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Legal judgment document summarization, as a task specific to the legal domain, involves automatically gen-
erating a fluent, informative, and well-organized summary from the original legal judgment document. Unlike 
traditional text summarization tasks, this domain-specific task places higher demands on content accuracy and 
completeness in the summary, while also requiring the preservation of the professional expression found in the 
original text. Consequently, conventional summarization methods often struggle to perform effectively in the 
legal domain. In response to this challenge, this paper introduces a hybrid summarization model tailored for le-
gal judgment documents. Our model harnesses the strengths of both extractive and abstractive summarization 
methods, incorporating domain knowledge to enhance the summary generation process. We conduct extensive 
experiments to verify the effectiveness of our proposed method and compare the results with a baseline using 
ROUGE evaluation metrics. The experimental findings highlight that our model excels in providing more accu-
rate and readable summarizations compared to traditional methods.
KEYWORDS: Legal summarization, domain knowledge, pointer-generator network, hybrid model, text sum-
marization.

1. Introduction
In recent years, with the development of smart justice 
and the increasing number of digitized legal judgment 
documents, automatic legal judgment document 
summarization has gained increasing attention. Le-
gal judgment document summarization [17] serves as 
a domain-specific automatic text summarization [1, 
21] task to automatically identify the important infor-
mation of a legal judgment document and express it 
in a human-readable summary. It enables legal prac-
titioners to quickly understand an expatiatory legal 
judgment document. However, legal judgment docu-
ments tend to be long and full of professional expres-
sions, making this task even more challenging.
There are two types of traditional text summarization 
methods: extractive and abstractive. Extractive meth-
ods retrieve significant sentences or keywords from 
the original document in order to construct a summa-
ry. These methods tend to copy sentences directly, do 
not accurately summarize the original meaning, and 
have low readability. Conversely, abstractive methods 
have the capability to generate novel terms in order 
to succinctly encapsulate the content of the original 
document. These methods are better at expressing 
the original meaning, but tend to generate hallucina-
tions [3] and are not suitable for long texts. 
In fact, a direct application of traditional summari-
zation methods to the task of legal judgment summa-
rization is not realistic. The main reasons are as fol-
lows: 1) Traditional summarization methods do not 
have enough capacity to capture the important do-
main-related information of the original document, 

and therefore cannot guarantee the accuracy and 
completeness of the summary. Traditional methods 
typically generate summaries from textual features 
such as word frequency and word position without 
any external domain knowledge constraints, so that 
important domain-related information is easily lost. 
For example, as shown in Figure 1, the sentence un-
derlined is easy to ignore in traditional methods if 
without any domain constraints. But in fact, this sen-
tence is clearly crucial to the document as it describes 
important case facts. Thus, the crux of the matter we 
need to confront is how to leverage domain knowl-
edge to enhance the model’s ability to capture import-
ant domain-related information. 2) Legal judgment 
documents contain many professional and lengthy 
expression. We expect to generalize it in a more con-
cise way, in particular with some specialized terms. 
Traditional summarization methods, either ex-
tractive or abstractive methods, generate summaries 
from input documents or general vocabulary, and that 
are easy to cause out-of-vocabulary (OOV) problems. 
Furthermore, without domain knowledge guidance, it 
is hard to generate novel and accuracy words to gen-
eralize the documents. To conclude, it is imperative 
to incorporate domain knowledge in order to provide 
guidance for the process of generating summaries due 
to the aforementioned reasons.
In this work, we propose a hybrid legal judgment 
summarization model (HLSum) based on domain 
knowledge. Firstly, a knowledge-aware extractor is 
devised to identify the significant sentences from le-
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gal judgment documents based on the domain knowl-
edge. The knowledge-aware identify extractor (K-Ex-
tractor) can roughly extract important information 
that is not only semantically but also domain-specific. 
Moreover, in this part, it can greatly reduce the length 
of the document. Secondly, we propose a knowl-
edge-oriented pointer-generator network (K-PGN) 
to generate the final summary based on the selected 
significant sentences by the K-Extractor. By incor-
porating domain knowledge into the pointer-genera-
tor network, K-PGN enhances content accuracy and 
mitigates out-of-vocabulary (OOV) word issues. The 
unique feature of the K-PGN is that it helps to gener-
ate more concise and accurate expressions, to obtain 
a more abstractive summary. Overall, our contri-
butions in this paper are as follows: 1) We propose a 
hybrid legal judgement summarization model that in-
corporates domain knowledge. The consideration of 
domain knowledge for the summary makes it difficult 
to lose or miss important domain-related information 
and enhances the consistency between the summary 
and the original document to a certain extent. To our 
best understanding, our work represents an initial 
endeavor towards this task. 2) We propose a nov-
el knowledge-oriented pointer-generator network 
(K-PGN) based on domain knowledge. The model can 
generate a more readable and concise summary, and 
mitigates out-of-vocabulary (OOV) word issues very 
well. 3) The effectiveness of the model is verified by 
a large number of experiments. Experimental results 
show significant improvements in summarization 
performance on several evaluation metrics.

