
Information Technology and Control 2025/1/54254

Accelerated Task
Learning Using
Q-learning with Reduced
State Space and Reward
with Bootstrapping Effect

ITC 1/54
Information Technology
and Control
Vol. 54 / No. 1/ 2025
pp. 254-267
DOI 10.5755/j01.itc.54.1.36362

Accelerated Task Learning Using Q-learning with Reduced State
Space and Reward with Bootstrapping Effect

Received 2024/02/16 Accepted after revision 2024/05/04

HOW TO CITE: Rajamohan, V. P., Jagatheesaperumal, S. K. (2025). Accelerated Task Learning
Using Q-learning with Reduced State Space and Reward with Bootstrapping Effect. Information
Technology and Control, 54(1), 254-267. https://doi.org/10.5755/j01.itc.54.1.36362

Varun Prakash Rajamohan, Senthil Kumar Jagatheesaperumal
Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College,
Sivakasi, Tamil Nadu, India; e-mails: varunprakash.r@mepcoeng.ac.in; senthilkumarj@mepcoeng.ac.in

Corresponding authors: varunprakash.r@mepcoeng.ac.in

The influence of robots has been rapidly increasing in domestic scenarios. Robots learning in a self-supervised
manner will be more efficient than programmed intelligence. In this paper, we present Q-learning-based task
learning through interaction with the environment in a table-cleaning scenario. The environment consists of
a table partitioned into two segments with a single object on it. The goal of the agent is to learn the sequence of
tasks required to clean both segments of the table. Here, the state space is designed in such a way that its size
is reduced to achieve better training time and success rate. Besides, in this work, four distinct reward patterns
are utilised. The general reward allocation was based on the effect on the environment. Out of the four reward
patterns, the one that provides an incentive to attain intermediate success leads to improved performance by
the agent compared to the other reward which motivates only upon reaching the terminal state. For the re-
ward with an incentive for intermediate success, the average reward begins to converge around 290 iterations
when rewards are allocated for intermediate performance. By 240 iterations, a success rate of around 84% is
achieved. Another reward with a small positive value for routine tasks learning performance is poor. Another
reward is allotted uniquely by establishing a connection between two consecutive states. This strengthens the
bootstrapping effect and exhibits superior performance in comparison to all four reward schemes. The reward
associated with the bootstrapping effect demonstrates an average convergence in reward over 220 iterations,
with an estimated success rate of 84% achieved over 150 iterations.
KEYWORDS: Interactive learning, Q-learning, cleaning scenario, task planning, reward patterns, bootstrapping.

mailto:obodovskiy58@gmail.com

255Information Technology and Control 2025/1/54

1. Introduction
Robots are extensively used for object manipulation in
various applications, ranging from industry to domes-
tic settings. As population density increases, there is
a growing demand for task planning and cleaning ro-
bots [23]. These robots play a crucial role in both in-
dustrial and domestic environments. Regular clean-
ing is essential for maintaining the living standards
and functionality of these buildings [3]. Therefore,
the automation of cleaning processes in building in-
frastructures has become increasingly necessary. To
achieve efficient automation, robotic agents need to
be equipped with intelligent algorithms to perform
tasks effectively. Infants acquire object manipulation
skills at an early stage through interaction. Similar-
ly, Reinforcement Learning (RL) solves problems by
making repeated attempts with appropriate rewards.
In each instance of interaction, RL performs an ac-
tion that causes a change in the environment’s state.
The agent is rewarded accordingly based on the state
change. Through repeated actions, the agent maxi-
mizes the cumulative reward collected [14].
Mill´an-Arias et al. [20] proposed three different
approaches related to object handling by a robotic
manipulator. These approaches are soft actor-crit-
ic-based Interactive Reinforcement Learning (IRL),
Robust Reinforcement Learning (RRL), and In-
teractive Robust Reinforcement Learning. These
techniques were implemented in a simulation envi-
ronment to classify objects manipulated by the ma-
nipulator. In this work, advice is given regarding tasks
and the dynamics of the environment. The results
show that IRL outperforms the classic RL algorithm.
Training episodes in IRL are reduced compared to
classic RL. Although RRL requires more training epi-
sodes, it achieves good performance even in the pres-
ence of external disturbances. IRRL, a combination
of IRL and RRL, performs better than RRL in terms
of training iterations and maintains robustness even
with changes in the dynamics of the environment.
Cruz et al. [8] proposed a learning algorithm for ob-
ject handling in a simulated domestic cleaning sce-
nario. In this scenario, the agent manipulates obsta-
cles and a sponge to clean the table. The problem was
addressed using three different algorithms: classic
RL, RL with affordance, and Interactive Reinforce-
ment Learning (IRL). In classic RL, a success rate of
35% was achieved with a thousand training episodes.

In the second and third approaches, the number of
training episodes was reduced to a hundred. In IRL,
even receiving small advice, approximately 10%, en-
ables the robot to complete the cleaning task faster.
The above-mentioned work demonstrates better
convergence compared to [10]. Munguia-Galeano et
al. [22] has undertaken a similar study by utilizing
affordance-based RL in the context of Human-Robot
Interaction (HRI) applications. Compared to other
methods such as Q-learning and Deep-Q network,
this approach achieves a higher success rate. The
aforementioned works focus on acquiring a sequence
of actions to accomplish a given task. In contrast, the
authors of [27] concentrated on area coverage using
Q-learning. The problem of local optima in Q-learn-
ing is overcome by employing predator-prey reward
allocation. This approach incorporates three reward
functions: Predation Avoidance, Smoothness, and
Boundary. The weighted combination of these three
rewards provides a better coverage area.
Cheong et al. [6] propose an algorithm for manipulat-
ing obstacles to find a collision-free path to the target
object. The objects are arranged in a grid-based en-
vironment. A deep Q-network is used to learn which
object to pick and where to place it in order to obtain
a collision-free path to the target. Two different deep
learning architectures, single DQN and sequentially
separated DQN, are proposed. This work achieves a
reduction in execution time and the number of obsta-
cles rearranged by up to 35%. Here, the sequentially
separated DQN performs better as the number of ob-
stacles increases. In [18], an interactive perception
method for object grasping in a cluttered environment
is considered. Initially, the affordance map is obtained
from an RGB-D image. This affordance map indicates
the confidence level of each pixel for grasping. If the
affordance map is inappropriate, a push action is per-
formed until a suitable affordance map is obtained.
The exploration strategy is based on deep reinforce-
ment learning. This work demonstrates a higher suc-
tion success rate and scene success rate. Authors in
[11] proposes a comparable approach without tactile
sense, whereas [13] proposes object de-cluttering us-
ing mouse-based grasp planning.
Knowledge about handling objects in one task is trans-
ferred to other tasks in [1]. Here, probability-based pol-

Information Technology and Control 2025/1/54256

icy reuse is combined with Q-learning. The learning
time for new tasks is reduced due to knowledge trans-
fer. Furthermore, this work can be improved to handle
high sensory inputs. In [19, 12], RL is applied to alter the
camera viewpoint to improve object detection. Addi-
tionally, RL is discussed in robot cleaning tasks in [21,
16, 26, 25], and for navigation with obstacle avoidance
in [4]. Cruz et al. in [9], proposed a multimodal feed-
back for cleaning tasks using a robotic agent. Object de-
tection using deep Q-network and trust region policy
optimization is described in [12] and [21] respectively.
One of the main problems with RL is the long exe-
cution time required for training [17]. An alteration
in training approaches aimed at improving learning
performance is discussed in [15]. In the work [15],
training is conducted in a manner that alternates
between unified and separated training approach-
es to improve the learning experience. The method
of population-directed policy search is introduced
in [5] to accelerate the learning process of the Deep-
RL-based task offloading technique. A key factor that
contributes to increased convergence time is a large
and complex state space [2]. In this study, Q-learning
is applied to a robotic agent to learn the task of clean-
ing a table with a single object on it. Compared to the
other mentioned works, this study focuses on reduc-
ing the size of the state space and varying the reward
allocation. As a result, it reduces the number of train-
ing iterations and increases the success rate in learn-
ing the task of table cleaning. The points mentioned
below are the significant contributions of this work:
Q-learning algorithm is applied to the task of cleaning
the table with reduced state space.
 _ The agent’s learning rate is improved by incorpo-

rating task-customized rewards with a bootstrap-
ping effect.

