
Information Technology and Control 2024/3/53772

A Hybrid Summarization
Model for Legal
Judgment Document
Based on Domain
Knowledge

ITC 3/53
Information Technology
and Control
Vol. 53 / No. 3/ 2024
pp. 772-784
DOI 10.5755/j01.itc.53.3.36602

A Hybrid Summarization Model for Legal Judgment
Document Based on Domain Knowledge

Received 2024/03/09 Accepted after revision 2024/05/29

HOW TO CITE: Song, Y., Huang, R., Chen, Y., Lin, C., Yu, S., Tang, R., Qin, Y. (2024). A Hybrid
Summarization Model for Legal Judgment Document Based on Domain Knowledge. Information
Technology and Control, 53(3), 772-784. https://doi.org/10.5755/j01.itc.53.3.36602

Corresponding authors: Yongbin Qin ybqin@gzu.edu.cn, Yumei Song songyumei123@163.com

Yumei Song
Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education,
Guizhou University, Guiyang, 550025, China;
College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China;
College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, 550025, China;
e-mail: songyumei123@163.com

Ruizhang Huang, Yanping Chen, Chuan Lin, Shuai Yu
Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education,
Guizhou University, Guiyang, 550025, China;
College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China

Ruixue Tang
School of Information, Guizhou University of Finance and Econnomics, Guiyang, 550025, China

Yongbin Qin
Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education,
Guizhou University, Guiyang, 550025, China;
College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China;
e-mail: ybqin@gzu.edu.cn

773Information Technology and Control 2024/3/53

Legal judgment document summarization, as a task specific to the legal domain, involves automatically gen-
erating a fluent, informative, and well-organized summary from the original legal judgment document. Unlike
traditional text summarization tasks, this domain-specific task places higher demands on content accuracy and
completeness in the summary, while also requiring the preservation of the professional expression found in the
original text. Consequently, conventional summarization methods often struggle to perform effectively in the
legal domain. In response to this challenge, this paper introduces a hybrid summarization model tailored for le-
gal judgment documents. Our model harnesses the strengths of both extractive and abstractive summarization
methods, incorporating domain knowledge to enhance the summary generation process. We conduct extensive
experiments to verify the effectiveness of our proposed method and compare the results with a baseline using
ROUGE evaluation metrics. The experimental findings highlight that our model excels in providing more accu-
rate and readable summarizations compared to traditional methods.
KEYWORDS: Legal summarization, domain knowledge, pointer-generator network, hybrid model, text sum-
marization.

1. Introduction
In recent years, with the development of smart justice
and the increasing number of digitized legal judgment
documents, automatic legal judgment document
summarization has gained increasing attention. Le-
gal judgment document summarization [17] serves as
a domain-specific automatic text summarization [1,
21] task to automatically identify the important infor-
mation of a legal judgment document and express it
in a human-readable summary. It enables legal prac-
titioners to quickly understand an expatiatory legal
judgment document. However, legal judgment docu-
ments tend to be long and full of professional expres-
sions, making this task even more challenging.
There are two types of traditional text summarization
methods: extractive and abstractive. Extractive meth-
ods retrieve significant sentences or keywords from
the original document in order to construct a summa-
ry. These methods tend to copy sentences directly, do
not accurately summarize the original meaning, and
have low readability. Conversely, abstractive methods
have the capability to generate novel terms in order
to succinctly encapsulate the content of the original
document. These methods are better at expressing
the original meaning, but tend to generate hallucina-
tions [3] and are not suitable for long texts.
In fact, a direct application of traditional summari-
zation methods to the task of legal judgment summa-
rization is not realistic. The main reasons are as fol-
lows: 1) Traditional summarization methods do not
have enough capacity to capture the important do-
main-related information of the original document,

and therefore cannot guarantee the accuracy and
completeness of the summary. Traditional methods
typically generate summaries from textual features
such as word frequency and word position without
any external domain knowledge constraints, so that
important domain-related information is easily lost.
For example, as shown in Figure 1, the sentence un-
derlined is easy to ignore in traditional methods if
without any domain constraints. But in fact, this sen-
tence is clearly crucial to the document as it describes
important case facts. Thus, the crux of the matter we
need to confront is how to leverage domain knowl-
edge to enhance the model’s ability to capture import-
ant domain-related information. 2) Legal judgment
documents contain many professional and lengthy
expression. We expect to generalize it in a more con-
cise way, in particular with some specialized terms.
Traditional summarization methods, either ex-
tractive or abstractive methods, generate summaries
from input documents or general vocabulary, and that
are easy to cause out-of-vocabulary (OOV) problems.
Furthermore, without domain knowledge guidance, it
is hard to generate novel and accuracy words to gen-
eralize the documents. To conclude, it is imperative
to incorporate domain knowledge in order to provide
guidance for the process of generating summaries due
to the aforementioned reasons.
In this work, we propose a hybrid legal judgment
summarization model (HLSum) based on domain
knowledge. Firstly, a knowledge-aware extractor is
devised to identify the significant sentences from le-

Information Technology and Control 2024/3/53774

gal judgment documents based on the domain knowl-
edge. The knowledge-aware identify extractor (K-Ex-
tractor) can roughly extract important information
that is not only semantically but also domain-specific.
Moreover, in this part, it can greatly reduce the length
of the document. Secondly, we propose a knowl-
edge-oriented pointer-generator network (K-PGN)
to generate the final summary based on the selected
significant sentences by the K-Extractor. By incor-
porating domain knowledge into the pointer-genera-
tor network, K-PGN enhances content accuracy and
mitigates out-of-vocabulary (OOV) word issues. The
unique feature of the K-PGN is that it helps to gener-
ate more concise and accurate expressions, to obtain
a more abstractive summary. Overall, our contri-
butions in this paper are as follows: 1) We propose a
hybrid legal judgement summarization model that in-
corporates domain knowledge. The consideration of
domain knowledge for the summary makes it difficult
to lose or miss important domain-related information
and enhances the consistency between the summary
and the original document to a certain extent. To our
best understanding, our work represents an initial
endeavor towards this task. 2) We propose a nov-
el knowledge-oriented pointer-generator network
(K-PGN) based on domain knowledge. The model can
generate a more readable and concise summary, and
mitigates out-of-vocabulary (OOV) word issues very
well. 3) The effectiveness of the model is verified by
a large number of experiments. Experimental results
show significant improvements in summarization
performance on several evaluation metrics.

