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In order to solve the problems of low classification accuracy, poor quality of generated music, and insuffi-
cient consideration of the order and duration of notes in music coordination, this paper adopts a long short-
term memory network (LSTM) and ensemble model based on the combination of timing and self-attention 
mechanism. The experimental model uses the LSTM network to automatically learn the important features 
of notes, and introduces the timing and self-attention mechanism to enhance the model's ability to pay at-
tention to the note sequence and features, and better capture the long-distance dependencies and emotional 
changes in music. Compared with the traditional model, the model used in this paper is more detailed in 
considering the order and duration of notes, and combines emotional labels with audio data to improve the 
quality of music generation. The experiment is verified by the three music datasets of Lim, Rhyu and Lee. The 
ensemble model combined with LSTM and self-attention mechanism in this paper performs well in com-
prehensive evaluation scores and chord classification accuracy, which is significantly improved compared 
with the traditional LSTM model. The novelty lies in the better integration of the timing relationship and 
emotional information of the note sequence, which improves the performance of music coordination. The 
model in this paper achieved 43 points (out of 50 points) and 95.6% in comprehensive evaluation score and 
chord classification accuracy, respectively. The chord classification accuracy was significantly improved by 
3.3% compared with LSTM. It also has unique advantages in model structure design and feature integration, 
especially in the introduction of timing and self-attention mechanisms, and the combination of emotional 
labels. It has achieved better results and brought new ideas and methods to the field of music generation.
KEYWORDS: Neural Networks, Musical Coordination, Musical Ensembles, Timing and Self-Attention Mech-
anism, Musical Emotions
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1. Introduction
As the social information technology develops rapid-
ly, various kinds of music ensemble performances be-
gin to emerge in public places, among which the rock 
music ensemble performance is the most prominent. 
Studying the coordination and note classification of 
music ensemble performance can provide a basis for 
musicians to improve the melody, and also enable lis-
teners to experience the beauty of ensemble music 
more deeply. At present, the coordination of music 
ensemble performance and the classification of notes 
do not fully consider the order and duration of notes, 
resulting in poor coordination of notes at different 
time steps, and the characteristics of notes cannot be 
fully learned automatically, and the accuracy of note 
classification is not high. Especially for the fusion of 
musical note emotion changes, it is difficult for the 
model to coordinate such emotion, resulting in the 
generated music emotion color is not bright, affecting 
the quality of music. Accurate and reasonable coordi-
nation of all kinds of ensemble music can improve the 
player’s control of rhythm and enhance the audience’s 
satisfaction of music.
With the increasing attention paid to cultural under-
takings and the development of neural network mod-
els, ensemble music coordination has become a re-
search hotspot and has achieved remarkable results. 
Clayton et al. proposed an Interpersonal Music En-
trainment (IME) model to enhance the understand-
ing and note coordination of IME in different music 
cultures by integrating culturally shared knowledge 
and emotions [3]. Chakraborty et al. proposed a model 
based on recurrent neural network (RNN) to achieve 
synchronization of instrument control and sensing 
parameters through mapping mode [1]. Experimental 
results show that this model can achieve human-ma-
chine collaborative performance well [1]. Ye et al. pro-
posed a collection of machine learning models aimed 
at improving the accuracy of music emotion classi-
fication. Experiments have shown that this method 
can improve the classification accuracy [22]. Medina 
et al. used multilayer perceptron (MLP) to classify 
music emotions. By comparing with support vector 
machine (SVM) and random forest model, MLP ob-
tained an average F measure of 50% in four-quad-
rant classification, and the prediction value reached 
73% [14]. Wood et al. studied the training changes of 

professional string quartets and recorded the move-
ment data of musicians [20]. The experimental re-
sults showed that the similarity of the variable group 
reached 0.72 [20]. Leman et al. used the Bayesian al-
gorithm to predict timing data in music ensembles. 
Experiments have shown that this method can solve 
timing problems to a certain extent [10]. Ray et al. 
used collective efficacy beliefs to measure the qual-
ity of generated music through five groups of exper-
iments [15]. The experimental results showed that 
collective functional beliefs are suitable for string 
room ensembles, and the quality of generated mu-
sic is higher, with a correlation of 0.82 [15]. It can be 
seen from the above literature that the methods in the 
above literature have certain improvements in the co-
ordination between music melodies and the accuracy 
of the classification model after introducing emotion. 
However, the coordination between music melodies 
is not high and it lacks emotional generative music. 
Still a current reality.
To meet social needs and the development of nation-
al cultural undertakings, researchers have used neu-
ral networks to improve classification accuracy and 
temporal coordination, promoting the development 
of scientific research in the cultural field. Gunawan 
and others used long short-term memory (LSTM) 
and gated recurrent unit (GRU) networks to improve 
the accuracy of music note classification [8]. Exper-
iments show that the classification accuracy of the 
double-stacked GRU model reaches 70%, and the 
music quality score is 6.85 points (out of 10 points) 
[8]. Xiao et al. proposed a two-stage attention convo-
lution LSTM network model based on multivariate 
time series (MTS) prediction [21]. The convolutional 
layer extracts spatial correlation and LSTM extracts 
temporal correlation. Experimental results show that 
the model effectively achieves time series prediction 
[21]. Khare et al. used convolutional neural networks 
(CNN) to identify and classify emotions, and used 
smooth pseudo-Wigner-Ville distribution to convert 
time-frequency signals into images [9]. The experi-
mental results showed that the lowest accuracy rate 
reached 91.91% [9]. Yeh et al. evaluated the generation 
of chord sequences as melody and harmony accom-
paniment, and the deep learning method performed 
best in automatic melody coordination [23]. Yin et 
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al. used deep learning and Markov models to evaluate 
the coordination of automatically generated music, 
and the results showed that these two methods are 
better than traditional models [24]. Fu et al. proposed 
CNN and LSTM time series prediction models based 
on the temporal self-attention mechanism [6]. Exper-
imental results prove the effectiveness of this mech-
anism and achieve the best short-term prediction 
performance [5, 6, 16]. It can be seen that the LSTM 
recurrent neural network model is feasible for auto-
matic music coordination, but it fails to fully consider 
the order and duration of note playing, and its abili-
ty to generate musical emotion expression is still in-
sufficient. Therefore, based on the above literature, 
this paper uses The LSTM recurrent neural network 
and ensemble model that combines time series and 
self-attention mechanisms can solve this problem.
This study aims to propose a novel music generation 
model, which uses a long short-term memory net-
work (LSTM) and an ensemble model that combines 
timing and self-attention mechanisms to achieve the 
following goals: improve the classification accuracy 
of music generation and improve the quality of gener-
ated music. This paper conducts collaborative analy-
sis of music melody based on the LSTM network that 
integrates the temporal attention mechanism and the 
self-attention mechanism. The experiment prepro-
cessed static vectors to capture duration and emotion 
features by normalizing pitch, note duration, and du-
ration, and encoding emotion and duration labels. The 
introduction of temporal attention and self-attention 
mechanisms enhances the model's automatic atten-
tion ability to note sequences and captures long-dis-
tance dependencies and emotional changes. The per-
formance of this model was compared with five other 
neural network models on three music data sets. The 
results showed that the LSTM and sequence self-at-
tention mechanism models performed significant-
ly better on parameters such as chord classification 
accuracy, F1 value and evaluation score. Advantages, 
improved classification accuracy and collaboration.

