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Currently, developers are often obligated to enhance code quality. High-quality code is often accompanied 
with comprehensive summaries, including code documentation and function explanations, which are invalu-
able for maintenance and further development. Regrettably, few software projects provide sufficient code 
comments owing to the high costs associated with human labeling. Contemporary researchers in software 
engineering concentrate on the methods for automated comment generating. Initial algorithms depended 
on handwritten templates or information retrieval methods. With the advancement of machine learning, 
researchers construct automated models for machine translation instead. Nonetheless, the produced code 
comments remain inadequate owing to the significant disparity between code structure and normal lan-
guage. This study introduces a unique deep learning model, At-ComGen, which utilizes hybrid attention for 
the automated creation of source code comments. Utilizing two separate LSTM encoders, our approach inte-
grates essential tokens from source code functions with the code structure, represented by a corresponding 
Abstract Syntax Tree. In contrast to earlier data-driven models, our methodology utilizes code syntax and se-
mantics in the generation of comments. The hybrid attention method, used for comment creation for the first 
time to our knowledge, enhances the quality of code comments. The tests demonstrate that At-ComGen is 
efficacious and surpasses other prevalent methodologies. Machine comments from Seq2Seq and CODE-NN 
disregard code structure underlying DeepCom and At-ComGen. At-ComGen has 59.3%, 36.4%, 43.3%, and 
13.1% higher comment BLEU values than baseline models for a 5-line function. Even though model perfor-
mance reduces with comment length, At-ComGen's comments often outperform others. 5–10-word machine 
comments work best. For reference length 10, At-ComGen has 38.2%, 23.7%, 9.3%, and 4.4% greater BLEU 
values than the other baseline models. 
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1. Introduction
In contemporary civilization, essential aspects of 
existence, including natural resources, healthcare, 
and public safety, rely on the operation of high-quali-
ty software. Nonetheless, software development has 
always been very expensive. Software developers 
strive to enhance code quality. 
Software maintenance requires up to 90% of soft-
ware engineering efforts, with a significant portion 
of time allocated to comprehending the existing code 
and associated documentation. Despite the plethora 
of coding standards established by software engi-
neering authorities, few developers are inclined to 
fully comment their code for future maintenance. 
Novice developers also find it challenging to pro-
vide adequate comments for source code. Methods 
for annotating code snippets have been introduced 
throughout the previous decade. Early researchers 
produced code comments using manual templates 
or content selection methods. Sridhara et al. [26] 
produced textual comments using several templates, 
each formulated based on assertions in source code. 
Sridhara et al. [27] used a particular template derived 
from SWUM, an NPL approach for identifying short 
words concealed in code, to provide concise summa-
ries. Nevertheless, these transformation rules are es-
tablished by domain specialists, making them chal-
lenging to use in other programming languages [3]. 
In the age of deep learning, researchers are com-
mencing the generation of source code comments 
using neural network models. The promising tech-
nology of neural machine translation (NMT), es-
tablished within the NLP academic community, has 
lately garnered the interest of software program-
mers. A standard neural machine translation (NMT) 
system converts one natural language into another 
using sequence-to-sequence learning, such as trans-
lating an English phrase into a French sentence. In 
software engineering, individuals may use Neural 
Machine Translation (NMT) to produce comments: 
the lexicon, tokens, or structural information of 
source code constitute one sequence, while the in-
tended natural language summary serves as the 
target language. Owing to their superior transfor-
mation accuracy and generalizability, deep learn-
ing methodologies rapidly supplanted conventional 
techniques for comment creation. 

We provide a source code comment generation mod-
el named At-ComGen, which employs two distinct 
LSTM encoders integrated with a hybrid attention 
mechanism, preserving both lexical and structural in-
formation in code representation. The lexical encod-
er utilizes token information by extracting words and 
IDs from the source code, while the syntactical en-
coder derives structure information using a special-
ized traversal technique. The syntactical encoder first 
transforms a particular code snippet into an Abstract 
Syntax Tree (AST) and then divides it into a series of 
statement trees. Each subtree signifies a valid code 
statement. The encoder then inputted all the vectors, 
each representing a subtree, into an LSTM network 
sequentially. The integrated decoder in At-ComGen 
amalgamates the outputs from both encoders with a 
hybrid attention mechanism, producing the comment 
through a sequence-to-sequence learning framework. 
Through comparative studies, we ascertain that our 
model surpasses the majority of prevalent state-of-
the-art methodologies.
Our contributions in this work are delineated as fol-
lows:
We provide a deep learning model for generating 
source code comments, using two separate LSTM 
encoders to process code tokens and structures. In 
contrast to other methodologies, the comments pro-
duced by our model preserve both lexical and struc-
tural characteristics of the code. 
We provide an innovative statement tree travers-
al approach for extracting structural information 
from code, in contrast to conventional AST travers-
al strategies. Our technique divides the whole AST 
into sequential subtrees based on code statements, 
therefore reducing tree depth and complexity. The 
approach successively navigates each statement 
tree based on the naturalness of programming lan-
guages. 
We are the pioneers in using the hybrid attention 
mechanism, first established in natural language 
processing, to the production of source code com-
ments. The hybrid attention method establishes 
a strong correlation between code tokens, such as 
identifiers, and code structure, ultimately enhancing 
the precision of produced comments. 
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The remainder of the paper is structured as follows. 
Section 2 delineates the relevant literature in this 
domain. Section 3 delineates the notations and foun-
dational concepts pertinent to automated comment 
production. Section 4 delineates the framework of 
our model. Section 5 presents the comparative ex-
periments, whereas Section 6 analyzes the experi-
mental results. In conclusion, we finalize the paper 
in Section 7.

1.1 Motivation and Contribution
The development of a hybrid attention approach for 
the purpose of writing source code comments has as 
its primary objective the elimination of the issues 
that are related with the methods that are now in 
use. When employing typical approaches, it may be 
difficult to capture the whole context of a code snip-
pet, which may result in comments that are either 
erroneous or irrelevant to the code sample. Under-
standing the semantic connections that exist be-
tween the various pieces of code is essential for the 
generation of comments that are pertinent, but it is 
not a simple task to do. Most of the approaches that 
are now accessible may need a significant amount 
of processing power, particularly for big codebases. 
The proposed approach integrates many attention 
processes, enabling it to capture various elements 
of the code, such as syntax, semantic relationships, 
and context, among others. As a result, a hybrid at-
tention strategy was devised to address these chal-
lenges. The proposed hybrid attention approach may 
enhance the understanding of a code snippet's con-
text, leading to the generation of more accurate and 
relevant comments. The improved ability of the pro-
vided model to capture the semantic relationships 
across different portions of the code results in more 
coherent and meaningful comments. The hybrid at-
tention strategy may be superior to current tactics, 
especially for large codebases.

2. Related Work
Recently, the source code summarization has drawn 
great attention in software engineering. Generally 
speaking, the related research can be classified as 
rule/template based approaches [26], statistical lan-
guage model approaches [6] and deep learning ap-
proaches [18, 1]. 

2.1 Traditional Approaches
In the initial study, people manually crafted tem-
plates to produce comments from source code. Re-
searchers [26, 3, 9] often generate code annotations 
using diverse templates. If a code snippet conforms 
to the contrived template, the associated summary 
will be generated automatically.  
Information retrieval methods are also included in 
code summarizations. The vector space model and 
latent semantic indexing, prevalent in information 
retrieval, are used to generate code comments for 
classes and functions [10]. A number of researchers 
have tried to produce code comments via methods 
used in code cloning, since analogous code snippets 
may elicit comparable remarks [31]. Table 1 presents 
a comparison with state of art methods.

2.2 Deep Learning Approaches
Researchers first provide an attentional RNN for 
generating product remarks for SQL and C# [6]. De-
spite the popularity of the NMT approach in NLP, it 
has not been used to source code summarizing. The 
majority of code summarizing methods use the tra-
ditional attentional sequence-to-sequence struc-
ture [1]. The comparative trials demonstrate that 
their machine-generated remarks surpass those 
produced by traditional models. 
Alongside the aforementioned token-extraction meth-
ods, individuals endeavor to extract the structures of 
source code while creating comments. Classical NLP 
techniques may overlook the concealed subtleties in 
the source code, which include both lexical and se-
mantic information. Hu et al. [13] offer a model named 
DeepCom that generates comments by navigating the 
relevant Abstract Syntax Tree (AST) derived from the 
provided code sample. They encode the Abstract Syn-
tax Tree using an attentional LSTM network and pro-
duce the comment using an LSTM decoder. They use 
an innovative method, SBT, which preserves all the in-
formation in the AST throughout traversal. 