2. Related Work
The ultimate goal of text summarization is to produce
a concise and coherent overview that encapsulates
the essential points of the original document, mini-
mizing redundancy and maximizing the utilization
of limited space. Two overarching approaches to text
summarization are extractive and abstractive.
The extractive approach involves three key steps: 1)
Creating a suitable representation of the original text.
2) Scoring each sentence based on this text represen-
tation. 3) Extracting sentences with high scores and
concatenating them to form the summary. Several
works have been conducted in recent years on ex-
tractive summarization, employing various method-

Figure 1
The domain knowledge is important to the legal judgment
summarization. The contents marked in blue in the original
document is related with the content of second applicable
law, and the summary also need to maintain those contents.
The terminology in red appears only once in original
document, and it also appears in the first applicable law,
make it appear in the summary as important information

ologies, including: statistical and semantic features
approaches [16, 23, 39], probabilistic approaches
[4, 9], graph-based approach [24, 30], traditional
machine learning based approach [35], neural net-
work-based approach [22, 28, 31].
Abstractive summarization has long been regard-
ed as a challenging task. However, recent years have
witnessed significant advancements in this area, par-
ticularly due to the impact of the rapid development
of neural networks. Rush et al. [32] pioneered the
use of a neural attention seq2seq model for abstrac-
tive summarization. Nallapati et al. [27] introduced
an RNN encoder-decoder architecture tailored for
summarization tasks. Drawing inspiration from the
pointer mechanism proposed by [38], See et al. [33]
presented a pointer-generator network to address
challenges associated with rare words and out-of-vo-
cabulary (OOV) terms. Sun et al. [36] put forth a novel
multisource pointer network for product title sum-
marization, incorporating a new knowledge encoder
to enhance pointer network performance. Wang et
al. [40] introduced a concept pointer network for ab-
stractive summarization. Presently, the pointer-gen-
erator network has become the mainstream method
for abstractive summarization due to its commend-
able performance.
Recently, there has been a marked focus on legal
document summarization, resulting in noteworthy
achievements. One seminal work, Grover et al. [14]

775Information Technology and Control 2024/3/53

described a legal corpus comprising 188 judgments
from the House of Lords Judgment (HOLJ) website
from 2001–2003, specifically for extractive summari-
zation of British judgments. Classical algorithms like
LexRank [7], Latent Semantic Analysis (LSA) [18, 25]
and TextRank [24] have been widely applied in the
legal domain. However, due to the unique nature of
legal documents, the performance of these methods
is not satisfactory. Galgani et al. [10, 12] proposed a
citation-based summarization method to generate
catchphrases from citation text or use citations to
select sentences from original document. This meth-
od is limited to the Anglo-American law system and
may not be applicable to civil law systems. Hachey
et al. [15], Ghosh et al. [13] align different sentenc-
es associated with rhetorical roles in final summary
generation. Rhetorical roles act as valuable informa-
tion, enhancing the readability and coherence of the
final summary. Galgani et al. [11] applied a knowledge
base (KB), created based on the ripple-down rules of
Compton and Jansen (1990), to generate summaries
by combining different summarization techniques.
While these legal summarization methods have
achieved some effectiveness, most do not deeply con-
sider the domain knowledge of legal documents, pri-
marily focusing on the Anglo-American law system.
Therefore, there is a need to study a more efficient
legal summary method based on domain knowledge,
especially for civil law systems.
In legal domain, automatic summarization is different
from it in general because legal judgment documents
often have a special internal structure and contain a
lot of domain knowledge. The internal structure of
judgment document depends upon the country of the
case, for example, the Chinese judgment document of-
ten consists of header, main body, court decisions and
tail. The main body is the core of the judgment docu-
ments, requires a clear description of the facts and ev-
idence involved in the case, especially the facts ascer-
tained by the court, it usually includes plaintiff and
defendant information, plaintiff ’s appeals, case facts,
judicial evidences and court opinions. The court deci-
sions describe on what statute does the court decide
whether or not the plaintiff ’s claim should be upheld.
The legal summarization is mainly generated by the
main body and court decisions. More importantly, the
legal documents contain a lot of domain knowledge,
such as applicable law, judicial interpretation, trial

guidance and so on. In this article, we choose applica-
ble laws as domain knowledge. Because the applicable
law plays a very important role in legal judgment doc-
uments. For example, the applicable laws of the case
rely on the case facts, and the applicable laws of the
case affect the court decisions, as shown in Figure 1.
In addition, the content related to the applicable law
in the original text is generally important that needs
to be retained in the abstract. Thus, we can make full
use of the internal structure and applicable laws of
judgment document to promote the performance of
legal summarization.

3. Our Model
We propose a novel hybrid legal summarization mod-
el composed of a knowledge-aware extractor and
a knowledge-oriented pointer-generator network.
Our model leverages domain knowledge, specifically
the applicable laws from the original legal judgment
documents, to enhance the performance of the sum-
marization task. Prior to delving into the specifics of
our model, we establish the roles and tasks of both
the knowledge-aware extractor(K-Extractor) and
the knowledge-oriented pointer-generator network
(K-PGN).
Problem Definition. Let d denote a judgment docu-
ment containing k sentences d={sent1, sent2, ... , sentk},
where the senti is the i-th sentence in the document
d. We filter out irrelevant sentences based on the in-
ternal structure of legal judgment document, and get
sentence set {sent1, sent2, ... , sentm} as the input of
knowledge-aware extractor.
The knowledge-aware extractor can be defined as a
task of assigning a label li to each senti where i∈[1,m],
indicating whether the sentence is so important that
it is suitable as the input of K-PGN.
The input of K-PGN is a sequence of words x = {x1,
x2, ..., xn},where n is the word index. The output of the
K-PGN is the finial summary sequence y = {y1, y2, ...,
yt} , where the yi is the i-th word of the final summary.
The structure of our model is shown in Figure 2.
Pre-processing. Considering the special structure
of the judgment document, we first filter the sentenc-
es of the input legal judgment document, and remove
the sentences that are obviously irrelevant to the gen-

Information Technology and Control 2024/3/53776

Figure 2
The structure of our model

eration of the summary. By comparing a large number
of legal summaries, we found that a qualified summa-
ry should include: case type, plaintiff ’s appeals, facts
confirm by the court, court opinions, applicable laws
and court decisions, show as in Figure 1. So, we use
simple method such as regular expression to pick
these parts that are useful for summary generation.
We remove sentences that are obviously irrelevant to
the summary, such as the head of the judgment doc-
ument, the background information of the identity of
the original defendant, the information of the hear-
ing process of the case, the tail, and the explanation of
the case. Through pre-processing, the input is greatly
shortened as {sent1, sent2, ... , sentm}, m<k , which not
only reduces the computational complexity, but also
avoids the noise caused by irrelevant information.

