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Currently, the study of Alzheimer’s disease (AD) imaging classification based on deep learning has become a 
research hotspot. But due to the characteristics of AD samples with lack of labels and small samples, there are 
some difficulties in classifying task. In this paper, Semi-supervised generative adversarial network algorithm is 
designed. Firstly, an improved generative network algorithm is designed to extract and inherit features related 
to AD, while ignoring non-disease related variations of AD to the disease to generate new samples, achieving 
sample size expansion and data enhancement. Then, an unsupervised clustering algorithm is constructed to 
generate sample clustering categories, so that the new samples have different types of AD brain atrophy labels 
.The test results show that the algorithm achieves good and stable clustering on the real sample test dataset 
(ADNI-1), and identifies four types of AD brain atrophy patterns. The Calinski-Harabasz Index of the algorithm 
is calculated about 2388, and the Silhouette Coefficient Index is calculated about 0.588. With these cluster in-
dexes, the algorithm has better clustering performance than traditional clustering methods such as k-means. 
These research results will contribute to further studying the classification of AD, and contribute to the analy-
sis and diagnosis of the etiology of AD.
KEYWORDS: Deep learning Alzheimer’s disease, Cluster analysis, Generative Adversarial Networks, Unsu-
pervised learning.

1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative dis-
ease commonly seen in the elderly population.AD can 
cause serious damage to the patient’s brain, leading 

to emotional and behavioral impairments. Deep pa-
tients may also face sleep disorders and circadian 
disturbances [1]. Emotional disorders in AD patients 
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may further evolve into apathy, manifested as impair-
ment of social cognition and weakening and loss of 
behavioral motivation [6]. Ultimately, it leads to visu-
al spatial skill deficits and loss of language ability in 
AD patients, and affects procedural memory [9].
AD is a neurodegenerative disease, and its pathogen-
esis is not yet fully understood. In recent years, the 
rapid development of neuroimaging technology has 
provided new means for the study of AD. Magnetic 
resonance imaging (MRI) is a non-invasive, high-res-
olution imaging technique widely used in the diagno-
sis and evaluation of AD.AD is a neurodegenerative 
disease characterized by functional changes caused 
by structural changes in the patient’s brain, and the 
accumulation of these changes can lead to structur-
al changes. This structural change is well reflected 
in structural magnetic resonance imaging (sMRI). 
Therefore, in the classification of AD based on imag-
ing, sMRI images are the most widely used [13]. The 
study of sMRI classification can help doctors screen 
patients earlier and more accurately, and can also 
delve into the subtype patterns and pathogenesis of 
AD [11, 14]. With the development of science and tech-
nology, many deep learning (DL) technologies have 
the advantage of processing big data, which makes 
them start to apply sMRI data classification [12]. Due 
to limitations in the principles of neuroimaging tech-
nology, it is difficult to compare data from different 
models of magnetic resonance imaging devices and 
data from the same model with different parameters, 
resulting in a scarcity of sMRI samples. At the same 
time, sensitive clinical data and difficulties in data 
sharing among research institutions further limit the 
scale of sMRI data. The limitations, such as a small 
sample size, lack of annotation, and cumbersome 
annotation process, fail to meet the requirements of 
deep learning for training data. Consequently, the 
performance of the training model is also subpar. 
Therefore, the small sample problem has always been 
a challenge that needs to be overcome in the field of 
neuroimaging. Increasing training samples to achieve 
data augmentation can effectively be solved the small 
sample problem.
In this paper, the semi-supervised generative adver-
sarial network with clustering function algorithm is 
designed, which combines supervised and labeled 
generative adversarial networks with unsupervised 
and unlabeled clustering algorithm. This model ex-
tracts features and expands the sample size of the 

dataset by generating adversarial networks part 
based on publicly available sMRI data. Then the clus-
tering part is used to cluster several subtypes in the 
progression of AD, that is, to classify brain atrophy 
patterns. By expanding the sample size and ignoring 
changes unrelated to the disease, better and disease 
related results can be obtained in the final clustering 
analysis, improving classification accuracy. Through 
the identification of different brain atrophy patterns, 
modern medicine may be able to further explore the 
pathogenesis of AD and the treatment of AD.