 _ Impact analysis of discount factor and learning
rate on Q-value convergence are compared for var-
ious reward patterns.

 _ The behavior of the agent is connected to human
cognition. To facilitate comprehension of human
motivation towards task completion.

The rest of this paper is organized as follows: the envi-
ronment definition and RL implementation towards
a table cleaning scenario are discussed in Section 2.
The simulation methodology and the results obtained
are discussed in Section 3. Finally, the conclusion and
future directions are summarized in Section 4.

2. Problem Formulation and
Methodology
In this work, Q-learning is effectively applied to teach
a robotic manipulator (agent) the task of table clean-
ing. Through trial and error, the robot can learn to
adapt its approach based on the effectiveness of its
previous actions, resulting in a more efficient learning
process for cleaning. This section describes Q-learn-
ing and the definition of the environment state for the
table cleaning task. A state is represented by a set of
variables that describe the agent’s location, actions,
and the state of the environment. In this work, the size
of state space is reduced for improved learning rate
and success rate. The reward function in Q-learning
defines the agent’s goal and provides a measure of
success for its actions. This section also explains the
distinctive reward allocation mechanism with a boot-
strapping effect to benefit the learning of the agent.
The agent is placed near the table like a janitor ready
to clean. The table is partitioned into two segments
and contains an object in any one of the segments.
Further, a sponge for cleaning is placed in a pre-de-
fined location. The environment is designed in such a
way that the size of state space is reduced. In work by
Cruz et al. [8] where a similar table cleaning scenario
is considered, the cleaning object is placed upon any
one of the segments therefore leading to increased
state space size. The simulation scenario with the
location of the sponge and object is represented in
Figure 1. Here, the placement of the sponge in a pre-
defined location reduces the state space by half com-
pared to [8]. Moreover, this way environment not
only reduces the state space size but also is more in
synchronous with real human cleaning scenarios. In
most practical cleaning table scenarios, the sponge is
not located on the table rather the janitor comes with
a trolley that contains the sponge for cleaning. Thus,
the environment design consideration taken in this
work is better in terms of state space size and more
oriented towards practical table cleaning scenarios.
A state machine is developed to describe the table
cleaning scenario with reduced state space. In that,
each state is characterised by the location of the ob-
ject, the agent’s location, and the cleanliness status
of each segment. For example, in State 1, segments
are unclean, the object is located in Segment 2, and
the manipulator is positioned above Segment 1. If

257Information Technology and Control 2025/1/54

the agent performs the clean action from this state,
it transitions to state-7. In state-7, Segment 1 is clean,
segment 2 is unclean with the object, and the manip-
ulator is positioned above Segment 1. The complete
state description is provided in Table 1. The task for
agent learning presented in [8] was similar but had a
larger number of states, specifically 45. In this work,
state reduction is achieved by confining the sponge
to a predefined location, as highlighted in Figure 1(b).
The agent is restricted from placing the sponge above
any of the segments on the table. This modification in
the environmental design has a positive impact on the
speed at which agents learn.
The actions performed by the agent are as follows:
move, pick, place, and clean. When the agent receives
the ”move” action, it transitions from the current seg-
ment to the other segment, which can be either from
Segment 1 to Segment 2 or vice versa. During the pick
action, the agent picks up the object in its current seg-
ment. If the current segment does not contain the ob-
ject, no change in the state occurs. Similarly, the place

action involves placing the object held by the manip-
ulator onto the current segment. The location of the
sponge is fixed and predefined. Therefore, when the
clean action is performed, the agent takes the sponge
from the predefined location, cleans the current seg-
ment of the manipulator, and then places the sponge
back in the home location.
In this work, the focus is not on the ability to grasp,
actuate, and reach mechanisms, but rather on learn-
ing the correct sequence of actions to be performed
by the agent with minimum training iterations and
an improved success rate. For example, if the object
and manipulator are located in Segment 1 of the table,
the desired sequence for successful task completion
is as follows: move (right), clean (right), move (left),
pick (object), move (right), place (object), move (left),
and clean (left). Therefore, a minimum of eight steps
is required to reach the terminal state. The objective
of the agent is to clean both sides by following the
correct sequence of steps. In this work, the learning
is attained with minimal training iterations and a
high success rate. Improvement in learning rate is ob-

Figure 1
Q-Learning employed in a robotic cleaning task simulation environment

(a) Manipulator in Home location

b) Sponge Location

(c) Manipulator above Segment 1

d) Manipulator above Segment 2

A state machine is developed to describe the table
cleaning scenario with reduced state space. In that,
each state is characterised by the location of the
object, the agent’s location, and the cleanliness
status of each segment. For example, in State 1,
segments are unclean, the object is located in
Segment 2, and the manipulator is positioned
above Segment 1. If the agent performs the clean
action from this state, it transitions to state-7. In
state-7, Segment 1 is clean, segment 2 is unclean
with the object, and the manipulator is positioned
above Segment 1. The complete state description is
provided in Table 1. The task for agent learning
presented in [8] was similar but had a larger
number of states, specifically 45. In this work, state
reduction is achieved by confining the sponge to a
predefined location, as highlighted in Figure 1(b).
The agent is restricted from placing the sponge
above any of the segments on the table. This
modification in the environmental design has a
positive impact on the speed at which agents learn.

The actions performed by the agent are as follows:
move, pick, place, and clean. When the agent
receives the ”move” action, it transitions from the
current segment to the other segment, which can
be either from Segment 1 to Segment 2 or vice
versa. During the pick action, the agent picks up
the object in its current segment. If the current
segment does not contain the object, no change in
the state occurs. Similarly, the place action
involves placing the object held by the
manipulator onto the current segment. The
location of the sponge is fixed and predefined.
Therefore, when the clean action is performed, the

agent takes the sponge from the predefined
location, cleans the current segment of the
manipulator, and then places the sponge back
in the home location.

In this work, the focus is not on the ability to
grasp, actuate, and reach mechanisms, but
rather on learning the correct sequence of
actions to be performed by the agent with
minimum training iterations and an
improved success rate. For example, if the
object and manipulator are located in
Segment 1 of the table, the desired sequence
for successful task completion is as follows:
move (right), clean (right), move (left), pick
(object), move (right), place (object), move
(left), and clean (left). Therefore, a minimum
of eight steps is required to reach the terminal
state. The objective of the agent is to clean
both sides by following the correct sequence
of steps. In this work, the learning is attained
with minimal training iterations and a high
success rate. Improvement in learning rate is
obtained by reducing the size of state space as
described above. Further, the learning rate
and success percentage are enhanced by
allowing task-customised rewards with a
bootstrapping effect and encouraging in-
between success.

Table 1

State definition for table cleaning scenario
with reduced state space for improved
learning rate.

State
Count

Segment 1 Segment 2 Manipulator
Location

(a) Manipulator in Home location

b) Sponge Location

(c) Manipulator above Segment 1

d) Manipulator above Segment 2

A state machine is developed to describe the table
cleaning scenario with reduced state space. In that,
each state is characterised by the location of the
object, the agent’s location, and the cleanliness
status of each segment. For example, in State 1,
segments are unclean, the object is located in
Segment 2, and the manipulator is positioned
above Segment 1. If the agent performs the clean
action from this state, it transitions to state-7. In
state-7, Segment 1 is clean, segment 2 is unclean
with the object, and the manipulator is positioned
above Segment 1. The complete state description is
provided in Table 1. The task for agent learning
presented in [8] was similar but had a larger
number of states, specifically 45. In this work, state
reduction is achieved by confining the sponge to a
predefined location, as highlighted in Figure 1(b).
The agent is restricted from placing the sponge
above any of the segments on the table. This
modification in the environmental design has a
positive impact on the speed at which agents learn.

