
643Information Technology and Control 2025/2/54

Hybrid Attention
Approach for Source
Code Comment
Generation

ITC 2/54
Information Technology
and Control
Vol. 54 / No. 2/ 2025
pp. 643-661
DOI 10.5755/j01.itc.54.2.36699

Hybrid Attention Approach for Source Code Comment Generation

Received 2024/03/18 Accepted after revision 2025/01/15

HOW TO CITE: Meng, Y. (2025). Hybrid Attention Approach for Source Code Comment Generation.
Information Technology and Control, 54(2), 643-661. https://doi.org/10.5755/j01.itc.54.2.36699

Yao Meng
North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Corresponding author: mengyao@ncwu.edu.cn

Currently, developers are often obligated to enhance code quality. High-quality code is often accompanied
with comprehensive summaries, including code documentation and function explanations, which are invalu-
able for maintenance and further development. Regrettably, few software projects provide sufficient code
comments owing to the high costs associated with human labeling. Contemporary researchers in software
engineering concentrate on the methods for automated comment generating. Initial algorithms depended
on handwritten templates or information retrieval methods. With the advancement of machine learning,
researchers construct automated models for machine translation instead. Nonetheless, the produced code
comments remain inadequate owing to the significant disparity between code structure and normal lan-
guage. This study introduces a unique deep learning model, At-ComGen, which utilizes hybrid attention for
the automated creation of source code comments. Utilizing two separate LSTM encoders, our approach inte-
grates essential tokens from source code functions with the code structure, represented by a corresponding
Abstract Syntax Tree. In contrast to earlier data-driven models, our methodology utilizes code syntax and se-
mantics in the generation of comments. The hybrid attention method, used for comment creation for the first
time to our knowledge, enhances the quality of code comments. The tests demonstrate that At-ComGen is
efficacious and surpasses other prevalent methodologies. Machine comments from Seq2Seq and CODE-NN
disregard code structure underlying DeepCom and At-ComGen. At-ComGen has 59.3%, 36.4%, 43.3%, and
13.1% higher comment BLEU values than baseline models for a 5-line function. Even though model perfor-
mance reduces with comment length, At-ComGen's comments often outperform others. 5–10-word machine
comments work best. For reference length 10, At-ComGen has 38.2%, 23.7%, 9.3%, and 4.4% greater BLEU
values than the other baseline models.
KEYWORDS: Code Comment Generation; Attention; Abstract Syntax Tree.

Information Technology and Control 2025/2/54644

1. Introduction
In contemporary civilization, essential aspects of
existence, including natural resources, healthcare,
and public safety, rely on the operation of high-quali-
ty software. Nonetheless, software development has
always been very expensive. Software developers
strive to enhance code quality.
Software maintenance requires up to 90% of soft-
ware engineering efforts, with a significant portion
of time allocated to comprehending the existing code
and associated documentation. Despite the plethora
of coding standards established by software engi-
neering authorities, few developers are inclined to
fully comment their code for future maintenance.
Novice developers also find it challenging to pro-
vide adequate comments for source code. Methods
for annotating code snippets have been introduced
throughout the previous decade. Early researchers
produced code comments using manual templates
or content selection methods. Sridhara et al. [26]
produced textual comments using several templates,
each formulated based on assertions in source code.
Sridhara et al. [27] used a particular template derived
from SWUM, an NPL approach for identifying short
words concealed in code, to provide concise summa-
ries. Nevertheless, these transformation rules are es-
tablished by domain specialists, making them chal-
lenging to use in other programming languages [3].
In the age of deep learning, researchers are com-
mencing the generation of source code comments
using neural network models. The promising tech-
nology of neural machine translation (NMT), es-
tablished within the NLP academic community, has
lately garnered the interest of software program-
mers. A standard neural machine translation (NMT)
system converts one natural language into another
using sequence-to-sequence learning, such as trans-
lating an English phrase into a French sentence. In
software engineering, individuals may use Neural
Machine Translation (NMT) to produce comments:
the lexicon, tokens, or structural information of
source code constitute one sequence, while the in-
tended natural language summary serves as the
target language. Owing to their superior transfor-
mation accuracy and generalizability, deep learn-
ing methodologies rapidly supplanted conventional
techniques for comment creation.

We provide a source code comment generation mod-
el named At-ComGen, which employs two distinct
LSTM encoders integrated with a hybrid attention
mechanism, preserving both lexical and structural in-
formation in code representation. The lexical encod-
er utilizes token information by extracting words and
IDs from the source code, while the syntactical en-
coder derives structure information using a special-
ized traversal technique. The syntactical encoder first
transforms a particular code snippet into an Abstract
Syntax Tree (AST) and then divides it into a series of
statement trees. Each subtree signifies a valid code
statement. The encoder then inputted all the vectors,
each representing a subtree, into an LSTM network
sequentially. The integrated decoder in At-ComGen
amalgamates the outputs from both encoders with a
hybrid attention mechanism, producing the comment
through a sequence-to-sequence learning framework.
Through comparative studies, we ascertain that our
model surpasses the majority of prevalent state-of-
the-art methodologies.
Our contributions in this work are delineated as fol-
lows:
We provide a deep learning model for generating
source code comments, using two separate LSTM
encoders to process code tokens and structures. In
contrast to other methodologies, the comments pro-
duced by our model preserve both lexical and struc-
tural characteristics of the code.
We provide an innovative statement tree travers-
al approach for extracting structural information
from code, in contrast to conventional AST travers-
al strategies. Our technique divides the whole AST
into sequential subtrees based on code statements,
therefore reducing tree depth and complexity. The
approach successively navigates each statement
tree based on the naturalness of programming lan-
guages.
We are the pioneers in using the hybrid attention
mechanism, first established in natural language
processing, to the production of source code com-
ments. The hybrid attention method establishes
a strong correlation between code tokens, such as
identifiers, and code structure, ultimately enhancing
the precision of produced comments.

645Information Technology and Control 2025/2/54

The remainder of the paper is structured as follows.
Section 2 delineates the relevant literature in this
domain. Section 3 delineates the notations and foun-
dational concepts pertinent to automated comment
production. Section 4 delineates the framework of
our model. Section 5 presents the comparative ex-
periments, whereas Section 6 analyzes the experi-
mental results. In conclusion, we finalize the paper
in Section 7.

1.1 Motivation and Contribution
The development of a hybrid attention approach for
the purpose of writing source code comments has as
its primary objective the elimination of the issues
that are related with the methods that are now in
use. When employing typical approaches, it may be
difficult to capture the whole context of a code snip-
pet, which may result in comments that are either
erroneous or irrelevant to the code sample. Under-
standing the semantic connections that exist be-
tween the various pieces of code is essential for the
generation of comments that are pertinent, but it is
not a simple task to do. Most of the approaches that
are now accessible may need a significant amount
of processing power, particularly for big codebases.
The proposed approach integrates many attention
processes, enabling it to capture various elements
of the code, such as syntax, semantic relationships,
and context, among others. As a result, a hybrid at-
tention strategy was devised to address these chal-
lenges. The proposed hybrid attention approach may
enhance the understanding of a code snippet's con-
text, leading to the generation of more accurate and
relevant comments. The improved ability of the pro-
vided model to capture the semantic relationships
across different portions of the code results in more
coherent and meaningful comments. The hybrid at-
tention strategy may be superior to current tactics,
especially for large codebases.

2. Related Work
Recently, the source code summarization has drawn
great attention in software engineering. Generally
speaking, the related research can be classified as
rule/template based approaches [26], statistical lan-
guage model approaches [6] and deep learning ap-
proaches [18, 1].

2.1 Traditional Approaches
In the initial study, people manually crafted tem-
plates to produce comments from source code. Re-
searchers [26, 3, 9] often generate code annotations
using diverse templates. If a code snippet conforms
to the contrived template, the associated summary
will be generated automatically.
Information retrieval methods are also included in
code summarizations. The vector space model and
latent semantic indexing, prevalent in information
retrieval, are used to generate code comments for
classes and functions [10]. A number of researchers
have tried to produce code comments via methods
used in code cloning, since analogous code snippets
may elicit comparable remarks [31]. Table 1 presents
a comparison with state of art methods.

2.2 Deep Learning Approaches
Researchers first provide an attentional RNN for
generating product remarks for SQL and C# [6]. De-
spite the popularity of the NMT approach in NLP, it
has not been used to source code summarizing. The
majority of code summarizing methods use the tra-
ditional attentional sequence-to-sequence struc-
ture [1]. The comparative trials demonstrate that
their machine-generated remarks surpass those
produced by traditional models.
Alongside the aforementioned token-extraction meth-
ods, individuals endeavor to extract the structures of
source code while creating comments. Classical NLP
techniques may overlook the concealed subtleties in
the source code, which include both lexical and se-
mantic information. Hu et al. [13] offer a model named
DeepCom that generates comments by navigating the
relevant Abstract Syntax Tree (AST) derived from the
provided code sample. They encode the Abstract Syn-
tax Tree using an attentional LSTM network and pro-
duce the comment using an LSTM decoder. They use
an innovative method, SBT, which preserves all the in-
formation in the AST throughout traversal.

3. Background
3.1 Language Model
The language model is a probabilistic model which
produces sentences in a human language. It com-

Information Technology and Control 2025/2/54646

putes the probability of occurrence of a number of
words in a specific sentence. For a sentence y, where
y = (y1, ... , yT) is a sequence of words, the language
model estimates the joint probability of its words
Pr (y1, ... , yT):

!

"$1:"4' "4467"6?5' 64' $44"A"%271' 16' 1:"' #6&"'
52J0A"L' <7&"45127&$7F' 1:"' 5"J271$#'
#677"#1$675' 1:21' "T$51' P"1C""7' 1:"' %24$6?5'
0$"#"5'63'#6&"'$5'"55"71$2A'364'1:"'F"7"421$67'63'
#6JJ"715' 1:21' 24"' 0"41$7"71D' P?1' $1' $5' 761' 2'
5$J0A"'125['16'&6L'Z651'63'1:"'200462#:"5'1:21'
24"' 76C' 2##"55$PA"' J2=' 7""&' 2' 5$F7$3$#271'
2J6?71' 63' 046#"55$7F' 06C"4D' 0241$#?A24A=' 364'
P$F' #6&"P25"5L' V:"' 046065"&' 200462#:'
$71"F421"5'J27='211"71$67'046#"55"5D'"72PA$7F'$1'
16'#201?4"'%24$6?5'"A"J"715'63'1:"'#6&"D'5?#:'25'
5=712TD' 5"J271$#' 4"A21$675:$05D' 27&' #671"T1D'
2J67F' 61:"45L' /5' 2' 4"5?A1D' 2' :=P4$&' 211"71$67'
51421"F=' C25' &"%$5"&' 16' 2&&4"55' 1:"5"'
#:2AA"7F"5L' V:"' 046065"&' :=P4$&' 211"71$67'
200462#:'J2='"7:27#"'1:"'?7&"45127&$7F'63'2'
#6&"'57$00"1`5'#671"T1D'A"2&$7F'16'1:"'F"7"421$67'
63' J64"' 2##?421"' 27&' 4"A"%271' #6JJ"715L' V:"'
$J046%"&' 2P$A$1=' 63' 1:"' 046%$&"&' J6&"A' 16'
#201?4"' 1:"' 5"J271$#' 4"A21$675:$05' 2#4655'
&$33"4"71' 0641$675' 63' 1:"' #6&"' 4"5?A15' $7' J64"'
#6:"4"71'27&'J"27$7F3?A'#6JJ"715L'V:"':=P4$&'
211"71$67' 51421"F=' J2=' P"' 5?0"4$64' 16' #?44"71'
12#1$#5D'"50"#$2AA='364'A24F"'#6&"P25"5L'

'

2. Related Work
!"#"71A=D' 1:"' 56?4#"' #6&"' 5?JJ24$G21$67' :25'
&42C7'F4"21'211"71$67'$7'5631C24"'"7F$7""4$7FL'
W"7"42AA='50"2[$7FD'1:"'4"A21"&'4"5"24#:'#27'P"'
#A255$3$"&' 25' 4?A"+1"J0A21"' P25"&' 200462#:"5'
c(HdD' 5121$51$#2A' A27F?2F"'J6&"A' 200462#:"5' cHd'
27&'&""0'A"247$7F'200462#:"5'c-.D'-dL' '

2.1 Traditional Approaches
U7' 1:"' $7$1$2A' 51?&=D' 0"60A"' J27?2AA=' #4231"&'
1"J0A21"5' 16' 046&?#"' #6JJ"715' 346J' 56?4#"'
#6&"L'!"5"24#:"45'c(HD',D'Od'631"7'F"7"421"'#6&"'
2776121$675'?5$7F'&$%"45"' 1"J0A21"5L' U3' 2' #6&"'
57$00"1'#67364J5'16'1:"'#6714$%"&'1"J0A21"D'1:"'
2556#$21"&' 5?JJ24=' C$AA' P"' F"7"421"&'
2?16J21$#2AA=L' ' '

U7364J21$67'4"14$"%2A'J"1:6&5'24"'2A56'$7#A?&"&'
$7' #6&"' 5?JJ24$G21$675L' V:"' %"#164' 502#"'
J6&"A'27&'A21"71'5"J271$#' $7&"T$7FD'04"%2A"71'
$7' $7364J21$67' 4"14$"%2AD' 24"' ?5"&' 16' F"7"421"'
#6&"'#6JJ"715'364'#A255"5'27&'3?7#1$675'c-)dL'/'
7?JP"4' 63' 4"5"24#:"45' :2%"' 14$"&' 16' 046&?#"'
#6&"' #6JJ"715' %$2' J"1:6&5' ?5"&' $7' #6&"'
#A67$7FD' 5$7#"' 272A6F6?5' #6&"' 57$00"15' J2='
"A$#$1'#6J0242PA"'4"J24[5'c,-dL'V2PA"'-'04"5"715'
2'#6J024$567'C$1:'5121"'63'241'J"1:6&5L'

2.2 Deep Learning Approaches
!"5"24#:"45' 3$451' 046%$&"' 27' 211"71$672A' !99'
364'F"7"421$7F'046&?#1'4"J24[5'364'YgX'27&';h'
cHdL']"50$1"' 1:"' 060?A24$1=' 63' 1:"' 9ZV'
200462#:'$7'9XBD'$1':25'761'P""7'?5"&'16'56?4#"'

#6&"' 5?JJ24G7FL' V:"' J2N64$1=' 63' #6&"'
5?JJ24G7F' J"1:6&5' ?5"' 1:"' 142&$1$672A'
211"71$672A' 5"Q?"7#"S16S5"Q?"7#"' 514?#1?4"' c-dL'
V:"' #6J02421$%"' 14$2A5' &"J6751421"' 1:21' 1:"$4'
J2#:$7"SF"7"421"&' 4"J24[5' 5?40255' 1:65"'
046&?#"&'P='142&$1$672A'J6&"A5L' '
/A67F5$&"'1:"'2364"J"71$67"&'16["7S"T142#1$67'
J"1:6&5D' $7&$%$&?2A5' "7&"2%64' 16' "T142#1' 1:"'
514?#1?4"5' 63' 56?4#"' #6&"' C:$A"' #4"21$7F'
#6JJ"715L' ;A255$#2A' 9XB' 1"#:7$Q?"5' J2='
6%"4A66['1:"'#67#"2A"&'5?P1A"1$"5'$7'1:"'56?4#"'
#6&"D'C:$#:' $7#A?&"'P61:' A"T$#2A'27&'5"J271$#'
$7364J21$67L'R?'"1'2AL'c-,d'633"4'2'J6&"A'72J"&'
]""0;6J' 1:21' F"7"421"5' #6JJ"715' P='
72%$F21$7F' 1:"' 4"A"%271' /P5142#1' Y=712T' V4""'
e/YVf'&"4$%"&'346J'1:"'046%$&"&'#6&"'52J0A"L'
V:"='"7#6&"'1:"'/P5142#1'Y=712T'V4""'?5$7F'27'
211"71$672A' XYVZ' 7"1C64[' 27&' 046&?#"' 1:"'
#6JJ"71'?5$7F'27'XYVZ'&"#6&"4L'V:"='?5"'27'
$776%21$%"'J"1:6&D'Y_VD'C:$#:'04"5"4%"5'2AA'1:"'
$7364J21$67'$7'1:"'/YV'1:46?F:6?1'142%"452AL' !

!

3. Background
3.1 Language Model
V:"' A27F?2F"' J6&"A' $5' 2' 046P2P$A51#' J6&"A'
C:$#:'046&?#"5'5"71"7#"5'$7'2':?J27'A27F?2F"L'
U1' #6J0?1"5' 1:"'046P2PA1=' 63' 6##?44"7#"' 63' 2'
7?JP"4' 63'C64&5' $7' 2' 50"#$3$#' 5"71"7#"L' b64' 2'
5"71"7#"' ! D' C:"4"' ! " #!!$ % $!"& ' $5' 2'
5"Q?"7#"' 63' C64&5D' 1:"' A27F?2F"' J6&"A'
"51$J21"5' 1:"' N6$71' 046P2PA1=' 63' $15' C64&5'
'##!!$ % $!"&I'

!-"'

U1' $5' "Q?2A' 16' "51$J21"' 1:"' 046P2PA1=' 63' "2#:'
C64&'$7' !' F$%"7'$15'04"%$6?5'C64&5L' '

/5' C"' [76CD' $1' $5' &$33$#?A1' 16' #2A#?A21"'
'##!$(!!$ % $!$%!&D'$7'"24A='&2=5'C"'?5"'9SF42J'
c-*d' 16' 20046T$J21"' $1L' V:"' "Q?21$67' e-f' $5'
5$J0A$3$"&'25'36AA6C5I'

)))))))#*&'

C:"4"'27'7SF42J'J"275'7' #675"#?1$%"'C64&5L'
V:"'20046T$J21$67'&"761"5'1:"'7"T1'C64&' !$' $5'
#67&$1$67"&'67'1:"'04"%$6?5' + , -' C64&5L' '

V:"'64F72A' A27F?2F"'J6&"A'P25"&'67'7SF42J'
5?33"45'6P%$6?5'A$J$121$675'c-8D'-HdL'b64'$75127#"D'
7SF42J'J6&"A'046P2PA1$"5'#27761'P"'F"7"421"&'
346J' 1:"' 34"Q?"7#=' #6?715' 25' 1:"' F"7"421"&'
J6&"A5' J$F:1' :2%"' 5"4$6?5' 046PA"J5' C:"7'
#6734671"&' C$1:' 7SF42J5' C:$#:' :2%"' 7"%"4'
P""7'5""7'P"364"L' '

!"#"71' 4"5"24#:"45' :2%"' P"F?7' 16' 200A=' &""0'
A"247$7F' 16' 4"0A2#"' 142&$1$672A' 200462#:"5' $7'

! ! !!
" #$$$# % " & #$$$# %!
" ! " # ##
$ % % $ % % % !=

="

! ! ! !" & #$$$# % " & #$$$# %! " " ! " " # "$ % % % $ % % %! ! + !"

(1)

It is equal to estimate the probability of each word in
y given its previous words.
As we know, it is difficult to calculate Pr (yt| y1, ... , yt–1),
in early days we use N-gram [14] to approximate it.
The equation (1) is simplified as follows:

!