3.1. Knowledge-aware Extractor
The first part of our model is a knowledge-aware ex-
tractor (K-Extractor), as shown in Figure 3. Differ-
ently, our knowledge-aware extractor does not need
to obtain the final summary, but just needs to obtain
a short list of sentences with high information to fur-
ther facilitate the K-PGN. The principle of extractor
is to seek completeness, that is, try to cover the in-
formation required by the final summary as much as
possible. Thus, we treat this task as sequence labeling
problem with the unit of sentence. In addition, by us-
ing an extractor, the text length can be greatly short-
ened without losing important information, thus
solving the problem that legal texts are usually very
long, which makes summary generation difficult.
Unlike general domains, legal domains calculate the
importance of each sentence by considering not only
its general semantic features, but also its domain-re-

Figure 3
The architecture of knowledge-aware extractor

lated information. We use the applicable laws’ con-
tent as domain knowledge to assist in picking the im-
portant sentences. Each judgment document has one
or more applicable laws, which are strongly related
to the case facts and the court decisions. Hence, we
build a domain knowledge base of laws which include
all laws that may appear in legal judgment documents.
This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, reg-
ular expression and other simple extraction methods
are used to obtain the applicable laws {law1, law2, ...}
in legal judgment document d. These applicable laws
all apply to the same case, so there is a certain cor-
relation between them. With these reasons in mind,
we can extract the key information of these laws, so
that it can better help to obtain the domain-related
sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all ap-
plicable laws of the original legal judgment document,
and then connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get
the representation of the sentence z, as shown in
Equation (1). Similarly, we use BERT and average
pooling to get the representation of each individual
sentence senti where i∈[1,m] in the legal judgment
document, as shown in Equation (2). In order to se-
lect more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment doc-
uments to increase the domain-related knowledge in
the original text and greatly increase the probability
of domain-related sentences being selected. We con-

777Information Technology and Control 2024/3/53

catenate the two above representations to add do-
main-related information and increase the probabil-
ity that a domain-related sentence will be selected, as
shown in Equation (3).

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(1)

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(2)

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(3)

Then, a Dilate Gated Convolutional Neural Network
(Dilate Gated CNN) [34], which integrates expansion
convolution and gate convolution, be used to learn the
semantic representation of sentences.

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

, (4)

where σ is a sigmod function, and D1 and D2 are dilate
convolutional neural network with different param-
eters. We use a classification to get the label of each
sentence.

3.2. Knowledge-oriented Pointer-generator
Network
The second component of our model is a knowl-
edge-oriented pointer-generator network that gener-
ates the summary word-by-word. In this section, we
have enhanced the pointer generation network pro-
posed by See et al. [33], incorporating domain knowl-
edge.
Encoder-decoder model. The encoder-decoder
model consists of a two-layer bidirectional LSTM-
RNN encoder and a one-layer unidirectional LSTM-
RNN decoder, introduced with an attention mecha-
nism. The input word sequence, denoted as x = {x1, x2,
..., xn}, is processed by the encoder, mapping the text
into a sequence of encoder hidden states {h1, h2, ..., hn}.
During each decoding time step t, the decoder takes
the previous word embedding and the preceding con-
text vector as input to compute the decoder hidden
state st. The generation of the target summary from a
vocabulary probability distribution Pvocab(w) follows
this process:

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) =
𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)

Here, st represents the context vector at time step t,
and W2, W1, b1, b2 are trainable parameters. The context

vector ct is a weighted sum of hi of the input text, with
weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the soft-
max function with learnable parameters v, Wh, Ws, b:

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(6)

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(7)

Pointer generator network. The Pointer Network,
introduced by Vinyals et al. [38], utilizes the atten-
tion mechanism [2] as a pointer to choose words from
the input instead of choosing from a fixed vocabulary,
making it particularly suitable for extractive summa-
rization. The Pointer Generator Network consists of
two parts: one utilizes pointer to choose words from
the input, and the other picks new words from one
fixed vocabulary. These two parts work together to
jointly figure out the probabilities of the words in fi-
nal summary. The generation probability pgen ∈ [0,1] of
the pointer generation network [33] can be obtained
by the following equation:

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then
connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above
representations to add domain-related information and increase the probability that a domain-related sentence will be
selected, as shown in Equation (3).

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧)) (1)
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚] (2)

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘) (3)
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution
and gate convolution, be used to learn the semantic representation of sentences.

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�, (4)

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use
a classification to get the label of each sentence.
3.2 Knowledge-oriented Pointer-generator Network
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33],
incorporating domain knowledge.
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence,
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary
probability distribution Pvocab(w) follows this process:
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 (6)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�. (7)

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the
pointer generation network [33] can be obtained by the following equation:

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�. (8)

Here, σ is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability
distribution PPGN(w) is given by:

(8)

Here, σ is a sigmoid function, and the vectors Wc, Ws,
Wy along with the scalar bptr are learnable parameters.
The pgen serves as a switch pointer to pick a word from
a fixed vocabulary or the input sequence. Consequent-
ly, the probability distribution PPGN(w) is given by:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) + (1 − 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛) � 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑗𝑗𝑗𝑗.
𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖=𝑤𝑤𝑤𝑤

 (9)

It is important to note that Pvocab is zero for a word w is an out-of-vocabulary word.

Figure 4
The knowledge-oriented pointer-generator network.

Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of
pointer-generator network may ignore the important implicit information in source text, leading to degrade the
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ()wpvocab

'

can be obtained. Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to

()wpvocab
' to obtain the final probability distribution)(pfinal w . Through this knowledge encoding method, the

information related to applicable laws can be strengthened in the source document, so as to improve the probability of
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture
of the knowledge-oriented pointer-generator network is shown in Figure 4.

The model combines the source document and the applicable laws of source document to produce summary. The input
source 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} and the applicable laws 𝐊𝐊𝐊𝐊 = {𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, … , 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚} all encode by a bidirectional LSTM, and then
get a series of hidden states (ℎ1,ℎ2, … ,ℎ𝑃𝑃𝑃𝑃)and (ℎ1′ ,ℎ2′ , …ℎ𝑀𝑀𝑀𝑀′). After that, the initial state s0 of decoder is obtained by
connecting and converting the last hidden state hN and ℎ𝑀𝑀𝑀𝑀′ of the two encoders.

𝑠𝑠𝑠𝑠0 = 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑃𝑃𝑃𝑃,ℎ𝑀𝑀𝑀𝑀′]�, (10)

where the ReLU=max(0,x), Wf is a learnable parameter.

'
ta can be calculated.