2. Related Work 
The ultimate goal of text summarization is to produce 
a concise and coherent overview that encapsulates 
the essential points of the original document, mini-
mizing redundancy and maximizing the utilization 
of limited space. Two overarching approaches to text 
summarization are extractive and abstractive.
The extractive approach involves three key steps: 1) 
Creating a suitable representation of the original text. 
2) Scoring each sentence based on this text represen-
tation. 3) Extracting sentences with high scores and 
concatenating them to form the summary. Several 
works have been conducted in recent years on ex-
tractive summarization, employing various method-

Figure 1
The domain knowledge is important to the legal judgment 
summarization. The contents marked in blue in the original 
document is related with the content of second applicable 
law, and the summary also need to maintain those contents. 
The terminology in red appears only once in original 
document, and it also appears in the first applicable law, 
make it appear in the summary as important information

ologies, including: statistical and semantic features 
approaches [16, 23, 39], probabilistic approaches 
[4, 9], graph-based approach [24, 30], traditional 
machine learning based approach [35], neural net-
work-based approach [22, 28, 31]. 
Abstractive summarization has long been regard-
ed as a challenging task. However, recent years have 
witnessed significant advancements in this area, par-
ticularly due to the impact of the rapid development 
of neural networks. Rush et al. [32] pioneered the 
use of a neural attention seq2seq model for abstrac-
tive summarization. Nallapati et al. [27] introduced 
an RNN encoder-decoder architecture tailored for 
summarization tasks. Drawing inspiration from the 
pointer mechanism proposed by [38], See et al. [33] 
presented a pointer-generator network to address 
challenges associated with rare words and out-of-vo-
cabulary (OOV) terms. Sun et al. [36] put forth a novel 
multisource pointer network for product title sum-
marization, incorporating a new knowledge encoder 
to enhance pointer network performance. Wang et 
al. [40] introduced a concept pointer network for ab-
stractive summarization. Presently, the pointer-gen-
erator network has become the mainstream method 
for abstractive summarization due to its commend-
able performance.
Recently, there has been a marked focus on legal 
document summarization, resulting in noteworthy 
achievements. One seminal work, Grover et al. [14] 
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described a legal corpus comprising 188 judgments 
from the House of Lords Judgment (HOLJ) website 
from 2001–2003, specifically for extractive summari-
zation of British judgments. Classical algorithms like 
LexRank [7], Latent Semantic Analysis (LSA) [18, 25] 
and TextRank [24] have been widely applied in the 
legal domain. However, due to the unique nature of 
legal documents, the performance of these methods 
is not satisfactory. Galgani et al. [10, 12] proposed a 
citation-based summarization method to generate 
catchphrases from citation text or use citations to 
select sentences from original document. This meth-
od is limited to the Anglo-American law system and 
may not be applicable to civil law systems. Hachey 
et al. [15], Ghosh et al. [13] align different sentenc-
es associated with rhetorical roles in final summary 
generation. Rhetorical roles act as valuable informa-
tion, enhancing the readability and coherence of the 
final summary. Galgani et al. [11] applied a knowledge 
base (KB), created based on the ripple-down rules of 
Compton and Jansen (1990), to generate summaries 
by combining different summarization techniques. 
While these legal summarization methods have 
achieved some effectiveness, most do not deeply con-
sider the domain knowledge of legal documents, pri-
marily focusing on the Anglo-American law system. 
Therefore, there is a need to study a more efficient 
legal summary method based on domain knowledge, 
especially for civil law systems.
In legal domain, automatic summarization is different 
from it in general because legal judgment documents 
often have a special internal structure and contain a 
lot of domain knowledge. The internal structure of 
judgment document depends upon the country of the 
case, for example, the Chinese judgment document of-
ten consists of header, main body, court decisions and 
tail. The main body is the core of the judgment docu-
ments, requires a clear description of the facts and ev-
idence involved in the case, especially the facts ascer-
tained by the court, it usually includes plaintiff and 
defendant information, plaintiff ’s appeals, case facts, 
judicial evidences and court opinions. The court deci-
sions describe on what statute does the court decide 
whether or not the plaintiff ’s claim should be upheld. 
The legal summarization is mainly generated by the 
main body and court decisions. More importantly, the 
legal documents contain a lot of domain knowledge, 
such as applicable law, judicial interpretation, trial 

guidance and so on. In this article, we choose applica-
ble laws as domain knowledge. Because the applicable 
law plays a very important role in legal judgment doc-
uments. For example, the applicable laws of the case 
rely on the case facts, and the applicable laws of the 
case affect the court decisions, as shown in Figure 1. 
In addition, the content related to the applicable law 
in the original text is generally important that needs 
to be retained in the abstract. Thus, we can make full 
use of the internal structure and applicable laws of 
judgment document to promote the performance of 
legal summarization.