"$1:"4' "4467"6?5' 64' $44"A"%271' 16' 1:"' #6&"'
52J0A"L' <7&"45127&$7F' 1:"' 5"J271$#'
#677"#1$675' 1:21' "T$51' P"1C""7' 1:"' %24$6?5'
0$"#"5'63'#6&"'$5'"55"71$2A'364'1:"'F"7"421$67'63'
#6JJ"715' 1:21' 24"' 0"41$7"71D' P?1' $1' $5' 761' 2'
5$J0A"'125['16'&6L'Z651'63'1:"'200462#:"5'1:21'
24"' 76C' 2##"55$PA"' J2=' 7""&' 2' 5$F7$3$#271'
2J6?71' 63' 046#"55$7F' 06C"4D' 0241$#?A24A=' 364'
P$F' #6&"P25"5L' V:"' 046065"&' 200462#:'
$71"F421"5'J27='211"71$67'046#"55"5D'"72PA$7F'$1'
16'#201?4"'%24$6?5'"A"J"715'63'1:"'#6&"D'5?#:'25'
5=712TD' 5"J271$#' 4"A21$675:$05D' 27&' #671"T1D'
2J67F' 61:"45L' /5' 2' 4"5?A1D' 2' :=P4$&' 211"71$67'
51421"F=' C25' &"%$5"&' 16' 2&&4"55' 1:"5"'
#:2AA"7F"5L' V:"' 046065"&' :=P4$&' 211"71$67'
200462#:'J2='"7:27#"'1:"'?7&"45127&$7F'63'2'
#6&"'57$00"1`5'#671"T1D'A"2&$7F'16'1:"'F"7"421$67'
63' J64"' 2##?421"' 27&' 4"A"%271' #6JJ"715L' V:"'
$J046%"&' 2P$A$1=' 63' 1:"' 046%$&"&' J6&"A' 16'
#201?4"' 1:"' 5"J271$#' 4"A21$675:$05' 2#4655'
&$33"4"71' 0641$675' 63' 1:"' #6&"' 4"5?A15' $7' J64"'
#6:"4"71'27&'J"27$7F3?A'#6JJ"715L'V:"':=P4$&'
211"71$67' 51421"F=' J2=' P"' 5?0"4$64' 16' #?44"71'
12#1$#5D'"50"#$2AA='364'A24F"'#6&"P25"5L'

'

2. Related Work
!"#"71A=D' 1:"' 56?4#"' #6&"' 5?JJ24$G21$67' :25'
&42C7'F4"21'211"71$67'$7'5631C24"'"7F$7""4$7FL'
W"7"42AA='50"2[$7FD'1:"'4"A21"&'4"5"24#:'#27'P"'
#A255$3$"&' 25' 4?A"+1"J0A21"' P25"&' 200462#:"5'
c(HdD' 5121$51$#2A' A27F?2F"'J6&"A' 200462#:"5' cHd'
27&'&""0'A"247$7F'200462#:"5'c-.D'-dL' '

2.1 Traditional Approaches
U7' 1:"' $7$1$2A' 51?&=D' 0"60A"' J27?2AA=' #4231"&'
1"J0A21"5' 16' 046&?#"' #6JJ"715' 346J' 56?4#"'
#6&"L'!"5"24#:"45'c(HD',D'Od'631"7'F"7"421"'#6&"'
2776121$675'?5$7F'&$%"45"' 1"J0A21"5L' U3' 2' #6&"'
57$00"1'#67364J5'16'1:"'#6714$%"&'1"J0A21"D'1:"'
2556#$21"&' 5?JJ24=' C$AA' P"' F"7"421"&'
2?16J21$#2AA=L' ' '

U7364J21$67'4"14$"%2A'J"1:6&5'24"'2A56'$7#A?&"&'
$7' #6&"' 5?JJ24$G21$675L' V:"' %"#164' 502#"'
J6&"A'27&'A21"71'5"J271$#' $7&"T$7FD'04"%2A"71'
$7' $7364J21$67' 4"14$"%2AD' 24"' ?5"&' 16' F"7"421"'
#6&"'#6JJ"715'364'#A255"5'27&'3?7#1$675'c-)dL'/'
7?JP"4' 63' 4"5"24#:"45' :2%"' 14$"&' 16' 046&?#"'
#6&"' #6JJ"715' %$2' J"1:6&5' ?5"&' $7' #6&"'
#A67$7FD' 5$7#"' 272A6F6?5' #6&"' 57$00"15' J2='
"A$#$1'#6J0242PA"'4"J24[5'c,-dL'V2PA"'-'04"5"715'
2'#6J024$567'C$1:'5121"'63'241'J"1:6&5L'

2.2 Deep Learning Approaches
!"5"24#:"45' 3$451' 046%$&"' 27' 211"71$672A' !99'
364'F"7"421$7F'046&?#1'4"J24[5'364'YgX'27&';h'
cHdL']"50$1"' 1:"' 060?A24$1=' 63' 1:"' 9ZV'
200462#:'$7'9XBD'$1':25'761'P""7'?5"&'16'56?4#"'

#6&"' 5?JJ24G7FL' V:"' J2N64$1=' 63' #6&"'
5?JJ24G7F' J"1:6&5' ?5"' 1:"' 142&$1$672A'
211"71$672A' 5"Q?"7#"S16S5"Q?"7#"' 514?#1?4"' c-dL'
V:"' #6J02421$%"' 14$2A5' &"J6751421"' 1:21' 1:"$4'
J2#:$7"SF"7"421"&' 4"J24[5' 5?40255' 1:65"'
046&?#"&'P='142&$1$672A'J6&"A5L' '
/A67F5$&"'1:"'2364"J"71$67"&'16["7S"T142#1$67'
J"1:6&5D' $7&$%$&?2A5' "7&"2%64' 16' "T142#1' 1:"'
514?#1?4"5' 63' 56?4#"' #6&"' C:$A"' #4"21$7F'
#6JJ"715L' ;A255$#2A' 9XB' 1"#:7$Q?"5' J2='
6%"4A66['1:"'#67#"2A"&'5?P1A"1$"5'$7'1:"'56?4#"'
#6&"D'C:$#:' $7#A?&"'P61:' A"T$#2A'27&'5"J271$#'
$7364J21$67L'R?'"1'2AL'c-,d'633"4'2'J6&"A'72J"&'
]""0;6J' 1:21' F"7"421"5' #6JJ"715' P='
72%$F21$7F' 1:"' 4"A"%271' /P5142#1' Y=712T' V4""'
e/YVf'&"4$%"&'346J'1:"'046%$&"&'#6&"'52J0A"L'
V:"='"7#6&"'1:"'/P5142#1'Y=712T'V4""'?5$7F'27'
211"71$672A' XYVZ' 7"1C64[' 27&' 046&?#"' 1:"'
#6JJ"71'?5$7F'27'XYVZ'&"#6&"4L'V:"='?5"'27'
$776%21$%"'J"1:6&D'Y_VD'C:$#:'04"5"4%"5'2AA'1:"'
$7364J21$67'$7'1:"'/YV'1:46?F:6?1'142%"452AL' !

!

3. Background
3.1 Language Model
V:"' A27F?2F"' J6&"A' $5' 2' 046P2P$A51#' J6&"A'
C:$#:'046&?#"5'5"71"7#"5'$7'2':?J27'A27F?2F"L'
U1' #6J0?1"5' 1:"'046P2PA1=' 63' 6##?44"7#"' 63' 2'
7?JP"4' 63'C64&5' $7' 2' 50"#$3$#' 5"71"7#"L' b64' 2'
5"71"7#"' ! D' C:"4"' ! " #!!$ % $!"& ' $5' 2'
5"Q?"7#"' 63' C64&5D' 1:"' A27F?2F"' J6&"A'
"51$J21"5' 1:"' N6$71' 046P2PA1=' 63' $15' C64&5'
'##!!$ % $!"&I'

!-"'

U1' $5' "Q?2A' 16' "51$J21"' 1:"' 046P2PA1=' 63' "2#:'
C64&'$7' !' F$%"7'$15'04"%$6?5'C64&5L' '

/5' C"' [76CD' $1' $5' &$33$#?A1' 16' #2A#?A21"'
'##!$(!!$ % $!$%!&D'$7'"24A='&2=5'C"'?5"'9SF42J'
c-*d' 16' 20046T$J21"' $1L' V:"' "Q?21$67' e-f' $5'
5$J0A$3$"&'25'36AA6C5I'

)))))))#*&'

C:"4"'27'7SF42J'J"275'7' #675"#?1$%"'C64&5L'
V:"'20046T$J21$67'&"761"5'1:"'7"T1'C64&' !$' $5'
#67&$1$67"&'67'1:"'04"%$6?5' + , -' C64&5L' '

V:"'64F72A' A27F?2F"'J6&"A'P25"&'67'7SF42J'
5?33"45'6P%$6?5'A$J$121$675'c-8D'-HdL'b64'$75127#"D'
7SF42J'J6&"A'046P2PA1$"5'#27761'P"'F"7"421"&'
346J' 1:"' 34"Q?"7#=' #6?715' 25' 1:"' F"7"421"&'
J6&"A5' J$F:1' :2%"' 5"4$6?5' 046PA"J5' C:"7'
#6734671"&' C$1:' 7SF42J5' C:$#:' :2%"' 7"%"4'
P""7'5""7'P"364"L' '

!"#"71' 4"5"24#:"45' :2%"' P"F?7' 16' 200A=' &""0'
A"247$7F' 16' 4"0A2#"' 142&$1$672A' 200462#:"5' $7'

! ! !!
" #$$$# % " & #$$$# %!
" ! " # ##
$ % % $ % % % !=

="

! ! ! !" & #$$$# % " & #$$$# %! " " ! " " # "$ % % % $ % % %! ! + !" (2)

where an n-gram means n consecutive words. The
approximation denotes the next word yt is condi-
tioned on the previous n – 1 words.
The original language model based on n-gram suf-
fers obvious limitations [15, 16]. For instance,
n-gram model probabilities cannot be generated
from the frequency counts as the generated models
might have serious problems when confronted with
n-grams which have never been seen before.
Recent researchers have begun to apply deep learn-
ing to replace traditional approaches in every field of
computing industry. Unlike the n-gram model that
predicts a word according to a fixed number of pre-
decessors, a neural language model predicts a target
word with far away predecessors by a recurrent neu-
ral network (RNN). Figure 1. shows the RNN struc-

ture for sentence estimation, which includes three
layers. The input layer transforms words to specific
vectors. The hidden layer recurrently calculates and
updates a hidden state after reading each word. The
output layer computes the probability of the next
word by the current hidden state.
In this section, we focus on the workflow of the neu-
ral language model. In order to realize equation (1),
the RNN model loads the words sequentially and
predicts the next word at each time step. At step t, it
calculates the next word probability by three steps:
(a) the current word yt is transformed to a vector ac-
cording to the input embedding layer e. (b) it produc-
es the hidden state ht at timestep t by the previous
hidden state ht–1 and the current input yt:

!

"%"4='3$"A&'63'#6J0?1$7F'$7&?514=L'<7A$["'1:"'7S
F42J'J6&"A'1:21'04"&$#15'2'C64&'2##64&$7F'16'2'
3$T"&' 7?JP"4' 63' 04"&"#"55645D' 2' 7"?42A'
A27F?2F"'J6&"A'04"&$#15'2'124F"1'C64&'C$1:'324'
2C2=' 04"&"#"55645' P=' 2' 4"#?44"71' 7"?42A'
7"1C64[' e!99fL' b$F?4"' -L' 5:6C5' 1:"' !99'
514?#1?4"' 364' 5"71"7#"' "51$J21$67D' C:$#:'
$7#A?&"5' 1:4""' A2="45L' V:"' $70?1' A2="4'
14275364J5' C64&5' 16' 50"#3#' %"#1645L' V:"'
:$&&"7'A2="4'4"#?44"71A='#2A#?A21"5'27&'?0&21"5'
2' :$&&"7' 5121"' 231"4' 4"2&$7F' "2#:' C64&L' V:"'
6?10?1' A2="4' #6J0?1"5' 1:"' 046P2PA1=' 63' 1:"'
7"T1'C64&'P='1:"'#?44"71':$&&"7'5121"L' '

'
"#$%&'!(!"##!$%&!'()*()+(!('*,-.*,%)/!

U7'1:$5'5"#1$67D'C"'36#?5'67'1:"'C64[3A6C'63'1:"'
7"?42A' A27F?2F"' J6&"AL' U7' 64&"4' 16' 4"2A$G"'
"Q?21$67' e-fD' 1:"'!99'J6&"A' A62&5' 1:"'C64&5'
5"Q?"71$2AA='27&'04"&$#15'1:"'7"T1'C64&'21'"2#:'
1$J"'51"0L'/1'51"0' .D'$1'#2A#?A21"5'1:"'7"T1'C64&'
046P2PA1='P='1:4""'51"05I'e2f'1:"'#?44"71'C64&'
!$ ' $5' 14275364J"&' 16' 2'%"#164' 2##64&$7F' 16' 1:"'
$70?1' "JP"&&$7F' A2="4' / L' ePf' $1' 046&?#"5' 1:"'
:$&&"7'5121"' 0$' 21' 1$J"51"0' .' P=' 1:"'04"%$6?5'
:$&&"7'5121"' 0$%!' 27&'1:"'#?44"71'$70?1' !$I'

!,"'

e#f'1:"'124F"1'C64&'046P2PA1=' 1##!$&!(!!$ % $!$&'
$5'04"&$#1"&'P='1:"'#?44"71':$&&"7'5121"' 0$I' '

' ' e*f'

C:"4"' 2 ' $5' 1=0$#2AA=' 2' 5631J2T' 3?7#1$67' 1:21'
F"7"421"5'1:"'6?10?1'16["75L' '

3.2 BERT Pre-trained Model
@!V' e$&$4"#1$672A' @7#6&"4' !"04"5"7121$675'
346J'V4275364J"45f'$5'2'C"AAS[76C7'04"S142$7"&'
J6&"A'046065"&'P='W66FA"`5'/U'1"2J'$7'()-.'c8dL'
Y0"#$2A$G"&' $7' 1:"' C64&S"JP"&&$7F' 125[D' 1:"'
_@!V'J6&"A'$5'1:"'"7#6&"4'0241'63'2'J?A1$SA2="4'
P$&$4"#1$672A' V4275364J"4' 7"1C64[L' >:"7'

0"60A"'?5"'1:"'_@!V'J6&"A'364'"7#6&$7FD'1:"='
67A='7""&' 16' 3$7"' 1?7"' 1:"'64$F$72A'04"S142$7"&'
J6&"AD'C$1:6?1'1:"'7""&'16'4"142$7'1:"'"7#6&"4'
J6&"A' 364'50"#3#' 125[5L' U751"2&'63'2'#6J0A"1"'
142$7$7F' 346J' 5#421#:' 364' 2' F$%"7' 125[D' "T0"415'
5$J0A=' 3$7"' 1?7"' 1:"' "7#6&"4' $7' _@!V' &?4$7F'
C64&'"JP"&&$7FL' '

b$F?4"' (' &"0$#15' 1:"' P25$#' 514?#1?4"' 63' _@!V'
J6&"AD' C:"4"' 3! D' 3'#i#3(' $7&$#21"' $70?1'
C64&5' $7' 1:"'J6&"AD' 4!#4'#i#4(' $7&$#21"'
1:"'J6&"Aj5'6?10?1D'$L"LD'1:"'"7#6&$7F'%"#1645'63'
$70?1' C64&5L' V:"' "7#6&$7F' 63' $70?1' C64&5' $7'
_@!V' $5' $J0A"J"71"&' P=' 1:"' J?A1$S1$"4"&'
P$&$4"#1$672A' V4275364J"4' J6&?A"5' eV4JfL'
V4275364J"4'$5'2'#6J0A$#21"&'5"Q?"71$2A'J6&"A'
P25"&'67' 1:"'J?A1$S:"2&'211"71$67'J"#:27$5JL'
]$33"4"71' 200462#:"5' 63' C64&' "JP"&&$7F' 24"'
046%$&"&'P='_@!V'&"%"A60"45'&"0"7&$7F'67'1:"'
Q?2A$1='27&'24427F"J"71'63'V4J5L' '

_@!V'#201?4"5'16["7'#671"T1L';6&"'27&'#671"T1'
[76CA"&F"'$5'#4?#$2A'364'56?4#"'#6&"'#6JJ"71'
&"%"A60J"71L'V:"'04"S142$7"&' A27F?2F"'J6&"A'
_@!V' 25' 5:6C7' $7' b$F?4"' (' :25'0A"71=' 63' 1"T1'
&212L' V:$5' A"2475' 9XB' C64&' 27&' 0:425"'
4"04"5"7121$675' 364' #6&"' &"%"A60J"71L' _@!V`5'
&"5$F7' 4"2&$A=' $71"42#15' C$1:' 211"71$67'
1"#:7$Q?"5D' C:$#:' 24"' 7""&"&' 16' #201?4"' #6&"'
#677"#1$675' 27&' F"7"421"' #671"T1S2C24"'
#6JJ"715L' _@!V' J2=' 04"S142$7' 2' A27F?2F"'
J6&"A' 67' 2' :?F"' #640?5' 63' 56?4#"' #6&"' 27&'
#6JJ"715' 16' A"247' &6J2$7S50"#$3$#'
4"04"5"7121$675' 364' #6&"' #4"21$67L'_@!V'J$F:1'
"7#6&"'64'&"#6&"'#6&"'#6JJ"715'$7'2'5"Q?"7#"S
16S5"Q?"7#"'0242&$FJL'@T142#1$7F'3"21?4"5'346J'
56?4#"'#6&"'?5$7F'_@!V'J$F:1'3""&'2'#6JJ"71'
#4"21$67'J6&"L'

!

!
!

"#$%&'!)!0*&1+*1&(!%$!23"4/!
!

"#$%&!'!"#$%&'()#*!+(,-!),&,.!#/!&',!$.,-#0)1!
23,-#'4)5! 6&%.'!7(,8.! 9.:!"#*,'(;3,(#*)! <($(,&,(#*)!
=(*>!?3@!A.!
<(@!=(*!=(&@!
B&C(0!<#@!&*0!

B..%!D#0.!D#$$.*,!
>.*.'&,(#*!+(,-!-:;'(0!
8.E(D&8!&*0!):*,&D,(D&8!

"#$%'.-.*0!%'#>'&$)!
&*0!'.03D.!&00(,(#*&8!,($.!
)%.*,!#*!'.&0(*>!&*0!

7-.!D#$$.*,)!&'.!#/,.*!
$()$&,D-.0@!$())(*>!#'!#3,0&,.0!(*!
)#/,+&'.!%'#F.D,)1!B.C.8#%.')!-&C.!,#!

!" # " $$! ! !" # " $ %!=

! !" # $%%%$ & " &! " " "# $ $ $ % &+ =

(3)

(c) the target word probability pr(yt+1|y1, ... , yt) is pre-
dicted by the current hidden state ht:

!

"%"4='3$"A&'63'#6J0?1$7F'$7&?514=L'<7A$["'1:"'7S
F42J'J6&"A'1:21'04"&$#15'2'C64&'2##64&$7F'16'2'
3$T"&' 7?JP"4' 63' 04"&"#"55645D' 2' 7"?42A'
A27F?2F"'J6&"A'04"&$#15'2'124F"1'C64&'C$1:'324'
2C2=' 04"&"#"55645' P=' 2' 4"#?44"71' 7"?42A'
7"1C64[' e!99fL' b$F?4"' -L' 5:6C5' 1:"' !99'
514?#1?4"' 364' 5"71"7#"' "51$J21$67D' C:$#:'
$7#A?&"5' 1:4""' A2="45L' V:"' $70?1' A2="4'
14275364J5' C64&5' 16' 50"#3#' %"#1645L' V:"'
:$&&"7'A2="4'4"#?44"71A='#2A#?A21"5'27&'?0&21"5'
2' :$&&"7' 5121"' 231"4' 4"2&$7F' "2#:' C64&L' V:"'
6?10?1' A2="4' #6J0?1"5' 1:"' 046P2PA1=' 63' 1:"'
7"T1'C64&'P='1:"'#?44"71':$&&"7'5121"L' '

'
"#$%&'!(!"##!$%&!'()*()+(!('*,-.*,%)/!