The actions performed by the agent are as follows:
move, pick, place, and clean. When the agent
receives the ”move” action, it transitions from the
current segment to the other segment, which can
be either from Segment 1 to Segment 2 or vice
versa. During the pick action, the agent picks up
the object in its current segment. If the current
segment does not contain the object, no change in
the state occurs. Similarly, the place action
involves placing the object held by the
manipulator onto the current segment. The
location of the sponge is fixed and predefined.
Therefore, when the clean action is performed, the

agent takes the sponge from the predefined
location, cleans the current segment of the
manipulator, and then places the sponge back
in the home location.

In this work, the focus is not on the ability to
grasp, actuate, and reach mechanisms, but
rather on learning the correct sequence of
actions to be performed by the agent with
minimum training iterations and an
improved success rate. For example, if the
object and manipulator are located in
Segment 1 of the table, the desired sequence
for successful task completion is as follows:
move (right), clean (right), move (left), pick
(object), move (right), place (object), move
(left), and clean (left). Therefore, a minimum
of eight steps is required to reach the terminal
state. The objective of the agent is to clean
both sides by following the correct sequence
of steps. In this work, the learning is attained
with minimal training iterations and a high
success rate. Improvement in learning rate is
obtained by reducing the size of state space as
described above. Further, the learning rate
and success percentage are enhanced by
allowing task-customised rewards with a
bootstrapping effect and encouraging in-
between success.

Table 1

State definition for table cleaning scenario
with reduced state space for improved
learning rate.

State
Count

Segment 1 Segment 2 Manipulator
Location

(a) Manipulator in Home location

b) Sponge Location

(c) Manipulator above Segment 1

d) Manipulator above Segment 2

A state machine is developed to describe the table
cleaning scenario with reduced state space. In that,
each state is characterised by the location of the
object, the agent’s location, and the cleanliness
status of each segment. For example, in State 1,
segments are unclean, the object is located in
Segment 2, and the manipulator is positioned
above Segment 1. If the agent performs the clean
action from this state, it transitions to state-7. In
state-7, Segment 1 is clean, segment 2 is unclean
with the object, and the manipulator is positioned
above Segment 1. The complete state description is
provided in Table 1. The task for agent learning
presented in [8] was similar but had a larger
number of states, specifically 45. In this work, state
reduction is achieved by confining the sponge to a
predefined location, as highlighted in Figure 1(b).
The agent is restricted from placing the sponge
above any of the segments on the table. This
modification in the environmental design has a
positive impact on the speed at which agents learn.

The actions performed by the agent are as follows:
move, pick, place, and clean. When the agent
receives the ”move” action, it transitions from the
current segment to the other segment, which can
be either from Segment 1 to Segment 2 or vice
versa. During the pick action, the agent picks up
the object in its current segment. If the current
segment does not contain the object, no change in
the state occurs. Similarly, the place action
involves placing the object held by the
manipulator onto the current segment. The
location of the sponge is fixed and predefined.
Therefore, when the clean action is performed, the

agent takes the sponge from the predefined
location, cleans the current segment of the
manipulator, and then places the sponge back
in the home location.

In this work, the focus is not on the ability to
grasp, actuate, and reach mechanisms, but
rather on learning the correct sequence of
actions to be performed by the agent with
minimum training iterations and an
improved success rate. For example, if the
object and manipulator are located in
Segment 1 of the table, the desired sequence
for successful task completion is as follows:
move (right), clean (right), move (left), pick
(object), move (right), place (object), move
(left), and clean (left). Therefore, a minimum
of eight steps is required to reach the terminal
state. The objective of the agent is to clean
both sides by following the correct sequence
of steps. In this work, the learning is attained
with minimal training iterations and a high
success rate. Improvement in learning rate is
obtained by reducing the size of state space as
described above. Further, the learning rate
and success percentage are enhanced by
allowing task-customised rewards with a
bootstrapping effect and encouraging in-
between success.

Table 1

State definition for table cleaning scenario
with reduced state space for improved
learning rate.

State
Count

Segment 1 Segment 2 Manipulator
Location

(a) Manipulator in Home location

b) Sponge Location

(c) Manipulator above Segment 1

d) Manipulator above Segment 2

A state machine is developed to describe the table
cleaning scenario with reduced state space. In that,
each state is characterised by the location of the
object, the agent’s location, and the cleanliness
status of each segment. For example, in State 1,
segments are unclean, the object is located in
Segment 2, and the manipulator is positioned
above Segment 1. If the agent performs the clean
action from this state, it transitions to state-7. In
state-7, Segment 1 is clean, segment 2 is unclean
with the object, and the manipulator is positioned
above Segment 1. The complete state description is
provided in Table 1. The task for agent learning
presented in [8] was similar but had a larger
number of states, specifically 45. In this work, state
reduction is achieved by confining the sponge to a
predefined location, as highlighted in Figure 1(b).
The agent is restricted from placing the sponge
above any of the segments on the table. This
modification in the environmental design has a
positive impact on the speed at which agents learn.

The actions performed by the agent are as follows:
move, pick, place, and clean. When the agent
receives the ”move” action, it transitions from the
current segment to the other segment, which can
be either from Segment 1 to Segment 2 or vice
versa. During the pick action, the agent picks up
the object in its current segment. If the current
segment does not contain the object, no change in
the state occurs. Similarly, the place action
involves placing the object held by the
manipulator onto the current segment. The
location of the sponge is fixed and predefined.
Therefore, when the clean action is performed, the

agent takes the sponge from the predefined
location, cleans the current segment of the
manipulator, and then places the sponge back
in the home location.

In this work, the focus is not on the ability to
grasp, actuate, and reach mechanisms, but
rather on learning the correct sequence of
actions to be performed by the agent with
minimum training iterations and an
improved success rate. For example, if the
object and manipulator are located in
Segment 1 of the table, the desired sequence
for successful task completion is as follows:
move (right), clean (right), move (left), pick
(object), move (right), place (object), move
(left), and clean (left). Therefore, a minimum
of eight steps is required to reach the terminal
state. The objective of the agent is to clean
both sides by following the correct sequence
of steps. In this work, the learning is attained
with minimal training iterations and a high
success rate. Improvement in learning rate is
obtained by reducing the size of state space as
described above. Further, the learning rate
and success percentage are enhanced by
allowing task-customised rewards with a
bootstrapping effect and encouraging in-
between success.

Table 1

State definition for table cleaning scenario
with reduced state space for improved
learning rate.

State
Count

Segment 1 Segment 2 Manipulator
Location

(a) Manipulator in Home location b) Sponge Location

(c) Manipulator above Segment 1 d) Manipulator above Segment 2

Information Technology and Control 2025/1/54258

tained by reducing the size of state space as described
above. Further, the learning rate and success per-
centage are enhanced by allowing task-customised
rewards with a bootstrapping effect and encouraging
in-between success.

2.1. Strategy for Reward Pattern Formulation
Agent’s each interaction with the environment it re-
ceives reward with respect to the state change. This
encourages learning by performing action and ob-
serving its effect on the environment. The object of
reinforcement learning is to maximise the reward
received over some time. The rewards relate to obser-
vations obtained from the surroundings. Additional-
ly, it can be allocated interactively through feedback
mechanisms. This enhances the agent’s learning with
changes in environmental conditions. However, this

Table 1
State definition for table cleaning scenario with reduced state space for improved learning rate

State Count Segment 1 Segment 2 Manipulator
Location

1 Unclean Unclean with object Segment 1

2 Unclean Unclean with object Segment 2

3 Unclean Unclean with object Segment 2 holding the object

4 Unclean with object Unclean Segment 1

5 Unclean with object Unclean Segment 2

6 Unclean with object Unclean Segment 1 holding the object

7 Clean Unclean with object Segment 1

8 Clean Unclean with object Segment 2

9 Clean Unclean with object Segment 2 holding the object

10 Unclean with object Clean Segment 1

11 Unclean with object Clean Segment 2

12 Unclean with object Clean Segment 1 holding the object

13 Clean Clean with object Segment 1

14 Clean Clean with object Segment 2

15 Clean Clean with object Segment 2 holding the object

16 Clean with object Clean Segment 1

17 Clean with object Clean Segment 2

18 Clean with object Clean Segment 1 holding the object

work aims to enhance the agent’s learning by modi-
fying the preprogrammed reward in response to envi-
ronmental observations. Appropriate instant reward
allotment has a major impact on the agent’s learning.
In this work, different rewards were being considered.
The rationale is that rewards that are not appropri-
ately sized may not provide enough motivation for the
agent to gain new knowledge. Conversely, excessive-
ly big rewards may cause the agent to engage in risky
behaviors. Enhancing the rewards is a crucial aspect
of developing an effective reinforcement learning al-
gorithm. Therefore, the present investigation exam-
ines several reward patterns and analyses their per-
formance. The four different reward patterns, namely
r1, r2, r3, and r4, were used to train the agent as given
in Table 2. The reward r1 allows the highest positive
value only when the terminal state is reached, but