3. Our Model 
We propose a novel hybrid legal summarization mod-
el composed of a knowledge-aware extractor and 
a knowledge-oriented pointer-generator network. 
Our model leverages domain knowledge, specifically 
the applicable laws from the original legal judgment 
documents, to enhance the performance of the sum-
marization task. Prior to delving into the specifics of 
our model, we establish the roles and tasks of both 
the knowledge-aware extractor(K-Extractor) and 
the knowledge-oriented pointer-generator network 
(K-PGN).
Problem Definition. Let d denote a judgment docu-
ment containing k sentences d={sent1, sent2, ... , sentk}, 
where the senti is the i-th sentence in the document 
d. We filter out irrelevant sentences based on the in-
ternal structure of legal judgment document, and get 
sentence set {sent1, sent2, ... , sentm} as the input of 
knowledge-aware extractor. 
The knowledge-aware extractor can be defined as a 
task of assigning a label li to each senti where i∈[1,m], 
indicating whether the sentence is so important that 
it is suitable as the input of K-PGN. 
The input of K-PGN is a sequence of words x = {x1, 
x2, ..., xn},where n is the word index. The output of the 
K-PGN is the finial summary sequence y = {y1, y2, ..., 
yt} , where the yi is the i-th word of the final summary. 
The structure of our model is shown in Figure 2.
Pre-processing. Considering the special structure 
of the judgment document, we first filter the sentenc-
es of  the input legal judgment document, and remove 
the sentences that are obviously irrelevant to the gen-
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Figure 2
The structure of our model

eration of the summary. By comparing a large number 
of legal summaries, we found that a qualified summa-
ry should include: case type, plaintiff ’s appeals, facts 
confirm by the court, court opinions, applicable laws 
and court decisions, show as in Figure 1. So, we use 
simple method such as regular expression to pick 
these parts that are useful for summary generation. 
We remove sentences that are obviously irrelevant to 
the summary, such as the head of the judgment doc-
ument, the background information of the identity of 
the original defendant, the information of the hear-
ing process of the case, the tail, and the explanation of 
the case. Through pre-processing, the input is greatly 
shortened as {sent1, sent2, ... , sentm}, m<k , which not 
only reduces the computational complexity, but also 
avoids the noise caused by irrelevant information.

3.1. Knowledge-aware Extractor
The first part of our model is a knowledge-aware ex-
tractor (K-Extractor), as shown in Figure 3. Differ-
ently, our knowledge-aware extractor does not need 
to obtain the final summary, but just needs to obtain 
a short list of sentences with high information to fur-
ther facilitate the K-PGN. The principle of extractor 
is to seek completeness, that is, try to cover the in-
formation required by the final summary as much as 
possible. Thus, we treat this task as sequence labeling 
problem with the unit of sentence. In addition, by us-
ing an extractor, the text length can be greatly short-
ened without losing important information, thus 
solving the problem that legal texts are usually very 
long, which makes summary generation difficult. 
Unlike general domains, legal domains calculate the 
importance of each sentence by considering not only 
its general semantic features, but also its domain-re-

Figure 3
The architecture of knowledge-aware extractor

lated information. We use the applicable laws’ con-
tent as domain knowledge to assist in picking the im-
portant sentences. Each judgment document has one 
or more applicable laws, which are strongly related 
to the case facts and the court decisions. Hence, we 
build a domain knowledge base of laws which include 
all laws that may appear in legal judgment documents. 
This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, reg-
ular expression and other simple extraction methods 
are used to obtain the applicable laws {law1, law2, ...} 
in legal judgment document d. These applicable laws 
all apply to the same case, so there is a certain cor-
relation between them. With these reasons in mind, 
we can extract the key information of these laws, so 
that it can better help to obtain the domain-related 
sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all ap-
plicable laws of the original legal judgment document, 
and then connect all the key words as one sentence z.
Next, we use BERT [6] and average pooling to get 
the representation of the sentence z, as shown in 
Equation (1). Similarly, we use BERT and average 
pooling to get the representation of each individual 
sentence senti where i∈[1,m] in the legal judgment 
document, as shown in Equation (2). In order to se-
lect more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment doc-
uments to increase the domain-related knowledge in 
the original text and greatly increase the probability 
of domain-related sentences being selected. We con-
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catenate the two above representations to add do-
main-related information and increase the probabil-
ity that a domain-related sentence will be selected, as 
shown in Equation (3).

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
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connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
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text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(1)

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(2)

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖
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                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(3)

Then, a Dilate Gated Convolutional Neural Network 
(Dilate Gated CNN) [34], which integrates expansion 
convolution and gate convolution, be used to learn the 
semantic representation of sentences. 

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖
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                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

, (4)

where σ is a sigmod function, and D1 and D2 are dilate 
convolutional neural network with different param-
eters. We use a classification to get the label of each 
sentence.

3.2. Knowledge-oriented Pointer-generator 
Network
The second component of our model is a knowl-
edge-oriented pointer-generator network that gener-
ates the summary word-by-word. In this section, we 
have enhanced the pointer generation network pro-
posed by See et al. [33], incorporating domain knowl-
edge.
Encoder-decoder model. The encoder-decoder 
model consists of a two-layer bidirectional LSTM-
RNN encoder and a one-layer unidirectional LSTM-
RNN decoder, introduced with an attention mecha-
nism. The input word sequence, denoted as x = {x1, x2, 
..., xn}, is processed by the encoder, mapping the text 
into a sequence of encoder hidden states {h1, h2, ..., hn}. 
During each decoding time step t, the decoder takes 
the previous word embedding and the preceding con-
text vector as input to compute the decoder hidden 
state st. The generation of the target summary from a 
vocabulary probability distribution Pvocab(w) follows 
this process:

𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) =
𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2). (5)