2. Data and Preprocessed

2.1. sMRI Dataset 

The publicly available datasets commonly used in AD 
imaging research include Alzheimer’s disease neu-
roimaging initiative (ADNI) and open access series 
of imaging studies (OASIS) and other databases. The 
MRI dataset is derived in this paper from the ADNI 
dataset which is an AD related data that is publicly 
available to all scientists around the world. Its cre-
ation goal is to detect and screen AD at the earliest 
possible stage, and determine methods for tracking 
disease progression with biomarkers. By applying 
new diagnostic methods at the earliest possible stage, 
which is also the most effective stage of intervention, 
it helps to advance AD intervention, prevention, and 
treatment. The ADNI database has four stages of 
research, namely ADNI-1, ADNI-GO, ADNI-2, and 
ADNI-3. The four research stages have different goals. 
The main research objective of ADNI-1 is to develop 
biomarkers as outcome indicators for clinical trials. 
So far, ADNI has recruited a total of 1317 women and 
1426 men as participants to provide relevant data. 
This article randomly selects partial T1 weighted im-
aging sMRI as the dataset in the ADNI database for 
clustering analysis of brain atrophy patterns in AD. 
T1 weighted imaging is chosen can better observe the 
tissue structure of the brain. The sample is randomly 
selected, without considering the influence of covari-
ates such as age and gender, in order to identify a more 
universal and common pattern change between sub-
types of AD disease, and to assist in further analysis 
and research on AD disease.
Two datasets were selected in this paper. The train-
ing dataset used is based on the MUSE [3] software 
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processing method proposed by Yang et al., who arti-
ficially created a training dataset to demonstrate the 
ability of the algorithm model. The dataset used for 
the test was sMRI sample data from T1 weighted im-
aging of 600 cognitively normal individuals (cn) and 
600 patients (pt) randomly selected from the ADNI-1 
database. The sample is randomly selected, without 
considering the influence of covariates such as age 
and gender, in order to identify a more universal and 
common pattern change between AD subtypes, and to 
assist in further analysis and research on AD.

2.2. sMRI Data Pre-processed
Due to the fact that the sMRI data in the dataset is in 
3D format, the program runs quite slowly when us-
ing sMRI data as the input dataset for neural network 
training. The sMRI data contains redundant informa-
tion unrelated to changes in AD. Therefore, the sMRI 
data is preprocessed before used, including calibration 
and localization, removal of non brain structures, im-
age segmentation, smoothing, and other processing 
steps. In the step of image segmentation, the brain is di-
vided into gray matter, white matter, and cerebrospinal 
fluid. The process of AD has different impacts on these 
three parts of the brain. After preprocessing, the ROI 
(Region of Interest) data are obtained by dividing the 
sMRI 3D image into regions of interest (ROI Matrix).
According to the template, the trained ROI data con-
tain 254 ROI regions in gray matter, white matter 
and cerebrospinal fluid. To save the running time of 
the algorithm, the gray ROI data are selected that are 
most commonly used in classification. The patient 
data are compared with cognitively normal data, and 
some ROI region data which are similar in cognitively 
normal data and patient data are screened out. Final-
ly, 145 ROI regions are obtained as training regions. 
The test dataset is randomly selected brain data from 
1200 participants in the ADNI-1 database, of which 
600 are cn data and 600 are pt data. By repeatedly pre-
processing sMRI data, a corresponding dataset can be 
obtained, which will be used to cluster the brain atro-
phy patterns of real AD patients.The pre-processed 
sMRI data is shown in Figure 1.
In the paper, three specific atrophy patterns were ran-
domly introduced on the basis of cn data as training 
datasets to verify the clustering ability of the model. 
Its format is also a 1200 (=600+600) * 145 ROI data-
set.

Figure 1 
The pre-processed sMRI data

3. Methodology
3.1. Semi-supervised Generative Adversarial 
Network
The semi-supervised generative adversarial network 
is a structure based on the combination of generative 
adversarial network (GAN) algorithm and clustering 
algorithm model. The function of the GAN network 
is to expand the sample size, while the clustering 
network extracts the most fundamental data fea-
tures through autoencoder and achieves clustering. 
The 145 ROI data inputs are enhanced by generat-
ing adversarial network data for training the encod-
er clustering network. The trained encoder network 
performs clustering analysis on pt data to obtain a 
clustering analysis of AD brain atrophy patterns. The 
algorithm flowchart is shown in Figure 2.

Figure 2 
The algorithm flowchart
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The loss function of network is defined as in equation:

also a 1200 (=600+600) * 145 ROI dataset. 