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎′𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵ℎ(𝑊𝑊𝑊𝑊ℎ

′ℎ𝑖𝑖𝑖𝑖′ + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡′ + 𝑏𝑏𝑏𝑏′)�, (11)

where the 𝑊𝑊𝑊𝑊ℎ

′,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′,𝑎𝑎𝑎𝑎′,𝑏𝑏𝑏𝑏′ is a trainable parameter. The 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 represents the hidden state of decoder at time step t and is

computed like:
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1′), (12)

where 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1 is the hidden state of decoder at time step t-1, 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 is the input of decoder at time step t, f represents a
nonlinear function, and this paper adopts LSTM as function f. The '

1c −t is the context vector of the applicable laws at
time step t-1 and is computed like:

(9)

It is important to note that Pvocab is zero for a word w is
an out-of-vocabulary word.
Knowledge Pointer generator. As the legal docu-
ment has strong domain characteristics, the direct
utilization of pointer-generator network may ignore
the important implicit information in source text,
leading to degrade the performance of our model.
Therefore, we use a knowledge encoder to encodes
the applicable laws’ content which involved in each
legal judgment document. The knowledge encoder
uses a bidirectional LSTM to encode the contents of
laws, which is similar to the Encoder in the point-
er-generating network. The content of applicable
laws is taken as input, and an intermediate vector is

Information Technology and Control 2024/3/53778

Figure 4
The knowledge-oriented pointer-generator network

calculated, through which a global dictionary proba-
bility distribution ()wpvocab

' can be obtained. Finally,
the probability distribution)(p wPGN calculated by
the pointer generation network is fused to ()wpvocab

'

to obtain the final probability distribution)(pfinal w .
Through this knowledge encoding method, the infor-
mation related to applicable laws can be strengthened
in the source document, so as to improve the probabil-
ity of accurate word generation, and further improve
the performance of the whole legal summary gener-
ation. The architecture of the knowledge-oriented
pointer-generator network is shown in Figure 4.

where the W'h, W's, v', b' is a trainable parameter. The st
represents the hidden state of decoder at time step t
and is computed like:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) + (1 − 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛) � 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑗𝑗𝑗𝑗.
𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖=𝑤𝑤𝑤𝑤

 (9)

It is important to note that Pvocab is zero for a word w is an out-of-vocabulary word.

Figure 4
The knowledge-oriented pointer-generator network.

Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of
pointer-generator network may ignore the important implicit information in source text, leading to degrade the
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ()wpvocab

'

can be obtained. Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to

()wpvocab
' to obtain the final probability distribution)(pfinal w . Through this knowledge encoding method, the

information related to applicable laws can be strengthened in the source document, so as to improve the probability of
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture
of the knowledge-oriented pointer-generator network is shown in Figure 4.

The model combines the source document and the applicable laws of source document to produce summary. The input
source 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} and the applicable laws 𝐊𝐊𝐊𝐊 = {𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, … , 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚} all encode by a bidirectional LSTM, and then
get a series of hidden states (ℎ1,ℎ2, … ,ℎ𝑃𝑃𝑃𝑃)and (ℎ1′ ,ℎ2′ , …ℎ𝑀𝑀𝑀𝑀′). After that, the initial state s0 of decoder is obtained by
connecting and converting the last hidden state hN and ℎ𝑀𝑀𝑀𝑀′ of the two encoders.

𝑠𝑠𝑠𝑠0 = 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑃𝑃𝑃𝑃,ℎ𝑀𝑀𝑀𝑀′]�, (10)

where the ReLU=max(0,x), Wf is a learnable parameter.

'
ta can be calculated.

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎′𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵ℎ(𝑊𝑊𝑊𝑊ℎ

′ℎ𝑖𝑖𝑖𝑖′ + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡′ + 𝑏𝑏𝑏𝑏′)�, (11)

where the 𝑊𝑊𝑊𝑊ℎ

′,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′,𝑎𝑎𝑎𝑎′,𝑏𝑏𝑏𝑏′ is a trainable parameter. The 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 represents the hidden state of decoder at time step t and is

computed like:
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1′), (12)

where 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1 is the hidden state of decoder at time step t-1, 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 is the input of decoder at time step t, f represents a
nonlinear function, and this paper adopts LSTM as function f. The '

1c −t is the context vector of the applicable laws at
time step t-1 and is computed like:

, (12)

where st–1 is the hidden state of decoder at time step
t-1, yt–1 is the input of decoder at time step t, f rep-
resents a nonlinear function, and this paper adopts
LSTM as function f. The '

1c −t is the context vector of
the applicable laws at time step t-1 and is computed
like:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

. (13)

Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to ()wpvocab
' to

obtain the final probability distribution)(pfinal w .

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤), (14)

where the generation probability λ is learned by:

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�, (15)

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters.

The training loss function for our model is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤). (16)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡=0

4.Experiment
4.1 Dataset Construction
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract,
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation.
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064
and the minimum number is found 866 words, with an average of 2568 words.
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable
laws involved in each judgment document is taken as domain knowledge.
4.2 Experiment Settings
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws,
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used.
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics.
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1,
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.
4.3 Evaluation Metrics
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams.
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
. (17)

4.4 Baseline
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3,
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary.
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or

(13)

Finally, the probability distribution)(p wPGN calcu-
lated by the pointer generation network is fused to

()wpvocab
' to obtain the final probability distribution

)(pfinal w .

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

. (13)

Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to ()wpvocab
' to

obtain the final probability distribution)(pfinal w .

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤), (14)

where the generation probability λ is learned by:

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�, (15)

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters.

The training loss function for our model is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤). (16)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡=0

4.Experiment
4.1 Dataset Construction
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract,
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation.
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064
and the minimum number is found 866 words, with an average of 2568 words.
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable
laws involved in each judgment document is taken as domain knowledge.
4.2 Experiment Settings
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws,
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used.
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics.
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1,
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.
4.3 Evaluation Metrics
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams.
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
. (17)

4.4 Baseline
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3,
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary.
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or

, (14)

where the generation probability λ is learned by:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

. (13)

Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to ()wpvocab
' to

obtain the final probability distribution)(pfinal w .

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤), (14)

where the generation probability λ is learned by:

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�, (15)

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters.

The training loss function for our model is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤). (16)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡=0

4.Experiment
4.1 Dataset Construction
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract,
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation.
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064
and the minimum number is found 866 words, with an average of 2568 words.
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable
laws involved in each judgment document is taken as domain knowledge.
4.2 Experiment Settings
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws,
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used.
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics.
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1,
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.
4.3 Evaluation Metrics
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams.
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
. (17)

4.4 Baseline
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3,
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary.
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or

, (15)

where vector Wc, Ws, Wy, Wc' are learnable parameters.
The training loss function for our model is as follows:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

. (13)

Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to ()wpvocab
' to

obtain the final probability distribution)(pfinal w .

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤), (14)

where the generation probability λ is learned by:

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�, (15)

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters.