3. Background
3.1 Language Model
The language model is a probabilistic model which 
produces sentences in a human language. It com-
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putes the probability of occurrence of a number of 
words in a specific sentence. For a sentence y, where  
y = (y1, ... , yT) is a sequence of words, the language 
model estimates the joint probability of its words  
Pr  (y1, ... , yT):
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It is equal to estimate the probability of each word in  
y given its previous words. 
As we know, it is difficult to calculate Pr (yt| y1, ... , yt–1), 
in early days we use N-gram [14] to approximate it. 
The equation (1) is simplified as follows:
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where an n-gram means n consecutive words. The 
approximation denotes the next word yt is condi-
tioned on the previous n – 1 words. 
The original language model based on n-gram suf-
fers obvious limitations [15, 16]. For instance, 
n-gram model probabilities cannot be generated 
from the frequency counts as the generated models 
might have serious problems when confronted with 
n-grams which have never been seen before. 
Recent researchers have begun to apply deep learn-
ing to replace traditional approaches in every field of 
computing industry. Unlike the n-gram model that 
predicts a word according to a fixed number of pre-
decessors, a neural language model predicts a target 
word with far away predecessors by a recurrent neu-
ral network (RNN). Figure 1. shows the RNN struc-

ture for sentence estimation, which includes three 
layers. The input layer transforms words to specific 
vectors. The hidden layer recurrently calculates and 
updates a hidden state after reading each word. The 
output layer computes the probability of the next 
word by the current hidden state. 
In this section, we focus on the workflow of the neu-
ral language model. In order to realize equation (1), 
the RNN model loads the words sequentially and 
predicts the next word at each time step. At step t, it 
calculates the next word probability by three steps: 
(a) the current word yt is transformed to a vector ac-
cording to the input embedding layer e. (b) it produc-
es the hidden state ht at timestep t by the previous 
hidden state ht–1 and the current input yt:
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(c) the target word probability pr( yt+1|y1, ... , yt) is pre-
dicted by the current hidden state ht: 

!

"%"4='3$"A&'63'#6J0?1$7F'$7&?514=L'<7A$["'1:"'7S
F42J'J6&"A'1:21'04"&$#15'2'C64&'2##64&$7F'16'2'
3$T"&' 7?JP"4' 63' 04"&"#"55645D' 2' 7"?42A'
A27F?2F"'J6&"A'04"&$#15'2'124F"1'C64&'C$1:'324'
2C2=' 04"&"#"55645' P=' 2' 4"#?44"71' 7"?42A'
7"1C64[' e!99fL' b$F?4"' -L' 5:6C5' 1:"' !99'
514?#1?4"' 364' 5"71"7#"' "51$J21$67D' C:$#:'
$7#A?&"5' 1:4""' A2="45L' V:"' $70?1' A2="4'
14275364J5' C64&5' 16' 50"#$3$#' %"#1645L' V:"'
:$&&"7'A2="4'4"#?44"71A='#2A#?A21"5'27&'?0&21"5'
2' :$&&"7' 5121"' 231"4' 4"2&$7F' "2#:' C64&L' V:"'
6?10?1' A2="4' #6J0?1"5' 1:"' 046P2P$A$1=' 63' 1:"'
7"T1'C64&'P='1:"'#?44"71':$&&"7'5121"L' '

'
"#$%&'!(!"##!$%&!'()*()+(!('*,-.*,%)/!

U7'1:$5'5"#1$67D'C"'36#?5'67'1:"'C64[3A6C'63'1:"'
7"?42A' A27F?2F"' J6&"AL' U7' 64&"4' 16' 4"2A$G"'
"Q?21$67' e-fD' 1:"'!99'J6&"A' A62&5' 1:"'C64&5'
5"Q?"71$2AA='27&'04"&$#15'1:"'7"T1'C64&'21'"2#:'
1$J"'51"0L'/1'51"0' .D'$1'#2A#?A21"5'1:"'7"T1'C64&'
046P2P$A$1='P='1:4""'51"05I'e2f'1:"'#?44"71'C64&'
!$ ' $5' 14275364J"&' 16' 2'%"#164' 2##64&$7F' 16' 1:"'
$70?1' "JP"&&$7F' A2="4' / L' ePf' $1' 046&?#"5' 1:"'
:$&&"7'5121"' 0$' 21' 1$J"51"0' .' P=' 1:"'04"%$6?5'
:$&&"7'5121"' 0$%!' 27&'1:"'#?44"71'$70?1' !$I'

!,"'

e#f'1:"'124F"1'C64&'046P2P$A$1=' 1##!$&!(!!$ % $ !$&'
$5'04"&$#1"&'P='1:"'#?44"71':$&&"7'5121"' 0$I' '

' ' e*f'

C:"4"' 2 ' $5' 1=0$#2AA=' 2' 5631J2T' 3?7#1$67' 1:21'
F"7"421"5'1:"'6?10?1'16["75L' '

3.2 BERT Pre-trained Model 
_@!V' e_$&$4"#1$672A' @7#6&"4' !"04"5"7121$675'
346J'V4275364J"45f'$5'2'C"AAS[76C7'04"S142$7"&'
J6&"A'046065"&'P='W66FA"`5'/U'1"2J'$7'()-.'c8dL'
Y0"#$2A$G"&' $7' 1:"' C64&S"JP"&&$7F' 125[D' 1:"'
_@!V'J6&"A'$5'1:"'"7#6&"4'0241'63'2'J?A1$SA2="4'
P$&$4"#1$672A' V4275364J"4' 7"1C64[L' >:"7'

0"60A"'?5"'1:"'_@!V'J6&"A'364'"7#6&$7FD'1:"='
67A='7""&' 16' 3$7"' 1?7"' 1:"'64$F$72A'04"S142$7"&'
J6&"AD'C$1:6?1'1:"'7""&'16'4"142$7'1:"'"7#6&"4'
J6&"A' 364'50"#$3$#' 125[5L' U751"2&'63'2'#6J0A"1"'
142$7$7F' 346J' 5#421#:' 364' 2' F$%"7' 125[D' "T0"415'
5$J0A=' 3$7"' 1?7"' 1:"' "7#6&"4' $7' _@!V' &?4$7F'
C64&'"JP"&&$7FL' '

b$F?4"' (' &"0$#15' 1:"' P25$#' 514?#1?4"' 63' _@!V'
J6&"AD' C:"4"' 3! D' 3'#i#3( ' $7&$#21"' $70?1'
C64&5' $7' 1:"'J6&"AD' 4!#4'#i#4(' $7&$#21"'
1:"'J6&"Aj5'6?10?1D'$L"LD'1:"'"7#6&$7F'%"#1645'63'
$70?1' C64&5L' V:"' "7#6&$7F' 63' $70?1' C64&5' $7'
_@!V' $5' $J0A"J"71"&' P=' 1:"' J?A1$S1$"4"&'
P$&$4"#1$672A' V4275364J"4' J6&?A"5' eV4JfL'
V4275364J"4'$5'2'#6J0A$#21"&'5"Q?"71$2A'J6&"A'
P25"&'67' 1:"'J?A1$S:"2&'211"71$67'J"#:27$5JL'
]$33"4"71' 200462#:"5' 63' C64&' "JP"&&$7F' 24"'
046%$&"&'P='_@!V'&"%"A60"45'&"0"7&$7F'67'1:"'
Q?2A$1='27&'24427F"J"71'63'V4J5L' '

_@!V'#201?4"5'16["7'#671"T1L';6&"'27&'#671"T1'
[76CA"&F"'$5'#4?#$2A'364'56?4#"'#6&"'#6JJ"71'
&"%"A60J"71L'V:"'04"S142$7"&' A27F?2F"'J6&"A'
_@!V' 25' 5:6C7' $7' b$F?4"' (' :25'0A"71=' 63' 1"T1'
&212L' V:$5' A"2475' 9XB' C64&' 27&' 0:425"'
4"04"5"7121$675' 364' #6&"' &"%"A60J"71L' _@!V`5'
&"5$F7' 4"2&$A=' $71"42#15' C$1:' 211"71$67'
1"#:7$Q?"5D' C:$#:' 24"' 7""&"&' 16' #201?4"' #6&"'
#677"#1$675' 27&' F"7"421"' #671"T1S2C24"'
#6JJ"715L' _@!V' J2=' 04"S142$7' 2' A27F?2F"'
J6&"A' 67' 2' :?F"' #640?5' 63' 56?4#"' #6&"' 27&'
#6JJ"715' 16' A"247' &6J2$7S50"#$3$#'
4"04"5"7121$675' 364' #6&"' #4"21$67L'_@!V'J$F:1'
"7#6&"'64'&"#6&"'#6&"'#6JJ"715'$7'2'5"Q?"7#"S
16S5"Q?"7#"'0242&$FJL'@T142#1$7F'3"21?4"5'346J'
56?4#"'#6&"'?5$7F'_@!V'J$F:1'3""&'2'#6JJ"71'
#4"21$67'J6&"L'

!