U7'1:$5'5"#1$67D'C"'36#?5'67'1:"'C64[3A6C'63'1:"'
7"?42A' A27F?2F"' J6&"AL' U7' 64&"4' 16' 4"2A$G"'
"Q?21$67' e-fD' 1:"'!99'J6&"A' A62&5' 1:"'C64&5'
5"Q?"71$2AA='27&'04"&$#15'1:"'7"T1'C64&'21'"2#:'
1$J"'51"0L'/1'51"0' .D'$1'#2A#?A21"5'1:"'7"T1'C64&'
046P2PA1='P='1:4""'51"05I'e2f'1:"'#?44"71'C64&'
!$ ' $5' 14275364J"&' 16' 2'%"#164' 2##64&$7F' 16' 1:"'
$70?1' "JP"&&$7F' A2="4' / L' ePf' $1' 046&?#"5' 1:"'
:$&&"7'5121"' 0$' 21' 1$J"51"0' .' P=' 1:"'04"%$6?5'
:$&&"7'5121"' 0$%!' 27&'1:"'#?44"71'$70?1' !$I'

!,"'

e#f'1:"'124F"1'C64&'046P2PA1=' 1##!$&!(!!$ % $!$&'
$5'04"&$#1"&'P='1:"'#?44"71':$&&"7'5121"' 0$I' '

' ' e*f'

C:"4"' 2 ' $5' 1=0$#2AA=' 2' 5631J2T' 3?7#1$67' 1:21'
F"7"421"5'1:"'6?10?1'16["75L' '

3.2 BERT Pre-trained Model
@!V' e$&$4"#1$672A' @7#6&"4' !"04"5"7121$675'
346J'V4275364J"45f'$5'2'C"AAS[76C7'04"S142$7"&'
J6&"A'046065"&'P='W66FA"`5'/U'1"2J'$7'()-.'c8dL'
Y0"#$2A$G"&' $7' 1:"' C64&S"JP"&&$7F' 125[D' 1:"'
_@!V'J6&"A'$5'1:"'"7#6&"4'0241'63'2'J?A1$SA2="4'
P$&$4"#1$672A' V4275364J"4' 7"1C64[L' >:"7'

0"60A"'?5"'1:"'_@!V'J6&"A'364'"7#6&$7FD'1:"='
67A='7""&' 16' 3$7"' 1?7"' 1:"'64$F$72A'04"S142$7"&'
J6&"AD'C$1:6?1'1:"'7""&'16'4"142$7'1:"'"7#6&"4'
J6&"A' 364'50"#3#' 125[5L' U751"2&'63'2'#6J0A"1"'
142$7$7F' 346J' 5#421#:' 364' 2' F$%"7' 125[D' "T0"415'
5$J0A=' 3$7"' 1?7"' 1:"' "7#6&"4' $7' _@!V' &?4$7F'
C64&'"JP"&&$7FL' '

b$F?4"' (' &"0$#15' 1:"' P25$#' 514?#1?4"' 63' _@!V'
J6&"AD' C:"4"' 3! D' 3'#i#3(' $7&$#21"' $70?1'
C64&5' $7' 1:"'J6&"AD' 4!#4'#i#4(' $7&$#21"'
1:"'J6&"Aj5'6?10?1D'$L"LD'1:"'"7#6&$7F'%"#1645'63'
$70?1' C64&5L' V:"' "7#6&$7F' 63' $70?1' C64&5' $7'
_@!V' $5' $J0A"J"71"&' P=' 1:"' J?A1$S1$"4"&'
P$&$4"#1$672A' V4275364J"4' J6&?A"5' eV4JfL'
V4275364J"4'$5'2'#6J0A$#21"&'5"Q?"71$2A'J6&"A'
P25"&'67' 1:"'J?A1$S:"2&'211"71$67'J"#:27$5JL'
]$33"4"71' 200462#:"5' 63' C64&' "JP"&&$7F' 24"'
046%$&"&'P='_@!V'&"%"A60"45'&"0"7&$7F'67'1:"'
Q?2A$1='27&'24427F"J"71'63'V4J5L' '

_@!V'#201?4"5'16["7'#671"T1L';6&"'27&'#671"T1'
[76CA"&F"'$5'#4?#$2A'364'56?4#"'#6&"'#6JJ"71'
&"%"A60J"71L'V:"'04"S142$7"&' A27F?2F"'J6&"A'
_@!V' 25' 5:6C7' $7' b$F?4"' (' :25'0A"71=' 63' 1"T1'
&212L' V:$5' A"2475' 9XB' C64&' 27&' 0:425"'
4"04"5"7121$675' 364' #6&"' &"%"A60J"71L' _@!V`5'
&"5$F7' 4"2&$A=' $71"42#15' C$1:' 211"71$67'
1"#:7$Q?"5D' C:$#:' 24"' 7""&"&' 16' #201?4"' #6&"'
#677"#1$675' 27&' F"7"421"' #671"T1S2C24"'
#6JJ"715L' _@!V' J2=' 04"S142$7' 2' A27F?2F"'
J6&"A' 67' 2' :?F"' #640?5' 63' 56?4#"' #6&"' 27&'
#6JJ"715' 16' A"247' &6J2$7S50"#$3$#'
4"04"5"7121$675' 364' #6&"' #4"21$67L'_@!V'J$F:1'
"7#6&"'64'&"#6&"'#6&"'#6JJ"715'$7'2'5"Q?"7#"S
16S5"Q?"7#"'0242&$FJL'@T142#1$7F'3"21?4"5'346J'
56?4#"'#6&"'?5$7F'_@!V'J$F:1'3""&'2'#6JJ"71'
#4"21$67'J6&"L'

!

!
!

"#$%&'!)!0*&1+*1&(!%$!23"4/!
!

"#$%&!'!"#$%&'()#*!+(,-!),&,.!#/!&',!$.,-#0)1!
23,-#'4)5! 6&%.'!7(,8.! 9.:!"#*,'(;3,(#*)! <($(,&,(#*)!
=(*>!?3@!A.!
<(@!=(*!=(&@!
B&C(0!<#@!&*0!

B..%!D#0.!D#$$.*,!
>.*.'&,(#*!+(,-!-:;'(0!
8.E(D&8!&*0!):*,&D,(D&8!

"#$%'.-.*0!%'#>'&$)!
&*0!'.03D.!&00(,(#*&8!,($.!
)%.*,!#*!'.&0(*>!&*0!

7-.!D#$$.*,)!&'.!#/,.*!
$()$&,D-.0@!$())(*>!#'!#3,0&,.0!(*!
)#/,+&'.!%'#F.D,)1!B.C.8#%.')!-&C.!,#!

!" # " $$! ! !" # " $ %!=

! !" # $%%%$ & " &! " " "# $ $ $ % &+ = (4)

where g is typically a softmax function that gener-
ates the output tokens.

3.2 BERT Pre-trained Model
BERT (Bidirectional Encoder Representations from
Transformers) is a well-known pre-trained model
proposed by Google's AI team in 2018 [5]. Special-
ized in the word-embedding task, the BERT mod-
el is the encoder part of a multi-layer bidirectional
Transformer network. When people use the BERT
model for encoding, they only need to fine tune the
original pre-trained model, without the need to re-
train the encoder model for specific tasks. Instead
of a complete training from scratch for a given task,
experts simply fine tune the encoder in BERT during
word embedding.
Figure 2 depicts the basic structure of BERT model,
where T1, T2, … TN indicate input words in the model, E1,
E2, … EN indicate the model’s output, i.e., the encoding
vectors of input words. The encoding of input words
in BERT is implemented by the multi-tiered bidirec-
tional Transformer modules (Trm). Transformer is
a complicated sequential model based on the multi-
head attention mechanism. Different approaches of
word embedding are provided by BERT developers

Figure 1
RNN for sentence estimation.next word by the current hidden state.

Figure 1 RNN for sentence estimation.

647Information Technology and Control 2025/2/54

depending on the quality and arrangement of Trms.
BERT captures token context. Code and context
knowledge is crucial for source code comment devel-
opment. The pre-trained language model BERT as
shown in Figure 2 has plenty of text data. This learns
NLP word and phrase representations for code de-
velopment. BERT's design readily interacts with at-
tention techniques, which are needed to capture code
connections and generate context-aware comments.
BERT may pre-train a language model on a huge corpus
of source code and comments to learn domain-specific
representations for code creation. BERT might encode
or decode code comments in a sequence-to-sequence
paradigm. Extracting features from source code using
BERT might feed a comment creation mode.

Author(s) Paper Title Key Contributions Limitations

Xing Hu, Ge Li,
Xin Xia, David
Lo, and Zhi Jin

(2020) [13]

Deep code comment
generation with hybrid
lexical and syntactical

information

Comprehend programs and reduce ad-
ditional time spent on reading and navi-

gating source code

The comments are often mismatched,
missing or outdated in software pro-

jects. Developers have to infer the func-
tionality from the source code

Boao Li, Meng
Yan, Xin Xia,

Xing Hu and Ge
Li (2020) [21]

DeepCommenter: A
deep code comment
generation tool with

hybrid lexical and syn-
tactical information

DeepCommenter formulates the com-
ment generation task as a machine trans-
lation problem and exploits a deep neural

network that combines the lexical and
structural information of Java methods

Code comments are missing, mis-
matched or outdated due to tight devel-

opment schedule or other reasons

Jiho Shin,
Jaechang Nam

(2021) [24]

A Survey of Automatic
Code Generation from

Natural Language

Surveys the approaches that generate
source code automatically from a natu-

ral language description

The cost of learning different pro-
gramming languages is high for novice

developers

Frank F. Xu,
Bogdan

Vasilescu, and
Graham Neubig

(2022) [32]

In-IDE Code Gener-
ation from Natural

Language: Promise and
Challenges

Implements a hybrid of code generation
and code retrieval functionality

Turning concept into code, especially
when dealing with the APIs of unfamil-

iar libraries

Marija Kostić ,
Vuk Batanović,
Boško Nikolić

(2023) [19]

Monolingual, multilin-
gual and cross-lingual
code comment classi-

fication

Addresses the problem of code comment
classification not only in the monolin-

gual setting, but also in the multilingual
and cross-lingual one

Dataset was manually annotated ac-
cording to a newly proposed taxonomy

of code comment categories

This work

A Hybrid Attention
Approach for the

Source Code Comment
Generation

A novel deep learning model At-Com-
Gen, which is based on the hybrid at-

tention for the automatic generation of
source code comment

The proposed model's efficiency de-
pends on training data amount and
quality. Data that is incomplete or

distorted may not be reliable. The large
codebases of hybrid attention models

make them computationally expensive.
Hybrid attention models may struggle

to generalize to code from different do-
mains or languages due to conventions

and semantics.

Table 1
Comparison with state of art methods.

Figure 2
Structure of BERT.

Information Technology and Control 2025/2/54648

4. The Proposed Approach
In Section 4, we present our model At-ComGen,
which is able to generate accurate comments for
source code snippets. When generating the com-
ments in natural language, the model extracts
both tokens and structural information from the
given code with hybrid attention mechanism.
Figure 3 summarizes the overall architecture of
At-ComGen.

4.1 Framework
As shown in Figure 3, At-ComGen is implemented
with a sequence-to-sequence learning framework,
which contains two parts: the encoder and the de-
coder. The encoder model on the left transforms
code into high dimensional vectors with two inde-
pendent LSTM networks. The decoder generates
the comment from the output vectors from the two
encoders with hybrid attention mechanism.
The first LSTM encoder is a lexical encoder which
extracts the important token information from
the source code with traditional NLP techniques.
The second LSTM encoder is a syntactical encoder
which extracts structural information with a spe-

cific AST traversal algorithm. The right part of the
graph is a decoder, which is another LSTM network.
It generates the code comments according to the
output vectors of encoders with hybrid attention.
As the encoder model retains both the lexical and
structural information, code comments generated
from our model describes code snippets exactly. The
detailed components of At-ComGen are described in
the following subsections.

4.2 Encoders
4.2.1 Lexical Encoder
Many comments are extracted from code tokens,
such as function names, variable names, identifiers
and so on. It is a natural way to generate comments
by combines the useful information hidden from
these important words. Early approaches focus
on the extraction of tokens from the source code
snippets when generating code comments [18]. In
our model, the lexical encoder sequentially input
the embedding of core tokens into a unidirectional
LSTM network. For a code snippet X = x1, x2, ... , xn,
the lexical encoder input a token xt of the sequence
at each time step t, then updates the current hidden
state by the following equation:

Figure 3
The Architecture of At-ComGen.

of At-ComGen are described in the following subsections.

Figure 3 The Architecture of At-ComGen.

4.2 Encoders
4.2.1 Lexical Encoder
Many comments are extracted from code
tokens, such as function names, variable names,
identifiers and so on. It is a natural way to
generate comments by combines the useful
information hidden from these important

words. Early approaches focus on the extraction
of tokens from the source code snippets when
generating code comments [18]. In our model,
the lexical encoder sequentially input the
embedding of core tokens into a unidirectional
LSTM network. For a code snippet =

, ,… , , the lexical encoder input a token
of the sequence at each time step , then
updates the current hidden state by the
following equation:

= (,), (8)

where f is a LSTM unit which maps a word of
source language into a hidden state .
After the recurrent computation, the hidden
states of the encoded source code are =
[, ,… ,].

In the process of token selections, our model
filters individual words from the codes such as
numbers, operators, the string values, etc. These
unnecessary tokens will lower the accuracy of
generated comments. The user-defined
identifiers usually contain several language
words. We split the identifiers by the camel
indication or underscore in order to reduce the
UNK indicators in the generated corpus. The
process of token extraction is detailed later.

4.2.2 Syntactical Encoder

The source codes are different from plain texts,
as it contains complicated structural
information which is difficult to express with
common NLP methods. In our model, another
LSTM network called syntactical encoder is
employed to learn structural information from
AST sequences. Our syntactical encoder
sequentially input the embeddings of AST
nodes into a unidirectional LSTM network. For
an AST sequence = , ,… , , the
syntactical encoder input an AST node of
the sequence at each time step , then updates
the current hidden state by the following
equation:

 = (,), (9)
where f is another LSTM. Finally, the hidden
states of the encoded AST are =
[, ,… ,].

The sequence of input nodes is determined by
AST-traversal algorithms, which will affect the
accuracy of generated comments.

4.3 Decoder with Hybrid
Attention
In our model, the decoder is another
unidirectional LSTM, which produces the target
sequence by predicting the probability of
each word , given context vector and all
the previously predicted words , , … ,
[14]:

 (| , , … ,) = (,), (10)
where g is used to calculate the probability of
the word .

With the attention mechanism, the translation
model generates the target word according to
the various contribution of each input token. At-
ComGen is designed to extract information

649Information Technology and Control 2025/2/54

!

211"71$67L'/5'1:"'"7#6&"4'J6&"A'4"12$75'P61:'1:"'
A"T$#2A' 27&' 514?#1?42A' $7364J21$67D' #6&"'
#6JJ"715'F"7"421"&'346J'6?4'J6&"A'&"5#4$P"5'

#6&"'57$00"15'"T2#1A=L'V:"'&"12$A"&'#6J067"715'
63' /1S;6JW"7' 24"' &"5#4$P"&' $7' 1:"' 36AA6C$7F'
5?P5"#1$675L'

!

!
"#$%&'!*!45(!6&+5,*(+*1&(!%$!6*78%-9()/!

4.2 Encoders
4.2.1 Lexical Encoder
Z27=' #6JJ"715' 24"' "T142#1"&' 346J' #6&"'
16["75D'5?#:'25'3?7#1$67'72J"5D'%24$2PA"'72J"5D'
$&"71$3$"45' 27&' 56' 67L' U1' $5' 2' 721?42A' C2=' 16'
F"7"421"' #6JJ"715' P=' #6JP$7"5' 1:"' ?5"3?A'
$7364J21$67':$&&"7'346J'1:"5"'$J0641271' '

C64&5L'@24A='200462#:"5'36#?5'67'1:"'"T142#1$67'
63' 16["75' 346J'1:"'56?4#"'#6&"'57$00"15'C:"7'
F"7"421$7F'#6&"'#6JJ"715' c-.dL' U7'6?4'J6&"AD'
1:"' A"T$#2A' "7#6&"4' 5"Q?"71$2AA=' $70?1' 1:"'
"JP"&&$7F'63'#64"'16["75'$716'2'?7$&$4"#1$672A'
XYVZ' 7"1C64[L' b64' 2' #6&"' 57$00"1' 5 "
6!$ 6')*)6+D' 1:"'A"T$#2A'"7#6&"4'$70?1'2'16["7' 6$'
63' 1:"' 5"Q?"7#"' 21' "2#:' 1$J"' 51"0' . D' 1:"7'
?0&21"5' 1:"' #?44"71' :$&&"7' 5121"' P=' 1:"'
36AA6C$7F'"Q?21$67I'

' ' ' ' ' ' ' ' ' ' ' ' ' e.f'

C:"4"'3'$5'2'XYVZ'?7$1'C:$#:'J205'2'C64&'63'
56?4#"' A27F?2F"' 6$ ' $716' 2' :$&&"7' 5121"' 0$ L'
/31"4' 1:"' 4"#?44"71' #6J0?121$67D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' 56?4#"' #6&"' 24"' 0 "
70!$ 0')*)0+8L'

U7' 1:"' 046#"55' 63' 16["7' 5"A"#1$675D' 6?4' J6&"A'
3$A1"45'$7&$%$&?2A'C64&5'346J'1:"'#6&"5'5?#:'25'
7?JP"45D'60"421645D'1:"'514$7F'%2A?"5D'"1#L'V:"5"'
?77"#"5524=' 16["75'C$AA' A6C"4' 1:"'2##?42#='63'
F"7"421"&' #6JJ"715L' V:"' ?5"4S&"3$7"&'
$&"71$3$"45' ?5?2AA=' #6712$7' 5"%"42A' A27F?2F"'
C64&5L' >"' 50A$1' 1:"' $&"71$3$"45' P=' 1:"' #2J"A'
$7&$#21$67'64'?7&"45#64"'$7'64&"4'16'4"&?#"'1:"'
<9k' $7&$#21645' $7' 1:"' F"7"421"&' #640?5L' V:"'
046#"55'63'16["7'"T142#1$67'$5'&"12$A"&'A21"4L' '

4.2.2 Syntactical Encoder
V:"'56?4#"'#6&"5'24"'&$33"4"71'346J'0A2$7'1"T15D'
25' $1' #6712$75' #6J0A$#21"&' 514?#1?42A'
$7364J21$67' C:$#:' $5' &$33$#?A1' 16' "T04"55' C$1:'
#6JJ67'9XB'J"1:6&5L'U7'6?4'J6&"AD'2761:"4'
XYVZ' 7"1C64[' #2AA"&' 5=712#1$#2A' "7#6&"4' $5'
"J0A6="&'16' A"247'514?#1?42A' $7364J21$67'346J'
/YV' 5"Q?"7#"5L' \?4' 5=712#1$#2A' "7#6&"4'
5"Q?"71$2AA=' $70?1' 1:"' "JP"&&$7F5' 63' /YV'
76&"5'$716'2'?7$&$4"#1$672A'XYVZ'7"1C64[L'b64'
27' /YV' 5"Q?"7#"' 59 " 69!$ 69')*)69+ D' 1:"'
5=712#1$#2A' "7#6&"4' $70?1' 27' /YV' 76&"' 69$ ' 63'
1:"'5"Q?"7#"'21'"2#:'1$J"'51"0' .D'1:"7'?0&21"5'
1:"' #?44"71' :$&&"7' 5121"' 09$ ' P=' 1:"' 36AA6C$7F'
"Q?21$67I'

! ! :;<!

C:"4"' 3' $5' 2761:"4' XYVZL' b$72AA=D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' /YV' 24"' 09 "
709!$ 09')*)09+8L'

V:"'5"Q?"7#"'63' $70?1'76&"5' $5'&"1"4J$7"&'P='
/YVS142%"452A'2AF64$1:J5D'C:$#:'C$AA'233"#1'1:"'
2##?42#='63'F"7"421"&'#6JJ"715L' '

4.3 Decoder with Hybrid
Attention
U7' 6?4' J6&"AD' 1:"' &"#6&"4' $5' 2761:"4'
?7$&$4"#1$672A'XYVZD'C:$#:'046&?#"5'1:"'124F"1'
5"Q?"7#"' ! ' P=' 04"&$#1$7F' 1:"' 046P2PA1=' 63'
"2#:'C64&' !, D' F$%"7' #671"T1' %"#164' :, ' 27&' 2AA'
1:"' 04"%$6?5A=' 04"&$#1"&' C64&5' !!$!'$ % $!,%!'
c-*dI' '

! ! ! ! ! :=><!

C:"4"'F' $5'?5"&' 16' #2A#?A21"' 1:"'046P2PA1='63'
1:"'C64&' !,L' '

!" # $! ! !" # " $!=

!" # $! ! !" # " $!" " "=

! " ! !# $ % %&&&% ' # % '! ! ! "# $ $ $ $ % & '! !=

(5)

where f is a LSTM unit which maps a word of source
language xt into a hidden state ht. After the recur-
rent computation, the hidden states of the encoded
source code are h = [h1, h2, ... , hn].
In the process of token selections, our model filters
individual words from the codes such as numbers,
operators, the string values, etc. These unnecessary
tokens will lower the accuracy of generated com-
ments. The user-defined identifiers usually contain
several language words. We split the identifiers by
the camel indication or underscore in order to re-
duce the UNK indicators in the generated corpus.
The process of token extraction is detailed later.

4.2.2 Syntactical Encoder
The source codes are different from plain texts, as it
contains complicated structural information which
is difficult to express with common NLP methods. In
our model, another LSTM network called syntacti-
cal encoder is employed to learn structural informa-
tion from AST sequences. Our syntactical encoder
sequentially input the embeddings of AST nodes
into a unidirectional LSTM network. For an AST
sequence X' = x'1, x'2, ... , x'n , the syntactical encoder
input an AST node x't of the sequence at each time
step t, then updates the current hidden state h't by
the following equation:

!

211"71$67L'/5'1:"'"7#6&"4'J6&"A'4"12$75'P61:'1:"'
A"T$#2A' 27&' 514?#1?42A' $7364J21$67D' #6&"'
#6JJ"715'F"7"421"&'346J'6?4'J6&"A'&"5#4$P"5'

#6&"'57$00"15'"T2#1A=L'V:"'&"12$A"&'#6J067"715'
63' /1S;6JW"7' 24"' &"5#4$P"&' $7' 1:"' 36AA6C$7F'
5?P5"#1$675L'

!