The training loss function for our model is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤). (16)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡=0

4.Experiment
4.1 Dataset Construction
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract,
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation.
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064
and the minimum number is found 866 words, with an average of 2568 words.
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable
laws involved in each judgment document is taken as domain knowledge.
4.2 Experiment Settings
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws,
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used.
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics.
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1,
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.
4.3 Evaluation Metrics
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams.
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
. (17)

4.4 Baseline
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3,
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary.
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or

(16)

4. Experiment
4.1. Dataset Construction
This paper uses the dataset provided by the challenge
of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal sum-
marization track, which is the first dataset of legal
summarization in China. It contains 4,047 marked
civil judgment documents, involving nine causes of
action, including labor contract, tort liability, lease
contract, loan contract, inheritance, right of recourse,
loan, infringement and inheritance relation. Accord-
ing to statistics, there are 36 kinds of laws involved

The model combines the source document and the
applicable laws of source document to produce sum-
mary. The input source x = {x1, x2, ..., xn} and the appli-
cable laws K = {k1, k2, ..., km} all encode by a bidirection-
al LSTM, and then get a series of hidden states (h1, h2,
..., hN) and (h'1, h'2, ..., h'M). After that, the initial state s0 of
decoder is obtained by connecting and converting the
last hidden state hN and h'M of the two encoders.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) + (1 − 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛) � 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑗𝑗𝑗𝑗.
𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖=𝑤𝑤𝑤𝑤

 (9)

It is important to note that Pvocab is zero for a word w is an out-of-vocabulary word.

Figure 4
The knowledge-oriented pointer-generator network.

Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of
pointer-generator network may ignore the important implicit information in source text, leading to degrade the
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ()wpvocab

'

can be obtained. Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to

()wpvocab
' to obtain the final probability distribution)(pfinal w . Through this knowledge encoding method, the

information related to applicable laws can be strengthened in the source document, so as to improve the probability of
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture
of the knowledge-oriented pointer-generator network is shown in Figure 4.

The model combines the source document and the applicable laws of source document to produce summary. The input
source 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} and the applicable laws 𝐊𝐊𝐊𝐊 = {𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, … , 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚} all encode by a bidirectional LSTM, and then
get a series of hidden states (ℎ1,ℎ2, … ,ℎ𝑃𝑃𝑃𝑃)and (ℎ1′ ,ℎ2′ , …ℎ𝑀𝑀𝑀𝑀′). After that, the initial state s0 of decoder is obtained by
connecting and converting the last hidden state hN and ℎ𝑀𝑀𝑀𝑀′ of the two encoders.

𝑠𝑠𝑠𝑠0 = 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑃𝑃𝑃𝑃,ℎ𝑀𝑀𝑀𝑀′]�, (10)

where the ReLU=max(0,x), Wf is a learnable parameter.

'
ta can be calculated.

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎′𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵ℎ(𝑊𝑊𝑊𝑊ℎ

′ℎ𝑖𝑖𝑖𝑖′ + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡′ + 𝑏𝑏𝑏𝑏′)�, (11)

where the 𝑊𝑊𝑊𝑊ℎ

′,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′,𝑎𝑎𝑎𝑎′,𝑏𝑏𝑏𝑏′ is a trainable parameter. The 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 represents the hidden state of decoder at time step t and is

computed like:
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1′), (12)

where 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1 is the hidden state of decoder at time step t-1, 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 is the input of decoder at time step t, f represents a
nonlinear function, and this paper adopts LSTM as function f. The '

1c −t is the context vector of the applicable laws at
time step t-1 and is computed like:

(10)

where the ReLU=max(0,x), Wf is a learnable parame-
ter.
Be similar to the Equation 7, attention weight distri-
bution of the applicable laws '

ta can be calculated.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) + (1 − 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛) � 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑗𝑗𝑗𝑗.
𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖=𝑤𝑤𝑤𝑤

 (9)

It is important to note that Pvocab is zero for a word w is an out-of-vocabulary word.

Figure 4
The knowledge-oriented pointer-generator network.

Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of
pointer-generator network may ignore the important implicit information in source text, leading to degrade the
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ()wpvocab

'

can be obtained. Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to

()wpvocab
' to obtain the final probability distribution)(pfinal w . Through this knowledge encoding method, the

information related to applicable laws can be strengthened in the source document, so as to improve the probability of
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture
of the knowledge-oriented pointer-generator network is shown in Figure 4.

The model combines the source document and the applicable laws of source document to produce summary. The input
source 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} and the applicable laws 𝐊𝐊𝐊𝐊 = {𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, … , 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚} all encode by a bidirectional LSTM, and then
get a series of hidden states (ℎ1,ℎ2, … ,ℎ𝑃𝑃𝑃𝑃)and (ℎ1′ ,ℎ2′ , …ℎ𝑀𝑀𝑀𝑀′). After that, the initial state s0 of decoder is obtained by
connecting and converting the last hidden state hN and ℎ𝑀𝑀𝑀𝑀′ of the two encoders.

𝑠𝑠𝑠𝑠0 = 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑃𝑃𝑃𝑃,ℎ𝑀𝑀𝑀𝑀′]�, (10)

where the ReLU=max(0,x), Wf is a learnable parameter.

'
ta can be calculated.

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎′𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵ℎ(𝑊𝑊𝑊𝑊ℎ

′ℎ𝑖𝑖𝑖𝑖′ + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡′ + 𝑏𝑏𝑏𝑏′)�, (11)

where the 𝑊𝑊𝑊𝑊ℎ

′,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠
′,𝑎𝑎𝑎𝑎′,𝑏𝑏𝑏𝑏′ is a trainable parameter. The 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 represents the hidden state of decoder at time step t and is

computed like:
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1′), (12)

where 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1 is the hidden state of decoder at time step t-1, 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 is the input of decoder at time step t, f represents a
nonlinear function, and this paper adopts LSTM as function f. The '

1c −t is the context vector of the applicable laws at
time step t-1 and is computed like:

, (11)

779Information Technology and Control 2024/3/53

in the dataset. After data cleaning, the data sets are
divided according to 6:2:2, and 2340 judgment docu-
ments in training datasets, 779 judgment documents
in verification datasets and 785 judgment documents
in test data sets. The maximum number of words in
the judgment documents is 13,064 and the minimum
number is found 866 words, with an average of 2568
words.
After obtaining the statistical data of applicable laws
in the dataset, we crawl the applicable laws from the
network and construct a law library as domain knowl-
edge base. In the data pre-processing stage, the spe-
cific content of the applicable laws involved in each
judgment document is taken as domain knowledge.

4.2. Experiment Settings
In this paper, PyTorch framework is used to build the
model. For the Encoder end of judgment documents
and laws, 512 dimension bi-directional LSTM is used,
while for the Decoder end, 512 dimension unidirec-
tional LSTM is used. In terms of word vector, this pa-
per adopts the method of random initialization, and
sets the dimension of word vector as 512 dimension,
which will be adjusted continuously in the process of
continuous training. In addition, in the construction
of dictionary, through the joint statistics of judgment
documents and laws. In the whole process of training
and testing, the input text length is compressed after
data pre-processing. Therefore, the maximum length
of the input source text in this paper is set to 700,
which can effectively meet the requirements of the
model and data after statistics. The maximum length
of the generated text summary is set to 300, and the
maximum length of the external knowledge of the
law is set to 100. In this paper, the learning rate is set
to 0.001, the initial value of the accumulator is set to
0.1, and the batch size of the training is 32. The gener-
ic ROUGE evaluation index is used for performance
evaluation.