!
!

"#$%&'!)!0*&1+*1&(!%$!23"4/!
!

"#$%&!'!"#$%&'()#*!+(,-!),&,.!#/!&',!$.,-#0)1!
23,-#'4)5! 6&%.'!7(,8.! 9.:!"#*,'(;3,(#*)! <($(,&,(#*)!
=(*>!?3@!A.!
<(@!=(*!=(&@!
B&C(0!<#@!&*0!

B..%!D#0.!D#$$.*,!
>.*.'&,(#*!+(,-!-:;'(0!
8.E(D&8!&*0!):*,&D,(D&8!

"#$%'.-.*0!%'#>'&$)!
&*0!'.03D.!&00(,(#*&8!,($.!
)%.*,!#*!'.&0(*>!&*0!

7-.!D#$$.*,)!&'.!#/,.*!
$()$&,D-.0@!$())(*>!#'!#3,0&,.0!(*!
)#/,+&'.!%'#F.D,)1!B.C.8#%.')!-&C.!,#!

!" # " $$! ! !" # " $ %!=

! !" # $%%%$ & " &! " " "# $ $ $ % &+ = (4)

where g is typically a softmax function that gener-
ates the output tokens. 

3.2 BERT Pre-trained Model
BERT (Bidirectional Encoder Representations from 
Transformers) is a well-known pre-trained model 
proposed by Google's AI team in 2018 [5]. Special-
ized in the word-embedding task, the BERT mod-
el is the encoder part of a multi-layer bidirectional 
Transformer network. When people use the BERT 
model for encoding, they only need to fine tune the 
original pre-trained model, without the need to re-
train the encoder model for specific tasks. Instead 
of a complete training from scratch for a given task, 
experts simply fine tune the encoder in BERT during 
word embedding. 
Figure 2 depicts the basic structure of BERT model, 
where T1, T2, … TN indicate input words in the model, E1, 
E2, … EN indicate the model’s output, i.e., the encoding 
vectors of input words. The encoding of input words 
in BERT is implemented by the multi-tiered bidirec-
tional Transformer modules (Trm). Transformer is 
a complicated sequential model based on the multi-
head attention mechanism. Different approaches of 
word embedding are provided by BERT developers 

Figure 1
RNN for sentence estimation.next word by the current hidden state.  

 
Figure 1 RNN for sentence estimation. 
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depending on the quality and arrangement of Trms. 
BERT captures token context. Code and context 
knowledge is crucial for source code comment devel-
opment. The pre-trained language model BERT as 
shown in Figure 2 has plenty of text data. This learns 
NLP word and phrase representations for code de-
velopment. BERT's design readily interacts with at-
tention techniques, which are needed to capture code 
connections and generate context-aware comments. 
BERT may pre-train a language model on a huge corpus 
of source code and comments to learn domain-specific 
representations for code creation. BERT might encode 
or decode code comments in a sequence-to-sequence 
paradigm. Extracting features from source code using 
BERT might feed a comment creation mode.

Author(s) Paper Title Key Contributions Limitations

Xing Hu, Ge Li, 
Xin Xia, David 
Lo, and Zhi Jin 

(2020) [13]

Deep code comment 
generation with hybrid 
lexical and syntactical 

information

Comprehend programs and reduce ad-
ditional time spent on reading and navi-

gating source code

The comments are often mismatched, 
missing or outdated in software pro-

jects. Developers have to infer the func-
tionality from the source code

Boao Li, Meng 
Yan, Xin Xia, 

Xing Hu and Ge 
Li (2020) [21]

DeepCommenter: A 
deep code comment 
generation tool with 

hybrid lexical and syn-
tactical information

DeepCommenter formulates the com-
ment generation task as a machine trans-
lation problem and exploits a deep neural 

network that combines the lexical and 
structural information of Java methods

Code comments are missing, mis-
matched or outdated due to tight devel-

opment schedule or other reasons

Jiho Shin,  
Jaechang Nam 

(2021) [24]

A Survey of Automatic 
Code Generation from 

Natural Language

Surveys the approaches that generate 
source code automatically from a natu-

ral language description

The cost of learning different pro-
gramming languages is high for novice 

developers

Frank F. Xu,  
Bogdan  

Vasilescu, and 
Graham Neubig 

(2022) [32]

In-IDE Code Gener-
ation from Natural 

Language: Promise and 
Challenges

Implements a hybrid of code generation 
and code retrieval functionality

Turning concept into code, especially 
when dealing with the APIs of unfamil-

iar libraries

Marija Kostić ,  
Vuk Batanović,  
Boško Nikolić 

(2023) [19]

Monolingual, multilin-
gual and cross-lingual 
code comment classi-

fication

Addresses the problem of code comment 
classification not only in the monolin-

gual setting, but also in the multilingual 
and cross-lingual one

Dataset was manually annotated ac-
cording to a newly proposed taxonomy 

of code comment categories

This work

A Hybrid Attention 
Approach for the 

Source Code Comment 
Generation

A novel deep learning model At-Com-
Gen, which is based on the hybrid at-

tention for the automatic generation of 
source code comment

The proposed model's efficiency de-
pends on training data amount and 
quality. Data that is incomplete or 

distorted may not be reliable. The large 
codebases of hybrid attention models 

make them computationally expensive. 
Hybrid attention models may struggle 

to generalize to code from different do-
mains or languages due to conventions 

and semantics.

Table 1 
Comparison with state of art methods.

Figure 2
Structure of BERT.
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4. The Proposed Approach
In Section 4, we present our model At-ComGen, 
which is able to generate accurate comments for 
source code snippets. When generating the com-
ments in natural language, the model extracts 
both tokens and structural information from the 
given code with hybrid attention mechanism. 
Figure 3 summarizes the overall architecture of 
At-ComGen.

4.1 Framework
As shown in Figure 3, At-ComGen is implemented 
with a sequence-to-sequence learning framework, 
which contains two parts: the encoder and the de-
coder. The encoder model on the left transforms 
code into high dimensional vectors with two inde-
pendent LSTM networks. The decoder generates 
the comment from the output vectors from the two 
encoders with hybrid attention mechanism. 
The first LSTM encoder is a lexical encoder which 
extracts the important token information from 
the source code with traditional NLP techniques. 
The second LSTM encoder is a syntactical encoder 
which extracts structural information with a spe-

cific AST traversal algorithm. The right part of the 
graph is a decoder, which is another LSTM network. 
It generates the code comments according to the 
output vectors of encoders with hybrid attention. 
As the encoder model retains both the lexical and 
structural information, code comments generated 
from our model describes code snippets exactly. The 
detailed components of At-ComGen are described in 
the following subsections.

4.2 Encoders
4.2.1 Lexical Encoder
Many comments are extracted from code tokens, 
such as function names, variable names, identifiers 
and so on. It is a natural way to generate comments 
by combines the useful information hidden from 
these important words. Early approaches focus 
on the extraction of tokens from the source code 
snippets when generating code comments [18]. In 
our model, the lexical encoder sequentially input 
the embedding of core tokens into a unidirectional 
LSTM network. For a code snippet X = x1, x2, ... , xn, 
the lexical encoder input a token xt of the sequence 
at each time step t, then updates the current hidden 
state by the following equation:

Figure 3
The Architecture of At-ComGen.

 

of At-ComGen are described in the following subsections. 
 

 
Figure 3 The Architecture of At-ComGen. 

 
4.2 Encoders 
4.2.1 Lexical Encoder 
Many comments are extracted from code 
tokens, such as function names, variable names, 
identifiers and so on. It is a natural way to 
generate comments by combines the useful 
information hidden from these important  

words. Early approaches focus on the extraction 
of tokens from the source code snippets when 
generating code comments [18]. In our model, 
the lexical encoder sequentially input the 
embedding of core tokens into a unidirectional 
LSTM network. For a code snippet =

, ,… , , the lexical encoder input a token  
of the sequence at each time step , then 
updates the current hidden state by the 
following equation: 

= ( , ),      (8) 

where f is a LSTM unit which maps a word of 
source language  into a hidden state . 
After the recurrent computation, the hidden 
states of the encoded source code are =
[ , ,… , ]. 