3. Methodology 

3.1 Semi-supervised Generative 
Adversarial Network 

The semi-supervised generative adversarial 
network is a structure based on the 
combination of generative adversarial 
network (GAN) algorithm and clustering 
algorithm model. The function of the GAN 
network is to expand the sample size, while 
the clustering network extracts the most 
fundamental data features through 
autoencoder and achieves clustering. The 145 
ROI data inputs are enhanced by generating 
adversarial network data for training the 
encoder clustering network. The trained 
encoder network performs clustering analysis 
on pt data to obtain a clustering analysis of AD 
brain atrophy patterns. The algorithm 
flowchart is shown in Figure 2. 
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The loss function of network is defined as in 
equation: 

1o LLossssLL AEGAN µλ ++= .               (1) 

The loss function(L) not only includes the 
losses caused by the GAN network structure 
(LossGAN) that generates the data, but also the 
losses caused by the clustering network 
encoder (LossAE). The L1 is Lasso 
regularization. The λ and u are 

hyperparameter. The loss function value not 
only reflects the authenticity of the generated 
pseudo pt data, but also reflects the clustering 
effect of the model. 

3.2 Improved Generative Adversarial 
Network 

The GAN is a framework that generates 
models through adversarial process 
estimation without prior probability modeling, 
and can learn the true sample distribution [5]. 
The GAN consists of a generator and a 
discriminator, both of which are composed of 
neural networks. However, the GAN has 
problems such as unstable training, mode 
collapse, and unclear training level. In order to 
solve these problems, Arjovsky et al. proposed 
the wasserstein generative adversarial 
network [2]. The wasserstein generative 
adversarial network (WGAN) measures the 
distribution difference between two samples 
using wasserstein distance on the basis of 
traditional GAN. The WGAN networks 
belong to unsupervised learning. It uses 
random noise as the input of generator G, 
which has the advantage of making the 
network more applicable. However, the 
method of starting from noise also has the 
disadvantage of starting to extract and capture 
the features of the target distribution without 
any foundation. Therefore, the time required 
for final convergence is long, and the final 
effect remains to be discussed. 

The AD dataset includes pt data and cn data, 
and those different data can be used as 
classification labels. The random noise is 
considered as input to generator G in the GAN 
network , while the random noise with cn data 
characteristics (cn data features are added to 
random noise through the neural network) is 
considered as input x to generator G the 
improved GAN network (iGAN), and pt data 
is used as input y to discriminator D. The 
research objective is to classify the patterns of 
brain atrophy in AD patients, and the 

(1)

The loss function(L) not only includes the losses 
caused by the GAN network structure (LossGAN) that 
generates the data, but also the losses caused by the 
clustering network encoder (LossAE). The L1 is Lasso 
regularization. The λ and u are hyperparameter. The 
loss function value not only reflects the authenticity 
of the generated pseudo pt data, but also reflects the 
clustering effect of the model.

3.2. Improved Generative Adversarial 
Network
The GAN is a framework that generates models 
through adversarial process estimation without prior 
probability modeling, and can learn the true sample 
distribution [5]. The GAN consists of a generator and 
a discriminator, both of which are composed of neural 
networks. However, the GAN has problems such as 
unstable training, mode collapse, and unclear training 
level. In order to solve these problems, Arjovsky et al. 
proposed the wasserstein generative adversarial net-
work [2]. The wasserstein generative adversarial net-
work (WGAN) measures the distribution difference 
between two samples using wasserstein distance on 
the basis of traditional GAN. The WGAN networks 
belong to unsupervised learning. It uses random noise 
as the input of generator G, which has the advantage 
of making the network more applicable. However, the 
method of starting from noise also has the disadvan-
tage of starting to extract and capture the features 
of the target distribution without any foundation. 
Therefore, the time required for final convergence is 
long, and the final effect remains to be discussed.
The AD dataset includes pt data and cn data, and those 
different data can be used as classification labels. The 
random noise is considered as input to generator G 
in the GAN network , while the random noise with cn 
data characteristics (cn data features are added to ran-
dom noise through the neural network) is considered 
as input x to generator G the improved GAN network 
(iGAN), and pt data is used as input y to discriminator 
D. The research objective is to classify the patterns of 
brain atrophy in AD patients, and the classification 
work is unsupervised. If the non-disease related vari-
ations m are the characteristic value of the cn data, it 