!
"#$%&'!*!45(!6&+5,*(+*1&(!%$!6*78%-9()/!

4.2 Encoders
4.2.1 Lexical Encoder
Z27=' #6JJ"715' 24"' "T142#1"&' 346J' #6&"'
16["75D'5?#:'25'3?7#1$67'72J"5D'%24$2PA"'72J"5D'
$&"71$3$"45' 27&' 56' 67L' U1' $5' 2' 721?42A' C2=' 16'
F"7"421"' #6JJ"715' P=' #6JP$7"5' 1:"' ?5"3?A'
$7364J21$67':$&&"7'346J'1:"5"'$J0641271' '

C64&5L'@24A='200462#:"5'36#?5'67'1:"'"T142#1$67'
63' 16["75' 346J'1:"'56?4#"'#6&"'57$00"15'C:"7'
F"7"421$7F'#6&"'#6JJ"715' c-.dL' U7'6?4'J6&"AD'
1:"' A"T$#2A' "7#6&"4' 5"Q?"71$2AA=' $70?1' 1:"'
"JP"&&$7F'63'#64"'16["75'$716'2'?7$&$4"#1$672A'
XYVZ' 7"1C64[L' b64' 2' #6&"' 57$00"1' 5 "
6!$ 6')*)6+D' 1:"'A"T$#2A'"7#6&"4'$70?1'2'16["7' 6$'
63' 1:"' 5"Q?"7#"' 21' "2#:' 1$J"' 51"0' . D' 1:"7'
?0&21"5' 1:"' #?44"71' :$&&"7' 5121"' P=' 1:"'
36AA6C$7F'"Q?21$67I'

' ' ' ' ' ' ' ' ' ' ' ' ' e.f'

C:"4"'3'$5'2'XYVZ'?7$1'C:$#:'J205'2'C64&'63'
56?4#"' A27F?2F"' 6$ ' $716' 2' :$&&"7' 5121"' 0$ L'
/31"4' 1:"' 4"#?44"71' #6J0?121$67D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' 56?4#"' #6&"' 24"' 0 "
70!$ 0')*)0+8L'

U7' 1:"' 046#"55' 63' 16["7' 5"A"#1$675D' 6?4' J6&"A'
3$A1"45'$7&$%$&?2A'C64&5'346J'1:"'#6&"5'5?#:'25'
7?JP"45D'60"421645D'1:"'514$7F'%2A?"5D'"1#L'V:"5"'
?77"#"5524=' 16["75'C$AA' A6C"4' 1:"'2##?42#='63'
F"7"421"&' #6JJ"715L' V:"' ?5"4S&"3$7"&'
$&"71$3$"45' ?5?2AA=' #6712$7' 5"%"42A' A27F?2F"'
C64&5L' >"' 50A$1' 1:"' $&"71$3$"45' P=' 1:"' #2J"A'
$7&$#21$67'64'?7&"45#64"'$7'64&"4'16'4"&?#"'1:"'
<9k' $7&$#21645' $7' 1:"' F"7"421"&' #640?5L' V:"'
046#"55'63'16["7'"T142#1$67'$5'&"12$A"&'A21"4L' '

4.2.2 Syntactical Encoder
V:"'56?4#"'#6&"5'24"'&$33"4"71'346J'0A2$7'1"T15D'
25' $1' #6712$75' #6J0A$#21"&' 514?#1?42A'
$7364J21$67' C:$#:' $5' &$33$#?A1' 16' "T04"55' C$1:'
#6JJ67'9XB'J"1:6&5L'U7'6?4'J6&"AD'2761:"4'
XYVZ' 7"1C64[' #2AA"&' 5=712#1$#2A' "7#6&"4' $5'
"J0A6="&'16' A"247'514?#1?42A' $7364J21$67'346J'
/YV' 5"Q?"7#"5L' \?4' 5=712#1$#2A' "7#6&"4'
5"Q?"71$2AA=' $70?1' 1:"' "JP"&&$7F5' 63' /YV'
76&"5'$716'2'?7$&$4"#1$672A'XYVZ'7"1C64[L'b64'
27' /YV' 5"Q?"7#"' 59 " 69!$ 69')*)69+ D' 1:"'
5=712#1$#2A' "7#6&"4' $70?1' 27' /YV' 76&"' 69$ ' 63'
1:"'5"Q?"7#"'21'"2#:'1$J"'51"0' .D'1:"7'?0&21"5'
1:"' #?44"71' :$&&"7' 5121"' 09$ ' P=' 1:"' 36AA6C$7F'
"Q?21$67I'

! ! :;<!

C:"4"' 3' $5' 2761:"4' XYVZL' b$72AA=D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' /YV' 24"' 09 "
709!$ 09')*)09+8L'

V:"'5"Q?"7#"'63' $70?1'76&"5' $5'&"1"4J$7"&'P='
/YVS142%"452A'2AF64$1:J5D'C:$#:'C$AA'233"#1'1:"'
2##?42#='63'F"7"421"&'#6JJ"715L' '

4.3 Decoder with Hybrid
Attention
U7' 6?4' J6&"AD' 1:"' &"#6&"4' $5' 2761:"4'
?7$&$4"#1$672A'XYVZD'C:$#:'046&?#"5'1:"'124F"1'
5"Q?"7#"' ! ' P=' 04"&$#1$7F' 1:"' 046P2PA1=' 63'
"2#:'C64&' !, D' F$%"7' #671"T1' %"#164' :, ' 27&' 2AA'
1:"' 04"%$6?5A=' 04"&$#1"&' C64&5' !!$!'$ % $!,%!'
c-*dI' '

! ! ! ! ! :=><!

C:"4"'F' $5'?5"&' 16' #2A#?A21"' 1:"'046P2PA1='63'
1:"'C64&' !,L' '

!" # $! ! !" # " $!=

!" # $! ! !" # " $!" " "=

! " ! !# $ % %&&&% ' # % '! ! ! "# $ $ $ $ % & '! !=

(6)

where f is another LSTM. Finally, the hidden states
of the encoded AST are h' = [h'1, h'2, ... , h'n].
The sequence of input nodes is determined by
AST-traversal algorithms, which will affect the ac-
curacy of generated comments.

4.3 Decoder with Hybrid Attention
In our model, the decoder is another unidirection-
al LSTM, which produces the target sequence y by
predicting the probability of each word yi, given
context vector ci and all the previously predicted
words y1, y2, ... , yi–1 [14]:

!

211"71$67L'/5'1:"'"7#6&"4'J6&"A'4"12$75'P61:'1:"'
A"T$#2A' 27&' 514?#1?42A' $7364J21$67D' #6&"'
#6JJ"715'F"7"421"&'346J'6?4'J6&"A'&"5#4$P"5'

#6&"'57$00"15'"T2#1A=L'V:"'&"12$A"&'#6J067"715'
63' /1S;6JW"7' 24"' &"5#4$P"&' $7' 1:"' 36AA6C$7F'
5?P5"#1$675L'

!

!
"#$%&'!*!45(!6&+5,*(+*1&(!%$!6*78%-9()/!

4.2 Encoders
4.2.1 Lexical Encoder
Z27=' #6JJ"715' 24"' "T142#1"&' 346J' #6&"'
16["75D'5?#:'25'3?7#1$67'72J"5D'%24$2PA"'72J"5D'
$&"71$3$"45' 27&' 56' 67L' U1' $5' 2' 721?42A' C2=' 16'
F"7"421"' #6JJ"715' P=' #6JP$7"5' 1:"' ?5"3?A'
$7364J21$67':$&&"7'346J'1:"5"'$J0641271' '

C64&5L'@24A='200462#:"5'36#?5'67'1:"'"T142#1$67'
63' 16["75' 346J'1:"'56?4#"'#6&"'57$00"15'C:"7'
F"7"421$7F'#6&"'#6JJ"715' c-.dL' U7'6?4'J6&"AD'
1:"' A"T$#2A' "7#6&"4' 5"Q?"71$2AA=' $70?1' 1:"'
"JP"&&$7F'63'#64"'16["75'$716'2'?7$&$4"#1$672A'
XYVZ' 7"1C64[L' b64' 2' #6&"' 57$00"1' 5 "
6!$ 6')*)6+D' 1:"'A"T$#2A'"7#6&"4'$70?1'2'16["7' 6$'
63' 1:"' 5"Q?"7#"' 21' "2#:' 1$J"' 51"0' . D' 1:"7'
?0&21"5' 1:"' #?44"71' :$&&"7' 5121"' P=' 1:"'
36AA6C$7F'"Q?21$67I'

' ' ' ' ' ' ' ' ' ' ' ' ' e.f'

C:"4"'3'$5'2'XYVZ'?7$1'C:$#:'J205'2'C64&'63'
56?4#"' A27F?2F"' 6$ ' $716' 2' :$&&"7' 5121"' 0$ L'
/31"4' 1:"' 4"#?44"71' #6J0?121$67D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' 56?4#"' #6&"' 24"' 0 "
70!$ 0')*)0+8L'

U7' 1:"' 046#"55' 63' 16["7' 5"A"#1$675D' 6?4' J6&"A'
3$A1"45'$7&$%$&?2A'C64&5'346J'1:"'#6&"5'5?#:'25'
7?JP"45D'60"421645D'1:"'514$7F'%2A?"5D'"1#L'V:"5"'
?77"#"5524=' 16["75'C$AA' A6C"4' 1:"'2##?42#='63'
F"7"421"&' #6JJ"715L' V:"' ?5"4S&"3$7"&'
$&"71$3$"45' ?5?2AA=' #6712$7' 5"%"42A' A27F?2F"'
C64&5L' >"' 50A$1' 1:"' $&"71$3$"45' P=' 1:"' #2J"A'
$7&$#21$67'64'?7&"45#64"'$7'64&"4'16'4"&?#"'1:"'
<9k' $7&$#21645' $7' 1:"' F"7"421"&' #640?5L' V:"'
046#"55'63'16["7'"T142#1$67'$5'&"12$A"&'A21"4L' '

4.2.2 Syntactical Encoder
V:"'56?4#"'#6&"5'24"'&$33"4"71'346J'0A2$7'1"T15D'
25' $1' #6712$75' #6J0A$#21"&' 514?#1?42A'
$7364J21$67' C:$#:' $5' &$33$#?A1' 16' "T04"55' C$1:'
#6JJ67'9XB'J"1:6&5L'U7'6?4'J6&"AD'2761:"4'
XYVZ' 7"1C64[' #2AA"&' 5=712#1$#2A' "7#6&"4' $5'
"J0A6="&'16' A"247'514?#1?42A' $7364J21$67'346J'
/YV' 5"Q?"7#"5L' \?4' 5=712#1$#2A' "7#6&"4'
5"Q?"71$2AA=' $70?1' 1:"' "JP"&&$7F5' 63' /YV'
76&"5'$716'2'?7$&$4"#1$672A'XYVZ'7"1C64[L'b64'
27' /YV' 5"Q?"7#"' 59 " 69!$ 69')*)69+ D' 1:"'
5=712#1$#2A' "7#6&"4' $70?1' 27' /YV' 76&"' 69$ ' 63'
1:"'5"Q?"7#"'21'"2#:'1$J"'51"0' .D'1:"7'?0&21"5'
1:"' #?44"71' :$&&"7' 5121"' 09$ ' P=' 1:"' 36AA6C$7F'
"Q?21$67I'

! ! :;<!

C:"4"' 3' $5' 2761:"4' XYVZL' b$72AA=D' 1:"' :$&&"7'
5121"5' 63' 1:"' "7#6&"&' /YV' 24"' 09 "
709!$ 09')*)09+8L'

V:"'5"Q?"7#"'63' $70?1'76&"5' $5'&"1"4J$7"&'P='
/YVS142%"452A'2AF64$1:J5D'C:$#:'C$AA'233"#1'1:"'
2##?42#='63'F"7"421"&'#6JJ"715L' '

4.3 Decoder with Hybrid
Attention
U7' 6?4' J6&"AD' 1:"' &"#6&"4' $5' 2761:"4'
?7$&$4"#1$672A'XYVZD'C:$#:'046&?#"5'1:"'124F"1'
5"Q?"7#"' ! ' P=' 04"&$#1$7F' 1:"' 046P2PA1=' 63'
"2#:'C64&' !, D' F$%"7' #671"T1' %"#164' :, ' 27&' 2AA'
1:"' 04"%$6?5A=' 04"&$#1"&' C64&5' !!$!'$ % $!,%!'
c-*dI' '

! ! ! ! ! :=><!

C:"4"'F' $5'?5"&' 16' #2A#?A21"' 1:"'046P2PA1='63'
1:"'C64&' !,L' '

!" # $! ! !" # " $!=

!" # $! ! !" # " $!" " "=

! " ! !# $ % %&&&% ' # % '! ! ! "# $ $ $ $ % & '! != (7)

where g is used to calculate the probability of the
word yi.
With the attention mechanism, the translation mod-
el generates the target word according to the various
contribution of each input token. At-ComGen is de-
signed to extract information from both code tokens
and AST sequences. The hybrid attention mecha-
nism projects the hidden states of two independent
encoders into a shared space and computes the dis-
tributions.
Our model defines the unified context vector ci in or-
der to predict each target word yi as a weighted sum
of all hidden states in two encoders. ci is calculated
as follows:

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&514P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole
AST

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement
Trees
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' AJ1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

#$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "=

(8)

where α and α' are attentional distributions of code
tokens and AST sequences respectively. The atten-
tion score αij of each hidden state hj is calculated as
follows:

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&514P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole
AST

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement
Trees
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' AJ1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

#$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "=

(9)

where

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&514P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole
AST

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement
Trees
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' AJ1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

#$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "=

(10)

In the same way, another attention score α'ij is com-
puted as

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&514P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole
AST

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement
Trees
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' AJ1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

#$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "=

(11)

where

!

>$1:' 1:"' 211"71$67' J"#:27$5JD' 1:"' 14275A21$67'
J6&"A' F"7"421"5' 1:"' 124F"1' C64&' 2##64&$7F' 16'
1:"'%24$6?5'#6714$P?1$67'63'"2#:'$70?1'16["7L'/1S
;6JW"7' $5' &"5$F7"&' 16' "T142#1' $7364J21$67'
346J'P61:'#6&"'16["75'27&'/YV'5"Q?"7#"5L'V:"'
:=P4$&'211"71$67'J"#:27$5J'046N"#15'1:"':$&&"7'
5121"5' 63' 1C6' $7&"0"7&"71' "7#6&"45' $716' 2'
5:24"&'502#"'27&'#6J0?1"5'1:"'&514P?1$675L' '

\?4'J6&"A'&"3$7"5'1:"'?7$3$"&'#671"T1'%"#164' :,'
$7' 64&"4' 16' 04"&$#1' "2#:' 124F"1' C64&' !, ' 25' 2'
C"$F:1"&' 5?J' 63' 2AA' :$&&"7' 5121"5' $7' 1C6'
"7#6&"45L' :,' $5'#2A#?A21"&'25'36AA6C5I'

!
! :==<!

C:"4"' ; ' 27&' ;9 ' 24"' 211"71$672A' &$514$P?1$675'
63'#6&"'16["75'27&'/YV'5"Q?"7#"5'4"50"#1$%"A=L'
V:"'211"71$67'5#64"' ;,-' 63'"2#:':$&&"7'5121"' 0-'
$5'#2A#?A21"&'25'36AA6C5I'

e-(f'

C:"4"' '
! ! :=?<!

U7'1:"'52J"'C2=D'2761:"4'211"71$67'5#64"' ;9,-' $5'
#6J0?1"&'25' '

!
! :=@<!

C:"4"' '
! ! :=A<!

!

4.4 AST Traversal Algorithm
U1' $5' #:2AA"7F$7F' 16' J2["' 2' 0460"4' 14275A21$67'
346J'2'56?4#"'#6&"'16'2'721?42A'A27F?2F"L'U3'C"'
67A=' F"7"421"' 1:"' #6JJ"715' 2##64&$7F' 16' 1:"'
5"Q?"7#"' 63' 16["75D' $L"L' C"' %$"C' 1:"' #6&"' 25'
0A2$7' 1"T1D' 1:"' A651' 5=712#1$#2A' $7364J21$67'C$AA'
#2?5"' 5"4$6?5' $72##?42#$"5L' U7' 64&"4' 16' 4"12$7'
514?#1?42A'$7364J21$67D'14275A21$67'J6&"A5':2%"'
16'200A='/YV'142%"452A'2AF64$1:J5L' '

Z27='200462#:"5':2%"'P""7' 12["7' 16' 142%"45"'
1:"' /YVL' \7"' 5$J0A"' C2=' $5' 16' ?5"' 2' #A255$#2A'
04"S64&"4' 64' 0651S64&"4' 142%"452AL' R6C"%"4D'
1:"5"' 2AF64$1:J5' J$F:1' #2?5"' $7364J21$67' A651'
25' 1:"' 6A&' /YV5' #27761' P"' 4"#67514?#1"&'
?72JP$F?6?5A=L'Z64"6%"4D'1:"'F"7"421"&'/YV5'
24"' 166' &""0' 16' 142%"45"' &?"' 16' A67FS1"4J'
&"0"7&"7#=L'!"#"71'"T0"415'211"J01'16'142%"45"'
1:"' /YV5' C$1:' 2' !%99' 64' ;99' c,)D' ,,D' ,*dL'
R6C"%"4D' 1:"5"' 200462#:"5' 5?33"4' 346J' :$F:'
#6J0?121$67' #6515D' 27&' 1:"' /YV5' :2%"' 16' P"'
14275364J"&' 16' 2' 4"F?A24' 364JD' "LFL' #6J0A"1"'
P$724='14""L' '

U7'1:$5'020"4D'C"'04"5"71'2'76%"A'/YV'142%"452A'
2AF64$1:J'$7'6?4'J6&"AL'_25$#2AA=D'1:"'142%"452A'

046#"55'$5'&$%$&"&'$716'1C6'51"05I'e-f'U7'64&"4'16'
4"&?#"' 1:"' #6J0?121$672A' #6J0A"T$1=D' 1:"'
C:6A"'/YV'$5'50A$1'$716'2'5"Q?"7#"'63'5?P14""5'P='
1:"' F427?A24$1=' 63' 1:"' A27F?2F"' 5121"J"71L' e(f'
@2#:' 5121"J"71' 14""' $5' 142%"45"&' P=' 2' #A255$#2A'
04"S64&"4' 2AF64$1:JL' ;6J024"&' 16' 61:"4'
4"#?45$%"' 142%"452A' 2AF64$1:J5D' 1:"' 5121"J"71'
14""5' &6' 761' 7""&' 16' P"' 14275364J"&D' "LFL' 2'
#6J0A"1"'P$724='14""L' '

4.4.1 Decomposing the Whole
AST

!