2 NN Model
2.1 LSTM RNN
LSTM is a special recurrent network model [2, 25]. 
The forgetting threshold is displayed in Formula (1). 

Li, Li and other scholars enhanced their ability to rec-
ognize action timing and understand context in vid-
eos by introducing time attention mechanism [11, 12]. 
Wei and other scholars enhanced modulation recog-
nition of radar signals by introducing SAM [11, 12]. 
In addition, the temporal attention mechanism and 
SAM are introduced to enhance the ability of LSTM 
model to capture the long-distance dependence and 
the emotional change of note sequences.

(1)

where ft is the activation vector of the forgetting 
threshold; σ represents the sigmoid function, W rep-
resents the weight matrix.
The input threshold formula, displayed in Formulas 
(2)-(3).

(2)

(3)

where it represents the activation function of the in-
put threshold, and   represents the current input cell 
state.
The element state is specifically expressed in the For-
mula (4).

(4)

where Ct represents the neuron cell state vector.
The output threshold displayed in Formulas (5)-(6).

(5)

(6)

where ot represents the activation vector of the output 
threshold.

2.2 LS-ESNs Model

In order to enhance the ability of echo state net-
works to simulate multi-scale time features, this pa-
per adopts LS-ESNs to conduct experiments, which 
are composed of multiple independent reservoirs [4, 
27]. The ability of each reservoir to capture inter-
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dependence on several time scales is crucial for the 
autonomous coordination of music. Short-term res-
ervoirs capture short-term dependent features by 
dependence range m, while long-term reservoirs do 
so by bypassing connections. The various time-scale 
echo states that are collected from the three reser-
voirs represent the original musical sequence, which 
is then transmitted to the output layer by the echo 
states in succession.
The LS-ESNs model is divided into three different 
time-dependent reservoir components, long and 
short-term reservoirs, and typical reservoirs.

Long-Term Reservoir Status
In long-term reservoirs, xlong(t) ϵ RN×1 and N represent 
the size of the reservoir, and the calculation formula 
is displayed in Formula (7).

 
, (7)

where k represents the length of the skipped step;  γ 
represents the permeability.

Typical Reservoir State
The typical reservoir state is xtypical(t) ϵ RN×1, and the cal-
culation formula is displayed in Formula (8), where 
xtypical(t – 1) represents the state at time t – 1.

 
. (8)

Short-term reservoir status
Short-term reservoir state xshort(t) ϵ RN×1 is mainly used 
to obtain short-term correlation. The calculation 
formula is as follows formulas (9) and (10), where m 
represents short-term dependence range and cap-
tures correlation characteristics through historical 
state [13].

(9)

(10)

For each time step t, the expressions representation 
of the original time series are expressed as xlong(t), 
xtypical(t), xshort(t) on different time scales by Formulas 
(7)-(9), and then multi-scale representation is per-
formed by X(t) = [xlong(t), xtypical(t), xshort(t)] ϵ R3N×1. The 
linear output layer formula is displayed in the fol-
lowing Formula (11).

(11)

The calculation Formula (11) is reconstructed in 
matrix form, and fout is set as the identification func-
tion, as displayed in the following Formula (12). In 
addition, the weight of the output layer is trained by 
minimizing the loss function through the following 
Formula (13).

(12)

(13)

The calculation formula of the weight of the output 
layer is displayed in Formula (14) below.

(14)

2.3 RBF Network Model

The weights of hidden layers are calculated by 
backpropagation, and linear or nonlinear functions 
[26] are used as the activation function of output 
neurons. In chord classification, the addition of 
the information valence dimension gives a great-
er probability of linear separation [17]. The model 
has some viability because there are a lot of class-
es in this study. It can utilize as many computation 
components in the hidden layer as there are train-
ing sample N. An RBF is used to represent each ele-
ment, as displayed in Formula (15) below [18]. The 
core processing flow chart of RBF network model 
is displayed in Figure 1. The closer the distance, the 
larger the output value.

(15)

The vector x is the signal applied to the input layer.
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3 Comparative Experiment of  
Music Coordination Performance  
of Different NN Models
3.1 Experimental Environment
Based on the window 10 system, this experiment is 
implemented using the TensorFlow framework in Py-
thon. It uses an Intel Core i7-6800k Central Process-
ing Unit with 16GB of RAM.