also exists in the pt data [15]. There are implicit n pat-
terns (disease related variations) in the patient data of 
AD, that is, the pt data has m+n characteristic values. 
A linear mapping relationship will first be captured in 
the improved GAN network, and simulated pt data(y-
fake) will be generated through this mapping. The goal 
of discriminator D is to distinguish y and yfake as much 
as possible. The yfake as the training data input for the 
clustering network can extract and recognize features 
related to AD disease n as the basis for clustering, thus 
achieving the goal of ignoring changes unrelated to the 
disease. It is assumed that there are non-disease pa-
rameters on the images of real dataset (pt) besides the 
disease features to be extracted. At the same time, there 
is a background dataset (cn) containing no-disease fea-
tures, which also contains information unrelated to 
disease features. In this case, generator G can achieve 
the effect by extracting and inheriting the features of 
the background dataset.
In order to obtain relevant information between ROIs 
in feature extraction, an attention mechanism is add-
ed to the generator G. Attention mechanism model 
structure is shown in Figure 3.

Figure 3 
Attention mechanism model structure
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The attention model is divided into short attention 
branches and long attention branches, both of which 
learn global features at different levels in parallel to 
obtain information about global features. Afterwards, 
the short attention branch and the long attention 
branch are combined to obtain comprehensive glob-
al features. Finally, the global features are combined 
with the original input branch to attach the influence 
of global weights to the noise.
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The loss function of network is defined as in equation:

classification work is unsupervised. If the non-
disease related variations m are the 
characteristic value of the cn data, it also exists 
in the pt data [15]. There are implicit n patterns 
(disease related variations) in the patient data 
of AD, that is, the pt data has m+n 
characteristic values. A linear mapping 
relationship will first be captured in the 
improved GAN network, and simulated pt 
data(yfake) will be generated through this 
mapping. The goal of discriminator D is to 
distinguish y and yfake as much as possible. The 
yfake as the training data input for the clustering 
network can extract and recognize features 
related to AD disease n as the basis for 
clustering, thus achieving the goal of ignoring 
changes unrelated to the disease. It is assumed 
that there are non-disease parameters on the 
images of real dataset (pt) besides the disease 
features to be extracted. At the same time, 
there is a background dataset (cn) containing 
no-disease features, which also contains 
information unrelated to disease features. In 
this case, generator G can achieve the effect by 
extracting and inheriting the features of the 
background dataset. 

In order to obtain relevant information 
between ROIs in feature extraction, an 
attention mechanism is added to the generator 
G. Attention mechanism model structure is 
shown in Figure 3. 
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The attention model is divided into short 
attention branches and long attention 
branches, both of which learn global features 

at different levels in parallel to obtain 
information about global features. Afterwards, 
the short attention branch and the long 
attention branch are combined to obtain 
comprehensive global features. Finally, the 
global features are combined with the original 
input branch to attach the influence of global 
weights to the noise. 
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Among them, ||f||L is the Lipschitz constant 
of function f, and the function g is a clustering 
operation. Pr and Pθ are two sample 
distributions. Pg is a joint distribution of Pr and 
Pθ.λ is the weight of gradient penalty. 

The wasserstein distance in the iGAN is not a 
measure of the distance between the 
distribution of simulated data and real data, 
but rather a measure of the distance between 
the cluster center of the pt sample data within 
the clustered category and the distribution of 
the simulated dataset within the clustered 
cluster center. The problems such as vanishing 
gradients can be avoided while the gradient 
penalty is added. The higher the wasserstein 
distance, the better the clustering effect. By 
limiting the wasserstein distance to enhance 
the clustering effect, iGAN network can adapt 
more efficiently in AD classification, improve 
training efficiency and accuracy, and achieve 
the expansion of AD sample data and 
preliminary classification of samples. 

3.3 Clustering 

Clustering algorithm is a kind of unsupervised 
learning algorithm utilized for drawing 
inferences from the datasets containing input 
data without any labeled responses. The k-
means clustering method is a common 
unsupervised clustering method. There are 
many evaluation indicators for measuring 
clustering effectiveness. For example, Sum of 
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Among them, ||f||L is the Lipschitz constant of func-
tion f, and the function g is a clustering operation. Pr 

and Pθ are two sample distributions. Pg is a joint distri-
bution of Pr and Pθ.λ is the weight of gradient penalty.
The wasserstein distance in the iGAN is not a mea-
sure of the distance between the distribution of sim-
ulated data and real data, but rather a measure of the 
distance between the cluster center of the pt sample 
data within the clustered category and the distribu-
tion of the simulated dataset within the clustered 
cluster center. The problems such as vanishing gradi-
ents can be avoided while the gradient penalty is add-
ed. The higher the wasserstein distance, the better the 
clustering effect. By limiting the wasserstein distance 
to enhance the clustering effect, iGAN network can 
adapt more efficiently in AD classification, improve 
training efficiency and accuracy, and achieve the ex-
pansion of AD sample data and preliminary classifi-
cation of samples.