259Information Technology and Control 2025/1/54

the reward r2 assigns the highest positive value for
successes that occur during the intermediate stages.
Reward r3 provides a slight positive incentive for rou-
tine actions, in addition, reward r4 penalises looping
by relating two consecutive states.
Reward r4 is allotted in a new way relating two states
thereby enhancing the bootstrapping effect. Similar-
ly, r2 proves to be better by encouraging in-between
success. These reward patterns are described in Ta-
ble 2, where the terminal state represents the com-
pletion of cleaning both segments of the table. ”Rele-
vant cleaning” refers to cleaning an unclean segment,
while “Irrelevant Cleaning” refers to cleaning an al-
ready cleaned segment of the table. Pick, Place, and
Move are routine tasks that need to be performed
meaningfully to progress toward the terminal state.
”Improper action” refers to performing the clean ac-
tion while holding the object in hand or cleaning the
segment where the object is already present, among
other cases. Finally, the ”looping action” parameter is
implemented in a distinct manner where it connects
two consecutive states to enhance the bootstrapping
effect. This means that the agent receives a penalty
when it selects actions that result in switching back
and forth between two identical states
In the reward pattern r1, a high positive reward of 1 is
allocated only when the agent reaches the terminal
state, i.e., when both segments of the table are clean.
The maximum negative reward is given for improper
actions performed by the agent from certain states.
For all other actions (move, pick, place, clean), a less
significant negative reward of −0.01 is awarded. This
specific reward pattern has been implemented in the
work mentioned in reference [8]. The reward pattern
r2 is also described in Table 2. In r2, a high negative re-
ward of −1 is given for improper actions. A small neg-
ative reward is assigned for all actions, such as mov-

Table 2
Multiple Reward Allotment Patterns

Reward Terminal
State

Relevant
Cleaning

Irrelevant
Cleaning

Pick
Place
Move

Improper
Actions

Looping
Penalty

r1 1 -0.01 -0.01 -0.01 -1 -

r2 1 1 -0.01 -0.01 -1 -

r3 1 1 -0.01 0.01 -1 -

r4 1 1 -0.01 0.01 -1 -0.01

ing, picking, placing, and cleaning an already clean
segment. The difference compared to r1 is that a high
positive reward of 1 is allocated for cleaning even one
unclean segment of the table. In r1, the high reward of
1 is only given when the terminal state is achieved.
Reward r3, as shown in Table 2, is similar to r2 in many
ways in terms of awarding high positive rewards and
less significant negative rewards. The difference is that
a less significant positive reward of 0.01 is given for
routine actions like pick and place. Reward r3 follows
the same pattern as r2 but with the addition of a small
positive reward for routine actions. However, a new
aspect is introduced in one of the reward allocations,
which relates to two consecutive states. In other words,
the agent receives a small penalty of −0.01 for looping
between the same states. Looping between the same
states occurs, when the agent alternates between move
actions or pick and place actions, resulting the agent
being stuck between the same two states. This penalty
is included in reward r4 to prevent infinite looping.

2.2. Cognitive Learning Using RL
Infants continuously learn about different objects in
their environment by interacting with them. Through
interaction, they learn various attributes such as col-
or, shape, and usage. This learning occurs naturally as
they observe the cause-and-effect relationships. Sim-
ilarly, the agents in the RL environment learn through
repeated interactions with the environment. Like
other machine learning algorithms, RL’s learning im-
proves with experience. However, unlike other algo-
rithms, the data for learning in RL is collected by the
agent performing repeated actions on the environ-
ment. As a result, learning in RL happens incremen-
tally in a completely unknown environment.
RL aims to maximise the reward in a given scenario
to reach the terminal state. Q-learning is a popular RL

Information Technology and Control 2025/1/54260

algorithm used to solve a wide range of problems in ro-
botics and other domains. Q-learning is an off-policy
RL algorithm that can identify the optimal action to
take in a given state without requiring a model of the
environment. The agent decides on the next action
based on its current location within the environment.
Figure 2 illustrates the complete flow of the learn-
ing sequence in the Q-learning algorithm. The agent
maintains a table whose dimensions are determined
by the size of the state space and the number of avail-
able actions. This table is referred to as the Q- table,
represented as Q [S, A], where S is the set of possible
states, and A is the set of possible actions that the
agent can take in those states. The values in the Q-ta-
ble indicate the expected cumulative rewards that the
agent will receive by taking a particular action in a
specific state. The Q-table is updated during each it-
eration of the learning process as the agent interacts
with the environment and receives feedback in the
form of rewards. This updating of the Q-table during
learning iterations enables the agent to improve its
estimates and make better decisions. The Q-table
is updated using Equation (1), which is commonly
known as the Bellman equation.

Qπ (st,at)=E[rt+1+γrt+2+ γ2 rt+2+ ….]. (1)

Initially, all the values in the Q-table are set to zero,
and they are updated as training iterations progress.
The agent takes an action and receives a reward based
on the effect it has on the environment. The Q-value
is calculated based on the current Q-value and the re-
ward received in response to the performed action. The

Figure 2
Q-Learning employed in a robotic cleaning task simulation
environment

r3 1 1 -0.01 0.01 -1 -

r4 1 1 -0.01 0.01 -1 -0.01

Reward r4 is allotted in a new way relating two
states thereby enhancing the bootstrapping effect.
Similarly, r2 proves to be better by encouraging in-
between success. These reward patterns are
described in Table 2, where the terminal state
represents the completion of cleaning both
segments of the table. ”Relevant cleaning” refers to
cleaning an unclean segment, while “Irrelevant
Cleaning” refers to cleaning an already cleaned
segment of the table. Pick, Place, and Move are
routine tasks that need to be performed
meaningfully to progress toward the terminal
state. ”Improper action” refers to performing the
clean action while holding the object in hand or
cleaning the segment where the object is already
present, among other cases. Finally, the ”looping
action” parameter is implemented in a distinct
manner where it connects two consecutive states to
enhance the bootstrapping effect. This means that
the agent receives a penalty when it selects actions
that result in switching back and forth between
two identical states

In the reward pattern r1, a high positive reward of
1 is allocated only when the agent reaches the
terminal state, i.e., when both segments of the table
are clean. The maximum negative reward is given
for improper actions performed by the agent from
certain states. For all other actions (move, pick,
place, clean), a less significant negative reward of
−0.01 is awarded. This specific reward pattern has
been implemented in the work mentioned in
reference [8]. The reward pattern r2 is also
described in Table 2. In r2, a high negative reward
of −1 is given for improper actions. A small
negative reward is assigned for all actions, such as
moving, picking, placing, and cleaning an already
clean segment. The difference compared to r1 is
that a high positive reward of 1 is allocated for
cleaning even one unclean segment of the table. In
r1, the high reward of 1 is only given when the
terminal state is achieved.

Reward r3, as shown in Table 2, is similar to r2 in
many ways in terms of awarding high positive
rewards and less significant negative rewards. The
difference is that a less significant positive reward
of 0.01 is given for routine actions like pick and
place. Reward r3 follows the same pattern as r2 but
with the addition of a small positive reward for
routine actions. However, a new aspect is
introduced in one of the reward allocations, which
relates to two consecutive states. In other words,
the agent receives a small penalty of −0.01 for
looping between the same states. Looping between

the same states occurs, when the agent
alternates between move actions or pick and
place actions, resulting the agent being stuck
between the same two states. This penalty is
included in reward r4 to prevent infinite
looping.