In the process of token selections, our model 
filters individual words from the codes such as 
numbers, operators, the string values, etc. These 
unnecessary tokens will lower the accuracy of 
generated comments. The user-defined 
identifiers usually contain several language 
words. We split the identifiers by the camel 
indication or underscore in order to reduce the 
UNK indicators in the generated corpus. The 
process of token extraction is detailed later.  

4.2.2 Syntactical Encoder 

The source codes are different from plain texts, 
as it contains complicated structural 
information which is difficult to express with 
common NLP methods. In our model, another 
LSTM network called syntactical encoder is 
employed to learn structural information from 
AST sequences. Our syntactical encoder 
sequentially input the embeddings of AST 
nodes into a unidirectional LSTM network. For 
an AST sequence = , ,… , , the 
syntactical encoder input an AST node  of 
the sequence at each time step , then updates 
the current hidden state  by the following 
equation: 

 = ( , ), (9) 
where f is another LSTM. Finally, the hidden 
states of the encoded AST are =
[ , ,… , ]. 

The sequence of input nodes is determined by 
AST-traversal algorithms, which will affect the 
accuracy of generated comments.  

4.3 Decoder with Hybrid 
Attention 
In our model, the decoder is another 
unidirectional LSTM, which produces the target 
sequence  by predicting the probability of 
each word , given context vector  and all 
the previously predicted words , , … ,  
[14]:  

 ( | , , … , ) = ( , ), (10) 
where g is used to calculate the probability of 
the word .  

With the attention mechanism, the translation 
model generates the target word according to 
the various contribution of each input token. At-
ComGen is designed to extract information 
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where f is a LSTM unit which maps a word of source 
language xt into a hidden state ht. After the recur-
rent computation, the hidden states of the encoded 
source code are h = [h1, h2, ... , hn].
In the process of token selections, our model filters 
individual words from the codes such as numbers, 
operators, the string values, etc. These unnecessary 
tokens will lower the accuracy of generated com-
ments. The user-defined identifiers usually contain 
several language words. We split the identifiers by 
the camel indication or underscore in order to re-
duce the UNK indicators in the generated corpus. 
The process of token extraction is detailed later. 

4.2.2 Syntactical Encoder
The source codes are different from plain texts, as it 
contains complicated structural information which 
is difficult to express with common NLP methods. In 
our model, another LSTM network called syntacti-
cal encoder is employed to learn structural informa-
tion from AST sequences. Our syntactical encoder 
sequentially input the embeddings of AST nodes 
into a unidirectional LSTM network. For an AST 
sequence X' = x'1, x'2, ... , x'n , the syntactical encoder 
input an AST node x't of the sequence at each time 
step t, then updates the current hidden state h't by 
the following equation:
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where f is another LSTM. Finally, the hidden states 
of the encoded AST are h' = [h'1, h'2, ... , h'n].
The sequence of input nodes is determined by 
AST-traversal algorithms, which will affect the ac-
curacy of generated comments. 

4.3 Decoder with Hybrid Attention
In our model, the decoder is another unidirection-
al LSTM, which produces the target sequence y by 
predicting the probability of each word yi, given 
context vector ci and all the previously predicted 
words y1, y2, ... , yi–1 [14]: 
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C64&5L'@24A='200462#:"5'36#?5'67'1:"'"T142#1$67'
63' 16["75' 346J'1:"'56?4#"'#6&"'57$00"15'C:"7'
F"7"421$7F'#6&"'#6JJ"715' c-.dL' U7'6?4'J6&"AD'
1:"' A"T$#2A' "7#6&"4' 5"Q?"71$2AA=' $70?1' 1:"'
"JP"&&$7F'63'#64"'16["75'$716'2'?7$&$4"#1$672A'
XYVZ' 7"1C64[L' b64' 2' #6&"' 57$00"1' 5 "
6!$ 6')* )6+D' 1:"'A"T$#2A'"7#6&"4'$70?1'2'16["7' 6$'
63' 1:"' 5"Q?"7#"' 21' "2#:' 1$J"' 51"0' . D' 1:"7'
?0&21"5' 1:"' #?44"71' :$&&"7' 5121"' P=' 1:"'
36AA6C$7F'"Q?21$67I'

' ' ' ' ' ' ' ' ' ' ' ' ' e.f'

C:"4"'3'$5'2'XYVZ'?7$1'C:$#:'J205'2'C64&'63'
56?4#"' A27F?2F"' 6$ ' $716' 2' :$&&"7' 5121"' 0$ L'
/31"4' 1:"' 4"#?44"71' #6J0?121$67D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' 56?4#"' #6&"' 24"' 0 "
70!$ 0')* )0+8L'

U7' 1:"' 046#"55' 63' 16["7' 5"A"#1$675D' 6?4' J6&"A'
3$A1"45'$7&$%$&?2A'C64&5'346J'1:"'#6&"5'5?#:'25'
7?JP"45D'60"421645D'1:"'514$7F'%2A?"5D'"1#L'V:"5"'
?77"#"5524=' 16["75'C$AA' A6C"4' 1:"'2##?42#='63'
F"7"421"&' #6JJ"715L' V:"' ?5"4S&"3$7"&'
$&"71$3$"45' ?5?2AA=' #6712$7' 5"%"42A' A27F?2F"'
C64&5L' >"' 50A$1' 1:"' $&"71$3$"45' P=' 1:"' #2J"A'
$7&$#21$67'64'?7&"45#64"'$7'64&"4'16'4"&?#"'1:"'
<9k' $7&$#21645' $7' 1:"' F"7"421"&' #640?5L' V:"'
046#"55'63'16["7'"T142#1$67'$5'&"12$A"&'A21"4L' '

4.2.2 Syntactical Encoder 
V:"'56?4#"'#6&"5'24"'&$33"4"71'346J'0A2$7'1"T15D'
25' $1' #6712$75' #6J0A$#21"&' 514?#1?42A'
$7364J21$67' C:$#:' $5' &$33$#?A1' 16' "T04"55' C$1:'
#6JJ67'9XB'J"1:6&5L'U7'6?4'J6&"AD'2761:"4'
XYVZ' 7"1C64[' #2AA"&' 5=712#1$#2A' "7#6&"4' $5'
"J0A6="&'16' A"247'514?#1?42A' $7364J21$67'346J'
/YV' 5"Q?"7#"5L' \?4' 5=712#1$#2A' "7#6&"4'
5"Q?"71$2AA=' $70?1' 1:"' "JP"&&$7F5' 63' /YV'
76&"5'$716'2'?7$&$4"#1$672A'XYVZ'7"1C64[L'b64'
27' /YV' 5"Q?"7#"' 59 " 69!$ 69')* )69+ D' 1:"'
5=712#1$#2A' "7#6&"4' $70?1' 27' /YV' 76&"' 69$ ' 63'
1:"'5"Q?"7#"'21'"2#:'1$J"'51"0' .D'1:"7'?0&21"5'
1:"' #?44"71' :$&&"7' 5121"' 09$ ' P=' 1:"' 36AA6C$7F'
"Q?21$67I'

! ! :;<!

C:"4"' 3' $5' 2761:"4' XYVZL' b$72AA=D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' /YV' 24"' 09 "
709!$ 09')* )09+8L'

V:"'5"Q?"7#"'63' $70?1'76&"5' $5'&"1"4J$7"&'P='
/YVS142%"452A'2AF64$1:J5D'C:$#:'C$AA'233"#1'1:"'
2##?42#='63'F"7"421"&'#6JJ"715L' '

4.3 Decoder with Hybrid 
Attention 
U7' 6?4' J6&"AD' 1:"' &"#6&"4' $5' 2761:"4'
?7$&$4"#1$672A'XYVZD'C:$#:'046&?#"5'1:"'124F"1'
5"Q?"7#"' ! ' P=' 04"&$#1$7F' 1:"' 046P2P$A$1=' 63'
"2#:'C64&' !, D' F$%"7' #671"T1' %"#164' :, ' 27&' 2AA'
1:"' 04"%$6?5A=' 04"&$#1"&' C64&5' !!$ !'$ % $ !,%!'
c-*dI' '

! ! ! ! ! :=><!