3.3. Clustering
Clustering algorithm is a kind of unsupervised learn-
ing algorithm utilized for drawing inferences from 
the datasets containing input data without any la-
beled responses. The k-means clustering method is 
a common unsupervised clustering method. There 
are many evaluation indicators for measuring clus-
tering effectiveness. For example, Sum of Squared 
Error (SSE), Calinski Harabasz (CH), Silhouette Co-
efficent (SC) Davies Boundin Index (DBI), Adjusted 
Rand index (ARI). The AD atrophy pattern is an un-
supervised clustering algorithm that can be evaluated 
using the first four indicators. The ARI indicator is 
used as a clustering evaluation indicator, which can 
be achieved by repeatedly training multiple models 
through the same clustering network and comparing 
the clustering results of multiple models. The ARI in-
dex not only evaluates the clustering effect, but also 
shows the stability of model training.
Auto-encoder (AE) is used as the clustering part of 
the semi-supervised generative adversarial network 
to achieve the clustering function [10]. The AE is a 
common unsupervised learning model in deep learn-
ing, often used in clustering analysis tasks. It can be 

used for feature extraction without the need for man-
ually extracting feature values [8]. 
The network structure of clustering is implemented 
in the paper by combining the encoder part of tradi-
tional autoencoders with the softmax function. The 
formula for softmax is as follows:

Squared Error (SSE), Calinski Harabasz (CH), 
Silhouette Coefficent (SC) Davies Boundin 
Index (DBI), Adjusted Rand index (ARI). The 
AD atrophy pattern is an unsupervised 
clustering algorithm that can be evaluated 
using the first four indicators. The ARI 
indicator is used as a clustering evaluation 
indicator, which can be achieved by 
repeatedly training multiple models through 
the same clustering network and comparing 
the clustering results of multiple models. The 
ARI index not only evaluates the clustering 
effect, but also shows the stability of model 
training. 

Auto-encoder (AE) is used as the clustering 
part of the semi-supervised generative 
adversarial network to achieve the clustering 
function [10]. The AE is a common 
unsupervised learning model in deep learning, 
often used in clustering analysis tasks. It can 
be used for feature extraction without the need 
for manually extracting feature values [8].  
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implemented in the paper by combining the 
encoder part of traditional autoencoders with 
the softmax function. The formula for softmax 
is as follows: 
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Among them, n is the clustering category. Due 
to the unsupervised training of the model, n 
needs to be set. The parameter x is the hidden 
layer vector obtained by the encoder. 

The loss function of network is defined as in 
equation: 
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Among them, f is the reconstruction function 
for the autoencoder. g is generator G. z is the 
noisy of generate G, and z’ is the result of f. 

The clustering model is trained through data 
enhanced sample data generated by the 
improved GAN network. The original real (pt) 

data is analyzed using this clustering model to 
achieve higher accuracy and efficiency. 

4. Experiment and Discussion  

The purpose of the semi-supervised 
generative adversarial network constructed in 
the paper is to capture brain atrophy patterns 
in AD. The change in atrophy pattern does not 
mean the progression of the disease over time, 
nor does it mean a prediction of the patient's 
condition, but simply a classification and 
judgment of the category to which they belong. 
Therefore, atrophy patterns are some constant 
and implicit patterns throughout the entire 
AD process. In the common areas of brain 
atrophy in AD diseases, the degree of atrophy 
is artificially enhanced or weakened, and the 
pattern characteristics are enhanced. The 
dataset was used with three patterns of 
atrophy as the training set to train the 
clustering effect of the model. 

The operating environment is as follows: CPU 
is Intel (R) Core (TM) i7-8565U, GPU is 
NVIDIA GeForce GTX 1050Ti, memory is 8G, 
and operating system is Windows10 64 bit 
operating system. 