Here, st represents the context vector at time step t, 
and W2, W1, b1, b2 are trainable parameters. The context 

vector ct is a weighted sum of hi of the input text, with 
weights determined by the attention mechanism at,i .
The attention weights at,i are computed using the soft-
max function with learnable parameters v, Wh, Ws, b:

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(6)

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(7)

Pointer generator network. The Pointer Network, 
introduced by Vinyals et al. [38], utilizes the atten-
tion mechanism [2] as a pointer to choose words from 
the input instead of choosing from a fixed vocabulary, 
making it particularly suitable for extractive summa-
rization. The Pointer Generator Network consists of 
two parts: one utilizes pointer to choose words from 
the input, and the other picks new words from one 
fixed vocabulary. These two parts work together to 
jointly figure out the probabilities of the words in fi-
nal summary. The generation probability pgen ∈ [0,1] of 
the pointer generation network [33] can be obtained 
by the following equation:

 
 

 

Unlike general domains, legal domains calculate the importance of each sentence by considering not only its general 
semantic features, but also its domain-related information. We use the applicable laws' content as domain knowledge 
to assist in picking the important sentences. Each judgment document has one or more applicable laws, which are 
strongly related to the case facts and the court decisions. Hence, we build a domain knowledge base of laws which 
include all laws that may appear in legal judgment documents. This domain knowledge base lists the specific content 
of all the laws, as shown in Figure 1. In addition, regular expression and other simple extraction methods are used to 
obtain the applicable laws {law1, law2, ...} in legal judgment document d. These applicable laws all apply to the same 
case, so there is a certain correlation between them. With these reasons in mind, we can extract the key information of 
these laws, so that it can better help to obtain the domain-related sentences in legal judgment documents. We use a 
TextRank [26] model to obtain the key words of all applicable laws of the original legal judgment document, and then 
connect all the key words as one sentence z. 
Next, we use BERT [6] and average pooling to get the representation of the sentence z, as shown in Eq.1. Similarly, we 
use BERT and average pooling to get the representation of each individual sentence senti where i∈[1,m] in the legal 
judgment document, as shown in Equation (2). In order to select more domain-related sentences, we spliced the 
applicable laws and sentences of legal judgment documents to increase the domain-related knowledge in the original 
text and greatly increase the probability of domain-related sentences being selected. We concatenate the two above 
representations to add domain-related information and increase the probability that a domain-related sentence will be 
selected, as shown in Equation (3). 

𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑧𝑧))             (1) 
𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖)),∀𝑖𝑖𝑖𝑖 ∈ [1,𝑚𝑚𝑚𝑚]                (2) 

𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵(𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,1,⋯ ,𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚,𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)        (3) 
Then, a Dilate Gated Convolutional Neural Network (Dilate Gated CNN) [34], which integrates expansion convolution 
and gate convolution, be used to learn the semantic representation of sentences.  

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐷𝐷𝐷𝐷1(𝑋𝑋𝑋𝑋)⨂𝜎𝜎𝜎𝜎�𝐷𝐷𝐷𝐷2(𝑋𝑋𝑋𝑋)�,            (4) 

where σ is a sigmod function, and D1 and D2 are dilate convolutional neural network with different parameters. We use 
a classification to get the label of each sentence. 
3.2 Knowledge-oriented Pointer-generator Network 
The second component of our model is a knowledge-oriented pointer-generator network that generates the summary 
word-by-word. In this section, we have enhanced the pointer generation network proposed by See et al. [33], 
incorporating domain knowledge. 
Encoder-decoder model. The encoder-decoder model consists of a two-layer bidirectional LSTM-RNN encoder and 
a one-layer unidirectional LSTM-RNN decoder, introduced with an attention mechanism. The input word sequence, 
denoted as 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛}, is processed by the encoder, mapping the text into a sequence of encoder hidden states 
{ℎ1,ℎ2, … ,ℎ𝑛𝑛𝑛𝑛}. During each decoding time step t, the decoder takes the previous word embedding and the preceding 
context vector as input to compute the decoder hidden state st. The generation of the target summary from a vocabulary 
probability distribution Pvocab(w)  follows this process: 
𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) = 𝑃𝑃𝑃𝑃(𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡|𝑦𝑦𝑦𝑦<𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑥;𝜃𝜃𝜃𝜃) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝑊𝑊𝑊𝑊2(𝑊𝑊𝑊𝑊1[𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡] + 𝑏𝑏𝑏𝑏1) + 𝑏𝑏𝑏𝑏2).          (5) 
Here, st represents the context vector at time step t, and W2, W1, b1, b2 are trainable parameters. The context vector ct is 
a weighted sum of hi of the input text, with weights determined by the attention mechanism at,i . 
The attention weights at,i are computed using the softmax function with learnable parameters v, Wh, Ws, b: 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛
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                            (6) 

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑊𝑊𝑊𝑊ℎℎ𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏)�.    (7) 

Pointer generator network. The Pointer Network, introduced by Vinyals et al. [38], utilizes the attention mechanism 
[2] as a pointer to choose words from the input instead of choosing from a fixed vocabulary, making it particularly 
suitable for extractive summarization. The Pointer Generator Network consists of two parts: one utilizes pointer to 
choose words from the input, and the other picks new words from one fixed vocabulary. These two parts work together 
to jointly figure out the probabilities of the words in final summary. The generation probability 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 ∈ [0,1]of the 
pointer generation network [33] can be obtained by the following equation: 