Figure 2

Q-Learning employed in a robotic cleaning task
simulation environment.

2.2 Cognitive Learning Using RL
Infants continuously learn about different
objects in their environment by interacting
with them. Through interaction, they learn
various attributes such as color, shape, and
usage. This learning occurs naturally as they
observe the cause-and-effect relationships.
Similarly, the agents in the RL environment
learn through repeated interactions with the
environment. Like other machine learning
algorithms, RL’s learning improves with
experience. However, unlike other
algorithms, the data for learning in RL is
collected by the agent performing repeated
actions on the environment. As a result,
learning in RL happens incrementally in a
completely unknown environment.

RL aims to maximise the reward in a given
scenario to reach the terminal state. Q-
learning is a popular RL algorithm used to
solve a wide range of problems in robotics
and other domains. Q-learning is an off-
policy RL algorithm that can identify the
optimal action to take in a given state without
requiring a model of the environment. The
agent decides on the next action based on its
current location within the environment.

Figure 2 illustrates the complete flow of the
learning sequence in the Q-learning

Q- value is computed according to Equation (2). By up-
dating the Q-table in this manner, the value function Q
is maximized, enabling the agent to make better deci-
sions. This allows the agent to select actions that are
more likely to result in the highest cumulative rewards

Q(st, at) <= Q(st , at) + α[rt+1 + γQ(st+1, at+1) −Q(st, at)] (2)

Q∗(s, a) = max Qπ(s, a). (3)

In Equation (5), at represents the current action cho-
sen from a set of available actions A that can be per-
formed by the agent on the environment. Similarly, st
is the current state from a set of states S representing
the environment. Among all the states in set S, one
state ST is called a terminal state, marking the end of
the training episode. In this work, the terminal state is
achieved when both segments of the table have been
cleaned by the agent. rt represents the immediate re-
ward received according to a predefined pattern. With
each action performed by the agent, there is a state
transition in the environment. Consequently, a pos-
itive or negative reward is received as feedback for
each action and corresponding state transition. The
objective of Q-learning is to learn the policy that max-
imizes the Q-value for a state action pair as represent-
ed in Equation (3).
In this work, out of the four rewards that are allocat-
ed, one is given in a distinct manner that depends on
the relationship between two consecutive states. The
agent, present in the environment in the current state
st ∈ S, performs the action at ∈ A, receives the reward
rt, and undergoes a state transition to the next state st+1.
The parameter γ is the discount factor, determining
the weight given to future rewards. The value of γ in-
fluences the agent’s consideration of long-term versus
immediate rewards. The parameter α is the learning
rate, which determines how much new information is
incorporated into the action selection policy. Striking a
balance between these parameters allows the agent to
appropriately value future and current rewards.
Temporal Difference (TD) learning, as given in Equa-
tion (4), is used to update the Q-value estimate of a
state-action pair. TD learning updates the Q-value
by bootstrapping the observed value and the esti-
mated value of the next state. The estimates of future
rewards are obtained by using the current estimate
of the value function, reducing variance in the esti-
mates. This approach aids in the convergence of the
optimal value, even in cases of non-deterministic

261Information Technology and Control 2025/1/54

transitions in the environment. The temporal differ-
ence though includes a bootstrapping effect by relat-
ing two states, this is further enhanced in reward r4 to
make the learning faster with a high success rate.

V(s) <= V(s) + α [r + γV(s′−V(s)]. (4)

Q-learning aims to determine a policy that maximizes
the cumulative reward over time. An optimal policy,
denoted as π∗, is one that is either the best or equal to
all other policies. Such policies share the same opti-
mal action-value function, denoted as Q∗ (as given in
Equation (3)). Proper reward allocation is crucial in
Q-learning because rewards have a significant impact
on the optimal policy that the agent will learn. The
agent’s objective is to maximize the total reward it re-
ceives over time. Proper reward allocation is crucial in
Q-learning because rewards play a key role in shaping
the optimal policy that the agent will learn. Rewards
should be designed to provide a clear signal to the agent
about which actions are desirable in a given state. If the
rewards are ambiguous or do not align well with the
agent’s objective, the agent may learn a sub-optimal
policy. Therefore, it is important to carefully design the
reward function to ensure proper reward allocation.
The reward function should be customized to suit the
specific task that the agent is attempting to accomplish.

Algorithm 1:
Q-Learning for Table Cleaning (Two Segments)

Input: Q[S,A], State Table, List of Actions (A),
Reward rt

Output: Q[S,A] with optimised Q-values
1 for each episode do
2 Select at ← ε-greedyActionSelection(st)
3 Perform the action at on the table
4 st+1 ← StateTransit(st, at)
5 Allot Reward rt

6 Update Q[S,A] using equation 2
7 itrCnt ← itrCnt + 1
8 if st+1 is Terminal State then
9 End episode
10 else if itrCnt ≥ maxItr then
11 End episode
12 else if st+1 is a failed State then
13 st+1 ← st

14 end if
15 st ← st+1

16 end for

Algorithm 1 presents the framework of Q-learning in
action for the table cleaning application. It outlines the
flow of a single episode, which consists of multiple it-
erations. Each episode requires several inputs: a state
table, action definitions, reward pattern, and Q-table
initialization. The state table is constructed based on
the environment specifications, which are described
in detail in Table 1. Next, a list of actions performed
by the agent on the environment needs to be provided.
To quantify the impact of actions on the environment,
an appropriate reward pattern is designed. Finally, the
Q-table denoted as Q[S, A], is initially populated with
zero values, with the table dimensions corresponding
to the number of states and actions. The Q-learning al-
gorithm takes these inputs and updates the Q-table Q[S,
A] during each iteration. As a result, the Q-learning al-
gorithm produces an optimized Q-table that guides the
agent in selecting the appropriate action for each state.

at = argmax Q(St, a). (5)

Each iterations, begins with ϵ-greedy-based action se-
lection, where the value of ϵ is set to 0.1. Equation (5)
is primarily used to determine the next action. In this
equation, St represents the current state of the envi-
ronment, a is an action, and A corresponds to the list
of all possible actions. The agent then performs the
chosen action on the table, and the state transition in
the environment is observed. The Q-value is computed
based on the received reward, followed by an update to
the Q-table. The iteration count is then incremented.
If the next state is the terminal state, the current epi-
sode is stopped, and a new episode begins. Similarly, if
the iteration count reaches its maximum value, the ep-
isode is terminated. This termination is implemented
to avoid infinite looping within a single episode. When
the above two conditions are not met, the current state
is updated to the next state, and the algorithm proceeds
to the next iteration within the same episode. If the
next state is a failed state, the current state remains
the same, and the episode continues. Therefore, a set of
iterations constitutes an episode, and a series of multi-
ple episodes is referred to as a training run.

3. Simulations and Outcomes
The findings obtained from the application of Q-
learning-based cleaning with a reduced state space
are discussed in this section. The simulation investi-

Information Technology and Control 2025/1/54262

gations were carried out using the CoppeliaSim soft-
ware [24]. The internal inverse kinematics module of
CoppeliaSim is used for planning manipulator move-
ments.