3.2 Experimental Data Set
This paper adopts three music datasets of Lim, Rhyu 
and Lee, including rock, pop, country, jazz, folk and 
other music genres. Each line represents a change 
in pitch or chord in music. A full song tonality, spi-
ral root and chord kinds, note root, note length, etc., 
are all included in each song file along with time (the 
current beat of the song), measure (the measure in 
which the musical event is occurring), and other 
information. After standardized processing, 2154 
songs were randomly selected in this paper, and the 
data set was divided into two parts using the ten-
fold cross-validation method [19]. 80% is used as the 

training set, 20% as the test set, and some notes are 
displayed in Figure 2.
In order to deal with the diversity of songs in the da-
tabase in terms of tone, rhythm and harmony, this 
paper standardized the music in the following ways 
[15]. Tonally, all songs were converted to c major in 
order to keep the message consistent. In terms of 
note timing and duration, the length of each note 
is multiplied by the reciprocal of the song beat to 
achieve the same total duration of music, while in-
troducing emotional labels. They are respectively 
happy, sad, romantic, excited, lonely, neutral, and 
expressed as 001-110 in turn. The emotional label 
is represented at positions 6-9 from the back of the 
note vector, and the start time and duration of the 
other note are represented at positions 1-6 from the 
back of the note vector. In terms of chord types, in 
order to simplify the complexity of the system re-
sponse, this paper focuses on major and minor tri-
ads, and outputs 24 chord categories. It produces a 
chord for each measure chord representing the note s.

(16)

Figure 1  
Core processing flow chart of RBF network model
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The note D# can be represented by the Formula (16), 
and the vector note is used to represent a note. The 
chromatic scale is represented by 12 elements in this 
vector, along with a stop position.
Analogical chords are represented by the 24-posi-
tion vector chord, 12 for major chords and 12 for minor 
chords. The two alternates with each other and the D 
major chord is displayed in Formula (17).

(17)

There are 12 possible notes in the music, and only 
one chord is considered per measure. Test the per-
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C and D occupy more than half of the total notes, re-
spectively 65% and 51%.
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adopts a chord and a variable number of notes and 
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in the order of D, F and C. The encoding of each note 
would produce the following matrix’s NNPMX12, N3×12, 
which is displayed in Formula (18) below. NPM rep-
resents the note of each measure. At the same time, 
it simplifies and integrates the matrix, generates and 
vector S, as displayed in Formula (19) below. The bot-
tom nine represent the emotional label happy, and the 
note starts at 5s and lasts for 2s.

(18)
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3.3 Experimental Process of 

Performance Comparison of 
Music Coordination 

This paper uses five models to explore the 
performance of different NN models: LSTM 
RNN, LSTM RNN ensemble model of timing 
and SAM, LS-ESNs model, RBF network 
model, and multi-layer perceptron for 
performance comparison. Firstly, this paper 
standardizes the music sequence, and 
improves the fit of music melody and emotion 
by introducing emotion label. Then, in order to 
fully consider the order and duration of the 
note playing, the timing relationship of the 
note playing is introduced into the vector and. 
In the pre-training of the whole experiment, all 
samples in the training set were trained for 30 
times (epoch=30), and the training times were 
dynamically expanded when parameters were 
adjusted. In this paper, a multiple of 10 is 
superimposed to 300 times (epoch=300). For 
the trained model, the total number of periods 
of 200 is set as the stop criterion, and a random 
gradient descent of η =0.001 is used as the 
optimizer [28]. When the classification cross 
entropy reaches the minimum validation error, 
the optimal weight can be saved as a loss 
function. Finally, the five models were applied 
to the test set for verification, and the 
performance of the models was compared by 
comparing Accuracy, F1, k value, evaluation 
score and LOSS. The comparison of Loss in 
epochs 30 times and epochs 300 times is 
displayed in Figure 5 and Figure 6, and the 
experimental flow chart is displayed in Fig. 4. 

In the experiment, the detailed settings of 
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tron for performance comparison. Firstly, this paper 
standardizes the music sequence, and improves the 
fit of music melody and emotion by introducing emo-
tion label. Then, in order to fully consider the order 
and duration of the note playing, the timing relation-
ship of the note playing is introduced into the vector 
and. In the pre-training of the whole experiment, all 
samples in the training set were trained for 30 times 
(epoch=30), and the training times were dynami-
cally expanded when parameters were adjusted. In 
this paper, a multiple of 10 is superimposed to 300 
times (epoch=300). For the trained model, the total 
number of periods of 200 is set as the stop criterion, 
and a random gradient descent of η = 0.001 is used 
as the optimizer [28]. When the classification cross 
entropy reaches the minimum validation error, the 
optimal weight can be saved as a loss function. Fi-
nally, the five models were applied to the test set for 
verification, and the performance of the models was 
compared by comparing Accuracy, F1, k value, eval-
uation score and LOSS. The comparison of Loss in 
epochs 30 times and epochs 300 times is displayed 
in Figure 5 and Figure 6, and the experimental flow 
chart is displayed in Fig. 4.
In the experiment, the detailed settings of hyperpa-
rameters are shown in Table 1.

used stochastic gradient descent as the optimizer, 
with a learning rate of 0.001, and the total number of 
epochs was set to 200 as the stopping standard.
In order to compare with other models fairly, the im-
plementation is as follows.
1 The experimental model is compared with other 

models in the same experimental environment, in-
cluding operating system, hardware configuration 
and software framework.

2 All models are trained and tested on the same data-
set to ensure the fairness of the comparison.

3 The same training strategy and parameter set-
tings are used in the training process, including the 
number of training times, optimizer, stopping cri-
teria and loss function.

4 The experiment uses the same evaluation indica-
tors to compare different models, including accu-
racy, F1 value, K value, etc., and also comprehen-
sively considers evaluation indicators such as loss 
function, expert evaluation score, and audience 
evaluation score to comprehensively evaluate the 
performance of the model.