𝑃𝑃𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜎𝜎𝜎𝜎�𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝�.   (8) 

Here, σ  is a sigmoid function, and the vectors Wc, Ws, Wy along with the scalar bptr are learnable parameters. The pgen 
serves as a switch pointer to pick a word from a fixed vocabulary or the input sequence. Consequently, the probability 
distribution PPGN(w) is given by: 

(8)

Here, σ  is a sigmoid function, and the vectors Wc, Ws, 
Wy along with the scalar bptr are learnable parameters. 
The pgen serves as a switch pointer to pick a word from 
a fixed vocabulary or the input sequence. Consequent-
ly, the probability distribution PPGN(w) is given by:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) = 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑤𝑤𝑤𝑤) + (1 − 𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛) � 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑗𝑗𝑗𝑗.
𝑖𝑖𝑖𝑖:𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖=𝑤𝑤𝑤𝑤

  (9) 

 

It is important to note that Pvocab is zero for a word w is an out-of-vocabulary word. 
 
Figure 4 
The knowledge-oriented pointer-generator network. 

 
 
Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of 
pointer-generator network may ignore the important implicit information in source text, leading to degrade the 
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which 
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents 
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as 
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ( )wpvocab

'  

can be obtained. Finally, the probability distribution )(p wPGN calculated by the pointer generation network is fused to 

( )wpvocab
'  to obtain the final probability distribution )(pfinal w . Through this knowledge encoding method, the 

information related to applicable laws can be strengthened in the source document, so as to improve the probability of 
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture 
of the knowledge-oriented pointer-generator network is shown in Figure 4. 
 
The model combines the source document and the applicable laws of source document to produce summary. The input 
source 𝐱𝐱𝐱𝐱 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} and the applicable laws 𝐊𝐊𝐊𝐊 = {𝑘𝑘𝑘𝑘1,𝑘𝑘𝑘𝑘2, … , 𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚} all encode by a bidirectional LSTM, and then 
get a series of hidden states (ℎ1,ℎ2, … ,ℎ𝑃𝑃𝑃𝑃)and (ℎ1′ ,ℎ2′ , …ℎ𝑀𝑀𝑀𝑀′ ). After that, the initial state s0 of decoder is obtained by 
connecting and converting the last hidden state hN and ℎ𝑀𝑀𝑀𝑀′  of the two encoders.   

𝑠𝑠𝑠𝑠0 = 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓[ℎ𝑃𝑃𝑃𝑃,ℎ𝑀𝑀𝑀𝑀′ ]�,            (10) 
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mation related to applicable laws can be strengthened 
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4.Experiment  
4.1 Dataset Construction 
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in 
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract, 
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation. 
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided 
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets 
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064 
and the minimum number is found 866 words, with an average of 2568 words. 
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and 
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable 
laws involved in each judgment document is taken as domain knowledge. 
4.2 Experiment Settings 
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws, 
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used. 
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector 
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the 
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training 
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input 
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics. 
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge 
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1, 
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.  
4.3 Evaluation Metrics 
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary 
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams. 
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which 
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference 
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The 
computation is expressed as follows: 

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
.  (17) 

4.4 Baseline 
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3, 
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary. 
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the 
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the 
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or 
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Knowledge Pointer generator. As the legal document has strong domain characteristics, the direct utilization of 
pointer-generator network may ignore the important implicit information in source text, leading to degrade the 
performance of our model. Therefore, we use a knowledge encoder to encodes the applicable laws' content which 
involved in each legal judgment document. The knowledge encoder uses a bidirectional LSTM to encode the contents 
of laws, which is similar to the Encoder in the pointer-generating network. The content of applicable laws is taken as 
input, and an intermediate vector is calculated, through which a global dictionary probability distribution $ ( )wpvocab
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information related to applicable laws can be strengthened in the source document, so as to improve the probability of 
accurate word generation, and further improve the performance of the whole legal summary generation. The architecture 
of the knowledge-oriented pointer-generator network is shown in Figure 4. 
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′,𝑎𝑎𝑎𝑎′,𝑏𝑏𝑏𝑏′ is a trainable parameter. The 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 represents the hidden state of decoder at time step t and is 

computed like: 
𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1,𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1, 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡1′ ),         (12) 

where 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡1 is the hidden state of decoder at time step t-1, 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 is the input of decoder at time step t, f represents a 
nonlinear function, and this paper adopts LSTM as function f. The '

1c −t  is the context vector of the applicable laws at 
time step t-1 and is computed like: 

, (11)
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in the dataset. After data cleaning, the data sets are 
divided according to 6:2:2, and 2340 judgment docu-
ments in training datasets, 779 judgment documents 
in verification datasets and 785 judgment documents 
in test data sets. The maximum number of words in 
the judgment documents is 13,064 and the minimum 
number is found 866 words, with an average of 2568 
words.
After obtaining the statistical data of applicable laws 
in the dataset, we crawl the applicable laws from the 
network and construct a law library as domain knowl-
edge base. In the data pre-processing stage, the spe-
cific content of the applicable laws involved in each 
judgment document is taken as domain knowledge.

