧𝑧22𝑧𝑧𝑧𝑧3
− 1 ≤ 0,𝑔𝑔𝑔𝑔2(𝑧𝑧𝑧𝑧̅) = 397.5

𝑧𝑧𝑧𝑧1𝑧𝑧𝑧𝑧22𝑧𝑧𝑧𝑧32
− 1 ≤ 0,𝑔𝑔𝑔𝑔3(𝑧𝑧𝑧𝑧̅) = 1.93𝑧𝑧𝑧𝑧43

𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧3𝑧𝑧𝑧𝑧64
− 1 ≤ 0,𝑔𝑔𝑔𝑔4(𝑧𝑧𝑧𝑧̅) = 1.93𝑧𝑧𝑧𝑧53

𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧3𝑧𝑧𝑧𝑧74
− 1 ≤ 0(33) 

𝑔𝑔𝑔𝑔5(𝑧𝑧𝑧𝑧)̅ =
��745(𝑧𝑧𝑧𝑧4/𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧3)�

2
+1.69×106�

1/2

110𝑧𝑧𝑧𝑧63
− 1 ≤ 0,𝑔𝑔𝑔𝑔6(𝑧𝑧𝑧𝑧)̅ =

��745(𝑧𝑧𝑧𝑧5/𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧3)�
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+157.5×106�

1/2

85𝑧𝑧𝑧𝑧73
− 1 ≤ 0       (34) 

𝑔𝑔𝑔𝑔7(𝑧𝑧𝑧𝑧̅) = 𝑧𝑧𝑧𝑧2𝑧𝑧𝑧𝑧3
40

− 1 ≤ 0,𝑔𝑔𝑔𝑔8(𝑧𝑧𝑧𝑧̅) = 5𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1
− 1 ≤ 0,𝑔𝑔𝑔𝑔9(𝑧𝑧𝑧𝑧̅) = 𝑧𝑧𝑧𝑧1

12𝑧𝑧𝑧𝑧2
− 1 ≤ 0                     (35) 

𝑔𝑔𝑔𝑔10(𝑧𝑧𝑧𝑧)̅ = 1.5𝑧𝑧𝑧𝑧6+1.9
𝑧𝑧𝑧𝑧4

− 1 ≤ 0,𝑔𝑔𝑔𝑔11(𝑧𝑧𝑧𝑧̅) = 1.1𝑧𝑧𝑧𝑧7+1.9
𝑧𝑧𝑧𝑧5

− 1 ≤ 0                        (36) 

𝑊𝑊𝑊𝑊ℎ𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝐺𝐺𝐺𝐺 2.6 ≤ 𝑧𝑧𝑧𝑧1 ≤ 3.6, 0.7 ≤ 𝑧𝑧𝑧𝑧2 ≤ 0.8, 17 ≤ 𝑧𝑧𝑧𝑧3 ≤ 28, 7.3 ≤ 𝑧𝑧𝑧𝑧4 ≤ 8.3 
7.3 ≤ 𝑧𝑧𝑧𝑧5 ≤ 8.3, 2.9 ≤ 𝑧𝑧𝑧𝑧6 ≤ 3.9, 5 ≤ 𝑧𝑧𝑧𝑧7 ≤ 5.5 

Equation (32) constitutes the objective function 
for the traditional speed reducer design 
problem. This research substantiates the 
exceptional efficacy of OGWO in addressing 
real-world engineering challenges. It does so by 

juxtaposing the solutions of this design issue 
obtained using OGWO with those derived from 
PSO, FA, GSA, FOA, SCA and GWO. 

Table 5 presents the experimental findings. A 
close examination of the data reveals that the 
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Figure 12 provides a cross-sectional 
diagram, clearly labeling these vari-
ables.
The objective of the issue is to min-
imize the total weight of the speed 
reducer, while conforming to eleven 
specific conditions. The restrictions 
encompass the boundaries on the flex-
ural stress of the cog teeth, surface 
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strain, lateral distortions in shafts a and b from the 
imparted force, and pressure in shafts a and b [23]. 
The quantitative programming representation of the 
speed reducer issue, as evaluated in this research, is 
articulated in the subsequent manner.
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Design Problem 

With the development of industry, the need for 
optimal design of gearboxes is constantly 
improving. The design of a speed reducer is a 
time-consuming and complex problem as it is a 
analysis that must be repeated after designing 
based on dynamic constraints, and is currently 
targeted at minimizing the weight of the gear set 
[14, 18]. Figure 11 shows a typical speed reducer, 
which is a major key component in the gearbox of 
a mechanical system and can also be used in 
various other applications. This task incorporates 
seven key variables: the face width 𝑧𝑧𝑧𝑧1, the teeth’s 
module 𝑧𝑧𝑧𝑧2 , the number of pinion teeth 𝑧𝑧𝑧𝑧3 , the 
length of the first shaft between bearings 𝑧𝑧𝑧𝑧4, the 
second shaft between bearings 𝑧𝑧𝑧𝑧5 , and the 
diameter of the first 𝑧𝑧𝑧𝑧6  and second 𝑧𝑧𝑧𝑧7  shafts. 
Figure 12 provides a cross-sectional diagram, 
clearly labeling these variables. 
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− 1 ≤ 0,𝑔𝑔𝑔𝑔8(𝑧𝑧𝑧𝑧̅) = 5𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1
− 1 ≤ 0,𝑔𝑔𝑔𝑔9(𝑧𝑧𝑧𝑧̅) = 𝑧𝑧𝑧𝑧1