In this study, the experiment includes a compar-
ison of multiple models, among which LSTM per-
forms well in processing time series data, can cap-
ture time correlation well, and is widely used in the 
field of music generation. The long short-term echo 
state network model is a recurrent neural network 
with memory ability. It effectively retains infor-
mation when processing long sequence data and is 
suitable for tasks such as music generation. The ra-
dial basis function network model and multi-layer 
perceptron have certain advantages in processing 
nonlinear data and classification tasks, and may 
provide different perspectives on music coordi-
nation performance. The experiment adopts the 
comparison of these models to have a more com-
prehensive understanding of their performance in 
music coordination performance, and can provide 
reference and selection for different application 
scenarios. It can be seen that the comparison model 
is advanced and reasonable.
The criteria for comparison and selection of experi-
mental models are as follows.
1 The comprehensive evaluation score is an indica-

tor for evaluating the overall performance of the 
model, which comprehensively considers the per-

In this experiment, various parameters of the mod-
el were determined through repeated experiments 
and tuning. In the pre-training stage, all samples in 
the training set were first trained 30 times, and then 
the parameters were tuned by dynamically expand-
ing the number of training times, and the number of 
training times was stacked to 300. The experiment 

Parameter Value Parameter Value

Number of LSTM 
units 128 Learning rate 0.001

Number of LSTM 
layers 2 Batch size 64

Number of  
self-attention heads 4 Number of train-

ing iterations 1000

Number of  
hidden units in  
self-attention

64 -

Table 1 
Hyperparameter settings
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formance of multiple aspects such as classification 
accuracy and music generation quality. 

2 Music chord classification is an important aspect 
of ensemble music coordination, and classification 
accuracy is one of the important indicators for eval-
uating the coordination performance of the model. 

3 The quality of generated music is one of the key 
indicators for evaluating the generation ability of 
the model. The study uses objective indicators to 
measure the quality of generated music and eval-
uates the authenticity, fluency and emotional ex-
pression ability of the model-generated music.

Figure 4 
Experimental flow chart
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In this study, the experiment includes a 
comparison of multiple models, among which 
LSTM performs well in processing time series 
data, can capture time correlation well, and is 
widely used in the field of music generation. 
The long short-term echo state network model 
is a recurrent neural network with memory 
ability. It effectively retains information when 
processing long sequence data and is suitable 
for tasks such as music generation. The radial 
basis function network model and multi-layer 
perceptron have certain advantages in 
processing nonlinear data and classification 
tasks, and may provide different perspectives 
on music coordination performance. The 
experiment adopts the comparison of these 
models to have a more comprehensive 
understanding of their performance in music 
coordination performance, and can provide 
reference and selection for different 
application scenarios. It can be seen that the 
comparison model is advanced and 
reasonable. 

The criteria for comparison and selection of 
experimental models are as follows. 

(1) The comprehensive evaluation score is an 
indicator for evaluating the overall 
performance of the model, which 
comprehensively considers the performance of 
multiple aspects such as classification accuracy 
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The reasons for selecting a specific architecture for 
comparison are as follows.
1 The architecture of the comparison model should 

have a certain similarity with the proposed model 
to ensure the fairness of the comparison. The mod-
el proposed in this experiment uses an LSTM net-
work that combines time series and self-attention 
mechanisms. The comparison model should have 
a similar architecture to more accurately evaluate 
the performance difference between the two.

2 The comparison model has been proven to have cer-
tain advantages in previous studies or is applicable 
to similar tasks, which can improve the credibility 
and persuasiveness of the comparison results.

Figure 5 shows the loss function curves of different 
models after 30 iterations. The six NN models all 
converge to 1.3-1.5, and LSTM converges to 1.34 after 
30 iterations. After 30 epochs of LSTM and sequen-
tial SAM model, the loss decreases from 2.54 to 1.31, 
which is 48% of the original decrease. Compared 
with LSTM, the loss is reduced by 0.03, LS-ESNs 
model reaches 1.35, and the effect is worse than that 
of LSTM and sequential SAM model, which requires 
0.04 more loss. The other three models have worse 
effect overall. After 30 iterations, the loss of the six 
models has decreased after training and learning, 
and the models can learn music melody characteris-
tics to a certain extent.
Figure 6 shows the loss function diagram of different 
models after 300 iterations. As a whole, the six mod-
els tend to 0.53 to 0.57, corresponding to the LSTM 
model, and the loss tends to 0.54 after 300 epochs. 
The MLP1(256) model has a minimum loss of 50.9% 

from 1.12 to 0.55 over 30 epochals. After 300 itera-
tions of LSTM and sequential SAM model, the model 
can fully learn the note features and timing relation-
ships, and the loss is only 0.53. The minimum loss is 
59.5% lower than the original 30 epoch approach and 
0.01 lower than the LSTM model. The introduction 
of timing and SAM can reduce the loss to a certain 
extent, which is 0.02 less than MLP1(256) model, 
and the effect is better. RBF network mode has the 
highest loss, reaching 0.57, and the worst effect. By 
comprehensive comparison, the performance of 
LSTM model and LSTM and sequential SAM model 
is better, and it can achieve ideal results for the ex-
periment.

4 Experimental Results and 
Discussion of Music Coordination 
Performance of Different NN Models
4.1 Experimental Results of Survey Scores of 
Different NN Models
A melody in America’s music in the data set and its 
generated harmony are displayed in Table 2. LSTM 
and sequential SAM model produce the best har-
monic effect.
In this paper, a total of 3000 questionnaires are used 
by randomly interviewing listeners and music ex-
perts. Real-time surveys determine whether the mod-
el can coordinate a piece of music, and score it. Table 
3 depicted the typical results of the experimental sur-
vey scores.