Z27='J"1:6&5' 364' 1:"'&"#6J065$1$67'63'/YV5'
$716' 5?P14""5' C$1:6?1' 6%"4A200$7F' "T$51L'
U750$4"&'P='1:"'2AF64$1:J'J"71$67"&'$7'c,*dD'C"'
50A$1' 1:"' /YV' P=' 1:"' F427?A24$1=' 63' 721?42A'
5121"J"715L' V:"' 50A$11$7F' 2AF64$1:J' $5' &"12$A"&'
67'c(,dD'C:$#:'C"'200A='16'1:"'$&"71$3$#21$67'63'
#6&"' #A67"L' !"2&"45' 24"' 2&%$5"&' 16' 4"3"4' 16' $1L'
b$F?4"'*'5:6C5'1:"'&"#6J065$1$67'046#"55'346J'
27' /YV' 16' 5J2AA' 5121"J"71' 14""5L' b$F?4"' *e2f'
&"0$#15' 160' 8' A2="45' 63' 1:"' l2%2' /YV' 364'
5$J0A$#$1=D' 27&' b$F?4"' *ePf' 5:6C5' 1:"' 2#1?2A'
"T"#?1$67'64&"4'63'5121"J"71'14""5L' ' '

4.4.2 Encoding the Statement
Trees
/AA' 1:"' #6J0A"T' "7#6&$7F' 2AF64$1:J5'
J"71$67"&'P"364"'J$F:1'#:27F"'1:"'514?#1?4"'63'
/YV5D'64'"7A24F"'1:"'14""'5$G"D'C:$#:'C$AA'233"#1'
1:"'2##?42#='63'F"7"421"&'#6JJ"715L'V:"4"364"D'
C"'&"#$&"'16'"7#6&"'1:"'5121"J"71'5?P14""5'C$1:'
2'#A255$#2A'04"S64&"4'142%"452A'2AF64$1:JL' '

_"364"' "7#6&$7F' 1:"' 5?P14""5D' 2AA' 1:"' $71"472A'
76&"5' :2%"' 16' P"' %"#164$G"&' 2##64&$7F' 16' 1:"'
F"7"421"&'%6#2P?A24=D'C:$#:'$5'2A56'2'#:2AA"7F"L'
U7' 1:"' 3$"A&' 63' 9XBD' 0"60A"' 631"7' AJ1'
%6#2P?A24='16'#6JJ67'C64&5'$7'1:"'#640?5D'"LFL'
8))))'C64&5L'V:"'?7?5?2A'C64&5'24"'$7&$#21"&'
P=' m<9knL' U1' 12["5' "33"#1' 16' 200A=' 5?#:' 2'
51421"F='25'C64&5'6?1'63'%6#2P?A24='24"'424"'$7'
9XBL'R6C"%"4D' $1' $5' $72004604$21"' 16'F"7"421"'
1:"'%6#2P?A24='25'1:"'56?4#"'#6&"5'24"'&$33"4"71'
346J' 1:"' 721?42A' A27F?2F"5' c--dL' V:"' 56?4#"'
#6&"' #6712$75' J27=' ?5"4S&"3$7"&' $&"71$3$"45D'
"2#:'63'C:$#:'J$F:1'67A='200"245'67#"L' U3'C"'
12["'2'4"F?A24'%6#2P?A24='5$G"'364'#6&"D'2'J255'
63'?7[76C7'16["75'$7'1:"'364J'63'm<9kn'C$AA'
24$5"L' U3' C"' 211"J01' 16' 4"&?#"' m<9kn' 16["75'
&?4$7F'14275364J21$67D'1:"'%6#2P?A24='5$G"'C$AA'
$7#4"25"' :"2%$A=L' U7' 64&"4' 16' P2A27#"' 1:"'
%6#2P?A24=' 5$G"' 27&' m<9kn' 200"2427#"5D' C"'
50A$1'1:"'$71"472A'76&"5'63'1:"'/YV'$716'5"%"42A'
16["75'16'F"7"421"'1:"'%6#2P?A24=L'b64'"T2J0A"D'
b$A"U70?1Y14"2J'Sn'b$A"D'U70?1D'Y14"2JL'V:"'1612A'
7?JP"4' 63' ?7$Q?"' 16["75' $7' 1:"' #640?5' 24"'
4"&?#"&'346J'J64"'1:27'*(.)))'16'*(.M,L'

! !

! "

#$ $ #$ #$
$ $

% & '! !
= =

" "= +# #

!

"#$% &

"#$% &
!"

!" #
!$$

!
"

!
=

=
#

!" # $!" ! "# $ % &!=

!

"#$% &

"#$% &
!"

!" #
!$$

%

%
!

=

"
" =

"#

!" # $!" ! "# $ % &!" "= (12)

4.4 AST Traversal Algorithm
It is challenging to make a proper translation from a
source code to a natural language. If we only gener-
ate the comments according to the sequence of to-
kens, i.e. we view the code as plain text, the lost syn-
tactical information will cause serious inaccuracies.

Information Technology and Control 2025/2/54650

In order to retain structural information, translation
models have to apply AST traversal algorithms.
Many approaches have been taken to traverse the
AST. One simple way is to use a classical pre-order
or post-order traversal. However, these algorithms
might cause information lost as the old ASTs can-
not be reconstructed unambiguously. Moreover,
the generated ASTs are too deep to traverse due to
long-term dependency. Recent experts attempt to
traverse the ASTs with a RvNN or CNN [30, 33, 34].
However, these approaches suffer from high compu-
tation costs, and the ASTs have to be transformed to
a regular form, e.g. complete binary tree.
In this paper, we present a novel AST traversal algo-
rithm in our model. Basically, the traversal process is
divided into two steps: (1) In order to reduce the com-
putational complexity, the whole AST is split into a se-
quence of subtrees by the granularity of the language
statement. (2) Each statement tree is traversed by a
classical pre-order algorithm. Compared to other re-
cursive traversal algorithms, the statement trees do
not need to be transformed, e.g. a complete binary tree.

4.4.1 Decomposing the Whole AST
Many methods for the decomposition of ASTs into
subtrees without overlapping exist. Inspired by the
algorithm mentioned in [34], we split the AST by the
granularity of natural statements. The splitting algo-
rithm is detailed on [23], which we apply to the iden-
tification of code clone. Readers are advised to refer to
it. Figure 4 shows the decomposition process from an
AST to small statement trees. Figure 4(a) depicts top 5
layers of the Java AST for simplicity, and Figure 4(b)
shows the actual execution order of statement trees.

4.4.2 Encoding the Statement Trees
All the complex encoding algorithms mentioned before
might change the structure of ASTs, or enlarge the tree
size, which will affect the accuracy of generated com-
ments. Therefore, we decide to encode the statement
subtrees with a classical pre-order traversal algorithm.
Before encoding the subtrees, all the internal nodes
have to be vectorized according to the generated vo-
cabulary, which is also a challenge. In the field of NLP,
people often limit vocabulary to common words in the

Figure 4
The decomposition of an AST.

(a) AST and statement trees (b) Statement naturalness

Figure 4 The decomposition of an AST.

4.5 Proposed Algorithm
Input: A series of source code tokens.

Lexical Attention: Determines attention
weights using token lexical similarity.

Structural Attention: Calculates attention
weights from code syntax.

Functions:

 lexical_attention (query, key, value):
Weighs lexical attention.

 structural_attention (query, key, value):
Weighs structural attention.

The lexical_attention and structural_attention
functions may be implemented using several
methodologies, including scaled dot-product
attention, additive attention, or dot product
attention.

 combine_attention (lexical_weights,
structural_weights): Weighs lexical and
structural attention.

The combine_attention function facilitates the
integration of lexical and structural weights
using various methods, such as weighted sum
and concatenation.

 generate_comment (context_vector):
Creates context vector-based comment.

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark.

Algorithm steps:

1. Get lexical and structural attention going.

2. Initialize the weights function for lexical and
structural weights, respectively.

3. Compute the attention that token in the input
sequence will get both lexically and structurally
4. Combine focus combined weights

5. Create a background vector

6. Create a remark by passing the context vector

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark. Figure 5
presents the workflow diagram for the
proposed algorithm.

Figure 5 Workflow diagram for the proposed

algorithm.
The proposed method is quite good at handling
complex control flow topologies. Conventional
methods might find difficult to grasp
sophisticated control flow systems, which
results in erroneous claims. The hybrid
attention approach efficiently captures the
connections across many code blocks and

contexts thereby guaranteeing that the
produced comments fairly represent the logic of
the code. At-ComGen may precisely provide a
comment clarifying the purpose of every loop
and the circumstances under which it runs. This
remarks about a nested loop with many criteria.

The proposed approach helps one to

Figure 4 The decomposition of an AST.

4.5 Proposed Algorithm
Input: A series of source code tokens.

Lexical Attention: Determines attention
weights using token lexical similarity.

Structural Attention: Calculates attention
weights from code syntax.

Functions:

 lexical_attention (query, key, value):
Weighs lexical attention.

 structural_attention (query, key, value):
Weighs structural attention.

The lexical_attention and structural_attention
functions may be implemented using several
methodologies, including scaled dot-product
attention, additive attention, or dot product
attention.

 combine_attention (lexical_weights,
structural_weights): Weighs lexical and
structural attention.

The combine_attention function facilitates the
integration of lexical and structural weights
using various methods, such as weighted sum
and concatenation.

 generate_comment (context_vector):
Creates context vector-based comment.

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark.

Algorithm steps:

1. Get lexical and structural attention going.

2. Initialize the weights function for lexical and
structural weights, respectively.

3. Compute the attention that token in the input
sequence will get both lexically and structurally
4. Combine focus combined weights

5. Create a background vector

6. Create a remark by passing the context vector

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark. Figure 5
presents the workflow diagram for the
proposed algorithm.

Figure 5 Workflow diagram for the proposed

algorithm.
The proposed method is quite good at handling
complex control flow topologies. Conventional
methods might find difficult to grasp
sophisticated control flow systems, which
results in erroneous claims. The hybrid
attention approach efficiently captures the
connections across many code blocks and

contexts thereby guaranteeing that the
produced comments fairly represent the logic of
the code. At-ComGen may precisely provide a
comment clarifying the purpose of every loop
and the circumstances under which it runs. This
remarks about a nested loop with many criteria.

The proposed approach helps one to

651Information Technology and Control 2025/2/54

corpus, e.g. 50000 words. The unusual words are indi-
cated by <UNK>. It takes effect to apply such a strate-
gy as words out of vocabulary are rare in NLP. Howev-
er, it is inappropriate to generate the vocabulary as the
source codes are different from the natural languages
[11]. The source code contains many user-defined
identifiers, each of which might only appears once. If
we take a regular vocabulary size for code, a mass of
unknown tokens in the form of <UNK> will arise. If
we attempt to reduce <UNK> tokens during transfor-
mation, the vocabulary size will increase heavily. In
order to balance the vocabulary size and <UNK> ap-
pearances, we split the internal nodes of the AST into
several tokens to generate the vocabulary. For exam-
ple, FileInputStream -> File, Input, Stream. The total
number of unique tokens in the corpus are reduced
from more than 428000 to 42873.

4.5 Proposed Algorithm
Input: A series of source code tokens.
Lexical Attention: Determines attention weights
using token lexical similarity.
Structural Attention: Calculates attention weights
from code syntax.
Functions:
 _ lexical_attention (query, key, value): Weighs lexical

attention.
 _ structural_attention (query, key, value): Weighs

structural attention.

The lexical_attention and structural_attention func-
tions may be implemented using several methodol-
ogies, including scaled dot-product attention, addi-
tive attention, or dot product attention.
 _ combine_attention (lexical_weights, structur-

al_weights): Weighs lexical and structural at-
tention.

The combine_attention function facilitates the
integration of lexical and structural weights using
various methods, such as weighted sum and concat-
enation.
 _ generate_comment (context_vector): Creates con-

text vector-based comment.
The generate_comment function may use a language
model or an alternative generation method to pro-
duce the final remark.
Algorithm steps:
1 Get lexical and structural attention going.
2 Initialize the weights function for lexical and

structural weights, respectively.
3 Compute the attention that token in the input se-

quence will get both lexically and structurally
4 Combine focus combined weights
5 Create a background vector
6 Create a remark by passing the context vector
The generate_comment function may use a language
model or an alternative generation method to pro-
duce the final remark. Figure 5 presents the work-
flow diagram for the proposed algorithm.

Figure 5
Workflow diagram for the proposed algorithm.

Figure 4 The decomposition of an AST.

4.5 Proposed Algorithm
Input: A series of source code tokens.

Lexical Attention: Determines attention
weights using token lexical similarity.

Structural Attention: Calculates attention
weights from code syntax.

Functions:

 lexical_attention (query, key, value):
Weighs lexical attention.

 structural_attention (query, key, value):
Weighs structural attention.

The lexical_attention and structural_attention
functions may be implemented using several
methodologies, including scaled dot-product
attention, additive attention, or dot product
attention.

 combine_attention (lexical_weights,
structural_weights): Weighs lexical and
structural attention.

The combine_attention function facilitates the
integration of lexical and structural weights
using various methods, such as weighted sum
and concatenation.

 generate_comment (context_vector):
Creates context vector-based comment.

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark.

Algorithm steps:

1. Get lexical and structural attention going.

2. Initialize the weights function for lexical and
structural weights, respectively.

3. Compute the attention that token in the input
sequence will get both lexically and structurally
4. Combine focus combined weights

5. Create a background vector

6. Create a remark by passing the context vector

The generate_comment function may use a
language model or an alternative generation
method to produce the final remark. Figure 5
presents the workflow diagram for the
proposed algorithm.

Figure 5 Workflow diagram for the proposed

algorithm.
The proposed method is quite good at handling
complex control flow topologies. Conventional
methods might find difficult to grasp
sophisticated control flow systems, which
results in erroneous claims. The hybrid
attention approach efficiently captures the
connections across many code blocks and

contexts thereby guaranteeing that the
produced comments fairly represent the logic of
the code. At-ComGen may precisely provide a
comment clarifying the purpose of every loop
and the circumstances under which it runs. This
remarks about a nested loop with many criteria.

The proposed approach helps one to

Information Technology and Control 2025/2/54652

The proposed method is quite good at handling com-
plex control flow topologies. Conventional methods
might find difficult to grasp sophisticated control
flow systems, which results in erroneous claims. The
hybrid attention approach efficiently captures the
connections across many code blocks and contexts
thereby guaranteeing that the produced comments
fairly represent the logic of the code. At-ComGen may
precisely provide a comment clarifying the purpose of
every loop and the circumstances under which it runs.
This remarks about a nested loop with many criteria.
The proposed approach helps one to understand se-
mantic relationships among variables. When using
indirect or complicated expression, it might be chal-
lenging to determine the semantic links among the
variables in a code fragment.
Using the proposed method in large-scale codes might
provide useful annotations. Creating useful comments
for big and complicated codebases might be a tedious
and prone to mistakes effort. While efficiently con-
trolling big codebases, the hybrid attention approach
produces annotations that faithfully represent the in-
tended functionality of the code. At-ComGen can ex-
amine a large collection of hundreds of functions and
provide succinct but clear comments for each one. This
helps developers to understand and apply the library.

4.6 Loss Function
In our model, the loss function is defined as the
minimized cross-entropy, which is described as
follows [14]:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J7J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'

! !
! :=I<!

C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2PA1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601JG"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'

'

'

C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
!

4.7.2 Manual Evaluation
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5JA24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5JA24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '

!
-./0'!(!8&,*(&,%)!%$!',-,F.&,*K/!

123&'! 4560.7.8#37!
>! #%!',-,F.&,*K!L(*G(()!*G%!+%--()*'!%&!*5(!H()(&.*(B!+%--()*'!.&(!-(.),)HF(''/!
=! 4G%!+%--()*'!'5.&(!'%-(!',-,F.&!*%E()'M!L1*!*5(K!.&(!)%*!'(-.)*,+.FFK!',-,F.&/!
N! 4G%!+%--()*'!5.O(!'%-(!',-,F.&!,)$%&-.*,%)M!L1*!(.+5!%$!*5(-!+%)*.,)'!'%-(!,)$%&-.*,%)!G5,+5!

,'!)%*!,)O%FO(B!LK!*5(!%*5(&/!
?! 45(!*G%!+%--()*'!.&(!O(&K!',-,F.&!,)!'(-.)*,+M!L1*!*5(,&!-(.)'!.&(!)%*!*5(!'.-(/!
@! 45(!*G%!+%--()*'!.&(!,B()*,+.F!,)!-(.),)HM!%&!*5(!H&%1)B!*&1*5!.&(!-%&(!B,$$,+1F*!*%!1)B(&'*.)B/!

B241$#$02715' 24"' 25["&' 16' 5#64"' 1:"' #6JJ"715' P"1C""7')'16'*'2##64&$7F'16'1:"'#4$1"4$2'A$51"&'$7'

! "

#

#! " $%& ! "
! "

"
#

" #
$ % & %

! = =

= ! ""

!
"#$% &'()!

" ""
#$%& #' (!

=
= • "

!" #

"
!"$#!

"

#$ " !
%&

#$ " !'
!

" >#= $ %#&

!" # !"$#!"#$%&'&() *"$ += !

(13)

where N is the number of training samples, and l
is the length of each target sequence. yj

(i) indicates
the j-th word in the i-th instance. The equation de-
scribes how much the predicted probability diverges
from the ground truth. We optimize Equation (11) by
gradient descent algorithm.

4.7 Evaluation Metrics
Generated comments should accurately and briefly
reflect the meanings of the source codes. In this pa-
per, we apply both automatic and manual approaches
to evaluate comment quality with previous models.

4.7.1 Automatic Evaluation
In our model, we use BLEU [17] score and METEOR
[20] to measure the accuracy of machines comments.
BLEU measures the average n-gram precision on a
set of reference sentences, which is popular in ma-
chine translation [2, 4, 28].
BLEU is computed as follows:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J7J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'

! !
! :=I<!

C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2PA1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601JG"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'

'

'

C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
!

4.7.2 Manual Evaluation
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5JA24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5JA24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '

!
-./0'!(!8&,*(&,%)!%$!',-,F.&,*K/!

123&'! 4560.7.8#37!
>! #%!',-,F.&,*K!L(*G(()!*G%!+%--()*'!%&!*5(!H()(&.*(B!+%--()*'!.&(!-(.),)HF(''/!
=! 4G%!+%--()*'!'5.&(!'%-(!',-,F.&!*%E()'M!L1*!*5(K!.&(!)%*!'(-.)*,+.FFK!',-,F.&/!
N! 4G%!+%--()*'!5.O(!'%-(!',-,F.&!,)$%&-.*,%)M!L1*!(.+5!%$!*5(-!+%)*.,)'!'%-(!,)$%&-.*,%)!G5,+5!

,'!)%*!,)O%FO(B!LK!*5(!%*5(&/!
?! 45(!*G%!+%--()*'!.&(!O(&K!',-,F.&!,)!'(-.)*,+M!L1*!*5(,&!-(.)'!.&(!)%*!*5(!'.-(/!
@! 45(!*G%!+%--()*'!.&(!,B()*,+.F!,)!-(.),)HM!%&!*5(!H&%1)B!*&1*5!.&(!-%&(!B,$$,+1F*!*%!1)B(&'*.)B/!

B241$#$02715' 24"' 25["&' 16' 5#64"' 1:"' #6JJ"715' P"1C""7')'16'*'2##64&$7F'16'1:"'#4$1"4$2'A$51"&'$7'

! "

#

#! " $%& ! "
! "

"
#

" #
$ % & %

! = =

= ! ""

!
"#$% &'()!

" ""
#$%& #' (!

=
= • "

!" #

"
!"$#!

"

#$ " !
%&

#$ " !'
!

" >#= $ %#&

!" # !"$#!"#$%&'&() *"$ += !

(14)

where pn is the precision of n-grams, that is, the ratio
of length n subsequences in the candidate that are
also in the reference. We set n = 4, which is a com-
mon practice for code comment generation [14, 29,
35]. BP is a brevity penalty, which is computed as
follows:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J7J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'

! !
! :=I<!

C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2PA1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601JG"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'

'

'

C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
!

4.7.2 Manual Evaluation
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5JA24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5JA24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '

!
-./0'!(!8&,*(&,%)!%$!',-,F.&,*K/!

123&'! 4560.7.8#37!
>! #%!',-,F.&,*K!L(*G(()!*G%!+%--()*'!%&!*5(!H()(&.*(B!+%--()*'!.&(!-(.),)HF(''/!
=! 4G%!+%--()*'!'5.&(!'%-(!',-,F.&!*%E()'M!L1*!*5(K!.&(!)%*!'(-.)*,+.FFK!',-,F.&/!
N! 4G%!+%--()*'!5.O(!'%-(!',-,F.&!,)$%&-.*,%)M!L1*!(.+5!%$!*5(-!+%)*.,)'!'%-(!,)$%&-.*,%)!G5,+5!

,'!)%*!,)O%FO(B!LK!*5(!%*5(&/!
?! 45(!*G%!+%--()*'!.&(!O(&K!',-,F.&!,)!'(-.)*,+M!L1*!*5(,&!-(.)'!.&(!)%*!*5(!'.-(/!
@! 45(!*G%!+%--()*'!.&(!,B()*,+.F!,)!-(.),)HM!%&!*5(!H&%1)B!*&1*5!.&(!-%&(!B,$$,+1F*!*%!1)B(&'*.)B/!

B241$#$02715' 24"' 25["&' 16' 5#64"' 1:"' #6JJ"715' P"1C""7')'16'*'2##64&$7F'16'1:"'#4$1"4$2'A$51"&'$7'

! "

#

#! " $%& ! "
! "

"
#

" #
$ % & %

! = =

= ! ""

!
"#$% &'()!

" ""
#$%& #' (!

=
= • "

!" #

"
!"$#!

"

#$ " !
%&

#$ " !'
!

" >#= $ %#&

!" # !"$#!"#$%&'&() *"$ += !

(15)

where c is the length of the candidate translation and
r is the effective reference sequence length. We re-
gard the generated comment as a candidate and the
Javadoc comment as a reference.
METEOR score is recall-oriented and wildly used
for machine translation and code summarization. It
measures how well the model captures content from
the references by calculating sentence-level similar-
ity scores. The METEOR is computed as follows:

!