3.1. Discussions on Impact of Reward
Patterns on Learning Speed of Agent
The agent performing an action on the environment,
causing a state change, is considered a single itera-
tion. A collection of iterations is referred to as an epi-
sode. Each episode ends only when the agent reaches
the terminal state or after performing a certain num-
ber of iterations. If the agent performs an improper
action, the training continues from the previous state
instead of restarting from the initial state. Therefore,
each episode is terminated after a predefined num-
ber of iterations, even if the agent has not reached
the terminal state, to avoid infinite looping within an
episode. The iteration count may be higher in certain
cases, even if the episode count is lower. Therefore, in
the results graph, the average reward and success rate
are plotted against iterations rather than episodes.
A collection of episodes is considered a single run.
In the graphs, the average reward and success rate
values represent averages across different runs. The
agent’s learning is quantified using two parameters
namely average reward convergence and success rate.
Average reward convergence tells about the stabili-
ty and speed at which the agent learns. Success rate
analysis gives inference about the maximum efficien-
cy reached by the agent.
The success rate obtained for different reward vari-
ations is shown in Figure 3. It can be observed that
the agent achieves a success rate of approximately
84% for all four types of rewards applied to the table
cleaning scenario. However, the difference lies in the
number of training iterations required to reach the
maximum success rate. Rewards r1 and r2 exhibit
similar patterns with small differences, as shown in
Table 2. With this variation in reward allocation, r2
enables the agent to reach the maximum success rate
400 iterations earlier than r1. The slope of the curve
for reward r2 is steeper compared to the slope for re-
ward r1. A similar trend can be observed in the con-
vergence curve of the average reward value, as depict-
ed in Figure 4. Reward r2 converges 400 iterations
earlier compared to reward r1. The maximum average
reward value for r2 is 0.3, while it is 0.17 for r1. This

Figure 3
Success rate observed for various iterations with variations
in rewards (Q-Learning)

higher in certain cases, even if the episode count is
lower. Therefore, in the results graph, the average
reward and success rate are plotted against
iterations rather than episodes. A collection of
episodes is considered a single run. In the graphs,
the average reward and success rate values
represent averages across different runs. The
agent’s learning is quantified using two
parameters namely average reward convergence
and success rate. Average reward convergence
tells about the stability and speed at which the
agent learns. Success rate analysis gives inference
about the maximum efficiency reached by the
agent.

Figure 3

Success rate observed for various iterations with
variations in rewards (Q-Learning).

The success rate obtained for different reward
variations is shown in Figure 3. It can be observed
that the agent achieves a success rate of
approximately 84% for all four types of rewards
applied to the table cleaning scenario. However,
the difference lies in the number of training
iterations required to reach the maximum success
rate. Rewards r1 and r2 exhibit similar patterns
with small differences, as shown in Table 2. With
this variation in reward allocation, r2 enables the
agent to reach the maximum success rate 400
iterations earlier than r1. The slope of the curve for
reward r2 is steeper compared to the slope for
reward r1. A similar trend can be observed in the
convergence curve of the average reward value, as
depicted in Figure 4. Reward r2 converges 400
iterations earlier compared to reward r1. The
maximum average reward value for r2 is 0.3, while
it is 0.17 for r1. This decrease in the overall average
reward for r1 is due to the limited allocation of
high positive reward, which is only given upon
reaching the terminal state. This reduction in
average reward leads to a drop in success
percentage during earlier iterations. By comparing

the results obtained from applying reward
patterns r1 and r2, it can be inferred that the
agent learns better when intermediate success
states are appropriately rewarded.

Figure 4

Average Reward observed for various iterations
with variations in rewards (Q-Learning).

Figure 5

Average reward value observed for various
iterations with variations in rewards (SASRA).

The average reward convergence graph using
SARSA (State-action- reward-state-action) RL
is given in Figure 5. The mean reward value
in SARSA has decreased substantially than Q-
learning. This greatly diminishes the success
rate in SARSA. The improved performance in
Q-learning can be attributed to the utilisation
of exploitation behavior in selecting the next
state-action pair. Nevertheless, the reward
pattern behavior remains consistent in both
algorithms, with the observation that the
intermediate success in r2 leads to more
effective learning than r1. Moreover, r4
relating two states enhances the
bootstrapping effect resulting in better

decrease in the overall average reward for r1 is due to
the limited allocation of high positive reward, which
is only given upon reaching the terminal state. This
reduction in average reward leads to a drop in success
percentage during earlier iterations. By comparing
the results obtained from applying reward patterns r1
and r2, it can be inferred that the agent learns better
when intermediate success states are appropriately
rewarded.

Figure 4
Average Reward observed for various iterations with
variations in rewards (Q-Learning)

higher in certain cases, even if the episode count is
lower. Therefore, in the results graph, the average
reward and success rate are plotted against
iterations rather than episodes. A collection of
episodes is considered a single run. In the graphs,
the average reward and success rate values
represent averages across different runs. The
agent’s learning is quantified using two
parameters namely average reward convergence
and success rate. Average reward convergence
tells about the stability and speed at which the
agent learns. Success rate analysis gives inference
about the maximum efficiency reached by the
agent.

Figure 3

Success rate observed for various iterations with
variations in rewards (Q-Learning).

The success rate obtained for different reward
variations is shown in Figure 3. It can be observed
that the agent achieves a success rate of
approximately 84% for all four types of rewards
applied to the table cleaning scenario. However,
the difference lies in the number of training
iterations required to reach the maximum success
rate. Rewards r1 and r2 exhibit similar patterns
with small differences, as shown in Table 2. With
this variation in reward allocation, r2 enables the
agent to reach the maximum success rate 400
iterations earlier than r1. The slope of the curve for
reward r2 is steeper compared to the slope for
reward r1. A similar trend can be observed in the
convergence curve of the average reward value, as
depicted in Figure 4. Reward r2 converges 400
iterations earlier compared to reward r1. The
maximum average reward value for r2 is 0.3, while
it is 0.17 for r1. This decrease in the overall average
reward for r1 is due to the limited allocation of
high positive reward, which is only given upon
reaching the terminal state. This reduction in
average reward leads to a drop in success
percentage during earlier iterations. By comparing

the results obtained from applying reward
patterns r1 and r2, it can be inferred that the
agent learns better when intermediate success
states are appropriately rewarded.

Figure 4

Average Reward observed for various iterations
with variations in rewards (Q-Learning).

Figure 5

Average reward value observed for various
iterations with variations in rewards (SASRA).

The average reward convergence graph using
SARSA (State-action- reward-state-action) RL
is given in Figure 5. The mean reward value
in SARSA has decreased substantially than Q-
learning. This greatly diminishes the success
rate in SARSA. The improved performance in
Q-learning can be attributed to the utilisation
of exploitation behavior in selecting the next
state-action pair. Nevertheless, the reward
pattern behavior remains consistent in both
algorithms, with the observation that the
intermediate success in r2 leads to more
effective learning than r1. Moreover, r4
relating two states enhances the
bootstrapping effect resulting in better

263Information Technology and Control 2025/1/54

The average reward convergence graph using SAR-
SA (State-action- reward-state-action) RL is given
in Figure 5. The mean reward value in SARSA has
decreased substantially than Q-learning. This greatly
diminishes the success rate in SARSA. The improved
performance in Q-learning can be attributed to the
utilisation of exploitation behavior in selecting the
next state-action pair. Nevertheless, the reward pat-
tern behavior remains consistent in both algorithms,
with the observation that the intermediate success in
r2 leads to more effective learning than r1. Moreover, r4
relating two states enhances the bootstrapping effect
resulting in better performance.
Reward r3 differs from r2 by allocating small positive
rewards for routine actions like pick and place. This
minor change has had a significant negative impact
on the agent’s learning. With reward r3, the agent re-
quires an additional 2080 iterations to reach the max-
imum success rate of approximately 84% (Figure 3).
Similarly, the convergence of the average reward with
reward r3 also takes an additional 2080 iterations
(Figure 4). The low positive value for routine tasks
causes the agent to get occupied with routine tasks
rather than actively pushing towards the terminal
state. A reward system that aligns with the agent’s
progress towards the goal, rather than routine ac-
tions, would be more effective. The final reward, r4, in-
troduces changes to reward r3 by including a loop pen-
alty. This customized reward modification is specific

Figure 5
Average reward value observed for various iterations with
variations in rewards (SASRA)

higher in certain cases, even if the episode count is
lower. Therefore, in the results graph, the average
reward and success rate are plotted against
iterations rather than episodes. A collection of
episodes is considered a single run. In the graphs,
the average reward and success rate values
represent averages across different runs. The
agent’s learning is quantified using two
parameters namely average reward convergence
and success rate. Average reward convergence
tells about the stability and speed at which the
agent learns. Success rate analysis gives inference
about the maximum efficiency reached by the
agent.

Figure 3

Success rate observed for various iterations with
variations in rewards (Q-Learning).