Figure 5  
Loss function diagram of different models after 30 iterations

and music generation quality.  

(2) Music chord classification is an important 
aspect of ensemble music coordination, and 
classification accuracy is one of the important 
indicators for evaluating the coordination 
performance of the model.  

(3) The quality of generated music is one of the 
key indicators for evaluating the generation 
ability of the model. The study uses objective 
indicators to measure the quality of generated 
music and evaluates the authenticity, fluency 
and emotional expression ability of the model-
generated music. 

The reasons for selecting a specific architecture 
for comparison are as follows. 

(1) The architecture of the comparison model 
should have a certain similarity with the 
proposed model to ensure the fairness of the 
comparison. The model proposed in this 
experiment uses an LSTM network that 
combines time series and self-attention 
mechanisms. The comparison model should 
have a similar architecture to more accurately 
evaluate the performance difference between 
the two. 

(2) The comparison model has been proven to 
have certain advantages in previous studies or 
is applicable to similar tasks, which can 
improve the credibility and persuasiveness of 
the comparison results. 

Figure 5 shows the loss function curves of 
different models after 30 iterations. The six NN 
models all converge to 1.3-1.5, and LSTM 
converges to 1.34 after 30 iterations. After 30 
epochs of LSTM and sequential SAM model, 
the loss decreases from 2.54 to 1.31, which is 
48% of the original decrease. Compared with 
LSTM, the loss is reduced by 0.03, LS-ESNs 
model reaches 1.35, and the effect is worse than 
that of LSTM and sequential SAM model, 
which requires 0.04 more loss. The other three 
models have worse effect overall. After 30 
iterations, the loss of the six models has 
decreased after training and learning, and the 
models can learn music melody characteristics 
to a certain extent. 

 

 
Figure 5 

Loss function diagram of different models after 
30 iterations 

 

Figure 6 shows the loss function diagram of 
different models after 300 iterations. As a 
whole, the six models tend to 0.53 to 0.57, 
corresponding to the LSTM model, and the 
loss tends to 0.54 after 300 epochs. The 
MLP1(256) model has a minimum loss of 50.9% 
from 1.12 to 0.55 over 30 epochals. After 300 
iterations of LSTM and sequential SAM model, 
the model can fully learn the note features and 
timing relationships, and the loss is only 0.53. 
The minimum loss is 59.5% lower than the 
original 30 epoch approach and 0.01 lower 
than the LSTM model. The introduction of 
timing and SAM can reduce the loss to a 
certain extent, which is 0.02 less than 
MLP1(256) model, and the effect is better. RBF 
network mode has the highest loss, reaching 
0.57, and the worst effect. By comprehensive 
comparison, the performance of LSTM model 
and LSTM and sequential SAM model is better, 
and it can achieve ideal results for the 
experiment. 

 

 
Figure 6 

Loss function graph of different models after 
300 iterations 

 
 

4 Experimental Results and 
Discussion of Music 

Figure 6  
Loss function graph of different models after 300 iterations

and music generation quality.  

(2) Music chord classification is an important 
aspect of ensemble music coordination, and 
classification accuracy is one of the important 
indicators for evaluating the coordination 
performance of the model.  

(3) The quality of generated music is one of the 
key indicators for evaluating the generation 
ability of the model. The study uses objective 
indicators to measure the quality of generated 
music and evaluates the authenticity, fluency 
and emotional expression ability of the model-
generated music. 

The reasons for selecting a specific architecture 
for comparison are as follows. 

(1) The architecture of the comparison model 
should have a certain similarity with the 
proposed model to ensure the fairness of the 
comparison. The model proposed in this 
experiment uses an LSTM network that 
combines time series and self-attention 
mechanisms. The comparison model should 
have a similar architecture to more accurately 
evaluate the performance difference between 
the two. 

(2) The comparison model has been proven to 
have certain advantages in previous studies or 
is applicable to similar tasks, which can 
improve the credibility and persuasiveness of 
the comparison results. 

Figure 5 shows the loss function curves of 
different models after 30 iterations. The six NN 
models all converge to 1.3-1.5, and LSTM 
converges to 1.34 after 30 iterations. After 30 
epochs of LSTM and sequential SAM model, 
the loss decreases from 2.54 to 1.31, which is 
48% of the original decrease. Compared with 
LSTM, the loss is reduced by 0.03, LS-ESNs 
model reaches 1.35, and the effect is worse than 
that of LSTM and sequential SAM model, 
which requires 0.04 more loss. The other three 
models have worse effect overall. After 30 
iterations, the loss of the six models has 
decreased after training and learning, and the 
models can learn music melody characteristics 
to a certain extent. 

 

 
Figure 5 

Loss function diagram of different models after 
30 iterations 

 

Figure 6 shows the loss function diagram of 
different models after 300 iterations. As a 
whole, the six models tend to 0.53 to 0.57, 
corresponding to the LSTM model, and the 
loss tends to 0.54 after 300 epochs. The 
MLP1(256) model has a minimum loss of 50.9% 
from 1.12 to 0.55 over 30 epochals. After 300 
iterations of LSTM and sequential SAM model, 
the model can fully learn the note features and 
timing relationships, and the loss is only 0.53. 
The minimum loss is 59.5% lower than the 
original 30 epoch approach and 0.01 lower 
than the LSTM model. The introduction of 
timing and SAM can reduce the loss to a 
certain extent, which is 0.02 less than 
MLP1(256) model, and the effect is better. RBF 
network mode has the highest loss, reaching 
0.57, and the worst effect. By comprehensive 
comparison, the performance of LSTM model 
and LSTM and sequential SAM model is better, 
and it can achieve ideal results for the 
experiment. 