4.2. Experiment Settings
In this paper, PyTorch framework is used to build the 
model. For the Encoder end of judgment documents 
and laws, 512 dimension bi-directional LSTM is used, 
while for the Decoder end, 512 dimension unidirec-
tional LSTM is used. In terms of word vector, this pa-
per adopts the method of random initialization, and 
sets the dimension of word vector as 512 dimension, 
which will be adjusted continuously in the process of 
continuous training. In addition, in the construction 
of dictionary, through the joint statistics of judgment 
documents and laws. In the whole process of training 
and testing, the input text length is compressed after 
data pre-processing. Therefore, the maximum length 
of the input source text in this paper is set to 700, 
which can effectively meet the requirements of the 
model and data after statistics. The maximum length 
of the generated text summary is set to 300, and the 
maximum length of the external knowledge of the 
law is set to 100. In this paper, the learning rate is set 
to 0.001, the initial value of the accumulator is set to 
0.1, and the batch size of the training is 32. The gener-
ic ROUGE evaluation index is used for performance 
evaluation. 

4.3. Evaluation Metrics
We use ROUGE [20] as the evaluation metric to eval-
uate our model. It evaluates the quality of a generat-
ed summary by calculating the overlap of lexical ele-
ments between a candidate summary and a reference 
summary, such as n-grams. Following established 
conventions, we have opted for the metrics ROUGE-1, 
ROUGE-2, and ROUGE-L, which individually assess 

the word overlap, bigram overlap, and the longest 
common sequence between the reference summa-
ry and the generated summary. We focus on the F-1 
scores of ROUGE-1, ROUGE-2, and ROUGE-L. The 
computation is expressed as follows:

 
 

 

𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡′ = �𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖
′ ℎ𝑖𝑖𝑖𝑖′

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

.                        (13) 

 

Finally, the probability distribution )(p wPGN  calculated by the pointer generation network is fused to ( )wpvocab
'  to 

obtain the final probability distribution )(pfinal w  . 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤) = 𝜆𝜆𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤𝑤𝑤) + (1 − 𝜆𝜆𝜆𝜆)𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣′ (𝑤𝑤𝑤𝑤),   (14) 

where the generation probability λ is learned by: 

λ = σ�Wcct + Wsst + Wyyt−1 + Wc′ct′�,    (15) 

where vector 𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣 ,𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠,𝑊𝑊𝑊𝑊𝑦𝑦𝑦𝑦,𝑊𝑊𝑊𝑊𝑣𝑣𝑣𝑣′ are learnable parameters. 

The training loss function for our model is as follows: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑇𝑇𝑇𝑇
�−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓(𝑤𝑤𝑤𝑤).                 (16)
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4.Experiment  
4.1 Dataset Construction 
This paper uses the dataset provided by the challenge of AI (CAIL2020, https://github.com/china-ai-law-
challenge/CAIL2020/tree/master/sfzy) legal summarization track, which is the first dataset of legal summarization in 
China. It contains 4,047 marked civil judgment documents, involving nine causes of action, including labor contract, 
tort liability, lease contract, loan contract, inheritance, right of recourse, loan, infringement and inheritance relation. 
According to statistics, there are 36 kinds of laws involved in the dataset. After data cleaning, the data sets are divided 
according to 6:2:2, and 2340 judgment documents in training datasets, 779 judgment documents in verification datasets 
and 785 judgment documents in test data sets. The maximum number of words in the judgment documents is 13,064 
and the minimum number is found 866 words, with an average of 2568 words. 
After obtaining the statistical data of applicable laws in the dataset, we crawl the applicable laws from the network and 
construct a law library as domain knowledge base. In the data pre-processing stage, the specific content of the applicable 
laws involved in each judgment document is taken as domain knowledge. 
4.2 Experiment Settings 
In this paper, PyTorch framework is used to build the model. For the Encoder end of judgment documents and laws, 
512 dimension bi-directional LSTM is used, while for the Decoder end, 512 dimension unidirectional LSTM is used. 
In terms of word vector, this paper adopts the method of random initialization, and sets the dimension of word vector 
as 512 dimension, which will be adjusted continuously in the process of continuous training. In addition, in the 
construction of dictionary, through the joint statistics of judgment documents and laws. In the whole process of training 
and testing, the input text length is compressed after data pre-processing. Therefore, the maximum length of the input 
source text in this paper is set to 700, which can effectively meet the requirements of the model and data after statistics. 
The maximum length of the generated text summary is set to 300, and the maximum length of the external knowledge 
of the law is set to 100. In this paper, the learning rate is set to 0.001, the initial value of the accumulator is set to 0.1, 
and the batch size of the training is 32. The generic ROUGE evaluation index is used for performance evaluation.  
4.3 Evaluation Metrics 
We use ROUGE [20] as the evaluation metric to evaluate our model. It evaluates the quality of a generated summary 
by calculating the overlap of lexical elements between a candidate summary and a reference summary, such as n-grams. 
Following established conventions, we have opted for the metrics ROUGE-1, ROUGE-2, and ROUGE-L, which 
individually assess the word overlap, bigram overlap, and the longest common sequence between the reference 
summary and the generated summary. We focus on the F-1 scores of ROUGE-1, ROUGE-2, and ROUGE-L. The 
computation is expressed as follows: 