The success rate obtained for different reward
variations is shown in Figure 3. It can be observed
that the agent achieves a success rate of
approximately 84% for all four types of rewards
applied to the table cleaning scenario. However,
the difference lies in the number of training
iterations required to reach the maximum success
rate. Rewards r1 and r2 exhibit similar patterns
with small differences, as shown in Table 2. With
this variation in reward allocation, r2 enables the
agent to reach the maximum success rate 400
iterations earlier than r1. The slope of the curve for
reward r2 is steeper compared to the slope for
reward r1. A similar trend can be observed in the
convergence curve of the average reward value, as
depicted in Figure 4. Reward r2 converges 400
iterations earlier compared to reward r1. The
maximum average reward value for r2 is 0.3, while
it is 0.17 for r1. This decrease in the overall average
reward for r1 is due to the limited allocation of
high positive reward, which is only given upon
reaching the terminal state. This reduction in
average reward leads to a drop in success
percentage during earlier iterations. By comparing

the results obtained from applying reward
patterns r1 and r2, it can be inferred that the
agent learns better when intermediate success
states are appropriately rewarded.

Figure 4

Average Reward observed for various iterations
with variations in rewards (Q-Learning).

Figure 5

Average reward value observed for various
iterations with variations in rewards (SASRA).

The average reward convergence graph using
SARSA (State-action- reward-state-action) RL
is given in Figure 5. The mean reward value
in SARSA has decreased substantially than Q-
learning. This greatly diminishes the success
rate in SARSA. The improved performance in
Q-learning can be attributed to the utilisation
of exploitation behavior in selecting the next
state-action pair. Nevertheless, the reward
pattern behavior remains consistent in both
algorithms, with the observation that the
intermediate success in r2 leads to more
effective learning than r1. Moreover, r4
relating two states enhances the
bootstrapping effect resulting in better

to this particular scenario. With the inclusion of the
loop penalty, the agent’s training iterations are signifi-
cantly improved, even slightly surpassing the perfor-
mance of r2. The average reward value of r4 is slightly
higher than that of r2, mainly due to the presence of
a less significant positive reward of 0.01. This slight
increase tends to better performance of r4 compared
to r2. From reward r4, it can be inferred that a tailored
reward allocation has a highly positive impact on im-
proving the agent’s learning speed. The favorable im-
pact in r4 is attributed to its ability to impose a looping
penalty. This phenomenon of allowing a looping pen-
alty establishes a connection between two consecu-
tive states, hence amplifying the bootstrapping effect.
This impact is in addition to the existing bootstrap-
ping effect gained from temporal difference learning,
as shown in Equation (2).
Table 3 presents a comparison of the training iter-
ations required to achieve the maximum possible
success percentage across various reward patterns.
In this particular environment design, the success
rate obtained was approximately 84% for all the re-
ward patterns. The lowest success rate of 81.08%
is achieved using reward r3 after 2360 iterations
(70 episodes). For reward r1, the agent achieves a
success rate of 83.94% after 630 iterations (25 epi-
sodes). With reward r2, the agent achieves a success
rate of 84.73% after 240 iterations (14 episodes).
Similarly, with reward r2, the agent achieves a suc-
cess rate of 84.73% after 630 iterations (25 episodes).
A minor variation in reward r4 results in the agent
achieving a success rate of around 84.77% after 142
iterations (10 episodes). A comparable task involv-
ing learning to clean a table with a single object on
it was performed in [8]. In that work, the learning
was performed using classic RL with a reward pat-
tern of r1, and the success rate obtained was 35%.
The comparison with similar works is given in table
4. It is observed that the proposed method has fast-
er average reward convergence and a higher success
rate compared to other works. Though the method
Affordance-RL has a high success rate it needs a lot
of pre-knowledge about the environment. In Affor-
dance-RL the pre-knowledge need to be hard-coded
into the program. Whereas this work using Q-learn-
ing learns incrementally during the training phase
itself. Therefore, a small modification in the envi-
ronment and reward impacts positively the learning
efficiency of the agent.

Information Technology and Control 2025/1/54264

The convergence of average reward for different re-
ward patterns in the table cleaning learning task is
also described in Table 3. In the work [8], a similar ta-
ble cleaning scenario trained using classic RL with re-
ward r1 is proposed. It takes nearly 1000 episodes for
the average reward to converge, and the convergence
is not smooth. In this work, with the same reward of
r1, the average reward converges in 31 episodes. Other
methods mentioned in [8] are Interactive-RL (IRL)
and affordance-based RL, which have average reward
convergences of around 40 and 55 episodes, respec-
tively. Except for the reward pattern r3, the proposed
work shows better convergence speed compared to all
the methods mentioned in [8]. The reduction in state
count has a positive impact on improving the success
rate and reducing the training iterations. Further-

more, the variation in reward allocation has positive-
ly influenced the reduction in training iterations with
a better success rate.
The impact of the success rate on the alteration of
parameters γ and α is given in Figure 6. Despite vari-
ations in γ and α, the agent achieves a success rate of
around 82%. However, it has an impact on the training
iterations. With γ and α values of 0.3, fewer iterations
are required, and the agent attains a success rate of
84% by 150 iterations. Subsequently, it consistent-
ly reaches the terminal stage with a success rate of
around 84%. When the α value is changed to 0.5, an
additional 33 iterations are needed to reach the 84%
success rate. The agent’s performance degrades fur-
ther with a higher α value. Similar behaviour is ob-
served for the convergence of average reward values
in Figure 7. The variation in the γ parameter has lit-
tle or no impact on the speed of convergence. When
choosing a learning rate α, it’s important to experi-
ment and adjust accordingly based on factors like the
reward system and environment complexity. In this
scenario, it was observed through the graphs of av-
erage reward and success rate that an α of 0.3 yields
better learning compared to its higher values. The
learning parameter α has a decaying effect upon the
instantaneous reward rt. This implies that the latest
reward significantly influences the estimation more
than previous rewards, leading to better learning.
Hence, the use of better environmental design in this
study resulted in better learning outcomes by the
agent. Then the agent’s learning is analysed with di-
verse set of reward patterns. The conclusion drawn
from the varied reward pattern is the utilisation of
positive incentives, even in a limited manner, for rou-
tine tasks hinders the process of learning. In contrast,
minor negative incentives for repetitive tasks result
in more effective learning. The agent’s learning pace

Figure 6
Success rate with variations in learning rate for the reward
r4 (Q-Learning)

performance.

Figure 6

Success rate with variations in learning rate for the
reward r4 (Q-Learning).

Reward r3 differs from r2 by allocating small
positive rewards for routine actions like pick and
place. This minor change has had a significant
negative impact on the agent’s learning. With
reward r3, the agent requires an additional 2080
iterations to reach the maximum success rate of
approximately 84% (Figure 3). Similarly, the
convergence of the average reward with reward r3
also takes an additional 2080 iterations (Figure 4).
The low positive value for routine tasks causes the
agent to get occupied with routine tasks rather
than actively pushing towards the terminal state.
A reward system that aligns with the agent’s
progress towards the goal, rather than routine
actions, would be more effective. The final reward,
r4, introduces changes to reward r3 by including a
loop penalty. This customized reward
modification is specific to this particular scenario.
With the inclusion of the loop penalty, the agent’s
training iterations are significantly improved, even
slightly surpassing the performance of r2. The
average reward value of r4 is slightly higher than
that of r2, mainly due to the presence of a less
significant positive reward of 0.01. This slight
increase tends to better performance of r4
compared to r2. From reward r4, it can be inferred
that a tailored reward allocation has a highly
positive impact on improving the agent’s learning
speed. The favorable impact in r4 is attributed to its
ability to impose a looping penalty. This
phenomenon of allowing a looping penalty
establishes a connection between two consecutive
states, hence amplifying the bootstrapping effect.
This impact is in addition to the existing
bootstrapping effect gained from temporal
difference learning, as shown in Equation (2).

Figure 7

Average reward with variations in learning rate
for the reward r4 (Q-Learning).