4.3. Evaluation Metrics
We use ROUGE [20] as the evaluation metric to eval-
uate our model. It evaluates the quality of a generat-
ed summary by calculating the overlap of lexical ele-
ments between a candidate summary and a reference
summary, such as n-grams. Following established
conventions, we have opted for the metrics ROUGE-1,
ROUGE-2, and ROUGE-L, which individually assess

the word overlap, bigram overlap, and the longest
common sequence between the reference summa-
ry and the generated summary. We focus on the F-1
scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

. (13)

Finally, the probability distribution)(p wPGN calculated by the pointer generation network is fused to ()wpvocab
' to

obtain the final probability distribution)(pfinal w .

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤), (14)

where the generation probability λ is learned by:

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�, (15)

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters.

The training loss function for our model is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤). (16)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡=0

4.Experiment
4.1 Dataset Construction
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract,
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation.
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064
and the minimum number is found 866 words, with an average of 2568 words.
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable
laws involved in each judgment document is taken as domain knowledge.
4.2 Experiment Settings
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws,
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used.
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics.
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1,
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.
4.3 Evaluation Metrics
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams.
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The
computation is expressed as follows:

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
. (17)

4.4 Baseline
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3,
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary.
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or

(17)

4.4. Baseline
To validate the effectiveness of our proposed model,
we conducted a comparative analysis against base-
lines. Lead-3, which is a classical extractive model in
journalism, picks the first three sentences of an article
to form the summary. Leveraging the common obser-
vation that crucial news information often resides in
the initial portion of an article, the Lead-3 algorithm
tends to yield favorable results. TextRank [26] is a
keyword extraction framework that calculates the
scores of the keywords or sentences in the text accord-
ing to a PageRank-like algorithm, and then selects the
words or sentences with the highest scores to build the
summary. BertSum [22] represents a simplified vari-
ant of BERT tailored for extractive summarization.
Following the original paper, we employed classifiers,
transformers, and RNNs as the classification layer. Se-
q2seq+att utilizes a two-layer BiLSTM encoder and a
one-layer LSTM decoder with attention mechanisms.
BART [19] is a cutting-edge natural language process-
ing model that builds upon the transformer architec-
ture. It is applicable to natural language generation,
translation, and comprehension. Pointer-Generator
Network (PGN) [33] is a hybrid model that combines
Seq2Seq-Gen with a pointer network. PGN can not
only generate words from a fixed vocabulary, but also
copy words from the input.

5. Results and Analyses
This section compares the performance of our pro-
posed model with various benchmark algorithms.
Table 1 shows the comparative results for ROUGE-1,
ROUGE-2, and ROUGE-L on the CAIL2020 dataset.
Figure 5 provides a visual representation of the com-
parison results among different methods. Our hybrid
model not only generates an abstractive summary but
also extracts crucial sentences from legal documents.
The model exhibits substantial improvements, estab-

Information Technology and Control 2024/3/53780

lishing a new state-of-the-art in both extractive and
abstractive methods.
The improvement rates of the proposed method
were calculated using Equation (18) with ROUGE-1,
ROUGE-2, and ROUGE-L metrics.

. (18)

Here, pmethod represents the proposed method, cmethod de-
notes the compared method, and the results are pre-
sented in Table 2.
In this section, we evaluate the results of our model
in comparison with the extractive model discussed
in Section 5.1 and the abstractive model discussed in
Section 5.2. To verify the effectiveness of our work, we
conduct an ablation study in Section 5.3. Additionally,
we perform human evaluation in Section 5.4 to assess
the relevance, readability, and consistency of the gen-
erated summaries. Furthermore, in Section 5.5, we
present a case study that demonstrates our model’s
capability to provide superior abstractive summaries
compared to other baselines.

Table 1
Comparison of Proposed Approaches

Method ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1

Lead-3 1.00 0.12 1.97
TextRank 37.10 18.20 31.03
BertSum+class 30.04 11.18 20.89
BertSum+trans 31.86 12.59 22.52
BertSum+rnn 29.58 10.95 20.78
Seq2seq+attn 41.16 19.82 36.73
BART 49.38 30.53 43.14
PGN 46.36 21.55 39.26
our model 57.12 35.09 54.37

Sum, also do not perform well. The data in Table 2
illustrates substantial performance enhancements
achieved by the proposed method when compared to
TextRank and BertSum+trans. Specifically, our meth-
od improves ROUGE-1 scores by 53.96% for TextRank
and 79.28% for BertSum+trans. Furthermore, there
are significant improvements in ROUGE-2 scores,
with enhancements of 92.80% for TextRank and
178.71% for BertSum+trans. Additionally, the pro-
posed method outperforms in ROUGE-L, showing im-
provements of 75.22% for TextRank and 141.43% for
BertSum+trans. These findings underscore the effec-
tiveness of our approach in elevating summarization
performance across various evaluation metrics and
models. The score of ROUGE-2 and ROUGE-L im-
prove more than that of ROUGE-1. The addition of do-
main knowledge allowed the final summary to include
more judicial terminology and judicial specific expres-
sions, resulting in a significant increase in ROUGE-2
and ROUGE-L scores, which was also more realistic.

5.1. Extractive Summarization
In this extractive paradigm, we compare our model
with several extractive mode, such as Lead-3, Tex-
tRank, and BertSum. From Table 1 and Table 2, we
can see that the performance of Lead-3 is very poor,
because this model only picks the first 3 sentence as
summary. It also shows that the methods used in the
field of journalism are not applicable in the legal field.
Other general-domain methods, TextRank and Bert-

Table 2
Improvement obtained by proposed method (%)

Method ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1

Lead-3 5612.00 29141.67 2659.90

TextRank 53.96 92.80 75.22

BertSum+class 90.15 213.86 160.27

BertSum+trans 79.28 178.71 141.43

BertSum+rnn 93.10 220.46 161.65

Seq2seq+attn 38.78 77.04 48.03

BART 15.67 14.94 20.03

PGN 23.21 68.83 38.49

5.2. Abstractive Summarization
We compare our model with tree representative ab-
stractive model, Seq2seq, BART and PGN, and our ab-
stractive model is an improvement on PGN.
The results in Tables 1-2 highlight the significant
performance improvements achieved by the pro-
posed method across different summarization mod-
els. Specifically, our method enhances the perfor-
mance in Seq2seq, BART, and PGN on ROUGE-1 by
38.78%, 15.67% and 23.21%, respectively. Similarly,
for ROUGE-2, there are improvements of 77.74%,

781Information Technology and Control 2024/3/53

14.94% and 68.83% in Seq2seq, BART, and PGN, and
for ROUGE-3, improvements of 48.03%, 20.03% and
38.49%, respectively. These findings underscore the
effectiveness of our proposed method in significantly
enhancing summarization performance across vari-
ous evaluation metrics and models.