C:"4"'F' $5'?5"&' 16' #2A#?A21"' 1:"'046P2P$A$1='63'
1:"'C64&' !,L' '

!" # $! ! !" # " $!=

!" # $! ! !" # " $!" " "=

! " ! !# $ % %&&&% ' # % '! ! ! "# $ $ $ $ % & '! != (7)

where g is used to calculate the probability of the 
word yi. 
With the attention mechanism, the translation mod-
el generates the target word according to the various 
contribution of each input token. At-ComGen is de-
signed to extract information from both code tokens 
and AST sequences. The hybrid attention mecha-
nism projects the hidden states of two independent 
encoders into a shared space and computes the dis-
tributions. 
Our model defines the unified context vector ci in or-
der to predict each target word yi as a weighted sum 
of all hidden states in two encoders. ci is calculated 
as follows:

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&$514$P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm 
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole 
AST 

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement 
Trees 
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' A$J$1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

# #$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "=
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where α and α' are attentional distributions of code 
tokens and AST sequences respectively. The atten-
tion score αij of each hidden state hj is calculated as 
follows:

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&$514$P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm 
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole 
AST 

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement 
Trees 
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' A$J$1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'
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where 

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&$514$P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm 
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole 
AST 

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement 
Trees 
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' A$J$1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'
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In the same way, another attention score α'ij is com-
puted as 

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&$514$P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm 
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole 
AST 

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement 
Trees 
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' A$J$1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'
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where 

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
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4.4 AST Traversal Algorithm
It is challenging to make a proper translation from a 
source code to a natural language. If we only gener-
ate the comments according to the sequence of to-
kens, i.e. we view the code as plain text, the lost syn-
tactical information will cause serious inaccuracies. 
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In order to retain structural information, translation 
models have to apply AST traversal algorithms. 
Many approaches have been taken to traverse the 
AST. One simple way is to use a classical pre-order 
or post-order traversal. However, these algorithms 
might cause information lost as the old ASTs can-
not be reconstructed unambiguously. Moreover, 
the generated ASTs are too deep to traverse due to 
long-term dependency. Recent experts attempt to 
traverse the ASTs with a RvNN or CNN [30, 33, 34]. 
However, these approaches suffer from high compu-
tation costs, and the ASTs have to be transformed to 
a regular form, e.g. complete binary tree. 
In this paper, we present a novel AST traversal algo-
rithm in our model. Basically, the traversal process is 
divided into two steps: (1) In order to reduce the com-
putational complexity, the whole AST is split into a se-
quence of subtrees by the granularity of the language 
statement. (2) Each statement tree is traversed by a 
classical pre-order algorithm. Compared to other re-
cursive traversal algorithms, the statement trees do 
not need to be transformed, e.g. a complete binary tree. 

4.4.1 Decomposing the Whole AST
Many methods for the decomposition of ASTs into 
subtrees without overlapping exist. Inspired by the 
algorithm mentioned in [34], we split the AST by the 
granularity of natural statements. The splitting algo-
rithm is detailed on [23], which we apply to the iden-
tification of code clone. Readers are advised to refer to 
it. Figure 4 shows the decomposition process from an 
AST to small statement trees. Figure 4(a) depicts top 5 
layers of the Java AST for simplicity, and Figure 4(b) 
shows the actual execution order of statement trees.  

4.4.2 Encoding the Statement Trees
All the complex encoding algorithms mentioned before 
might change the structure of ASTs, or enlarge the tree 
size, which will affect the accuracy of generated com-
ments. Therefore, we decide to encode the statement 
subtrees with a classical pre-order traversal algorithm. 
Before encoding the subtrees, all the internal nodes 
have to be vectorized according to the generated vo-
cabulary, which is also a challenge. In the field of NLP, 
people often limit vocabulary to common words in the 

Figure 4
The decomposition of an AST.

(a) AST and statement trees (b) Statement naturalness
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4.5 Proposed Algorithm 
Input: A series of source code tokens. 

Lexical Attention: Determines attention 
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The generate_comment function may use a 
language model or an alternative generation 
method to produce the final remark. Figure 5 
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proposed algorithm. 
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corpus, e.g. 50000 words. The unusual words are indi-
cated by <UNK>. It takes effect to apply such a strate-
gy as words out of vocabulary are rare in NLP. Howev-
er, it is inappropriate to generate the vocabulary as the 
source codes are different from the natural languages 
[11]. The source code contains many user-defined 
identifiers, each of which might only appears once. If 
we take a regular vocabulary size for code, a mass of 
unknown tokens in the form of <UNK> will arise. If 
we attempt to reduce <UNK> tokens during transfor-
mation, the vocabulary size will increase heavily. In 
order to balance the vocabulary size and <UNK> ap-
pearances, we split the internal nodes of the AST into 
several tokens to generate the vocabulary. For exam-
ple, FileInputStream -> File, Input, Stream. The total 
number of unique tokens in the corpus are reduced 
from more than 428000 to 42873.

4.5 Proposed Algorithm
Input: A series of source code tokens.
Lexical Attention: Determines attention weights 
using token lexical similarity.
Structural Attention: Calculates attention weights 
from code syntax.
Functions:
 _ lexical_attention (query, key, value): Weighs lexical 

attention. 
 _ structural_attention (query, key, value): Weighs 

structural attention.

The lexical_attention and structural_attention func-
tions may be implemented using several methodol-
ogies, including scaled dot-product attention, addi-
tive attention, or dot product attention. 
 _ combine_attention (lexical_weights, structur-

al_weights): Weighs lexical and structural at-
tention. 

The combine_attention function facilitates the 
integration of lexical and structural weights using 
various methods, such as weighted sum and concat-
enation. 
 _ generate_comment (context_vector): Creates con-

text vector-based comment.
The generate_comment function may use a language 
model or an alternative generation method to pro-
duce the final remark.
Algorithm steps:
1 Get lexical and structural attention going. 
2 Initialize the weights function for lexical and 

structural weights, respectively. 
3 Compute the attention that token in the input se-

quence will get both lexically and structurally 
4 Combine focus combined weights 
5 Create a background vector 
6 Create a remark by passing the context vector 
The generate_comment function may use a language 
model or an alternative generation method to pro-
duce the final remark. Figure 5 presents the work-
flow diagram for the proposed algorithm.
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The proposed method is quite good at handling com-
plex control flow topologies. Conventional methods 
might find difficult to grasp sophisticated control 
flow systems, which results in erroneous claims. The 
hybrid attention approach efficiently captures the 
connections across many code blocks and contexts 
thereby guaranteeing that the produced comments 
fairly represent the logic of the code. At-ComGen may 
precisely provide a comment clarifying the purpose of 
every loop and the circumstances under which it runs. 
This remarks about a nested loop with many criteria.
The proposed approach helps one to understand se-
mantic relationships among variables. When using 
indirect or complicated expression, it might be chal-
lenging to determine the semantic links among the 
variables in a code fragment. 
Using the proposed method in large-scale codes might 
provide useful annotations. Creating useful comments 
for big and complicated codebases might be a tedious 
and prone to mistakes effort. While efficiently con-
trolling big codebases, the hybrid attention approach 
produces annotations that faithfully represent the in-
tended functionality of the code. At-ComGen can ex-
amine a large collection of hundreds of functions and 
provide succinct but clear comments for each one. This 
helps developers to understand and apply the library.

4.6 Loss Function
In our model, the loss function is defined as the 
minimized cross-entropy, which is described as 
follows [14]:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'
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4.7 Evaluation Metrics 
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
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4.7.1 Automatic Evaluation 
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'
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C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
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4.7.2 Manual Evaluation 
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5$J$A24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5$J$A24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '
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where N is the number of training samples, and l 
is the length of each target sequence.  yj

(i) indicates 
the j-th word in the i-th instance. The equation de-
scribes how much the predicted probability diverges 
from the ground truth. We optimize Equation (11) by 
gradient descent algorithm. 

4.7 Evaluation Metrics
Generated comments should accurately and briefly 
reflect the meanings of the source codes. In this pa-
per, we apply both automatic and manual approaches 
to evaluate comment quality with previous models. 