Adam Optimizer is set as the optimizer, and 
the learning rate is set to 0.0001. The threshold 
of Wasserstein distance is set to 0.14, and the 
loss function loss value of the clustering 
algorithm is set to be less than 0.002. 

4.1 Analysis of Model Training Effect 

The clustering category of AD brain atrophy 
patterns is unknown, and the clustering 
method used is unsupervised. Therefore, the 
number of clustering categories needs to be 
pre-set. When running the model, the number 
of cluster categories is set to 2, 3, 4, 5, and 6. 

The ARI indicators of clusters with different 
categories are shown in Figure 4. 
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autoencoder. g is generator G. z is the noisy of gener-
ate G, and z’ is the result of f.
The clustering model is trained through data enhanced 
sample data generated by the improved GAN network. 
The original real (pt) data is analyzed using this clus-
tering model to achieve higher accuracy and efficiency.

4. Experiment and Discussion 
The purpose of the semi-supervised generative adver-
sarial network constructed in the paper is to capture 
brain atrophy patterns in AD. The change in atrophy 
pattern does not mean the progression of the disease 
over time, nor does it mean a prediction of the pa-
tient’s condition, but simply a classification and judg-
ment of the category to which they belong. Therefore, 
atrophy patterns are some constant and implicit pat-
terns throughout the entire AD process. In the com-
mon areas of brain atrophy in AD diseases, the degree 
of atrophy is artificially enhanced or weakened, and 
the pattern characteristics are enhanced. The dataset 
was used with three patterns of atrophy as the train-
ing set to train the clustering effect of the model.
The operating environment is as follows: CPU is In-
tel (R) Core (TM) i7-8565U, GPU is NVIDIA GeForce 
GTX 1050Ti, memory is 8G, and operating system is 
Windows10 64 bit operating system.
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Adam Optimizer is set as the optimizer, and the learn-
ing rate is set to 0.0001. The threshold of Wasserstein 
distance is set to 0.14, and the loss function loss value 
of the clustering algorithm is set to be less than 0.002.

4.1. Analysis of Model Training Effect
The clustering category of AD brain atrophy patterns 
is unknown, and the clustering method used is unsu-
pervised. Therefore, the number of clustering catego-
ries needs to be pre-set. When running the model, the 
number of cluster categories is set to 2, 3, 4, 5, and 6.
The ARI indicators of clusters with different catego-
ries are shown in Figure 4.

Figure 4 
ARI indicators for clustering under different categories
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The higher the ARI index, the better the distance sta-
bility and training effectiveness of the model. From 
the graph, it can be seen that setting the number of 
clusters to 3 is the best clustering method for AD sub-
types. Under different categories, the scores of other 
indicators in the model are shown in Figure 4.
From the Figure 5, it can be seen that the SC score and 
CH score of 3-cluster are higher than other cluster cat-
egories. The DBI value of 3-cluster is lower than oth-
er cluster categories. Among them, the higher the SC 
score and CH core, the better the clustering effect, the 
smaller the DBI value, the better the classification ef-
fect. Thus, it can also be confirmed that the model is the 
best clustering method for AD subtype classification 
when the number of clustering categories is set to 3.

Figure 5 
Other indicators of the model
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When the number of clustering categories is set to 3, 
the loss value of model training is shown in Figure 6.

Figure 6 
Loss of model training
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Figure 7 
 From Figure 6, it can be seen that the loss value of dis-

criminator D increases after reaching the lowest value, 
and the final value stabilizes between 0.65 and 0.7. This 
is because generator G was trained first. The loss func-
tion of generator G not only includes the losses caused 
by iGAN structure, but also the losses caused by subse-
quent clustering network encoders. After 6000 epochs 
of model training, the semi-supervised generative ad-
versarial network gradually reach stable convergence.
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The wasserstein distance reflects the clustering effect 
more intuitively than the loss function value of genera-
tor G. The smaller the distance value, the better the clus-
tering effect of model training. Wasserstein distance 
variation of clustering centers is shown in Figure 7.
From Figure 7, it also can be seen that the wasserstein 
distance increases after reaching the lowest value, 