5.3. Ablation Study
In this section, we investigate the impact of the strat-
egies proposed in the paper on model performance
by conducting ablation experiments. Specifically, we
explore the influence of domain knowledge and the
hybrid model separately. The results of these ablation
experiments are presented in Table 3. Upon com-
parison of the results between TextRank and K-Ex-
tractor, as well as PGN and K-PGN, it is evident that
the incorporation of domain knowledge significantly
enhances the summarization performance. Further-
more, our hybrid model demonstrates at least a two-
point improvement over K-Extractor and K-PGN.
This observation underscores the effectiveness of
combining extractive and abstractive methods in im-
proving summarization performance.

Table 3
Ablation experiments

Method ROUGE-1
F1

ROUGE-2
F1

ROUGE-L
F1

TextRank 37.10 18.20 31.03

K-Extractor 53.43 33.97 46.06

PGN 46.36 21.55 39.26

K-PGN 55.01 32.03 50.98

K-Extractor+PGN 51.32 31.92 49.75

Hybrid model 57.12 35.09 54.37

5.4. Human Evaluation

To evaluate the relevance, readability and consisten-
cy of the summaries, we also performed a human eval-
uation. Relevance evaluates whether the summary
includes crucial information from the original docu-
ment while avoiding irrelevant and redundant details.
Readability is based on the fluency, grammaticality,
and coherence of the summary. Consistency assesses
whether the content described in the summary aligns
with the original document, avoiding contradictory

and inaccurate descriptions. We compared the re-
sults of our model and the pointer-generator network
on those tree human evaluation metrics.
To do human evaluation, we chose 100 samples from
the test set randomly and enlisted three human eval-
uators for each sample. The evaluators scored each
summary on the three metrics using a scale of 1 to 3
(3 for good, 2 for moderate, and 1 for bad). The average
scores from the three evaluators for each summary
were calculated. The results, shown in Table 4, indi-
cate that our model outperforms the pointer-gener-
ator network across all three metrics, with a notable
improvement in the consistency metric.

Method Relevance Readability Consistency

PGN 2.07 2.29 1.40

our model 2.14 2.76 2.08

Table 4
Human Evaluation: comparison between our model and
pointer-generator network

5.5. Case Study
To assess the performance of our model in real-case
scenarios, we selected authentic samples from the
CAIL2020 dataset. As depicted in Figure 5, the sum-
maries produced by the Pointer-Generator Network
(PGN) exhibit significant duplication (highlighted
in bold), with crucial content, such as the underlined
portion in the reference summary, being omitted. In
contrast, our model addresses the deficiencies in the
PGN-generated summary by introducing missing
content (highlighted in bold) and preserving the es-
sential elements of the reference summary. Moreover,

Figure 5
Human Evaluation: comparison between our model and
pointer-generator network

Information Technology and Control 2024/3/53782

the summaries generated by our model are well-or-
ganized and more readable. In summary, our model
excels in retaining intricate judicial details, resulting
in a more comprehensive and coherent summary con-
text than the PGN.

6. Conclusion
In the presented article, we introduce a hybrid model
that leverages the advantages of both extractive and
abstractive summarization methods for the summa-
rization of legal judgment documents. This model in-
corporates domain knowledge, utilizing it to enhance
the generation of legal summaries. To assess the effi-
cacy of our approach, we conducted numerous com-
parative experiments against baseline methods. The

results of these experiments reveal that our proposed
method demonstrates superiority over existing tech-
niques. Furthermore, our model effectively address-
es the challenge of summarizing lengthy legal docu-
ments, a problem that has been difficult to tackle with
other approaches.

Acknowledgement

This work is supported by National Natural Science
Foundation of China under Grant No.62066008 and
NO.62066007. This work is also supported by Scien-
tific Research Project of Higher Education Institu-
tions of Guizhou Province (Youth Project) (Guizhou
Education Technology (2022) No.149). This work is
also supported by Guizhou Provincial Science and
Technology Projects under Grant No. ZK[2022]027.

References
1. Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe,

E. D., Gutierrez, J. B., Kochut, K. Text Summariza-
tion Techniques: A Brief Survey. arXiv Preprint arX-
iv:1707.02268, 2017. https://doi.org/10.14569/IJAC-
SA.2017.081052

2. Bahdanau, D., Cho, K., Bengio, Y. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. arXiv
Preprint arXiv:1409.0473, 2014.

3. Cao, M., Dong, Y., Cheung, J. C. K. Hallucinated but
Factual! Inspecting the Factuality of Hallucinations
in Abstractive Summarization. arXiv Preprint arX-
iv:2109.09784, 2021. https://doi.org/10.18653/v1/2022.
acl-long.236

4. Celikyilmaz, A., Hakkani-Tur, D. Discovery of Topical-
ly Coherent Sentences for Extractive Summarization.
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language
Technologies, 2011, 491-499.

5. Compton, P., Jansen, R. Knowledge in Context: A Strat-
egy for Expert System Maintenance. AI’88: 2nd Aus-
tralian Joint Artificial Intelligence Conference Ade-
laide, Australia, November 15-18, 1988 Proceedings 2,
Springer Berlin Heidelberg, 1990, 292-306.

6. Devlin, J., Chang, M. W., Lee, K.,Toutanova, K. Bert:
Pre-Training of Deep Bidirectional Transformers
for Language Understanding. arXiv Preprint arX-
iv:1810.04805, 2018.

7. Erkan, G., Radev, D. R. LexRank: Graph-Based Lexical
Centrality as Salience in Text Summarization. Journal
of Artificial Intelligence Research, 2004, 22, 457-479.
https://doi.org/10.1613/jair.1523

8. Fortunato, S. Community Detection in Graphs. Phys-
ics Reports, 2010, 486(3-5), 75-174. https://doi.
org/10.1016/j.physrep.2009.11.002

9. Fung, P., Ngai, G., Cheung, C. S. Combining Optimal Clus-
tering and Hidden Markov Models for Extractive Sum-
marization. Proceedings of the ACL 2003 Workshop on
Multilingual Summarization and Question Answering,
2003, 21-28. https://doi.org/10.3115/1119312.1119315

10. Galgani, F., Compton, P., Hoffmann, A. Citation Based
Summarisation of Legal Texts. PRICAI 2012: Trends
in Artificial Intelligence: 12th Pacific Rim Interna-
tional Conference on Artificial Intelligence, Kuch-
ing, Malaysia, September 3-7, 2012. Proceedings 12,
Springer Berlin Heidelberg, 2012, 40-52. https://doi.
org/10.1007/978-3-642-32695-0_6

11. Galgani, F., Compton, P., Hoffmann, A. Combining Differ-
ent Summarization Techniques for Legal Text. Proceed-
ings of the Workshop on Innovative Hybrid Approaches
to the Processing of Textual Data, 2012, 115-123.