 

 
Figure 6 

Loss function graph of different models after 
300 iterations 

 
 

4 Experimental Results and 
Discussion of Music 



529Information Technology and Control 2025/2/54

4.2 Experimental Discussion of Music 
Coordination Performance of Different  
NN Models
4.2.1 Survey Score Results of Different 
Models and Confusion Matrix Graph of Chord 
Normalization
For different experts and different listeners, whether 
the model harmonizes the effect of a piece of music is 
judged as displayed in Table 2. Experts and listeners 
rated LSTM and sequential SAM model as the high-
est, reaching 925. The LSTM model is only second 
with a score of 916. The two models are more excel-
lent in the processing of note melody, and can fully 
consider the temporal relationship and emotional 

Model Generate harmony

Original C maj F maj C maj G maj C min A#maj G#maj C maj

LSTM and sequential  
SAM model C maj F maj C maj G maj C min G#maj G#maj C maj

LSTM C maj F maj C maj G maj B maj G#maj F min C maj

MLP1 (256) C maj F maj C maj G maj D#maj G maj E maj C maj

MLP2(64) C maj F maj C maj F min G#maj A#maj G#maj C maj

LS-ESNs model C maj F maj C maj G maj A#maj A#maj E maj C maj

RBF network model C maj F maj C maj G maj C maj G maj G#maj C maj

Table 2
Comparison of generated and original harmony of different models

Table 3
Shows the typical results of some survey scores of different models

Assessment 
Score (100)

LSTM and sequential 
SAM model LSTM MLP1 (256) MLP2(64) LS-ESNs model RBF network 

model

Expert 1 95 98 92 81 96 84

Expert 2 84 94 94 93 87 82

Expert 3 98 91 91 93 84 87

Expert 4 86 93 89 90 86 92

Expert 5 97 87 87 86 94 89

Audience 1 93 96 89 92 86 95

Audience 2 95 94 94 95 94 87

Audience 3 85 86 96 91 93 86

Audience 4 94 89 84 87 86 84

Audience 5 98 88 89 85 94 95

Total 925 916 905 893 900 881

tone between notes, so that listeners are satisfied. For 
the traditional multi-layer perceptron’s MLP1 (256) 
is slightly worse, but has some feasibility in handling 
note melodies, while the RBF network model is the 
worst, with overall low ratings from experts and lis-
teners. Overall, experts and listeners rated the model 
on how to coordinate a piece of music. This method 
is subjective to some extent, but it can provide some 
reference for the performance analysis of experimen-
tal models.
For different chords, the confusion matrix of chord 
normalization is displayed in Fig. 7. As can be seen 
from Figure 7, among the samples that actually be-
long to the corresponding actual category, G major 
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(G maj) has the highest correct prediction ratio, 
reaching 97%, showing a high classification effect. 
The classification effect of E minor (E min) and A 
flat major (A# maj) is poor, among which the cor-
rect prediction ratio of E minor is 75%. For E minor, 
10% of the samples are incorrectly predicted as B 
major (B maj), 10% are incorrectly predicted as A 
flat major (A# maj), 3% are incorrectly predicted as 
G flat major (G# maj), and 2% are incorrectly pre-
dicted as G major (G maj). For other categories, the 
classification effect is good and can meet the exper-
imental needs.

4.2.2 Classification Accuracy Rate and F1-Value 
of Different Models
Figure 8 shows the classification accuracy and F1 
values of different models. In Figure 8, the highest ac-
curacy is LSTM and sequential SAM model, reaching 
95.6%. Compared with LSTM, it increased by 3.3%, 
and compared with LS-ESNs model, it increased by 
13.5%, which is quite a big increase. The model has ad-
vantages in this experiment, and the accuracy rate for 
MLP1(256) is 86.4%, and the effect is slightly worse. 
Compared with MLP2(64), the RBF network model 
is better, with an improvement of 1.8%. The RBF net-
work model has large errors, and cannot identify and 
classify chord types well. For F1 value, LSTM and se-
quential SAM model reached 96.8%, which increased 
by 3.8% compared with LSTM, with better effect, and 
increased by 9.7% compared with MLP1(256), with 
more accurate effect.

4.2.3 Comparison of K Value and Emotional Color 
Contribution of Different Models
For different models, the learning of emotional com-
ponents is quite different, as displayed in Figure 9. 
Both LSTM and sequential SAM model and LSTM 
can learn emotional colors well, make full use of 
emotional labels, and coordinate moving music. The 
contribution of emotional color reached 97.2% and 
93.5% respectively. In addition, for LS-ESNs model to 
a certain degree of coordination of pitch and musical 
emotional color, the performance was slightly worse, 
reaching 90.1%. At the same time, K value also affects 

Figure 7
Confusion matrix diagram of chord normalization

experts and listeners. Overall, experts and 
listeners rated the model on how to coordinate 
a piece of music. This method is subjective to 
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the degree of music coordination to a certain extent, 
and the K value of LSTM and sequential SAM model 
reaches the best effect, which is 82.3%. The K value of 
LSTM reached 80.6%, and for MLP1(256), the K value 
was only 76.4%. Compared with LSTM and sequen-
tial SAM model, the value decreased by 5.9%, and 
the effect was worse, while LS-ESNs model, to some 
extent, considered the timing relationship of notes, 
and the K value reached 78.6%, which was better than 
MLP1(256). In summary, the effect of LSTM and se-
quential SAM model and LSTM is relatively ideal, 
and it can play a good application in actual needs.