Figure 7 
Wasserstein distance of cluster center distribution
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and finally it is stabilized at a low value as the model 
gradually converges.
Through the variation of the loss function value and 
the wasserstein distance, it can be seen that with the 
training of the network model, the semi-supervised 
generative adversarial network constructed ulti-
mately achieved good results in data enhancement 
and clustering analysis, and achieved relatively suc-
cessful clustering results. The final result is that the 
best clustering method is divided into 3 categories, 
which is consistent with the three patterns artificially 
created by the dataset. It indicates that the model can 
perform well in clustering analysis of heterogeneous 
AD sample data, and can effectively identify potential 
disease-related features in the sample dataset. The 
clustering center of a category is used to analyze and 
compare three types of clustering patterns. The clus-
ter center is shown in Figure 8.
Among them, ROI is the horizontal axis, and vol-
ume is the vertical axis. It can be clearly seen that 
the cluster centers of different cluster categories 

exhibit varying degrees of atrophy at different ROI 
positions. The first type of cluster mainly undergoes 
atrophy in areas such as the nucleus accumbens, 
amygdala, and hippocampus of the brain, indicating 
the loss of neurons related to emotional and olfacto-
ry functions. The clustering features of the second 
type of cluster mainly demonstrate the brain atro-
phy of patients in areas such as the anterior orbit-
al gyrus, indicating a decline in olfactory related 
functions. The third type of cluster exhibits atro-
phy in the temporal and occipital lobes, indicating 
a decline in visual and other related functions. The 
cluster centers of the three clusters all demonstrate 
the decline of memory and other functional related 
abilities in patients with AD.

4.2. Analysis of Model Testing Results
The test data is 1200 sMRI data randomly select-
ed from the ADNI-1 database (https://adni.loni.usc.
edu/data-samples/access-data)(600 for cn data and 
600 for pt data). These sMRI data are preprocessed 
to generate 1200 ROI data. The 1200 ROI data are as 
model input. The number of cluster categories is set 
to 2, 3, 4, 5, and 6.The ARI indicators of clusters with 
different categories are shown in Figure 9.
From Figure 9, it can be seen that the best number of 
categories should be 2. The standard deviation of ARI 
reaches ± 0.23 when 2 categories, which indicating a 

Figure 8 
Cluster centers of pt samples
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certain difference between the four trained models. 
However, when the number of ARI score categories is 
4, the standard deviation is ± 0.03, making the model 
more reliable.
To enhance the generalization ability of the model, 
other clustering indicators will be selected as en-
hanced validation of the clustering results. Under dif-
ferent categories, the scores of other indicators in the 
model are shown in Figure 10.
The SC value reflects intra class cohesion, The DBI 
value reflects inter class distance of different cate-

Figure 9 
ARI of different categories under test set data
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Figure 10 
Other indicators in different categories under test set data
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gories, and CH value measures the first two simulta-
neously. From Figure 10, it can be seen that 4-cluster 
and 2-cluster have higher SC values. The DBI abso-
lute value of 4-cluster is lower than other cluster cat-
egories. Thus, the best number of categories should be 
4. It is the same result obtained by the ARI indicator.
When the clustering categories are 2 and 4, the atro-
phy below the average value of each cluster center is 
shown in Figures 11-12.

Figure 11 
Atrophyin cluster centers with nCluster=2
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Figure 12 
Atrophyin cluster centers with nCluster=4
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When the number of clustering categories is 2, the clus-
tering results are divided into two categories, without 
reflecting the specificity of the atrophy pattern. When 
the number of cluster categories is 4, the brain regions 
with an ROI of around 100 in the first cluster show spe-
cific atrophy. The second type of cluster shows atro-
phy in multiple brain regions. The first 10 ROI regions 
of the third cluster shows atrophy. The fourth type of 
cluster showed atrophy between 50 and 100, and be-
tween 100 and 150. The first, third, and fourth types 
of atrophy patterns represent three subtypes of brain 
atrophy changes that occur in the early stages of AD, 
while the second type of atrophy pattern represents 
brain atrophy in the later stages of AD. Therefore, cat-
egory 4 was ultimately selected as the classification 
method for the test set. Research on classification will 
reveal more information on further AD.

4.3. Comparison with k-means Clustering 
Method
The clustering category is set to 3, and both models 
are trained on the training set. By comparing the cal-
culation methods of various clustering indicators, the 
results are shown in Table 1.

Table 1
Index Evaluation of Two Clustering Methods

Method SC DBI CH

This paper 0.588 0.500 2388.174

K-means 0.070 3.429 38.449

Through the comparison of clustering indicators, the 
semi-supervised generative adversarial network has 
obvious advantages over k-means in clustering, which 
is largely attributed to the enhancement of the sample 
data by the added generative adversarial network.