4.7.1 Automatic Evaluation
In our model, we use BLEU [17] score and METEOR 
[20] to measure the accuracy of machines comments. 
BLEU measures the average n-gram precision on a 
set of reference sentences, which is popular in ma-
chine translation [2, 4, 28].
BLEU is computed as follows:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function 
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J$7$J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'
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C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2P$A$1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601$J$G"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics 
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation 
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'
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C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
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4.7.2 Manual Evaluation 
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5$J$A24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5$J$A24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '
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where pn is the precision of n-grams, that is, the ratio 
of length n subsequences in the candidate that are 
also in the reference. We set n = 4, which is a com-
mon practice for code comment generation [14, 29, 
35]. BP is a brevity penalty, which is computed as 
follows:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function 
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J$7$J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'
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C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2P$A$1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601$J$G"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics 
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation 
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'
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C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '
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4.7.2 Manual Evaluation 
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5$J$A24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5$J$A24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '
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where c is the length of the candidate translation and   
r is the effective reference sequence length. We re-
gard the generated comment as a candidate and the 
Javadoc comment as a reference. 
METEOR score is recall-oriented and wildly used 
for machine translation and code summarization. It 
measures how well the model captures content from 
the references by calculating sentence-level similar-
ity scores. The METEOR is computed as follows:    
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4.7.2 Manual Evaluation
As the automatic test does not always agree with 
experimental result [22], especially for the code 
comments described in natural languages, we de-
cide to perform a manual verification for the sim-
ilarity of generated comments from our model and 
the ground truth. Inspired by the methods [35], we 
invite 3 participants to evaluate generated com-
ments respectively. They are doctors in computer 
science with 3+ years Java experience. Their rating 
scores are given according to the similarity criteria 
between artificial comments and machine ones, 
which are shown in Table 1. 
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Participants are asked to score the comments be-
tween 0 to 4 according to the criteria listed in Table 1. 
During the rating process, the two comments for the 
same code snippet are shuffled and listed randomly.

4.7.3 Time Complexity Analysis
To calculate time complexity, we use source code 
length (N) for input sequence, dot product or scaled 
dot product for attention mechanism, Recurrent neu-
ral network design for LSTM encode and sequence to 
sequence based model for comment generation. 
Time complexity of Attention Mechanism:
The Dot-product or scaled dot-product attention re-
quires  O(N2) matrix multiplication.
Time complexity of LSTM Encoder:
Time complexity of each LSTM cell is O(N). The 
complexity of an N-length sequence is O(N2).
Time complexity of Comment Generation:
If the encoder and decoder share an architecture, the 
time complexity is also O(N2).
The hybrid attention technique for source code com-
ment creation has a temporal complexity of O(N2)
when combining these components.
A hybrid attention technique for source code comment 
creation has quadratic time complexity relative to in-
put sequence length (N). This indicates that computing 
time grows proportionately with source code length.

5. Experiments
We compare our model At-ComGen with several 
baseline methods on a dataset composed of GitHub 
data [7, 8]. 

Score Explanation

0 No similarity between two comments or the generated comments are meaningless.

1 Two comments share some similar tokens, but they are not semantically similar.

2 Two comments have some similar information, but each of them contains some information which is not involved 
by the other.

3 The two comments are very similar in semantic, but their means are not the same.

4 The two comments are identical in meaning, or the ground truth are more difficult to understand.

Table 1 
Criterion of similarity.

5.1 Baselines
At-ComGen is compared with different state-of-
the-art models, including CODE-NN [18], a generic 
Seq2Seq model, and DeepCom [14], all of which are 
state-of-art code summarization models. 
The famous generative model CODE-NN exploits a 
common LSTM with an attention algorithm to pro-
duce comments by integrating token embeddings in-
stead of making language models. 
A second baseline is a classical encoder-decod-
er model based on Seq2Seq model. We implement 
a code summarization model built on a Seq2Seq 
framework, which takes a sequence of tokens from 
the given code snippet as input and output a com-
ment described in English. 
A third baseline is DeepCom, which generates code 
comments from the given code structure. Based on 
a LSTM encoder-decoder framework, DeepCom 
extracts the code semantic by traversing the corre-
sponding AST. The authors proposed a novel tra-
versal algorithm SBT, with which no information are 
lost in the process of AST traversing. 

5.2 Dataset Description
Due to the challenge of obtaining source code with 
exemplary comments, researchers often compile 
their own datasets by aggregating data from sev-
eral source code repositories, including GitHub 
and Stack Overflow, for comparative studies. We 
gathered an extensive corpus of Java methods from 
GitHub projects established between 2017 and 
2018. We download repositories with above 10 stars 
to exclude unqualified code. Our dataset undergoes 
preprocessing with the following processes. 



Information Technology and Control 2025/2/54654

Table 2 
Statistics of Java dataset.

Methods Words Uniq Words Training Set Validation Set Testing Set

588108 44378497 13779297 468108 60000 60000

Table 3 
Statistics of code lengths.

Average <100 <150 <200

99.94 68.63% 82.06% 89.00%

Table 4 
Statistics of comments lengths.

Average <20 <30 <50

8.86 75.50% 86.79% 95.45%

We extract Java functions accompanied by Javadocs 
from 11,034 projects on GitHub. The first statement 
in each Javadoc serves as the definitive remark, of-
ten outlining the method's functionality in accor-
dance with Java guidelines [25]. Java methods with-
out comments or containing comments of less than 
three words are excluded. 
We eliminate Java methods containing comments 
not written in English, since our model cannot gen-
erate comments in other languages. We further omit 
auto-generated codes, including setter, getter, and 
test methods. 
We have successfully acquired 588,108 pairs. Table 
2 illustrates that our Java dataset comprises around 
580,000 functions with annotated data labels (code 
comments), categorized into training set, validation 
set, and testing set. Table 3 delineates the specifics 
of method lengths, whilst Table 4 elucidates the par-
ticulars of comment length. The data indicate that 
over 95% of comments include less than 50 tokens, 
whereas more than 89% of programs consist of fewer 
than 200 tokens. Consistent with prior trials, 80% of 
pairings are randomly designated for training, 10% 
for validation, and 10% for testing. 

5.3 Experimental Setting
We use javalang to produce ASTs from given code 
snippets. According to the statistics described in Ta-
ble 3 and Table 4, the maximum code length and AST 
token sequence are set to 250 and 500 respective-
ly. Longer token sequences are reduced to meet the 
maximum length. For word-embedding, we trans-
form the words into vectors with word2vec tools and 
set the embedding size to be 128. 
Based on an attentional Seq2Seq framework, 
At-ComGen implements both lexical and syntacti-
cal encoders by two independent LSTMs with 128 

dimensions of the hidden states. The decoder is also 
a single LSTM following a hybrid attention layer. In 
the training process, the model is updated with SGD. 
We use Adam optimizer with a learning rate 0.5 
during training and use dropout with 0.5 to prevent 
over-fitting. It takes more than 105 hours to train the 
model with an epoch number 50. 

5.4 Automatic Evaluation 
For automatic tests, BLEU, METEOR and ROUGE-L 
are used to evaluate the quality of generated com-
ments respectively. Table 5 shows the comparison 
of At-ComGen and CODE-NN, attentional Seq2Seq, 
DeepCom on our dataset.
We see that all the metrics of CODE-NN are rela-
tively poor. It is because CODE-NN cannot learn 
code semantics when it produces comments from 
code tokens directly. The performance of Seq2Seq 
is not ideal, as it ignores both the code structure 
and contributions of key words. DeepCom improves 
machine comments by the introduction of AST tra-
versing algorithm. In the process of code encoding, 
At-ComGen employs two independent LSTM to ex-
tract both lexical and syntactical information. In the 
process of code decoding, At-ComGen introduces 
BERT technology to promote the expression of gen-
erated comments. At-ComGen has become the new 
baseline model due to its performance.

Table 5 
Evaluation results on Java methods.

Models BLEU METEOR ROUGE-L

CODE-NN 27.89% 13.10% 34.83%

Seq2Seq 34.36% 20.98% 48.21%

DeepCom 38.17% 22.19% 47.48%

At-ComGen 40.19% 23.47% 51.23%
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5.5 Manual Evaluation 
We randomly pick up 100 pairs of code snippets with 
comments from the testing set. Each model gener-
ates independent code comments from these 100 
samples. The ground-truth and generated comments 
are shuffled before the tests. 
Three experts evaluate the comment pairs inde-
pendently and the final scores are calculated by av-
erage. Figure 6. shows the results of our manual sur-
vey. We regard a score [0,1.5] as low quality, a score 
(1.5,2.5] as medium quality, and a score (2.5,4] as 
high quality. From the picture we conclude that the 
proportion of high-quality comments generated by 
At-ComGen outperforms the others again. The per-
formance of CODE-NN and Attentional Seq2Seq 
are similar due to the extraction of code tokens. The 
quality of comments generated by DeepCom is sig-
nificantly superior to CODE-NN and Attentional 
Seq2Seq as it employs structural information hid-
den in the source code. Results of manual evaluation 
are close to those of automated evaluation, although 
they are slightly different.