4.2.4 Precision Rate and Recall  
Rate of Different Models
The comparison of precision and recall rates of dif-
ferent models is displayed in Figure 10.  For the recall 

Figure 10
Comparison of precision and recall rates of different models
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different models is displayed in Figure 10.  
For the recall rate, the LSTM reaches 90.1%, 
and the LSTM and sequential SAM model have 

the best performance, reaching 91.5%. 
Compared with LSTM, the effect of MLP1(256) 
is only second, reaching 85.6%. Its 
effectiveness is modest, but its complexity is 
low. The RBF network model has the worst 
effect, only 75.4%, and the effect cannot reach 
the ideal effect in the experiment. As for the 
precision rate, the precision rate of LSTM and 
sequential SAM model is the highest, reaching 
95.4%, which is 2.7% higher than that of LSTM 
and 10.3% higher than that of MLP1(256). This 
shows the superiority of LSTM and sequential 
SAM model, with better performance. 
4.2.5 Model Comprehensive 

Performance Scores of 
Different NN 

In order to comprehensively compare the 
model performance of different NN, this paper 
uses Borda counting method to score and rank 
them, as displayed in Table 4. The total score of 
the experiment is 50 points, average to Loss, 
F1, K value, expert evaluation score, audience 
evaluation score. LSTM and sequential SAM 
model scores 43 points, accounting for a large 
proportion of the total score, reaching 86%, 
and LSTM scored 41 points. The total score of 
MLP1(256) is 36 points, which is seven points 
lower than that of LSTM and sequential SAM 
model, accounting for 72 percent of the total 
score. In addition, the overall effect of RBF 
network model is the worst, only 25 points, 
accounting for 50% of the total score, 
compared with LSTM and sequential SAM 
mode accounted for 36%. Therefore, under 
comprehensive evaluation, LSTM and 
sequential SAM model has the best effect. 

 

Table 4 

Model comprehensive performance scores of different NN 
 

Experiment 
Loss (10 
points) 

F1(10 
point) 

K value (10 
points) 

Expert 
evaluation 
score (10 
points) 

Audience 
Assessment 

Score (10 points) 

Total (50 
points) 

LSTM and 
sequential SAM 

model 
9 9 8 9 8 43 

LSTM 8 8 8 9 8 41 
MLP1(256) 7 7 6 8 8 36 
MLP2(64) 6 6 6 7 8 33 

LS-ESNs model 5 5 5 8 7 30 
RBF network model 5 5 4 5 6 25 
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experiment. As for the precision rate, the precision 
rate of LSTM and sequential SAM model is the high-
est, reaching 95.4%, which is 2.7% higher than that 
of LSTM and 10.3% higher than that of MLP1(256). 
This shows the superiority of LSTM and sequential 
SAM model, with better performance.

4.2.5 Model Comprehensive Performance  
Scores of Different NN
In order to comprehensively compare the model 
performance of different NN, this paper uses Bor-
da counting method to score and rank them, as dis-
played in Table 4. The total score of the experiment 
is 50 points, average to Loss, F1, K value, expert eval-
uation score, audience evaluation score. LSTM and 
sequential SAM model scores 43 points, accounting 
for a large proportion of the total score, reaching 
86%, and LSTM scored 41 points. The total score of 
MLP1(256) is 36 points, which is seven points lower 
than that of LSTM and sequential SAM model, ac-
counting for 72 percent of the total score. In addi-
tion, the overall effect of RBF network model is the 
worst, only 25 points, accounting for 50% of the total 
score, compared with LSTM and sequential SAM 
mode accounted for 36%. Therefore, under com-
prehensive evaluation, LSTM and sequential SAM 
model has the best effect.

Experiment Loss  
(10 points)

F1 
(10 point)

K value  
(10 points)

Expert  
evaluation score 

 (10 points)

Audience  
Assessment 

Score (10 points)

Total  
(50 points)

LSTM and sequential SAM model 9 9 8 9 8 43

LSTM 8 8 8 9 8 41

MLP1(256) 7 7 6 8 8 36

MLP2(64) 6 6 6 7 8 33

LS-ESNs model 5 5 5 8 7 30

RBF network model 5 5 4 5 6 25

Table 4
Model comprehensive performance scores of different NN
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5 Literature Discussion and Analysis
In this paper, we provide an in-depth understanding 
of the current research field of ensemble music coor-
dination and the progress made by previous models 
in improving music classification accuracy, temporal 
coordination and emotion generation, but there are 
still some shortcomings in handling note order and 
duration and generating music emotion. A more crit-
ical analysis of the cited literature and a discussion of 
the potential for integration or improvement with the 
proposed model are now provided.
The IME model proposed by Clayton et al. is a meth-
od that integrates cultural shared knowledge and 
emotions to enhance the understanding and note 
coordination of IME in different music cultures [3]. 
Although this method has made some progress in 
cultural sharing, its modeling of note order and dura-
tion is still relatively simple and lacks in-depth con-
sideration of music emotion. The model in this paper 
can draw on the cultural shared knowledge of the 
IME model and combine the timing and self-atten-
tion mechanism to better capture the long-distance 
dependencies and emotional changes in music. The 
RNN-based model proposed by Chakraborty et al. 
shows good results in human-machine collaborative 
performance, but has limited ability to generate emo-
tions in music [1]. The model in this paper can inherit 
the temporal modeling ability of RNN and combine 
emotional labels with audio data to better express the 
emotional color of music and improve the quality of 
generated music.
Medina et al. used MLP to classify music emotions 
[14]. Although it achieved some success, the modeling 
of note order and duration was relatively weak. The 
model in this paper introduces timing and self-atten-
tion mechanisms to consider the order and duration 
of notes in more detail, thereby improving the qual-
ity of music generation and classification accuracy. 
Wood et al.'s research mainly focused on recording 
the movement data of musicians and did not direct-
ly involve music generation [20]. This study provides 
some valuable data references for this paper, which 
can be used to evaluate the coordination performance 
of model-generated music.
In summary, through the critical analysis of these 
previous studies, it can be seen that the integration 

or improvement potential of this model can be seen. 
By combining cultural shared knowledge, timing 
and self-attention mechanisms, as well as emotion-
al labels and audio data, the model in this paper can 
comprehensively consider the cultural background, 
timing relationship and emotional characteristics of 
music, thereby improving the quality and coordina-
tion performance of music generation. This study is 
based on existing methods. By improving the model 
structure and feature integration method, it makes 
up for the shortcomings of existing methods and pro-
vides new ideas and methods for improving the coor-
dination performance of ensemble music.
In this paper, a long short-term memory network 
(LSTM) and ensemble model based on the combi-
nation of timing and self-attention mechanisms are 
proposed to solve the problems of low classification 
accuracy, poor quality of generated music, and insuffi-
cient consideration of the order and duration of notes 
in music coordination. Compared with the traditional 
LSTM model, this model is more detailed in consider-
ing the order and duration of notes. At the same time, 
the introduction of emotional labels and audio data 
improves the quality of music generation.
There are many reasons behind the performance dif-
ferences observed in the experiment.
1 The introduction of timing and self-attention 

mechanisms enables the model to better capture 
the long-distance dependencies and emotional 
changes in the note sequence, thereby improving 
the coordination performance of the model.