4"J24[5'2P6?1'2'7"51"&'A660'C$1:'J27='#4$1"4$2L'

V:"' 046065"&' 200462#:' :"A05' 67"' 16'
?7&"45127&' 5"J271$#' 4"A21$675:$05' 2J67F'
%24$2PA"5L'>:"7'?5$7F' $7&$4"#1' 64' #6J0A$#21"&'
"T04"55$67D'$1'J$F:1'P"'#:2AA"7F$7F'16'&"1"4J$7"'
1:"'5"J271$#'A$7[5'2J67F'1:"'%24$2PA"5'$7'2'#6&"'
342FJ"71L' '

<5$7F'1:"'046065"&'J"1:6&'$7'A24F"S5#2A"'#6&"5'
J$F:1' 046%$&"' ?5"3?A' 2776121$675L' ;4"21$7F'
?5"3?A' #6JJ"715' 364' P$F' 27&' #6J0A$#21"&'
#6&"P25"5' J$F:1' P"' 2' 1"&$6?5' 27&' 0467"' 16'
J$512["5'"33641L'>:$A"'"33$#$"71A='#67146AA$7F'P$F'
#6&"P25"5D' 1:"' :=P4$&' 211"71$67' 200462#:'
046&?#"5' 2776121$675' 1:21' 32$1:3?AA=' 4"04"5"71'
1:"' $71"7&"&' 3?7#1$672A$1=' 63' 1:"' #6&"L' /1S
;6JW"7' #27' "T2J$7"' 2' A24F"' #6AA"#1$67' 63'
:?7&4"&5'63'3?7#1$675'27&'046%$&"'5?##$7#1'P?1'
#A"24' #6JJ"715' 364' "2#:' 67"L' V:$5' :"A05'
&"%"A60"45'16'?7&"45127&'27&'200A='1:"'A$P424=L'

4.6 Loss Function
U7'6?4'J6&"AD'1:"'A655'3?7#1$67'$5'&"3$7"&'25'1:"'
J7J$G"&'#4655S"71460=D'C:$#:'$5'&"5#4$P"&'25'
36AA6C5'c-*dI'

! !
! :=I<!

C:"4"'9'$5'1:"'7?JP"4'63'142$7$7F'52J0A"5D'27&'
A' $5' 1:"' A"7F1:' 63' "2#:' 124F"1' 5"Q?"7#"L' !-

.,/'
$7&$#21"5'1:"'NS1:'C64&'$7'1:"'$S1:'$75127#"L'V:"'
"Q?21$67' &"5#4$P"5' :6C' J?#:' 1:"' 04"&$#1"&'
046P2PA1='&$%"4F"5'346J'1:"'F46?7&'14?1:L'>"'
601JG"' @Q?21$67' e--f' P=' F42&$"71' &"5#"71'
2AF64$1:JL' '

4.7 Evaluation Metrics
W"7"421"&' #6JJ"715' 5:6?A&' 2##?421"A=' 27&'
P4$"3A='4"3A"#1'1:"'J"27$7F5'63'1:"'56?4#"'#6&"5L'
U7' 1:$5' 020"4D' C"' 200A=' P61:' 2?16J21$#' 27&'
J27?2A' 200462#:"5' 16' "%2A?21"' #6JJ"71'
Q?2A$1='C$1:'04"%$6?5'J6&"A5L' '

4.7.1 Automatic Evaluation
U7' 6?4' J6&"AD' C"' ?5"' _X@<' c-Md' 5#64"' 27&'
Z@V@\!' c()d' 16' J"25?4"' 1:"' 2##?42#=' 63'
J2#:$7"5'#6JJ"715L' '

_X@<' J"25?4"5' 1:"' 2%"42F"' 7SF42J' 04"#$5$67'
67'2'5"1'63'4"3"4"7#"'5"71"7#"5D'C:$#:'$5'060?A24'
$7'J2#:$7"'14275A21$67'c(D'*D'(.dL'

_X@<'$5'#6J0?1"&'25'36AA6C5I'
! ! :=J<!

C:"4"' 1+ ' $5' 1:"' 04"#$5$67' 63' 7SF42J5D' 1:21' $5D'
1:"' 421$6' 63' A"7F1:' + ' 5?P5"Q?"7#"5' $7' 1:"'
#27&$&21"'1:21'24"'2A56'$7'1:"'4"3"4"7#"L'>"'5"1'
+ " < D' C:$#:' $5' 2' #6JJ67' 042#1$#"' 364' #6&"'
#6JJ"71'F"7"421$67'c-*D'(OD',8dL'_B'$5'2'P4"%$1='
0"72A1=D'C:$#:'$5'#6J0?1"&'25'36AA6C5I'

'

'

C:"4"' : ' $5' 1:"' A"7F1:' 63' 1:"' #27&$&21"'
14275A21$67' 27&' = ' $5' 1:"' "33"#1$%"' 4"3"4"7#"'
5"Q?"7#"' A"7F1:L' >"' 4"F24&' 1:"' F"7"421"&'
#6JJ"71' 25' 2' #27&$&21"' 27&' 1:"' l2%2&6#'
#6JJ"71'25'2'4"3"4"7#"L' '

Z@V@\!' 5#64"' $5' 4"#2AAS64$"71"&' 27&' C$A&A='
?5"&' 364' J2#:$7"' 14275A21$67' 27&' #6&"'
5?JJ24$G21$67L'U1'J"25?4"5':6C'C"AA'1:"'J6&"A'
#201?4"5' #671"71' 346J' 1:"' 4"3"4"7#"5' P='
#2A#?A21$7F'5"71"7#"SA"%"A'5$J$A24$1='5#64"5L'V:"'
Z@V@\!'$5'#6J0?1"&'25'36AA6C5I' ' ' ' '

' ' '
!

4.7.2 Manual Evaluation
/5' 1:"' 2?16J21$#' 1"51' &6"5' 761' 2AC2=5' 2F4""'
C$1:'"T0"4$J"712A'4"5?A1'c((dD'"50"#$2AA='364'1:"'
#6&"'#6JJ"715'&"5#4$P"&'$7'721?42A'A27F?2F"5D'
C"'&"#$&"'16'0"4364J'2'J27?2A'%"4$3$#21$67'364'
1:"'5JA24$1='63'F"7"421"&'#6JJ"715'346J'6?4'
J6&"A' 27&' 1:"' F46?7&' 14?1:L' U750$4"&' P=' 1:"'
J"1:6&5' c,8dD' C"' $7%$1"' ,' 0241$#$02715' 16'
"%2A?21"' F"7"421"&' #6JJ"715' 4"50"#1$%"A=L'
V:"=' 24"' &6#1645' $7' #6J0?1"4' 5#$"7#"' C$1:' ,p'
="245' l2%2' "T0"4$"7#"L' V:"$4' 421$7F' 5#64"5' 24"'
F$%"7' 2##64&$7F' 16' 1:"' 5JA24$1=' #4$1"4$2'
P"1C""7'241$3$#$2A'#6JJ"715'27&'J2#:$7"'67"5D'
C:$#:'24"'5:6C7'$7'V2PA"'-L' '

!
-./0'!(!8&,*(&,%)!%$!',-,F.&,*K/!

123&'! 4560.7.8#37!
>! #%!',-,F.&,*K!L(*G(()!*G%!+%--()*'!%&!*5(!H()(&.*(B!+%--()*'!.&(!-(.),)HF(''/!
=! 4G%!+%--()*'!'5.&(!'%-(!',-,F.&!*%E()'M!L1*!*5(K!.&(!)%*!'(-.)*,+.FFK!',-,F.&/!
N! 4G%!+%--()*'!5.O(!'%-(!',-,F.&!,)$%&-.*,%)M!L1*!(.+5!%$!*5(-!+%)*.,)'!'%-(!,)$%&-.*,%)!G5,+5!

,'!)%*!,)O%FO(B!LK!*5(!%*5(&/!
?! 45(!*G%!+%--()*'!.&(!O(&K!',-,F.&!,)!'(-.)*,+M!L1*!*5(,&!-(.)'!.&(!)%*!*5(!'.-(/!
@! 45(!*G%!+%--()*'!.&(!,B()*,+.F!,)!-(.),)HM!%&!*5(!H&%1)B!*&1*5!.&(!-%&(!B,$$,+1F*!*%!1)B(&'*.)B/!

B241$#$02715' 24"' 25["&' 16' 5#64"' 1:"' #6JJ"715' P"1C""7')'16'*'2##64&$7F'16'1:"'#4$1"4$2'A$51"&'$7'

! "

#

#! " $%& ! "
! "

"
#

" #
$ % & %

! = =

= ! ""

!
"#$% &'()!

" ""
#$%& #' (!

=
= • "

!" #

"
!"$#!

"

#$ " !
%&

#$ " !'
!

" >#= $ %#&

!" # !"$#!"#$%&'&() *"$ += ! (16)

4.7.2 Manual Evaluation
As the automatic test does not always agree with
experimental result [22], especially for the code
comments described in natural languages, we de-
cide to perform a manual verification for the sim-
ilarity of generated comments from our model and
the ground truth. Inspired by the methods [35], we
invite 3 participants to evaluate generated com-
ments respectively. They are doctors in computer
science with 3+ years Java experience. Their rating
scores are given according to the similarity criteria
between artificial comments and machine ones,
which are shown in Table 1.

653Information Technology and Control 2025/2/54

Participants are asked to score the comments be-
tween 0 to 4 according to the criteria listed in Table 1.
During the rating process, the two comments for the
same code snippet are shuffled and listed randomly.

4.7.3 Time Complexity Analysis
To calculate time complexity, we use source code
length (N) for input sequence, dot product or scaled
dot product for attention mechanism, Recurrent neu-
ral network design for LSTM encode and sequence to
sequence based model for comment generation.
Time complexity of Attention Mechanism:
The Dot-product or scaled dot-product attention re-
quires O(N2) matrix multiplication.
Time complexity of LSTM Encoder:
Time complexity of each LSTM cell is O(N). The
complexity of an N-length sequence is O(N2).
Time complexity of Comment Generation:
If the encoder and decoder share an architecture, the
time complexity is also O(N2).
The hybrid attention technique for source code com-
ment creation has a temporal complexity of O(N2)
when combining these components.
A hybrid attention technique for source code comment
creation has quadratic time complexity relative to in-
put sequence length (N). This indicates that computing
time grows proportionately with source code length.

5. Experiments
We compare our model At-ComGen with several
baseline methods on a dataset composed of GitHub
data [7, 8].

Score Explanation

0 No similarity between two comments or the generated comments are meaningless.

1 Two comments share some similar tokens, but they are not semantically similar.

2 Two comments have some similar information, but each of them contains some information which is not involved
by the other.

3 The two comments are very similar in semantic, but their means are not the same.

4 The two comments are identical in meaning, or the ground truth are more difficult to understand.

Table 1
Criterion of similarity.

5.1 Baselines
At-ComGen is compared with different state-of-
the-art models, including CODE-NN [18], a generic
Seq2Seq model, and DeepCom [14], all of which are
state-of-art code summarization models.
The famous generative model CODE-NN exploits a
common LSTM with an attention algorithm to pro-
duce comments by integrating token embeddings in-
stead of making language models.
A second baseline is a classical encoder-decod-
er model based on Seq2Seq model. We implement
a code summarization model built on a Seq2Seq
framework, which takes a sequence of tokens from
the given code snippet as input and output a com-
ment described in English.
A third baseline is DeepCom, which generates code
comments from the given code structure. Based on
a LSTM encoder-decoder framework, DeepCom
extracts the code semantic by traversing the corre-
sponding AST. The authors proposed a novel tra-
versal algorithm SBT, with which no information are
lost in the process of AST traversing.

5.2 Dataset Description
Due to the challenge of obtaining source code with
exemplary comments, researchers often compile
their own datasets by aggregating data from sev-
eral source code repositories, including GitHub
and Stack Overflow, for comparative studies. We
gathered an extensive corpus of Java methods from
GitHub projects established between 2017 and
2018. We download repositories with above 10 stars
to exclude unqualified code. Our dataset undergoes
preprocessing with the following processes.

Information Technology and Control 2025/2/54654

Table 2
Statistics of Java dataset.

Methods Words Uniq Words Training Set Validation Set Testing Set

588108 44378497 13779297 468108 60000 60000

Table 3
Statistics of code lengths.

Average <100 <150 <200

99.94 68.63% 82.06% 89.00%

Table 4
Statistics of comments lengths.

Average <20 <30 <50

8.86 75.50% 86.79% 95.45%

We extract Java functions accompanied by Javadocs
from 11,034 projects on GitHub. The first statement
in each Javadoc serves as the definitive remark, of-
ten outlining the method's functionality in accor-
dance with Java guidelines [25]. Java methods with-
out comments or containing comments of less than
three words are excluded.
We eliminate Java methods containing comments
not written in English, since our model cannot gen-
erate comments in other languages. We further omit
auto-generated codes, including setter, getter, and
test methods.
We have successfully acquired 588,108 pairs. Table
2 illustrates that our Java dataset comprises around
580,000 functions with annotated data labels (code
comments), categorized into training set, validation
set, and testing set. Table 3 delineates the specifics
of method lengths, whilst Table 4 elucidates the par-
ticulars of comment length. The data indicate that
over 95% of comments include less than 50 tokens,
whereas more than 89% of programs consist of fewer
than 200 tokens. Consistent with prior trials, 80% of
pairings are randomly designated for training, 10%
for validation, and 10% for testing.

5.3 Experimental Setting
We use javalang to produce ASTs from given code
snippets. According to the statistics described in Ta-
ble 3 and Table 4, the maximum code length and AST
token sequence are set to 250 and 500 respective-
ly. Longer token sequences are reduced to meet the
maximum length. For word-embedding, we trans-
form the words into vectors with word2vec tools and
set the embedding size to be 128.
Based on an attentional Seq2Seq framework,
At-ComGen implements both lexical and syntacti-
cal encoders by two independent LSTMs with 128

dimensions of the hidden states. The decoder is also
a single LSTM following a hybrid attention layer. In
the training process, the model is updated with SGD.
We use Adam optimizer with a learning rate 0.5
during training and use dropout with 0.5 to prevent
over-fitting. It takes more than 105 hours to train the
model with an epoch number 50.

5.4 Automatic Evaluation
For automatic tests, BLEU, METEOR and ROUGE-L
are used to evaluate the quality of generated com-
ments respectively. Table 5 shows the comparison
of At-ComGen and CODE-NN, attentional Seq2Seq,
DeepCom on our dataset.
We see that all the metrics of CODE-NN are rela-
tively poor. It is because CODE-NN cannot learn
code semantics when it produces comments from
code tokens directly. The performance of Seq2Seq
is not ideal, as it ignores both the code structure
and contributions of key words. DeepCom improves
machine comments by the introduction of AST tra-
versing algorithm. In the process of code encoding,
At-ComGen employs two independent LSTM to ex-
tract both lexical and syntactical information. In the
process of code decoding, At-ComGen introduces
BERT technology to promote the expression of gen-
erated comments. At-ComGen has become the new
baseline model due to its performance.

Table 5
Evaluation results on Java methods.

Models BLEU METEOR ROUGE-L

CODE-NN 27.89% 13.10% 34.83%

Seq2Seq 34.36% 20.98% 48.21%

DeepCom 38.17% 22.19% 47.48%

At-ComGen 40.19% 23.47% 51.23%

655Information Technology and Control 2025/2/54

5.5 Manual Evaluation
We randomly pick up 100 pairs of code snippets with
comments from the testing set. Each model gener-
ates independent code comments from these 100
samples. The ground-truth and generated comments
are shuffled before the tests.
Three experts evaluate the comment pairs inde-
pendently and the final scores are calculated by av-
erage. Figure 6. shows the results of our manual sur-
vey. We regard a score [0,1.5] as low quality, a score
(1.5,2.5] as medium quality, and a score (2.5,4] as
high quality. From the picture we conclude that the
proportion of high-quality comments generated by
At-ComGen outperforms the others again. The per-
formance of CODE-NN and Attentional Seq2Seq
are similar due to the extraction of code tokens. The
quality of comments generated by DeepCom is sig-
nificantly superior to CODE-NN and Attentional
Seq2Seq as it employs structural information hid-
den in the source code. Results of manual evaluation
are close to those of automated evaluation, although
they are slightly different.

Figure 6
Results of manual evaluations.

Figure 6 Results of manual evaluations.

6. Discussion
We take a discussion on the performance of At-
ComGen and other state-of-the-art models. We
attempt to analyze components which affect the
quality of generated comments via further
experiments.

6.1 Investigating the Impact
of Word Embedding
Around 2018, Transformer and BERT
technology have made breakthroughs in NLP
tasks such as text processing, text reading and
sentiment classification. Experts attempt to use
BERT in the process of word embedding. We are
inspired to encode words with BERT technology
in the process of building At-ComGen.

On the basis of At-ComGen, three models for
experiments are built according to different
word embedding technologies. Model 1 is the
basic version of At-ComGen, which extracts
lexical information from source code with
Word2vec and generates code comments with
“BERT-Base, Uncased”. Model 2 uses Word2vec
to encode words for source code words, AST
nodes and code comments, respectively.
Different corpus is used for source code and
comments. In Model 3, “BERT-Base, Uncased”
is used in the process of word encoding for
source code words, AST nodes and code
comments. The experimental results for three
models on the same Java test set are shown in
Figure 7.

Figure 7 Results of comment quality on different
word embedding technologies.
The quality of code comments generated by
model 1 outperforms model 2 and model 3. The
word vectors cannot be well expressed with
relatively outdated technology Word2vec, in
model 2. Surprisingly, Model 3, in which BERT
Pre-trained technology is fully utilized during
encoding and decoding, falls behind the other
models. We believe that it is due to rare words,
especially AST internal nodes, such as
InfixExpression, SimpleName. These
compound words are very uncommon in
human languages, which cannot be embedded
with BERT pre-trained model. While the corpus
in model 2 is made according to all the words
generated before word vectorization. Rare
words are easily encoded by the corpus above
generated by Word2vec. Most of the tokens
appeared in code comments are natural
language words, which are easily encoded with
BERT pre-trained model.

Currently, it is difficult for At-ComGen to train
a BERT model with its own corpus due to
hardware limitations. We hope that in the future
a specialized BERT model can be trained for
source code embedding, which may greatly
improve the machine comments.

6.2 Investigating the Impact
of the AST Splitting
The traversing of the generated AST plays a
significant role in the process of code
summarization. To compare the results, the
original AST is decomposed with three
strategies by the splitting granularity. Model
1: AST is treated as a special statement tree,
which is encoded directly via a classical pre-
order algorithm without any splitting. Model
2: At-ComGen is used to generate comments.

Model 3: AST is decomposed according to
blocks (compound statements including

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

CODE-NN Seq2Seq DeepCom At-ComGen

Low Medium High
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Model 1 Model 2 Model 3

BLEU METEOR ROUGE-L

6.1 Investigating the Impact of Word
Embedding
Around 2018, Transformer and BERT technology
have made breakthroughs in NLP tasks such as text
processing, text reading and sentiment classifica-
tion. Experts attempt to use BERT in the process of
word embedding. We are inspired to encode words
with BERT technology in the process of building
At-ComGen.
On the basis of At-ComGen, three models for experi-
ments are built according to different word embedding
technologies. Model 1 is the basic version of At-Com-
Gen, which extracts lexical information from source
code with Word2vec and generates code comments
with “BERT-Base, Uncased”. Model 2 uses Word2vec
to encode words for source code words, AST nodes
and code comments, respectively. Different corpus
is used for source code and comments. In Model 3,
“BERT-Base, Uncased” is used in the process of word
encoding for source code words, AST nodes and code
comments. The experimental results for three models
on the same Java test set are shown in Figure 7.
The quality of code comments generated by model
1 outperforms model 2 and model 3. The word vec-
tors cannot be well expressed with relatively outdat-
ed technology Word2vec, in model 2. Surprisingly,

6. Discussion
We take a discussion on the performance of
At-ComGen and other state-of-the-art models. We
attempt to analyze components which affect the
quality of generated comments via further experi-
ments.

Figure 7
Results of comment quality on different word embedding
technologies.

Figure 6 Results of manual evaluations.

6. Discussion
We take a discussion on the performance of At-
ComGen and other state-of-the-art models. We
attempt to analyze components which affect the
quality of generated comments via further
experiments.

6.1 Investigating the Impact
of Word Embedding
Around 2018, Transformer and BERT
technology have made breakthroughs in NLP
tasks such as text processing, text reading and
sentiment classification. Experts attempt to use
BERT in the process of word embedding. We are
inspired to encode words with BERT technology
in the process of building At-ComGen.