12. Galgani, F., Compton, P., Hoffmann, A. Summarization
Based on Bi-Directional Citation Analysis. Information
Processing & Management, 2015, 51(1), 1-24. https://
doi.org/10.1016/j.ipm.2014.08.001

783Information Technology and Control 2024/3/53

13. Ghosh, S., Wyner, A. Identification of Rhetorical Roles
of Sentences in Indian Legal Judgments. Legal Knowl-
edge and Information Systems: JURIX, 2019, 3.

14. Grover, C., Hachey, B., Hughson, I. The HOLJ Corpus.
Supporting Summarisation of Legal Texts. Proceedings
of the 5th International Workshop on Linguistically In-
terpreted Corpora, 2004, 47-54.

15. Hachey, B., Grover, C. A Rhetorical Status Classi-
fier for Legal Text Summarisation. Text Summa-
rization Branches Out, 2004, 35-42. https://doi.
org/10.1145/1165485.1165498

16. Hong, K., Nenkova, A. Improving the Estimation of Word
Importance for News Multi-Document Summarization.
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics, 2014, 712-721. https://doi.org/10.3115/v1/E14-1075

17. Jain, D., Borah, M. D., Biswas, A. Summarization of Le-
gal Documents: Where Are We Now and the Way For-
ward. Computer Science Review, 2021, 40, 100388.
https://doi.org/10.1016/j.cosrev.2021.100388

18. Landauer, T. K., Foltz, P. W., Laham, D. An Introduction to
Latent Semantic Analysis. Discourse Processes, 1998, 25(2-
3), 259-284. https://doi.org/10.1080/01638539809545028

19. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L. BART:
Denoising Sequence-to-Sequence Pre-Training for
Natural Language Generation, Translation, and Com-
prehension. arXiv Preprint arXiv:1910. 13461, 2019.
https://doi.org/10.18653/v1/2020.acl-main.703

20. Lin, C. Y. Rouge: A Package for Automatic Evaluation of
Summaries. Text Summarization Branches Out, 2004,
74-81.

21. Lin, H., Ng, V. Abstractive Summarization: A Survey of
the State of the Art. Proceedings of the AAAI Confer-
ence on Artificial Intelligence. 2019, 33(01), 9815-9822.
https://doi.org/10.1609/aaai.v33i01.33019815

22. Liu, Y. Fine-Tune BERT for Extractive Summarization.
arXiv Preprint arXiv:1903.10318, 2019.

23. Luhn, H. P. The Automatic Creation of Literature Ab-
stracts. IBM Journal of Research and Development,
1958, 2(2), 159-165. https://doi.org/10.1147/rd.22.0159

24. Mallick, C., Das, A. K., Dutta, M., Das, A. K., Sarkar, A.
Graph-Based Text Summarization Using Modified Tex-
tRank. Soft Computing in Data Analytics: Proceedings
of International Conference on SCDA 2018, Springer
Singapore, 2019, 137-146. https://doi.org/10.1007/978-
981-13-0514-6_14

25. Merchant, K., Pande, Y. NLP Based Latent Semantic
Analysis for Legal Text Summarization. 2018 Interna-
tional Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI). IEEE, 2018, 1803-
1807. https://doi.org/10.1109/ICACCI.2018.8554831

26. Mihalcea, R., Tarau, P. TextRank: Bringing Order into
Text. Proceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing, 2004, 404-
411. https://doi.org/10.3115/1220575.1220627

27. Nallapati, R., Zhou, B., dos Santos, C. N., Gulcehre, C.,
Xiang, B. Abstractive Text Summarization Using Se-
quence-to-Sequence RNNs and Beyond. arXiv Preprint
arXiv:1602.06023, 2016. https://doi.org/10.18653/v1/
K16-1028

28. Narayan, S., Papasarantopoulos, N., Cohen, S. B., Lapa-
ta, M. Neural Extractive Summarization with Side In-
formation. arXiv Preprint arXiv:1704.04530, 2017.

29. Newman, M. E. J. Finding and Evaluating Com-
munity Structure in Networks. Physical Review E,
2004, 69(26113), 1-16. https://doi.org/10.1103/Phys-
RevE.69.026113

30. Parveen, D., Ramsl, H. M., Strube, M. Topical Coherence
for Graph-Based Extractive Summarization. Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 2015, 1949-1954. https://
doi.org/10.18653/v1/D15-1226

31. Ren, P., Chen, Z., Ren, Z., Wei, F., Ma, J., de Rijke, M. Lever-
aging Contextual Sentence Relations for Extractive Sum-
marization Using a Neural Attention Model. Proceedings
of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2017,
95-104. https://doi.org/10.1145/3077136.3080792

32. Rush, A. M., Chopra, S., Weston, J. A Neural Atten-
tion Model for Abstractive Sentence Summarization.
arXiv Preprint arXiv:1509.00685, 2015. https://doi.
org/10.18653/v1/D15-1044

33. See, A., Liu, P. J., Manning, C. D. Get to the Point:
Summarization with Pointer-Generator Networks.
arXiv Preprint arXiv:1704.04368, 2017. https://doi.
org/10.18653/v1/P17-1099

34. Shi, Z., Lin, H., Liu, L., Liu, R., Han, J., Shi, A. Deep Attention
Gated Dilated Temporal Convolutional Networks with
Intra-Parallel Convolutional Modules for End-to-End
Monaural Speech Separation. Interspeech, 2019, 3183-
3187. https://doi.org/10.21437/Interspeech.2019-1373

35. Silva, G., Ferreira, R., Lins, R. D., et al. Automatic Text
Document Summarization Based on Machine Learn-

Information Technology and Control 2024/3/53784

ing. Proceedings of the 2015 ACM Symposium on
Document Engineering, 2015, 191-194. https://doi.
org/10.1145/2682571.2797099

36. Sun, F., Jiang, P., Sun, H., Pei, C., Ou, W., Wang, X.
Multi-Source Pointer Network for Product Ti-
tle Summarization[C]. Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, 2018, 7-16. https://doi.
org/10.1145/3269206.3271722

37. Vehlow, C., Reinhardt, T., Weiskopf, D. Visualizing
Fuzzy Overlapping Communities in Networks. IEEE
Transactions on Visualization and Computer Graph-

ics, 2013, 19(12), 2486-2495. https://doi.org/10.1109/
TVCG.2013.232

38. Vinyals, O., Fortunato, M., Jaitly, N. Pointer Networks.
Advances in Neural Information Processing Systems,
2015, 28.

39. Vodolazova, T., Lloret, E., Muñoz, R., et al. The Role of Sta-
tistical and Semantic Features in Single-Document Ex-
tractive Summarization. Artificial Intelligence Research,
2013, 2, 35-44. https://doi.org/10.5430/air.v2n3p35

40. Wenbo, W., Yang, G., Heyan, H., Yuxiang, Z. Concept
Pointer Network for Abstractive Summarization. arXiv
Preprint arXiv:1910.08486, 2019.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