2 The method of combining emotional labels with 
audio data can make the model pay more attention 
to notes that match the target emotion, thereby im-
proving the quality of music.

Among the components of the integrated model, tim-
ing and self-attention mechanisms are key compo-
nents. The timing mechanism enables the model to 
capture the temporal relationship between notes in 
the time dimension, while the self-attention mech-
anism enhances the model's ability to automatically 
pay attention to the note sequences and features with-
in the notes at different time steps. The combination 
of these two components enables the model to better 
understand the timing relationship and emotional 
changes in the music sequence, thereby improving 
the performance of the model.
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The results of this study have important implications 
and potential applications in the field of music infor-
mation retrieval.
1 By improving the music coordination performance 

and the quality of generated music, the model can 
provide a more accurate and expressive music rep-
resentation for the music information retrieval 
system, thereby improving the quality and accu-
racy of the retrieval results. In the music recom-
mendation system, the high-quality music gener-
ated by the model can be used to provide users with 
recommendations that are more in line with their 
personalized needs.

2 This study provides new ideas and methods for the 
field of music generation and creation. By intro-
ducing emotional tags and audio data, the model 
can generate more emotionally expressive and ar-
tistic music works, providing music creators with 
more diverse and personalized creative inspira-
tion. The timing and self-attention mechanisms 
of the model can help the music generation system 
better capture the temporal relationship and emo-
tional changes of music, thereby generating more 
coherent and rich music works.

6. Conclusions
LSTM network and ensemble model based on timing 
and SAM were used to study music. The paper used 
LSTM network to automatically learn important fea-
tures of notes, introduced timing and SAM to enhance 
the model’s ability to automatically pay attention to 
note sequences and features within notes at differ-
ent time steps, and introduced emotional labels and 
timing data when standardizing music data. It com-
bined emotional and temporal data information with 
audio data to make the model pay more attention to 
the notes and temporal relationships that match the 
target emotion, thus improving the music quality. 
This paper compared the performance of six kinds of 
ensemble models of LSTM and sequential SAM mod-
el, LSTM, MLP1 (256), MLP2(64), LS-ESNs model, 
RBF network model NN. It showed that LSTM and 
sequential SAM model had the highest accuracy of 
comprehensive evaluation score and chord classi-
fication, and the best effect. This experiment fully 
considered the order and duration of musical notes, 

synthetically compares six ensemble models of NN 
architecture, and explored the comprehensive per-
formance of the models in music automatic coordina-
tion. This can improve the classification accuracy and 
coordination of the model, and has stronger practica-
bility. However, there were some deficiencies in the 
experiment in this paper. The number of participants 
was a too large, and the data of the questionnaire was 
not enough. Subsequent experiments can be carried 
out to further optimize by enriching experimental 
data and lightweight methods.
The limitations of this study are reflected in the lim-
itation of the dataset, the complexity of the model, 
and the subjectivity of the emotion label.
1 The music datasets used in the study include the 

Lim, Rhyu and Lee datasets. These datasets cover a 
variety of music genres, but there are still problems 
such as insufficient data volume and insufficient di-
versity of music styles, which affect the generaliza-
tion ability of the model and make it perform poorly 
when processing a wider range of music genres.

2 The LSTM model based on the timing and self-at-
tention mechanism has a relatively complex struc-
ture, a long training time, and high computing re-
source requirements, which limits its feasibility in 
practical applications, especially in resource-con-
strained environments.

3 The introduction of emotion labels improves the 
quality of music generation, but the definition and 
annotation of emotion labels are subjective. Dif-
ferent people may have different emotional under-
standings of the same piece of music, resulting in 
the music generated by the model in practical ap-
plications not fully meeting the user's emotional 
expectations.

Future research will be carried out from the follow-
ing aspects: First, use a larger and more diverse mu-
sic dataset to cover more music styles and types to 
improve the generalization ability and applicability 
of the model. Second, further optimize the model 
structure and training algorithm, reduce computing 
resource requirements, improve training efficiency, 
and study methods to simplify the model so that it can 
reduce complexity while maintaining performance 
and enhance the feasibility of practical applications. 
Third, study more objective and standardized emo-
tion labeling methods to reduce the subjectivity of 
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emotion labels and enhance the emotional consisten-
cy and user satisfaction of model-generated music.
The experimental research results have great ap-
plication potential in all aspects. In the music rec-
ommendation system, the model in this study can 
significantly improve the recommendation quality 
and user satisfaction of the music recommendation 
system. By generating high-quality music that meets 
the emotional needs of users, the recommendation 
system can provide more personalized and accurate 
recommendations. In automatic music generation 

and creation, the experimental model can be used 
in automatic music generation and creation tools to 
help music creators quickly generate music clips with 
high coordination and emotional expression, saving 
creation time and improving creation efficiency. In 
emotional computing and music therapy, the exper-
imental model generates music that meets specific 
emotional needs and is applied in the fields of emo-
tional computing and music therapy to help improve 
the user's emotional and psychological state and im-
prove the treatment effect.
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