ROUGE − N =
∑ ∑ Countmatch(gramn)gramn∈SS∈RefSummary

∑ ∑ Count(gramn)gramn∈SS∈RefSummary
.  (17) 

4.4 Baseline 
To validate the effectiveness of our proposed model, we conducted a comparative analysis against baselines. Lead-3, 
which is a classical extractive model in journalism, picks the first three sentences of an article to form the summary. 
Leveraging the common observation that crucial news information often resides in the initial portion of an article, the 
Lead-3 algorithm tends to yield favorable results. TextRank [26] is a keyword extraction framework that calculates the 
scores of the keywords or sentences in the text according to a PageRank-like algorithm, and then selects the words or 
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4.4. Baseline
To validate the effectiveness of our proposed model, 
we conducted a comparative analysis against base-
lines. Lead-3, which is a classical extractive model in 
journalism, picks the first three sentences of an article 
to form the summary. Leveraging the common obser-
vation that crucial news information often resides in 
the initial portion of an article, the Lead-3 algorithm 
tends to yield favorable results. TextRank [26] is a 
keyword extraction framework that calculates the 
scores of the keywords or sentences in the text accord-
ing to a PageRank-like algorithm, and then selects the 
words or sentences with the highest scores to build the 
summary. BertSum [22] represents a simplified vari-
ant of BERT tailored for extractive summarization. 
Following the original paper, we employed classifiers, 
transformers, and RNNs as the classification layer. Se-
q2seq+att utilizes a two-layer BiLSTM encoder and a 
one-layer LSTM decoder with attention mechanisms. 
BART [19] is a cutting-edge natural language process-
ing model that builds upon the transformer architec-
ture. It is applicable to natural language generation, 
translation, and comprehension. Pointer-Generator 
Network (PGN) [33] is a hybrid model that combines 
Seq2Seq-Gen with a pointer network. PGN can not 
only generate words from a fixed vocabulary, but also 
copy words from the input.

5. Results and Analyses
This section compares the performance of our pro-
posed model with various benchmark algorithms. 
Table 1 shows the comparative results for ROUGE-1, 
ROUGE-2, and ROUGE-L on the CAIL2020 dataset. 
Figure 5 provides a visual representation of the com-
parison results among different methods. Our hybrid 
model not only generates an abstractive summary but 
also extracts crucial sentences from legal documents. 
The model exhibits substantial improvements, estab-
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lishing a new state-of-the-art in both extractive and 
abstractive methods.
The improvement rates of the proposed method 
were calculated using Equation (18) with ROUGE-1, 
ROUGE-2, and ROUGE-L metrics.

. (18)

Here, pmethod represents the proposed method, cmethod de-
notes the compared method, and the results are pre-
sented in Table 2.
In this section, we evaluate the results of our model 
in comparison with the extractive model discussed 
in Section 5.1 and the abstractive model discussed in 
Section 5.2. To verify the effectiveness of our work, we 
conduct an ablation study in Section 5.3. Additionally, 
we perform human evaluation in Section 5.4 to assess 
the relevance, readability, and consistency of the gen-
erated summaries. Furthermore, in Section 5.5, we 
present a case study that demonstrates our model’s 
capability to provide superior abstractive summaries 
compared to other baselines.

Table 1
Comparison of Proposed Approaches

Method ROUGE-1 
F1

ROUGE-2 
F1

ROUGE-L 
F1

Lead-3 1.00 0.12 1.97
TextRank 37.10 18.20 31.03
BertSum+class 30.04 11.18 20.89
BertSum+trans 31.86 12.59 22.52
BertSum+rnn 29.58 10.95 20.78
Seq2seq+attn 41.16 19.82 36.73
BART 49.38 30.53 43.14
PGN 46.36 21.55 39.26
our model 57.12 35.09 54.37

Sum, also do not perform well. The data in Table 2 
illustrates substantial performance enhancements 
achieved by the proposed method when compared to 
TextRank and BertSum+trans. Specifically, our meth-
od improves ROUGE-1 scores by 53.96% for TextRank 
and 79.28% for BertSum+trans. Furthermore, there 
are significant improvements in ROUGE-2 scores, 
with enhancements of 92.80% for TextRank and 
178.71% for BertSum+trans. Additionally, the pro-
posed method outperforms in ROUGE-L, showing im-
provements of 75.22% for TextRank and 141.43% for 
BertSum+trans. These findings underscore the effec-
tiveness of our approach in elevating summarization 
performance across various evaluation metrics and 
models. The score of ROUGE-2 and ROUGE-L im-
prove more than that of ROUGE-1. The addition of do-
main knowledge allowed the final summary to include 
more judicial terminology and judicial specific expres-
sions, resulting in a significant increase in ROUGE-2 
and ROUGE-L scores, which was also more realistic. 