12𝑧𝑧𝑧𝑧2
− 1 ≤ 0                     (35) 

𝑔𝑔𝑔𝑔10(𝑧𝑧𝑧𝑧)̅ = 1.5𝑧𝑧𝑧𝑧6+1.9
𝑧𝑧𝑧𝑧4

− 1 ≤ 0,𝑔𝑔𝑔𝑔11(𝑧𝑧𝑧𝑧̅) = 1.1𝑧𝑧𝑧𝑧7+1.9
𝑧𝑧𝑧𝑧5

− 1 ≤ 0                        (36) 

𝑊𝑊𝑊𝑊ℎ𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝐺𝐺𝐺𝐺 2.6 ≤ 𝑧𝑧𝑧𝑧1 ≤ 3.6, 0.7 ≤ 𝑧𝑧𝑧𝑧2 ≤ 0.8, 17 ≤ 𝑧𝑧𝑧𝑧3 ≤ 28, 7.3 ≤ 𝑧𝑧𝑧𝑧4 ≤ 8.3 
7.3 ≤ 𝑧𝑧𝑧𝑧5 ≤ 8.3, 2.9 ≤ 𝑧𝑧𝑧𝑧6 ≤ 3.9, 5 ≤ 𝑧𝑧𝑧𝑧7 ≤ 5.5 

Equation (32) constitutes the objective function 
for the traditional speed reducer design 
problem. This research substantiates the 
exceptional efficacy of OGWO in addressing 
real-world engineering challenges. It does so by 

juxtaposing the solutions of this design issue 
obtained using OGWO with those derived from 
PSO, FA, GSA, FOA, SCA and GWO. 

Table 5 presents the experimental findings. A 
close examination of the data reveals that the 
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Equation (32) constitutes the objective function for 
the traditional speed reducer design problem. This 
research substantiates the exceptional efficacy of 
OGWO in addressing real-world engineering chal-
lenges. It does so by juxtaposing the solutions of this 
design issue obtained using OGWO with those de-
rived from PSO, FA, GSA, FOA, SCA and GWO.
Table 5 presents the experimental findings. A close ex-
amination of the data reveals that the OGWO scheme 
outperforms all others by achieving the minimum 
total weight. This outcome underscores OGWO’s re-
markable effectiveness in addressing real-world engi-
neering challenges.

7. Conclusions
This study describes an enhanced grey wolf optimi-
zation algorithm, called OGWO, which employs ran-
dom steps extracted from Lévy flights during alpha 
wolf mutations, thereby improving population mo-
bility through the random walk property inherent in 
Lévy flights. Subsequently, an elite opposition-based 
learning approach was deployed across the popula-
tion. This strategy in this paper in taken three inverse 
methods to maximize the search capability of the wolf 
pack, expand the diversity of the population, and fur-
ther improve the convergence speed of the algorithm 
by discarding the poorer versions through a greedy 
selection strategy. The organic combination of these 
strategies can fully enhance the hunting ability of the 
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Table 7
Results for the speed reducer design problem

Algorithm
Optimal Variables Optimum 

weightz1 z2 z3 z4 z5 z6 z7

OGWO 3.4885 0.6894 16.5980 7.4756 7.7900 3.4624 5.3360 2940.6751

GWO 3.5294 0.7005 17.0028 7.6368 7.9605 3.3701 5.2869 3022.3979

MFO 3.6000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 3033.7016

SOA 3.5043 0.7000 17.3000 7.3000 8.1369 3.4296 5.2967 3032.3660

GSA 3.5958 0.7045 20.8220 8.2318 8.1771 3.8167 5.3790 4024.6013

WOA 3.5979 0.7000 18.0550 7.3926 8.0410 3.6178 5.2866 3306.8296

SCA 3.5932 0.7045 17.1748 7.4166 8.2325 3.6230 5.3396 3205.2214

DO 3.5150 0.7000 17.0063 7.5259 7.8968 3.3582 5.2884 3010.6227

grey wolf and the hierarchical structure of the wolf 
pack, so that the algorithm is more comfortable in 
dealing with practical problems.
The effectiveness of the proposed OGWO was evalu-
ated by comparing it with various versions of GWO, 
traditional algorithms, and prevalent algorithms 
across 20 benchmark test functions. Additionally, 
the Wilcoxon rank-sum test was employed at a 95% 
confidence level, revealing OGWO’s significant su-
periority. Moreover, the efficacy of OGWO-MLP was 
affirmed using three standard classification datasets. 
The findings consistently indicated that OGWO sur-
passed other models in MLP training.
This study proves that proposed improvements nota-
bly boost the algorithm’s convergence speed, accura-
cy, and precision. These enhancements help OGWO 
evade local optima, confirming its reliability and ef-
fectiveness in diverse scenarios. When used in speed 
reducer design, OGWO showed significant superior-
ity, indicating its potential for complex engineering 
issues and a promising future.

Future research intends to conduct an in-depth and 
comprehensive evaluation of OGWO’s performance. 
Further exploration will also be dedicated to unlock-
ing OGWO’s potential in the machine learning do-
main. This will include conducting comparative ex-
periments of OGWO-MLP against other algorithms 
such as random forest and support vector machines.
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