Figure 6
Results of manual evaluations.  
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6. Discussion 
We take a discussion on the performance of At-
ComGen and other state-of-the-art models. We 
attempt to analyze components which affect the 
quality of generated comments via further 
experiments.  

6.1 Investigating the Impact 
of Word Embedding 
Around 2018, Transformer and BERT 
technology have made breakthroughs in NLP 
tasks such as text processing, text reading and 
sentiment classification. Experts attempt to use 
BERT in the process of word embedding. We are 
inspired to encode words with BERT technology 
in the process of building At-ComGen.  

On the basis of At-ComGen, three models for 
experiments are built according to different 
word embedding technologies. Model 1 is the 
basic version of At-ComGen, which extracts 
lexical information from source code with 
Word2vec and generates code comments with 
“BERT-Base, Uncased”. Model 2 uses Word2vec 
to encode words for source code words, AST 
nodes and code comments, respectively. 
Different corpus is used for source code and 
comments. In Model 3, “BERT-Base, Uncased” 
is used in the process of word encoding for 
source code words, AST nodes and code 
comments. The experimental results for three 
models on the same Java test set are shown in 
Figure 7. 

 
Figure 7 Results of comment quality on different 
word embedding technologies. 
The quality of code comments generated by 
model 1 outperforms model 2 and model 3. The 
word vectors cannot be well expressed with 
relatively outdated technology Word2vec, in 
model 2. Surprisingly, Model 3, in which BERT 
Pre-trained technology is fully utilized during 
encoding and decoding, falls behind the other 
models. We believe that it is due to rare words, 
especially AST internal nodes, such as 
InfixExpression, SimpleName. These 
compound words are very uncommon in 
human languages, which cannot be embedded 
with BERT pre-trained model. While the corpus 
in model 2 is made according to all the words 
generated before word vectorization. Rare 
words are easily encoded by the corpus above 
generated by Word2vec. Most of the tokens 
appeared in code comments are natural 
language words, which are easily encoded with 
BERT pre-trained model.   

Currently, it is difficult for At-ComGen to train 
a BERT model with its own corpus due to 
hardware limitations. We hope that in the future 
a specialized BERT model can be trained for 
source code embedding, which may greatly 
improve the machine comments. 

6.2 Investigating the Impact 
of the AST Splitting  
The traversing of the generated AST plays a 
significant role in the process of code 
summarization. To compare the results, the 
original AST is decomposed with three 
strategies by the splitting granularity. Model 
1: AST is treated as a special statement tree, 
which is encoded directly via a classical pre-
order algorithm without any splitting. Model 
2: At-ComGen is used to generate comments. 

Model 3: AST is decomposed according to 
blocks (compound statements including 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

CODE-NN Seq2Seq DeepCom At-ComGen

Low Medium High
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Model 1 Model 2 Model 3

BLEU METEOR ROUGE-L
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Around 2018, Transformer and BERT technology 
have made breakthroughs in NLP tasks such as text 
processing, text reading and sentiment classifica-
tion. Experts attempt to use BERT in the process of 
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Model 3, in which BERT Pre-trained technology is 
fully utilized during encoding and decoding, falls be-
hind the other models. We believe that it is due to rare 
words, especially AST internal nodes, such as Infix-
Expression, SimpleName. These compound words 
are very uncommon in human languages, which 
cannot be embedded with BERT pre-trained model. 
While the corpus in model 2 is made according to all 
the words generated before word vectorization. Rare 
words are easily encoded by the corpus above gen-
erated by Word2vec. Most of the tokens appeared in 
code comments are natural language words, which 
are easily encoded with BERT pre-trained model.  
Currently, it is difficult for At-ComGen to train a BERT 
model with its own corpus due to hardware limita-
tions. We hope that in the future a specialized BERT 
model can be trained for source code embedding, 
which may greatly improve the machine comments.

6.2 Investigating the Impact of the AST 
Splitting 
The traversing of the generated AST plays a signif-
icant role in the process of code summarization. To 
compare the results, the original AST is decomposed 
with three strategies by the splitting granularity. 
Model 1: AST is treated as a special statement tree, 
which is encoded directly via a classical pre-order 
algorithm without any splitting. 
Model 2: At-ComGen is used to generate comments. 
Model 3: AST is decomposed according to blocks 
(compound statements including multiple state-
ments within the same brace pairs). For example, 
trees rooted by TryStatement are not divided into 
subtrees in Model 3. After decomposition, the fol-
lowing encoding processes are the same as those 
in At-ComGen. Figure 8. shows the performance of 
generated comments.
It is shown that complicated traversing algorithms 
cannot improve the comment quality significantly. 
The structural encoder based on Tree-LSTM actual-
ly reduces comment quality slightly. We believe that 
the depth of the complex AST declines model 2. In 
order to update Tree-LSTM parameters successfully, 
encoder has to reshape the AST to a common binary 
tree, which might increase the tree depth. As the per-
formance of model 3 is similar to model 1, the pre-or-
der algorithm is applied in At-ComGen for simplicity.  

6.3 Investigating the Impact of Code Length 
and Comment Length
In this chapter, we investigate the performance of 
generated java comments according to source code 
lengths and comments lengths.  
In java, “statement” is the minimum division to keep 
code function. In this chapter, we study the impact 
of statements on generated comments. Test data are 
grouped carefully according to code lengths. Auto-
mated tests are applied to evaluate the performance 
of code comments generated from different mod-
els. Figure 9 presents the BLUE-4 scores of 3 base-
line models and At-ComGen according to source 
code lengths*, and Figure 10 presents the METEOR 
scores of 4 models under the same conditions.
We conclude from Figures 9-10 that both BLUE and 
METEOR Curves fluctuate as the code lengths vary, 
while the code length does not have a significant 
impact on the generated comment performance in 
a certain range. In most cases, both BLEU and ME-
TEOR values from At-ComGen outperform the oth-
er baseline models. The machine comments gener-
ated from Seq2Seq and CODE-NN, both of which 
ignore the code structure, fall behind DeepCom and 
At-ComGen obviously. For example, in the case of 
a function of 5 lines, the comment BLEU value of 
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Results of comment quality on different AST splitting.
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Figure 9
Comment BLUE values based on code lengths (*Code 
length is calculated by counting the number of tokens)  
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At-ComGen is 59.3%, 36.4%, 43.3%, and 13.1% higher 
than the other baseline models, respectively.   
Generally, the generated comment length and the 
reference length have a positive correlation. We in-
vestigate the impact of reference lengths to the per-
formance of machine comments by ablation tests. 

Figure 10
Comment METEOR values based on code lengths (Code 
length is calculated by counting the number of tokens)
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Automatic evaluations are applied to the generated 
comments from 4 models according to reference 
lengths. Figure 11 indicates the trend of BLEU val-
ues according to the reference lengths. Figure 12 
shows the trend of METEOR values under the same 
conditions. 

Figure 11
Comment BLEU values based on Reference lengths.
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We conclude from Figures 11-12. that the 
reference length has a significant impact on 
generated comments. On the whole, both the 
BLUE and METEOR curves of all the models 
decrease when the lengths of reference 
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rich expressive power in natural languages. 
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public Date stringToDate(String time)
{
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
        Date dateTime = null;
        try {
                  dateTime = simpleDateFormat.parse(time);

           return dateTime;
        } catch (ParseException e) 
                {

                    e.printStackTrace();
                    return null;
   }

}

Reference     Convert String format to Date.

CODE-NN      Construct simple date format to date time.

DeepCom      Parse string to date with parse exception.
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DeepCom and At-ComGen.  

 
The Java function in Case 2 is designed to extract 
the information from an HTML page (Figure 
14). The machine comment generated by At-
ComGen contains more information than the 
reference. The comment generated by CODE-
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We conclude from Figures 11-12. that the reference 
length has a significant impact on generated com-
ments. On the whole, both the BLUE and METEOR 
curves of all the models decrease when the lengths of 
reference comments increase. We guess it is because 
long comments detail on code functions due to the 
rich expressive power in natural languages. Hence, 
some human evaluations are held as a supplement in 
ablation experiments.
Although the model performance decreases with the 
increasing of comment length, the comment quality of 
At-ComGen outperforms the other models in most cas-
es. The quality of machine comments reaches its peak 
when the reference length is between 5 and 10 words. 
For example, when the reference length is 10, the BLEU 
values of At-ComGen are 38.2%, 23.7%, 9.3%, and 4.4% 
higher than the other baseline models, respectively. 