5.1. Extractive Summarization
In this extractive paradigm, we compare our model 
with several extractive mode, such as Lead-3, Tex-
tRank, and BertSum. From Table 1 and Table 2, we 
can see that the performance of Lead-3 is very poor, 
because this model only picks the first 3 sentence as 
summary. It also shows that the methods used in the 
field of journalism are not applicable in the legal field. 
Other general-domain methods, TextRank and Bert-

Table 2 
Improvement obtained by proposed method (%)

Method ROUGE-1 
F1

ROUGE-2 
F1

ROUGE-L 
F1

Lead-3 5612.00 29141.67 2659.90

TextRank 53.96 92.80 75.22

BertSum+class 90.15 213.86 160.27

BertSum+trans 79.28 178.71 141.43

BertSum+rnn 93.10 220.46 161.65

Seq2seq+attn 38.78 77.04 48.03

BART 15.67 14.94 20.03

PGN 23.21 68.83 38.49

5.2. Abstractive Summarization
We compare our model with tree representative ab-
stractive model, Seq2seq, BART and PGN, and our ab-
stractive model is an improvement on PGN.
The results in Tables 1-2 highlight the significant 
performance improvements achieved by the pro-
posed method across different summarization mod-
els. Specifically, our method enhances the perfor-
mance in Seq2seq, BART, and PGN on ROUGE-1 by 
38.78%, 15.67% and 23.21%, respectively. Similarly, 
for ROUGE-2, there are improvements of 77.74%, 



781Information Technology and Control 2024/3/53

14.94% and 68.83% in Seq2seq, BART, and PGN, and 
for ROUGE-3, improvements of 48.03%, 20.03% and 
38.49%, respectively. These findings underscore the 
effectiveness of our proposed method in significantly 
enhancing summarization performance across vari-
ous evaluation metrics and models.

5.3. Ablation Study
In this section, we investigate the impact of the strat-
egies proposed in the paper on model performance 
by conducting ablation experiments. Specifically, we 
explore the influence of domain knowledge and the 
hybrid model separately. The results of these ablation 
experiments are presented in Table 3. Upon com-
parison of the results between TextRank and K-Ex-
tractor, as well as PGN and K-PGN, it is evident that 
the incorporation of domain knowledge significantly 
enhances the summarization performance. Further-
more, our hybrid model demonstrates at least a two-
point improvement over K-Extractor and K-PGN. 
This observation underscores the effectiveness of 
combining extractive and abstractive methods in im-
proving summarization performance.

Table 3
Ablation experiments

Method ROUGE-1 
F1

ROUGE-2 
F1

ROUGE-L 
F1

TextRank 37.10 18.20 31.03

K-Extractor 53.43 33.97 46.06

PGN 46.36 21.55 39.26

K-PGN 55.01 32.03 50.98

K-Extractor+PGN 51.32 31.92 49.75

Hybrid model 57.12 35.09 54.37

5.4. Human Evaluation

To evaluate the relevance, readability and consisten-
cy of the summaries, we also performed a human eval-
uation. Relevance evaluates whether the summary 
includes crucial information from the original docu-
ment while avoiding irrelevant and redundant details. 
Readability is based on the fluency, grammaticality, 
and coherence of the summary. Consistency assesses 
whether the content described in the summary aligns 
with the original document, avoiding contradictory 

and inaccurate descriptions. We compared the re-
sults of our model and the pointer-generator network 
on those tree human evaluation metrics.
To do human evaluation, we chose 100 samples from 
the test set randomly and enlisted three human eval-
uators for each sample. The evaluators scored each 
summary on the three metrics using a scale of 1 to 3 
(3 for good, 2 for moderate, and 1 for bad). The average 
scores from the three evaluators for each summary 
were calculated. The results, shown in Table 4, indi-
cate that our model outperforms the pointer-gener-
ator network across all three metrics, with a notable 
improvement in the consistency metric.

Method Relevance Readability Consistency

PGN 2.07 2.29 1.40

our model 2.14 2.76 2.08

Table 4
Human Evaluation: comparison between our model and 
pointer-generator network

5.5. Case Study
To assess the performance of our model in real-case 
scenarios, we selected authentic samples from the 
CAIL2020 dataset. As depicted in Figure 5, the sum-
maries produced by the Pointer-Generator Network 
(PGN) exhibit significant duplication (highlighted 
in bold), with crucial content, such as the underlined 
portion in the reference summary, being omitted. In 
contrast, our model addresses the deficiencies in the 
PGN-generated summary by introducing missing 
content (highlighted in bold) and preserving the es-
sential elements of the reference summary. Moreover, 

Figure 5
Human Evaluation: comparison between our model and 
pointer-generator network
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the summaries generated by our model are well-or-
ganized and more readable. In summary, our model 
excels in retaining intricate judicial details, resulting 
in a more comprehensive and coherent summary con-
text than the PGN.

6. Conclusion
In the presented article, we introduce a hybrid model 
that leverages the advantages of both extractive and 
abstractive summarization methods for the summa-
rization of legal judgment documents. This model in-
corporates domain knowledge, utilizing it to enhance 
the generation of legal summaries. To assess the effi-
cacy of our approach, we conducted numerous com-
parative experiments against baseline methods. The 

results of these experiments reveal that our proposed 
method demonstrates superiority over existing tech-
niques. Furthermore, our model effectively address-
es the challenge of summarizing lengthy legal docu-
ments, a problem that has been difficult to tackle with 
other approaches.
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