4.4. Comparison of Clustering Effects Before 
and After Data Enhanced
The sample data and the sample data enhanced by 
semi-supervised generative adversarial network are 
trained on CNN clustering networks respectively. 
The training effect is shown in Figures 13-14.
From two figures, the accuracy network training on the 
original sample is 87.88%, while the accuracy network 
training on enhanced by semi-supervised generative 
adversarial network is 96.54%. The data set is enhanced 

by semi-supervised generative adversarial network has 
a significant improvement effect on network training.

4.5. Analysis with Supervise Mechine 
Learning Combinations
The label data are generated based on clustering output 
in the paper, and used as input for supervised machine 
learning such as SVM [4], GaussianNB, KNN, Decision 
Tree [7] to retrain.The purpose of retraining the results 
through other machine learning methods can further 
reduce the number of features used in clustering. By 
selecting unique or shared ROI regions between differ-
ent patient subtypes to compare a specific subtype or 
subtypes, it is discovered whether there may be com-
monalities behind AD heterogeneity. The classifica-
tion effect of four methods is shown in Figure 15, The 
accuracy of four methods is shown in Table 2.

Figure 13 
Original sample network training curve

Figure 14 
Enhanced sample network training curve
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The selected ROI region data is classified based on 
common features of AD subtypes. The classification 
effect is shown in Figure 16, The accuracy is shown in 
Table 3.

Figure 15 
The classification effect of four methods with unique features

 
Figure 14 

 
 
 
 
 
 
Figure 15 
 

Table 2
The accuracy of four methods with unique features

Method KNN GaussianNB Decision Tree SVM

Accuracy 0.81 0.84 1.00 0.79

Figure 16
The classification effect of four methods with common 
features
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Table 3
The accuracy of four methods with common features

Method KNN Gaussian-
NB

Decision 
Tree

Support Vector 
Machine

Accuracy 0.75 0.69 1.00 0.69

From Figure 15, it can be seen that when selected ROI 
regions with common features for different AD sub-
types, the clustering results show an overlap of sam-
ple data for the two subtypes. According to further 
clustering analysis results, it can be seen that the AD 
subtypes summarized by clustering on brain images 
have special and common features.
Through further classification and analysis of the clus-
tering results by semi-supervised generative adversar-
ial network, it can be more clearly seen that AD has an 
impact on brain atrophy. AD has different effects on 
different regions of the brain, and there are also hetero-
geneity differences among different individuals. The 
study of AD disease changes in different people will 
help doctors to personalized treatment for patients, 
while the potential common rules of AD disease in dif-
ferent people will help to study the pathogenesis.

5. Conclusions
This paper proposes a semi-supervised generative ad-
versarial network to solve the problem of small sam-
ple size and lack of labels in the sMRI dataset for AD 
effectively. Firstly, the sMRI data is preprocessed be-
fore used, and the ROI data is obtained by dividing the 
preprocessed sMRI data into ROI matrix. Secondly, the 
model is designed to extract features and expand the 
sample size of the dataset by iGAN, and ignore parts 
unrelated to disease features. The model has a self-at-
tention mechanism, which has multiple levels of atten-
tion to help capture important global and local features. 
Finally, the clustering category is obtained through the 
algorithm clustering section. The loss function value 
of the network includes the loss value of the generat-
ed adversarial network part and the loss value of the 
clustering network part, so that the loss function not 
only reflects the authenticity of the generated pseudo 
data, but also reflects the clustering effect of the mod-
el. The experimental results show that The semi-su-
pervised generative adversarial network has achieved 
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good and stable clustering performance on the ADNI-1 
sample dataset, and obtained real four types of brain 
atrophy patterns in AD. The CH value and SC value of 
the algorithm are calculated about to 2388 and 0.588, 
and the DBI value is calculated about to 0.5. Compared 
with the traditional k-means clustering method, the re-
sults showed good and stable clustering performance. 
Through further clustering analysis of machine learn-
ing, it can be seen that AD subtypes have characteris-
tics and common features in brain imaging.
In the future, in order to improve the accuracy and 
generalization ability of classification models, semi 
supervised generative adversarial networks will be 
combined with deep classification models to train 

data. And further research will be conducted on 
high-precision classification and finer ROI segmen-
tation methods of supervised learning to explore AD 
related biomarkers, obtaining new insights and pro-
moting the development of AD disease assisted diag-
nosis research.
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