6.4 Cases Investigation
In this chapter, some typical cases are introduced 
to investigate the code comments generated by 
At-ComGen, CODE-NN, and DeepCom respectively 
according to the same input functions. 
The Java function in Case 1 converts the time from 
String format into Date format (Figure 13). The ma-
chine comment generated from At-ComGen is iden-
tical to the reference. However, machine comments 
generated by CODE-NN and DeepCom are ambiguous, 
which are heavily influenced by non-key words such as 
simpleDateFormat and Exception during encoding. 

Figure 13
Case 1: To convert the time from String format into Date 
format via CODE-NN, DeepCom and At-ComGen.
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The Java function in Case 2 is designed to extract 
the information from an HTML page (Figure 14). 
The machine comment generated by At-ComGen 
contains more information than the reference. The 
comment generated by CODE-NN has repetitive 
words, and the machine comment from DeepCom is 
also ambiguous. Hidden features in the source code 
are carefully extracted by the specialized encoder 
and decoder in At-ComGen. 

Figure 14
Case 2: To extract the information from an HTML page via 
CODE-NN, DeepCom and At-ComGen.

 

decoder in At-ComGen.  

public String extract(String html, CETR.Parameters parameters) 
{
        html = clearText(html); 
        List<String> rows = extractRows(html);    
        List<Integer> selectedRowIds = selectRows(rows, parameters);
        StringBuilder sb = new StringBuilder(html.length());

        for(Integer rowId : selectedRowIds) {
            String row = rows.get(rowId);
            row = StringCleaner.removeExtraSpaces(HTMLParser.extractText(row));
            if(row.isEmpty()) {
                continue;
            }
            sb.append(row).append(" ");
        }
        return sb.toString().trim();
}

Reference         Extracts the main content for an HTML page.

CODE-NN          Extract rows rows html.

DeepCom      Extract html to string builder after clear text.

At-ComGen   Extract the string content from html page after                  
clear text.

 
Figure 14 Case 2: To extract the information 

from an HTML page via CODE-NN, DeepCom 
and At-ComGen. 

It is shown in Case 3 that the expressive 
diversity of natural languages might lead to low 
matching between generated comments and 
reference comments (Figure 15). The Java 
function in Case 3 is to check the existence of a 
given item. Compared to the reference, the 
generated comments from DeepCom and At-
ComGen are more expressive and accurate. 
However, the automatic evaluation fails to give 
an accurate similarity due to the ground truth.  
It is the reason why we involve manual 
inspection in the evaluation phase.  

public boolean contain(int key, List<String> keyList)
{
       if (keyList.contains(key+""))

return true;
       else return false;
}

Reference     Is the key in the keylist?

CODE-NN      Return true if.

DeepCom      Return true if key list contains key. 

At-ComGen   Checks whether the given key is contained within 
                 the string list.

 
Figure 15 Case 3: To check the expressive 

diversity of natural languages via CODE-NN, 
DeepCom and At-ComGen. 

 

7. Conclusion and Future Work 
We have presented a hybrid attentional deep 
learning model for the generation of source code 
comments. In order to retain both the lexical and 
structural information, our model employs two 
independent LSTM encoders in the process of 

code representation. The lexical encoder 
extracts the tokens, words and vectorizes them 
into a unified high dimensional space, while the 
structural encoder maps the generated AST to a 
vector with a specific traversal algorithm. 
Compared to other baseline models, At-
ComGen has following advantages: (1) The 
hybrid attention has intensified the key words 
and statements during code encoding. (2) The 
special encoding of statement nodes in AST has 
greatly reduced the size of generated corpus 
and the occurrences of "UNK". (3) The 
introduction of BERT in the encoder obviously 
improves the expressiveness of the output 
comments. 

 There are many promising directions for 
further study such as intelligent code search, 
code clone and other code translations. We plan 
to extend our model to solve these problems. 
The future version of our model plans to 
generate new corpus from both source code and 
syntax tree, and improve the performance of 
generated comments with self-trained BERT 
models. 

The proposed model's efficiency depends on 
training data amount and quality. Data that is 
incomplete or distorted may not be reliable. The 
large codebases of hybrid attention models 
make them computationally expensive. Hybrid 
attention models may struggle to generalize to 
code from different domains or languages due 
to conventions and semantics.    

We want to explore potential methods for 
enhancing the precision and relevance of 
comment creation via the use of data from vast 
code repositories in the near future. We can 
enhance code and comments using semantic 
analysis and word embeddings. Developing a 
way to automate the reorganization of code 
comments would enhance their uniformity and 
precision. We must prioritize code comments 
and organization, since they will facilitate our 
ability to anticipate necessary revisions. Users of 
the change comments section may choose from 
three unique kinds of remarks: succinct, 
informative, and detailed. The intended use of 
the code for both internal and external purposes 
contextualizes comments, altering their style 
based on the situation. Optimization strategies 
may enhance the computational efficiency of 
hybrid attention, particularly in large 
codebases. 
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However, the automatic evaluation fails to give 
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It is the reason why we involve manual 
inspection in the evaluation phase.  
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special encoding of statement nodes in AST has 
greatly reduced the size of generated corpus 
and the occurrences of "UNK". (3) The 
introduction of BERT in the encoder obviously 
improves the expressiveness of the output 
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 There are many promising directions for 
further study such as intelligent code search, 
code clone and other code translations. We plan 
to extend our model to solve these problems. 
The future version of our model plans to 
generate new corpus from both source code and 
syntax tree, and improve the performance of 
generated comments with self-trained BERT 
models. 

The proposed model's efficiency depends on 
training data amount and quality. Data that is 
incomplete or distorted may not be reliable. The 
large codebases of hybrid attention models 
make them computationally expensive. Hybrid 
attention models may struggle to generalize to 
code from different domains or languages due 
to conventions and semantics.    

We want to explore potential methods for 
enhancing the precision and relevance of 
comment creation via the use of data from vast 
code repositories in the near future. We can 
enhance code and comments using semantic 
analysis and word embeddings. Developing a 
way to automate the reorganization of code 
comments would enhance their uniformity and 
precision. We must prioritize code comments 
and organization, since they will facilitate our 
ability to anticipate necessary revisions. Users of 
the change comments section may choose from 
three unique kinds of remarks: succinct, 
informative, and detailed. The intended use of 
the code for both internal and external purposes 
contextualizes comments, altering their style 
based on the situation. Optimization strategies 
may enhance the computational efficiency of 
hybrid attention, particularly in large 
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reference, the generated comments from DeepCom 
and At-ComGen are more expressive and accurate. 
However, the automatic evaluation fails to give an 
accurate similarity due to the ground truth.  It is 
the reason why we involve manual inspection in the 
evaluation phase. 

7. Conclusion and Future Work
We have presented a hybrid attentional deep 
learning model for the generation of source code 
comments. In order to retain both the lexical and 
structural information, our model employs two in-
dependent LSTM encoders in the process of code 
representation. The lexical encoder extracts the to-
kens, words and vectorizes them into a unified high 
dimensional space, while the structural encoder 
maps the generated AST to a vector with a specif-
ic traversal algorithm. Compared to other baseline 
models, At-ComGen has following advantages: (1) 
The hybrid attention has intensified the key words 
and statements during code encoding. (2) The spe-
cial encoding of statement nodes in AST has greatly 
reduced the size of generated corpus and the occur-
rences of "UNK". (3) The introduction of BERT in 
the encoder obviously improves the expressiveness 
of the output comments.
There are many promising directions for further 
study such as intelligent code search, code clone and 
other code translations. We plan to extend our mod-
el to solve these problems. The future version of our 
model plans to generate new corpus from both source 
code and syntax tree, and improve the performance of 
generated comments with self-trained BERT models.
The proposed model's efficiency depends on training 
data amount and quality. Data that is incomplete or 

distorted may not be reliable. The large codebases of 
hybrid attention models make them computational-
ly expensive. Hybrid attention models may struggle 
to generalize to code from different domains or lan-
guages due to conventions and semantics.   
We want to explore potential methods for enhancing 
the precision and relevance of comment creation via 
the use of data from vast code repositories in the near 
future. We can enhance code and comments using 
semantic analysis and word embeddings. Developing 
a way to automate the reorganization of code com-
ments would enhance their uniformity and precision. 
We must prioritize code comments and organization, 
since they will facilitate our ability to anticipate nec-
essary revisions. Users of the change comments sec-
tion may choose from three unique kinds of remarks: 
succinct, informative, and detailed. The intended use 
of the code for both internal and external purposes 
contextualizes comments, altering their style based 
on the situation. Optimization strategies may en-
hance the computational efficiency of hybrid atten-
tion, particularly in large codebases.
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