On the basis of At-ComGen, three models for
experiments are built according to different
word embedding technologies. Model 1 is the
basic version of At-ComGen, which extracts
lexical information from source code with
Word2vec and generates code comments with
“BERT-Base, Uncased”. Model 2 uses Word2vec
to encode words for source code words, AST
nodes and code comments, respectively.
Different corpus is used for source code and
comments. In Model 3, “BERT-Base, Uncased”
is used in the process of word encoding for
source code words, AST nodes and code
comments. The experimental results for three
models on the same Java test set are shown in
Figure 7.

Figure 7 Results of comment quality on different
word embedding technologies.
The quality of code comments generated by
model 1 outperforms model 2 and model 3. The
word vectors cannot be well expressed with
relatively outdated technology Word2vec, in
model 2. Surprisingly, Model 3, in which BERT
Pre-trained technology is fully utilized during
encoding and decoding, falls behind the other
models. We believe that it is due to rare words,
especially AST internal nodes, such as
InfixExpression, SimpleName. These
compound words are very uncommon in
human languages, which cannot be embedded
with BERT pre-trained model. While the corpus
in model 2 is made according to all the words
generated before word vectorization. Rare
words are easily encoded by the corpus above
generated by Word2vec. Most of the tokens
appeared in code comments are natural
language words, which are easily encoded with
BERT pre-trained model.

Currently, it is difficult for At-ComGen to train
a BERT model with its own corpus due to
hardware limitations. We hope that in the future
a specialized BERT model can be trained for
source code embedding, which may greatly
improve the machine comments.

6.2 Investigating the Impact
of the AST Splitting
The traversing of the generated AST plays a
significant role in the process of code
summarization. To compare the results, the
original AST is decomposed with three
strategies by the splitting granularity. Model
1: AST is treated as a special statement tree,
which is encoded directly via a classical pre-
order algorithm without any splitting. Model
2: At-ComGen is used to generate comments.

Model 3: AST is decomposed according to
blocks (compound statements including

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

CODE-NN Seq2Seq DeepCom At-ComGen

Low Medium High
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Model 1 Model 2 Model 3

BLEU METEOR ROUGE-L

Information Technology and Control 2025/2/54656

Model 3, in which BERT Pre-trained technology is
fully utilized during encoding and decoding, falls be-
hind the other models. We believe that it is due to rare
words, especially AST internal nodes, such as Infix-
Expression, SimpleName. These compound words
are very uncommon in human languages, which
cannot be embedded with BERT pre-trained model.
While the corpus in model 2 is made according to all
the words generated before word vectorization. Rare
words are easily encoded by the corpus above gen-
erated by Word2vec. Most of the tokens appeared in
code comments are natural language words, which
are easily encoded with BERT pre-trained model.
Currently, it is difficult for At-ComGen to train a BERT
model with its own corpus due to hardware limita-
tions. We hope that in the future a specialized BERT
model can be trained for source code embedding,
which may greatly improve the machine comments.

6.2 Investigating the Impact of the AST
Splitting
The traversing of the generated AST plays a signif-
icant role in the process of code summarization. To
compare the results, the original AST is decomposed
with three strategies by the splitting granularity.
Model 1: AST is treated as a special statement tree,
which is encoded directly via a classical pre-order
algorithm without any splitting.
Model 2: At-ComGen is used to generate comments.
Model 3: AST is decomposed according to blocks
(compound statements including multiple state-
ments within the same brace pairs). For example,
trees rooted by TryStatement are not divided into
subtrees in Model 3. After decomposition, the fol-
lowing encoding processes are the same as those
in At-ComGen. Figure 8. shows the performance of
generated comments.
It is shown that complicated traversing algorithms
cannot improve the comment quality significantly.
The structural encoder based on Tree-LSTM actual-
ly reduces comment quality slightly. We believe that
the depth of the complex AST declines model 2. In
order to update Tree-LSTM parameters successfully,
encoder has to reshape the AST to a common binary
tree, which might increase the tree depth. As the per-
formance of model 3 is similar to model 1, the pre-or-
der algorithm is applied in At-ComGen for simplicity.

6.3 Investigating the Impact of Code Length
and Comment Length
In this chapter, we investigate the performance of
generated java comments according to source code
lengths and comments lengths.
In java, “statement” is the minimum division to keep
code function. In this chapter, we study the impact
of statements on generated comments. Test data are
grouped carefully according to code lengths. Auto-
mated tests are applied to evaluate the performance
of code comments generated from different mod-
els. Figure 9 presents the BLUE-4 scores of 3 base-
line models and At-ComGen according to source
code lengths*, and Figure 10 presents the METEOR
scores of 4 models under the same conditions.
We conclude from Figures 9-10 that both BLUE and
METEOR Curves fluctuate as the code lengths vary,
while the code length does not have a significant
impact on the generated comment performance in
a certain range. In most cases, both BLEU and ME-
TEOR values from At-ComGen outperform the oth-
er baseline models. The machine comments gener-
ated from Seq2Seq and CODE-NN, both of which
ignore the code structure, fall behind DeepCom and
At-ComGen obviously. For example, in the case of
a function of 5 lines, the comment BLEU value of

Figure 8
Results of comment quality on different AST splitting.

multiple statements within the same brace
pairs). For example, trees rooted by
TryStatement are not divided into subtrees in
Model 3. After decomposition, the following
encoding processes are the same as those in At-
ComGen. Figure 8. shows the performance of
generated comments.

Figure 8 Results of comment quality on different

AST splitting.
It is shown that complicated traversing
algorithms cannot improve the comment
quality significantly. The structural encoder
based on Tree-LSTM actually reduces comment
quality slightly. We believe that the depth of the
complex AST declines model 2. In order to
update Tree-LSTM parameters successfully,
encoder has to reshape the AST to a common
binary tree, which might increase the tree depth.
As the performance of model 3 is similar to
model 1, the pre-order algorithm is applied in
At-ComGen for simplicity.

6.3 Investigating the Impact
of Code Length and Comment
Length
In this chapter, we investigate the performance
of generated java comments according to source
code lengths and comments lengths.

In java, “statement” is the minimum division to
keep code function. In this chapter, we study the
impact of statements on generated comments.
Test data are grouped carefully according to
code lengths. Automated tests are applied to
evaluate the performance of code comments
generated from different models. Figure 9
presents the BLUE-4 scores of 3 baseline models
and At-ComGen according to source code
lengths*, and Figure 10 presents the METEOR
scores of 4 models under the same conditions.

Figure 9 Comment BLUE values based on code
lengths (*Code length is calculated by counting

the number of tokens)
We conclude from Figures 9-10 that both BLUE
and METEOR Curves fluctuate as the code
lengths vary, while the code length does not
have a significant impact on the generated
comment performance in a certain range. In
most cases, both BLEU and METEOR values
from At-ComGen outperform the other baseline
models. The machine comments generated from
Seq2Seq and CODE-NN, both of which ignore
the code structure, fall behind DeepCom and
At-ComGen obviously. For example, in the case
of a function of 5 lines, the comment BLEU value
of At-ComGen is 59.3%, 36.4%, 43.3%, and
13.1% higher than the other baseline models,
respectively.

Figure 10 Comment METEOR values based on
code lengths (Code length is calculated by
counting the number of tokens)

Generally, the generated comment length and

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

SBT Tree-LSTM pre-order

BLEU METEOR ROUGE-L

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 0 2 0 3 0 4 0

BL
EU

CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 0 2 0 3 0 4 0

M
ET

EO
R

CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen

657Information Technology and Control 2025/2/54

Figure 9
Comment BLUE values based on code lengths (*Code
length is calculated by counting the number of tokens)

multiple statements within the same brace
pairs). For example, trees rooted by
TryStatement are not divided into subtrees in
Model 3. After decomposition, the following
encoding processes are the same as those in At-
ComGen. Figure 8. shows the performance of
generated comments.

Figure 8 Results of comment quality on different

AST splitting.
It is shown that complicated traversing
algorithms cannot improve the comment
quality significantly. The structural encoder
based on Tree-LSTM actually reduces comment
quality slightly. We believe that the depth of the
complex AST declines model 2. In order to
update Tree-LSTM parameters successfully,
encoder has to reshape the AST to a common
binary tree, which might increase the tree depth.
As the performance of model 3 is similar to
model 1, the pre-order algorithm is applied in
At-ComGen for simplicity.

6.3 Investigating the Impact
of Code Length and Comment
Length
In this chapter, we investigate the performance
of generated java comments according to source
code lengths and comments lengths.

In java, “statement” is the minimum division to
keep code function. In this chapter, we study the
impact of statements on generated comments.
Test data are grouped carefully according to
code lengths. Automated tests are applied to
evaluate the performance of code comments
generated from different models. Figure 9
presents the BLUE-4 scores of 3 baseline models
and At-ComGen according to source code
lengths*, and Figure 10 presents the METEOR
scores of 4 models under the same conditions.

Figure 9 Comment BLUE values based on code
lengths (*Code length is calculated by counting

the number of tokens)
We conclude from Figures 9-10 that both BLUE
and METEOR Curves fluctuate as the code
lengths vary, while the code length does not
have a significant impact on the generated
comment performance in a certain range. In
most cases, both BLEU and METEOR values
from At-ComGen outperform the other baseline
models. The machine comments generated from
Seq2Seq and CODE-NN, both of which ignore
the code structure, fall behind DeepCom and
At-ComGen obviously. For example, in the case
of a function of 5 lines, the comment BLEU value
of At-ComGen is 59.3%, 36.4%, 43.3%, and
13.1% higher than the other baseline models,
respectively.

Figure 10 Comment METEOR values based on
code lengths (Code length is calculated by
counting the number of tokens)

Generally, the generated comment length and

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

SBT Tree-LSTM pre-order

BLEU METEOR ROUGE-L

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 0 2 0 3 0 4 0

BL
EU

CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 0 2 0 3 0 4 0

M
ET

EO
R

CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen
At-ComGen is 59.3%, 36.4%, 43.3%, and 13.1% higher
than the other baseline models, respectively.
Generally, the generated comment length and the
reference length have a positive correlation. We in-
vestigate the impact of reference lengths to the per-
formance of machine comments by ablation tests.

Figure 10
Comment METEOR values based on code lengths (Code
length is calculated by counting the number of tokens)

multiple statements within the same brace
pairs). For example, trees rooted by
TryStatement are not divided into subtrees in
Model 3. After decomposition, the following
encoding processes are the same as those in At-
ComGen. Figure 8. shows the performance of
generated comments.

Figure 8 Results of comment quality on different

AST splitting.
It is shown that complicated traversing
algorithms cannot improve the comment
quality significantly. The structural encoder
based on Tree-LSTM actually reduces comment
quality slightly. We believe that the depth of the
complex AST declines model 2. In order to
update Tree-LSTM parameters successfully,
encoder has to reshape the AST to a common
binary tree, which might increase the tree depth.
As the performance of model 3 is similar to
model 1, the pre-order algorithm is applied in
At-ComGen for simplicity.

6.3 Investigating the Impact
of Code Length and Comment
Length
In this chapter, we investigate the performance
of generated java comments according to source
code lengths and comments lengths.

In java, “statement” is the minimum division to
keep code function. In this chapter, we study the
impact of statements on generated comments.
Test data are grouped carefully according to
code lengths. Automated tests are applied to
evaluate the performance of code comments
generated from different models. Figure 9
presents the BLUE-4 scores of 3 baseline models
and At-ComGen according to source code
lengths*, and Figure 10 presents the METEOR
scores of 4 models under the same conditions.

Figure 9 Comment BLUE values based on code
lengths (*Code length is calculated by counting

the number of tokens)
We conclude from Figures 9-10 that both BLUE
and METEOR Curves fluctuate as the code
lengths vary, while the code length does not
have a significant impact on the generated
comment performance in a certain range. In
most cases, both BLEU and METEOR values
from At-ComGen outperform the other baseline
models. The machine comments generated from
Seq2Seq and CODE-NN, both of which ignore
the code structure, fall behind DeepCom and
At-ComGen obviously. For example, in the case
of a function of 5 lines, the comment BLEU value
of At-ComGen is 59.3%, 36.4%, 43.3%, and
13.1% higher than the other baseline models,
respectively.

Figure 10 Comment METEOR values based on
code lengths (Code length is calculated by
counting the number of tokens)

Generally, the generated comment length and

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

SBT Tree-LSTM pre-order

BLEU METEOR ROUGE-L

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 0 2 0 3 0 4 0

BL
EU

CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 0 2 0 3 0 4 0
M

ET
EO

R
CODE LENGTHS

CODE-NN Seq2Seq

DeepCom At-ComGen

Automatic evaluations are applied to the generated
comments from 4 models according to reference
lengths. Figure 11 indicates the trend of BLEU val-
ues according to the reference lengths. Figure 12
shows the trend of METEOR values under the same
conditions.

Figure 11
Comment BLEU values based on Reference lengths.

the reference length have a positive correlation.
We investigate the impact of reference lengths
to the performance of machine comments by
ablation tests. Automatic evaluations are
applied to the generated comments from 4
models according to reference lengths. Figure 11
indicates the trend of BLEU values according to
the reference lengths. Figure 12 shows the trend
of METEOR values under the same conditions.

Figure 11 Comment BLEU values based on
Reference lengths.

Figure 12 Comment METEOR values based on
Reference lengths.
We conclude from Figures 11-12. that the
reference length has a significant impact on
generated comments. On the whole, both the
BLUE and METEOR curves of all the models
decrease when the lengths of reference
comments increase. We guess it is because long
comments detail on code functions due to the
rich expressive power in natural languages.
Hence, some human evaluations are held as a
supplement in ablation experiments.

Although the model performance decreases
with the increasing of comment length, the
comment quality of At-ComGen outperforms
the other models in most cases. The quality of
machine comments reaches its peak when the
reference length is between 5 and 10 words. For
example, when the reference length is 10, the
BLEU values of At-ComGen are 38.2%, 23.7%,
9.3%, and 4.4% higher than the other baseline
models, respectively.

6.4 Cases Investigation
In this chapter, some typical cases are
introduced to investigate the code comments
generated by At-ComGen, CODE-NN, and
DeepCom respectively according to the same
input functions.

The Java function in Case 1 converts the time
from String format into Date format (Figure 13).
The machine comment generated from At-
ComGen is identical to the reference. However,
machine comments generated by CODE-NN
and DeepCom are ambiguous, which are
heavily influenced by non-key words such as
simpleDateFormat and Exception during
encoding.

public Date stringToDate(String time)
{
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 Date dateTime = null;
 try {
 dateTime = simpleDateFormat.parse(time);

 return dateTime;
 } catch (ParseException e)
 {

 e.printStackTrace();
 return null;
 }

}

Reference Convert String format to Date.

CODE-NN Construct simple date format to date time.

DeepCom Parse string to date with parse exception.

At-ComGen Convert string format to date.

Figure 13 Case 1: To convert the time from
String format into Date format via CODE-NN,
DeepCom and At-ComGen.

The Java function in Case 2 is designed to extract
the information from an HTML page (Figure
14). The machine comment generated by At-
ComGen contains more information than the
reference. The comment generated by CODE-
NN has repetitive words, and the machine
comment from DeepCom is also ambiguous.
Hidden features in the source code are carefully
extracted by the specialized encoder and

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 0 2 0 3 0 4 0

BL
EU

REFERENCE WORDS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40

M
ET

EO
R

REFERENCE (WORDS)

CODE-NN Seq2Seq

DeepCom At-ComGen

Figure 12
Comment METEOR values based on Reference lengths.

the reference length have a positive correlation.
We investigate the impact of reference lengths
to the performance of machine comments by
ablation tests. Automatic evaluations are
applied to the generated comments from 4
models according to reference lengths. Figure 11
indicates the trend of BLEU values according to
the reference lengths. Figure 12 shows the trend
of METEOR values under the same conditions.

Figure 11 Comment BLEU values based on
Reference lengths.

Figure 12 Comment METEOR values based on
Reference lengths.
We conclude from Figures 11-12. that the
reference length has a significant impact on
generated comments. On the whole, both the
BLUE and METEOR curves of all the models
decrease when the lengths of reference
comments increase. We guess it is because long
comments detail on code functions due to the
rich expressive power in natural languages.
Hence, some human evaluations are held as a
supplement in ablation experiments.

Although the model performance decreases
with the increasing of comment length, the
comment quality of At-ComGen outperforms
the other models in most cases. The quality of
machine comments reaches its peak when the
reference length is between 5 and 10 words. For
example, when the reference length is 10, the
BLEU values of At-ComGen are 38.2%, 23.7%,
9.3%, and 4.4% higher than the other baseline
models, respectively.

6.4 Cases Investigation
In this chapter, some typical cases are
introduced to investigate the code comments
generated by At-ComGen, CODE-NN, and
DeepCom respectively according to the same
input functions.

The Java function in Case 1 converts the time
from String format into Date format (Figure 13).
The machine comment generated from At-
ComGen is identical to the reference. However,
machine comments generated by CODE-NN
and DeepCom are ambiguous, which are
heavily influenced by non-key words such as
simpleDateFormat and Exception during
encoding.

public Date stringToDate(String time)
{
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 Date dateTime = null;
 try {
 dateTime = simpleDateFormat.parse(time);

 return dateTime;
 } catch (ParseException e)
 {

 e.printStackTrace();
 return null;
 }

}

Reference Convert String format to Date.

CODE-NN Construct simple date format to date time.

DeepCom Parse string to date with parse exception.

At-ComGen Convert string format to date.

Figure 13 Case 1: To convert the time from
String format into Date format via CODE-NN,
DeepCom and At-ComGen.

The Java function in Case 2 is designed to extract
the information from an HTML page (Figure
14). The machine comment generated by At-
ComGen contains more information than the
reference. The comment generated by CODE-
NN has repetitive words, and the machine
comment from DeepCom is also ambiguous.
Hidden features in the source code are carefully
extracted by the specialized encoder and

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 0 2 0 3 0 4 0
BL

EU
REFERENCE WORDS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40

M
ET

EO
R

REFERENCE (WORDS)

CODE-NN Seq2Seq

DeepCom At-ComGen

Information Technology and Control 2025/2/54658

We conclude from Figures 11-12. that the reference
length has a significant impact on generated com-
ments. On the whole, both the BLUE and METEOR
curves of all the models decrease when the lengths of
reference comments increase. We guess it is because
long comments detail on code functions due to the
rich expressive power in natural languages. Hence,
some human evaluations are held as a supplement in
ablation experiments.
Although the model performance decreases with the
increasing of comment length, the comment quality of
At-ComGen outperforms the other models in most cas-
es. The quality of machine comments reaches its peak
when the reference length is between 5 and 10 words.
For example, when the reference length is 10, the BLEU
values of At-ComGen are 38.2%, 23.7%, 9.3%, and 4.4%
higher than the other baseline models, respectively.

6.4 Cases Investigation
In this chapter, some typical cases are introduced
to investigate the code comments generated by
At-ComGen, CODE-NN, and DeepCom respectively
according to the same input functions.
The Java function in Case 1 converts the time from
String format into Date format (Figure 13). The ma-
chine comment generated from At-ComGen is iden-
tical to the reference. However, machine comments
generated by CODE-NN and DeepCom are ambiguous,
which are heavily influenced by non-key words such as
simpleDateFormat and Exception during encoding.

Figure 13
Case 1: To convert the time from String format into Date
format via CODE-NN, DeepCom and At-ComGen.

the reference length have a positive correlation.
We investigate the impact of reference lengths
to the performance of machine comments by
ablation tests. Automatic evaluations are
applied to the generated comments from 4
models according to reference lengths. Figure 11
indicates the trend of BLEU values according to
the reference lengths. Figure 12 shows the trend
of METEOR values under the same conditions.

Figure 11 Comment BLEU values based on
Reference lengths.

Figure 12 Comment METEOR values based on
Reference lengths.
We conclude from Figures 11-12. that the
reference length has a significant impact on
generated comments. On the whole, both the
BLUE and METEOR curves of all the models
decrease when the lengths of reference
comments increase. We guess it is because long
comments detail on code functions due to the
rich expressive power in natural languages.
Hence, some human evaluations are held as a
supplement in ablation experiments.

Although the model performance decreases
with the increasing of comment length, the
comment quality of At-ComGen outperforms
the other models in most cases. The quality of
machine comments reaches its peak when the
reference length is between 5 and 10 words. For
example, when the reference length is 10, the
BLEU values of At-ComGen are 38.2%, 23.7%,
9.3%, and 4.4% higher than the other baseline
models, respectively.

6.4 Cases Investigation
In this chapter, some typical cases are
introduced to investigate the code comments
generated by At-ComGen, CODE-NN, and
DeepCom respectively according to the same
input functions.

The Java function in Case 1 converts the time
from String format into Date format (Figure 13).
The machine comment generated from At-
ComGen is identical to the reference. However,
machine comments generated by CODE-NN
and DeepCom are ambiguous, which are
heavily influenced by non-key words such as
simpleDateFormat and Exception during
encoding.

public Date stringToDate(String time)
{
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 Date dateTime = null;
 try {
 dateTime = simpleDateFormat.parse(time);

 return dateTime;
 } catch (ParseException e)
 {

 e.printStackTrace();
 return null;
 }

}

Reference Convert String format to Date.

CODE-NN Construct simple date format to date time.

DeepCom Parse string to date with parse exception.

At-ComGen Convert string format to date.

Figure 13 Case 1: To convert the time from
String format into Date format via CODE-NN,
DeepCom and At-ComGen.

The Java function in Case 2 is designed to extract
the information from an HTML page (Figure
14). The machine comment generated by At-
ComGen contains more information than the
reference. The comment generated by CODE-
NN has repetitive words, and the machine
comment from DeepCom is also ambiguous.
Hidden features in the source code are carefully
extracted by the specialized encoder and

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 0 2 0 3 0 4 0

BL
EU

REFERENCE WORDS

CODE-NN Seq2Seq

DeepCom At-ComGen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40

M
ET

EO
R

REFERENCE (WORDS)

CODE-NN Seq2Seq

DeepCom At-ComGen

The Java function in Case 2 is designed to extract
the information from an HTML page (Figure 14).
The machine comment generated by At-ComGen
contains more information than the reference. The
comment generated by CODE-NN has repetitive
words, and the machine comment from DeepCom is
also ambiguous. Hidden features in the source code
are carefully extracted by the specialized encoder
and decoder in At-ComGen.

Figure 14
Case 2: To extract the information from an HTML page via
CODE-NN, DeepCom and At-ComGen.

decoder in At-ComGen.

public String extract(String html, CETR.Parameters parameters)
{
 html = clearText(html);
 List<String> rows = extractRows(html);
 List<Integer> selectedRowIds = selectRows(rows, parameters);
 StringBuilder sb = new StringBuilder(html.length());

 for(Integer rowId : selectedRowIds) {
 String row = rows.get(rowId);
 row = StringCleaner.removeExtraSpaces(HTMLParser.extractText(row));
 if(row.isEmpty()) {
 continue;
 }
 sb.append(row).append(" ");
 }
 return sb.toString().trim();
}

Reference Extracts the main content for an HTML page.

CODE-NN Extract rows rows html.

DeepCom Extract html to string builder after clear text.

At-ComGen Extract the string content from html page after
clear text.

Figure 14 Case 2: To extract the information

from an HTML page via CODE-NN, DeepCom
and At-ComGen.

It is shown in Case 3 that the expressive
diversity of natural languages might lead to low
matching between generated comments and
reference comments (Figure 15). The Java
function in Case 3 is to check the existence of a
given item. Compared to the reference, the
generated comments from DeepCom and At-
ComGen are more expressive and accurate.
However, the automatic evaluation fails to give
an accurate similarity due to the ground truth.
It is the reason why we involve manual
inspection in the evaluation phase.

public boolean contain(int key, List<String> keyList)
{
 if (keyList.contains(key+""))

return true;
 else return false;
}

Reference Is the key in the keylist?

CODE-NN Return true if.

DeepCom Return true if key list contains key.

At-ComGen Checks whether the given key is contained within
 the string list.

Figure 15 Case 3: To check the expressive

diversity of natural languages via CODE-NN,
DeepCom and At-ComGen.

7. Conclusion and Future Work
We have presented a hybrid attentional deep
learning model for the generation of source code
comments. In order to retain both the lexical and
structural information, our model employs two
independent LSTM encoders in the process of

code representation. The lexical encoder
extracts the tokens, words and vectorizes them
into a unified high dimensional space, while the
structural encoder maps the generated AST to a
vector with a specific traversal algorithm.
Compared to other baseline models, At-
ComGen has following advantages: (1) The
hybrid attention has intensified the key words
and statements during code encoding. (2) The
special encoding of statement nodes in AST has
greatly reduced the size of generated corpus
and the occurrences of "UNK". (3) The
introduction of BERT in the encoder obviously
improves the expressiveness of the output
comments.

 There are many promising directions for
further study such as intelligent code search,
code clone and other code translations. We plan
to extend our model to solve these problems.
The future version of our model plans to
generate new corpus from both source code and
syntax tree, and improve the performance of
generated comments with self-trained BERT
models.

The proposed model's efficiency depends on
training data amount and quality. Data that is
incomplete or distorted may not be reliable. The
large codebases of hybrid attention models
make them computationally expensive. Hybrid
attention models may struggle to generalize to
code from different domains or languages due
to conventions and semantics.

We want to explore potential methods for
enhancing the precision and relevance of
comment creation via the use of data from vast
code repositories in the near future. We can
enhance code and comments using semantic
analysis and word embeddings. Developing a
way to automate the reorganization of code
comments would enhance their uniformity and
precision. We must prioritize code comments
and organization, since they will facilitate our
ability to anticipate necessary revisions. Users of
the change comments section may choose from
three unique kinds of remarks: succinct,
informative, and detailed. The intended use of
the code for both internal and external purposes
contextualizes comments, altering their style
based on the situation. Optimization strategies
may enhance the computational efficiency of
hybrid attention, particularly in large
codebases.

Data Availability Statement

The dataset used in this paper has been gathered
from https://github.com/xing-hu/EMSE-
DeepCom and
https://github.com/xjha2/ByteGen

It is shown in Case 3 that the expressive diversi-
ty of natural languages might lead to low matching
between generated comments and reference com-
ments (Figure 15). The Java function in Case 3 is to
check the existence of a given item. Compared to the

Figure 15
Case 3: To check the expressive diversity of natural
languages via CODE-NN, DeepCom and At-ComGen.

decoder in At-ComGen.

public String extract(String html, CETR.Parameters parameters)
{
 html = clearText(html);
 List<String> rows = extractRows(html);
 List<Integer> selectedRowIds = selectRows(rows, parameters);
 StringBuilder sb = new StringBuilder(html.length());

 for(Integer rowId : selectedRowIds) {
 String row = rows.get(rowId);
 row = StringCleaner.removeExtraSpaces(HTMLParser.extractText(row));
 if(row.isEmpty()) {
 continue;
 }
 sb.append(row).append(" ");
 }
 return sb.toString().trim();
}

Reference Extracts the main content for an HTML page.

CODE-NN Extract rows rows html.

DeepCom Extract html to string builder after clear text.

At-ComGen Extract the string content from html page after
clear text.

Figure 14 Case 2: To extract the information

from an HTML page via CODE-NN, DeepCom
and At-ComGen.

It is shown in Case 3 that the expressive
diversity of natural languages might lead to low
matching between generated comments and
reference comments (Figure 15). The Java
function in Case 3 is to check the existence of a
given item. Compared to the reference, the
generated comments from DeepCom and At-
ComGen are more expressive and accurate.
However, the automatic evaluation fails to give
an accurate similarity due to the ground truth.
It is the reason why we involve manual
inspection in the evaluation phase.

public boolean contain(int key, List<String> keyList)
{
 if (keyList.contains(key+""))

return true;
 else return false;
}

Reference Is the key in the keylist?

CODE-NN Return true if.

DeepCom Return true if key list contains key.

At-ComGen Checks whether the given key is contained within
 the string list.

Figure 15 Case 3: To check the expressive

diversity of natural languages via CODE-NN,
DeepCom and At-ComGen.

7. Conclusion and Future Work
We have presented a hybrid attentional deep
learning model for the generation of source code
comments. In order to retain both the lexical and
structural information, our model employs two
independent LSTM encoders in the process of

code representation. The lexical encoder
extracts the tokens, words and vectorizes them
into a unified high dimensional space, while the
structural encoder maps the generated AST to a
vector with a specific traversal algorithm.
Compared to other baseline models, At-
ComGen has following advantages: (1) The
hybrid attention has intensified the key words
and statements during code encoding. (2) The
special encoding of statement nodes in AST has
greatly reduced the size of generated corpus
and the occurrences of "UNK". (3) The
introduction of BERT in the encoder obviously
improves the expressiveness of the output
comments.

 There are many promising directions for
further study such as intelligent code search,
code clone and other code translations. We plan
to extend our model to solve these problems.
The future version of our model plans to
generate new corpus from both source code and
syntax tree, and improve the performance of
generated comments with self-trained BERT
models.

The proposed model's efficiency depends on
training data amount and quality. Data that is
incomplete or distorted may not be reliable. The
large codebases of hybrid attention models
make them computationally expensive. Hybrid
attention models may struggle to generalize to
code from different domains or languages due
to conventions and semantics.

We want to explore potential methods for
enhancing the precision and relevance of
comment creation via the use of data from vast
code repositories in the near future. We can
enhance code and comments using semantic
analysis and word embeddings. Developing a
way to automate the reorganization of code
comments would enhance their uniformity and
precision. We must prioritize code comments
and organization, since they will facilitate our
ability to anticipate necessary revisions. Users of
the change comments section may choose from
three unique kinds of remarks: succinct,
informative, and detailed. The intended use of
the code for both internal and external purposes
contextualizes comments, altering their style
based on the situation. Optimization strategies
may enhance the computational efficiency of
hybrid attention, particularly in large
codebases.

Data Availability Statement

The dataset used in this paper has been gathered
from https://github.com/xing-hu/EMSE-
DeepCom and
https://github.com/xjha2/ByteGen

659Information Technology and Control 2025/2/54

reference, the generated comments from DeepCom
and At-ComGen are more expressive and accurate.
However, the automatic evaluation fails to give an
accurate similarity due to the ground truth. It is
the reason why we involve manual inspection in the
evaluation phase.

7. Conclusion and Future Work
We have presented a hybrid attentional deep
learning model for the generation of source code
comments. In order to retain both the lexical and
structural information, our model employs two in-
dependent LSTM encoders in the process of code
representation. The lexical encoder extracts the to-
kens, words and vectorizes them into a unified high
dimensional space, while the structural encoder
maps the generated AST to a vector with a specif-
ic traversal algorithm. Compared to other baseline
models, At-ComGen has following advantages: (1)
The hybrid attention has intensified the key words
and statements during code encoding. (2) The spe-
cial encoding of statement nodes in AST has greatly
reduced the size of generated corpus and the occur-
rences of "UNK". (3) The introduction of BERT in
the encoder obviously improves the expressiveness
of the output comments.
There are many promising directions for further
study such as intelligent code search, code clone and
other code translations. We plan to extend our mod-
el to solve these problems. The future version of our
model plans to generate new corpus from both source
code and syntax tree, and improve the performance of
generated comments with self-trained BERT models.
The proposed model's efficiency depends on training
data amount and quality. Data that is incomplete or

distorted may not be reliable. The large codebases of
hybrid attention models make them computational-
ly expensive. Hybrid attention models may struggle
to generalize to code from different domains or lan-
guages due to conventions and semantics.
We want to explore potential methods for enhancing
the precision and relevance of comment creation via
the use of data from vast code repositories in the near
future. We can enhance code and comments using
semantic analysis and word embeddings. Developing
a way to automate the reorganization of code com-
ments would enhance their uniformity and precision.
We must prioritize code comments and organization,
since they will facilitate our ability to anticipate nec-
essary revisions. Users of the change comments sec-
tion may choose from three unique kinds of remarks:
succinct, informative, and detailed. The intended use
of the code for both internal and external purposes
contextualizes comments, altering their style based
on the situation. Optimization strategies may en-
hance the computational efficiency of hybrid atten-
tion, particularly in large codebases.

Data Availability Statement

The dataset used in this paper has been gathered
from https://github.com/xing-hu/EMSE-DeepCom
and https://github.com/xjha2/ByteGen

Declaration of competing interest

The authors declare no conflict of interest.

Declaration of generative AI in scientific
writing

The author reviewed and edited the content as need-
ed and takes full responsibility for the content of the
publication.

References
1. Allamanis, M., Peng, H., Sutton, C. A Convolutional At-

tention Network for Extreme Summarization of Source
Code. Proceedings of the 33rd International Confer-
ence on Machine Learning, New York, NY, USA, 2016,
2091-2100.

2. Bahdanau, D., Cho, K., Bengio, Y. Neural Machine
Translation by Jointly Learning to Align and Translate.
ArXiv, 2014, vol. 1409.

3. Chen, Q., Xia, X., Hu, H., Lo, D., Li, S. Why My Code
Summarization Model Does Not Work: Code Comment
Improvement with Category Prediction. ACM Transac-
tions on Software Engineering and Methodology, 2021,
30(2), Article 25. https://doi.org/10.1145/3434280

4. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., Bengio, Y. Learning
Phrase Representations Using RNN Encoder-Decoder

Information Technology and Control 2025/2/54660

for Statistical Machine Translation. Computer Science,
2014. https://doi.org/10.3115/v1/D14-1179

5. Devlin, J., Chang, M. W., Lee, K., Toutanova, K. BERT:
Pre-Training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv preprint, arXiv:1810.04805,
2018. Available: http://arxiv.org/abs/1810.04805

6. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., Zhou, M. Code-
BERT: A Pre-Trained Model for Programming and
Natural Languages. Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 2020. https://doi.org/10.18653/v1/2020.
findings-emnlp.139

7. GitHub Repository: ByteGen. https://github.com/
xjha2/ByteGen

8. GitHub Repository: DeepCom. https://github.com/
xing-hu/EMSE-DeepCom

9. Gros, D., Sezhiyan, H., Devanbu, P., Yu, Z. Code to
Comment "Translation": Data, Metrics, Baselin-
ing and Evaluation. Proceedings of the 35th IEEE/
ACM International Conference on Automated Soft-
ware Engineering (ASE), 2020, 746-757. https://doi.
org/10.1145/3324884.3416546

10. Haque, S., LeClair, A., Wu, L., McMillan, C. Improved
Automatic Summarization of Subroutines via Attention
to File Context. Proceedings of the 17th International
Conference on Mining Software Repositories, 2020,
300-310. https://doi.org/10.1145/3379597.3387449

11. Hellendoorn, V. J., Devanbu, P. Are Deep Neural Networks
the Best Choice for Modeling Source Code? 2017 11th
Joint Meeting on Foundations of Software Engineer-
ing, 2017. https://doi.org/10.1145/3106237.3106290

12. Hu, X., Gao, Z., Xia, X., Lo, D., Yang, X. Automating
User Notice Generation for Smart Contract Func-
tions. Proceedings of the 36th IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering (ASE), 2021, 5-17. https://doi.org/10.1109/
ASE51524.2021.9678552

13. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z. Deep Code Comment
Generation. Proceedings of the 26th Conference on
Program Comprehension (ICPC), Association for Com-
puting Machinery, New York, NY, USA, 2018, 200-210.
https://doi.org/10.1145/3196321.3196334

14. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z. Deep Code Com-
ment Generation with Hybrid Lexical and Syntactical
Information. Empirical Software Engineering, 2020,
25, 2179-2217. https://doi.org/10.1007/s10664-019-
09730-9

15. Huang, Y., Hu, X., Jia, N., Chen, X., Luo, X., Zheng, Z.
CommtPst: Deep Learning Source Code for Com-
menting Positions Prediction. Journal of Systems and
Software, 2020, 170, 110754. https://doi.org/10.1016/j.
jss.2020.110754

16. Huang, Y., Hu, X., Jia, N., Chen, X., Xiong, Y., Zheng,
Z. Learning Code Context Information to Predict
Comment Locations. IEEE Transactions on Relia-
bility, 2020, 69(1), 88-105. https://doi.org/10.1109/
TR.2019.2931725

17. Huang, Y., Huang, S., Chen, H., Chen, X., Zheng, Z., Luo,
X., Jia, N., Hu, X., Zhou, X. Towards Automatically
Generating Block Comments for Code Snippets. Infor-
mation and Software Technology, 2020, 127, 106373.
https://doi.org/10.1016/j.infsof.2020.106373

18. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L. Summa-
rizing Source Code Using a Neural Attention Model. Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
2016, 2073-2083. https://doi.org/10.18653/v1/P16-1195

19. Kostić, M., Batanović, V., Nikolić, B. Monolingual, Mul-
tilingual and Cross-Lingual Code Comment Classifica-
tion. Engineering Applications of Artificial Intelligence,
2023, 124, Article 106485. https://doi.org/10.1016/j.en-
gappai.2023.106485

20. LeClair, A., Haque, S., Wu, L., McMillan, C. Improved
Code Summarization via a Graph Neural Network. Pro-
ceedings of the 28th International Conference on Pro-
gram Comprehension (ICPC'20), ACM, 2020, 184-195.
https://doi.org/10.1145/3387904.3389268

21. Li, B., Yan, M., Xia, X., Hu, X., Li, G., Lo, D. Deep Com-
menter: A Deep Code Comment Generation Tool with
Hybrid Lexical and Syntactical Information. Proceed-
ings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual, 2020,
1571-1575. https://doi.org/10.1145/3368089.3417926

22. Li, Z., Wu, Y., Peng, B., Chen, X., Sun, Z., Liu, Y., Yu, D.
SeCNN: A Semantic CNN Parser for Code Comment
Generation. Journal of Systems and Software, 2021,
181, 111036. https://doi.org/10.1016/j.jss.2021.111036

23. Meng, Y., Liu, L. A Deep Learning Approach for a
Source Code Detection Model Using Self-Atten-
tion. Complexity, 2020, 2020, 1-15. https://doi.
org/10.1155/2020/5027198

24. Shin, J., Nam, J. A Survey of Automatic Code Genera-
tion from Natural Language. Journal of Information
Processing Systems, 2021, 17(3), 537-555.

661Information Technology and Control 2025/2/54

25. Song, X., Haque, S., Wang, X., Yan, J. A Survey of Automat-
ic Generation of Source Code Comments: Algorithms
and Techniques. IEEE Access, 2019, 7, 111411-111428.
https://doi.org/10.1109/ACCESS.2019.2931579

26. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L. L., Vi-
jay-Shanker, K. Towards Automatically Generating
Summary Comments for Java Methods. Proceedings of
the 25th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), Antwerp, Belgium,
2010. https://doi.org/10.1145/1858996.1859006

27. Sridhara, G., Pollock, L., Vijay-Shanker, K. Automatical-
ly Detecting and Describing High-Level Actions Within
Methods. Proceedings of the International Conference
on Software Engineering (ICSE), 2011. https://doi.
org/10.1145/1985793.1985808

28. Sutskever, I., Vinyals, O., Le, Q. V. Sequence to Sequence
Learning with Neural Networks. Advances in Neu-
ral Information Processing Systems, 2014. Available:
http://www.researchgate.net/publication/319770465_
Sequence_to_Sequence_Learning_with_Neural_Net-
works

29. Wan, Y., Zhao, Z., Xu, H., Ying, S., Zhao, J., Wu, J. Im-
proving Automatic Source Code Summarization via
Deep Reinforcement Learning. Proceedings of the
2018 ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, 2018. https://doi.
org/10.1145/3238147.3238206

30. Wei, H., Ming, L. Supervised Deep Features for Software
Functional Clone Detection by Exploiting Lexical and

Syntactical Information in Source Code. Proceedings
of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2017. https://doi.org/10.24963/
ijcai.2017/423

31. Wong, E., Liu, T., Tan, L. CloCom: Mining Existing
Source Code for Automatic Comment Generation.
2015 IEEE 22nd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SAN-
ER), 2015, 380-389. https://doi.org/10.1109/SAN-
ER.2015.7081848

32. Xu, F. F., Vasilescu, B., Neubig, G. In-IDE Code Gen-
eration from Natural Language: Promise and Chal-
lenges. ACM Transactions on Software Engineering
and Methodology, 2022, 31, Article 29. https://doi.
org/10.1145/3487569

33. Yu, H., Lam, W., Chen, L., Li, G., Xie, T., Wang, Q. Neu-
ral Detection of Semantic Code Clones via Tree-Based
Convolution. 2019 IEEE/ACM 27th International Con-
ference on Program Comprehension (ICPC), Montreal,
QC, Canada, IEEE, 2019, 70-80. https://doi.org/10.1109/
ICPC.2019.00021

34. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu,
X. A Novel Neural Source Code Representation Based
on Abstract Syntax Tree. International Conference
on Software Engineering (ICSE), 2019. https://doi.
org/10.1109/ICSE.2019.00086

35. Zheng, W., Zhou, H., Li, M., Wu, J. CodeAttention:
Translating Source Code to Comments by Exploiting
the Code Constructs. Frontiers of Computer Science,
2018. https://doi.org/10.1007/s11704-018-7457-6

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