Table 3 presents a comparison of the training
iterations required to achieve the maximum
possible success percentage across various
reward patterns. In this particular
environment design, the success rate obtained
was approximately 84% for all the reward
patterns. The lowest success rate of 81.08% is
achieved using reward r3 after 2360 iterations
(70 episodes). For reward r1, the agent
achieves a success rate of 83.94% after 630
iterations (25 episodes). With reward r2, the
agent achieves a success rate of 84.73% after
240 iterations (14 episodes). Similarly, with
reward r2, the agent achieves a success rate of
84.73% after 630 iterations (25 episodes). A
minor variation in reward r4 results in the
agent achieving a success rate of around
84.77% after 142 iterations (10 episodes). A
comparable task involving learning to clean a
table with a single object on it was performed
in [8]. In that work, the learning was
performed using classic RL with a reward
pattern of r1, and the success rate obtained
was 35%. The comparison with similar works
is given in table 4. It is observed that the
proposed method has faster average reward
convergence and a higher success rate
compared to other works. Though the
method Affordance-RL has a high success
rate it needs a lot of pre-knowledge about the
environment. In Affordance-RL the pre-
knowledge need to be hard-coded into the
program. Whereas this work using Q-
learning learns incrementally during the
training phase itself. Therefore, a small
modification in the environment and reward
impacts positively the learning efficiency of
the agent.

Table 3

Table 3
Learning Speed Comparisons for Different Reward Patterns

Methodology
Average Reward Convergence Maximum Success Rate

Iterations Episodes Iterations Episodes

r1 680 31 630 25

r2 290 21 240 14

r3 2350 70 2350 70

r4 190 15 140 10

265Information Technology and Control 2025/1/54

Figure 7
Average reward with variations in learning rate for the
reward r4 (Q-Learning)

performance.

Figure 6

Success rate with variations in learning rate for the
reward r4 (Q-Learning).

Reward r3 differs from r2 by allocating small
positive rewards for routine actions like pick and
place. This minor change has had a significant
negative impact on the agent’s learning. With
reward r3, the agent requires an additional 2080
iterations to reach the maximum success rate of
approximately 84% (Figure 3). Similarly, the
convergence of the average reward with reward r3
also takes an additional 2080 iterations (Figure 4).
The low positive value for routine tasks causes the
agent to get occupied with routine tasks rather
than actively pushing towards the terminal state.
A reward system that aligns with the agent’s
progress towards the goal, rather than routine
actions, would be more effective. The final reward,
r4, introduces changes to reward r3 by including a
loop penalty. This customized reward
modification is specific to this particular scenario.
With the inclusion of the loop penalty, the agent’s
training iterations are significantly improved, even
slightly surpassing the performance of r2. The
average reward value of r4 is slightly higher than
that of r2, mainly due to the presence of a less
significant positive reward of 0.01. This slight
increase tends to better performance of r4
compared to r2. From reward r4, it can be inferred
that a tailored reward allocation has a highly
positive impact on improving the agent’s learning
speed. The favorable impact in r4 is attributed to its
ability to impose a looping penalty. This
phenomenon of allowing a looping penalty
establishes a connection between two consecutive
states, hence amplifying the bootstrapping effect.
This impact is in addition to the existing
bootstrapping effect gained from temporal
difference learning, as shown in Equation (2).

Figure 7

Average reward with variations in learning rate
for the reward r4 (Q-Learning).

Table 3 presents a comparison of the training
iterations required to achieve the maximum
possible success percentage across various
reward patterns. In this particular
environment design, the success rate obtained
was approximately 84% for all the reward
patterns. The lowest success rate of 81.08% is
achieved using reward r3 after 2360 iterations
(70 episodes). For reward r1, the agent
achieves a success rate of 83.94% after 630
iterations (25 episodes). With reward r2, the
agent achieves a success rate of 84.73% after
240 iterations (14 episodes). Similarly, with
reward r2, the agent achieves a success rate of
84.73% after 630 iterations (25 episodes). A
minor variation in reward r4 results in the
agent achieving a success rate of around
84.77% after 142 iterations (10 episodes). A
comparable task involving learning to clean a
table with a single object on it was performed
in [8]. In that work, the learning was
performed using classic RL with a reward
pattern of r1, and the success rate obtained
was 35%. The comparison with similar works
is given in table 4. It is observed that the
proposed method has faster average reward
convergence and a higher success rate
compared to other works. Though the
method Affordance-RL has a high success
rate it needs a lot of pre-knowledge about the
environment. In Affordance-RL the pre-
knowledge need to be hard-coded into the
program. Whereas this work using Q-
learning learns incrementally during the
training phase itself. Therefore, a small
modification in the environment and reward
impacts positively the learning efficiency of
the agent.

Table 3

is enhanced by providing incentives for achieving in-
termediate successes. Another reward is granted in
a unique way relating two successive states, acceler-
ating the bootstrapping process and leading to better
learning. Furthermore, the insight relating the agent’s
learning to human motivation is described in the up-
coming section 3.2.

3.2. Inference Related to Human Cognition
This section relates the agent’s learning process to
the application of human intelligence. So that the hu-

man’s cognition can be better understood and trained.
The reward r2 learns better than r1 with the only dif-
ference of awarding maximum reward for relevant
cleaning action. That is giving a reward for interme-
diate success will improve the agent’s performance
and also motivate the humans as well. The efficiency
of r3 falls drastically just by awarding a small positive
reward for routine actions instead of a small negative
reward. Thus, to humans, the reward ought to be giv-
en for goal-oriented work instead of routine work for
better productivity. As seen with r3, the learning gets
dragged by focusing on getting small benefits instead
of high-value goals. Finally, in r4 the learning is im-
proved by penalising meaningless redundant work.
Again, this is inferred as for productive learning,
progress is important than just staying busy with too
many activities

4. Conclusions and Future Work
This paper proposes a methodology to apply Q- learn-
ing to a table-cleaning scenario with a reduced state
space. As a result, the agent’s training iterations are
reduced while achieving an increased success rate.
Furthermore, different reward patterns are specif-
ically altered for the task to obtain a better success
rate with fewer training iterations. The reward r4 is
allotted in a distinct manner enhancing the boot-
strapping effect of consecutive states. Reward r2 en-
courages in-between success and discourages routine
actions. The reward allotment of r2 and r4 proves to be

Table 4
Success Rate Comparison

Methodology
Average Reward Convergence Maximum Success Rate

Episodes Success Rate (%) Episodes

Classic RL [8] 1000 35 1000

Classic RL [7] - 4 1000

Affordanace RL [8] 48 99.9 -

Interactive RL (L=0.5) [8] 40 - -

This work with reward r1 31 83.94 25

This work with reward r2 21 84.73 14

This work with reward r3 70 81.08 70

This work with reward r4 15 84.77 10

Information Technology and Control 2025/1/54266

efficient, as they achieve a maximum success rate of
around 84% in 240 and 150 iterations, respectively.
Similarly, their average reward convergence occurs
in 290 and 190 iterations, respectively. The number of
training iterations needed for average reward conver-
gence varies by 2210 iterations between the best-case
and worst- case reward patterns mentioned in this
work. Thus, this work addresses the major challenge
of high training iterations in RL by properly altering
the environment design and reward allotment. In this
context, rewards are distributed according to a pre-
determined analysis of the environment. However,
the rewards can also be adjusted based on interactive

feedback from the environment, which allows for
more effective learning in dynamic environmental
conditions. Further progress can be made by incorpo-
rating the adaptive ϵ-greedy strategy for action selec-
tion. Additionally, the agent can be trained to handle
multiple static and dynamic objects. With an increase
in complexity regarding object count and environ-
ment dynamics, Deep-RL may be suitable for efficient
learning. The choice of parameters α and γ requires
experimentation and tuning, as the optimal values
depend on the problem and environment. Therefore,
optimisation techniques for selecting parameters
with optimal values can be employed

References
1. Boloka, T., Makondo, N., Rosman, B. Knowledge Trans-

fer Using Model-Based Deep Reinforcement Learning.
In 2021 Southern African Universities Power Engineer-
ing Conference/Robotics and Mechatronics/Pattern
Recognition Association of South Africa (SAUPEC/
RobMech/PRASA), 2021, 1-6. https://doi.org/10.1109/
SAUPEC/RobMech/PRASA52254.2021.9377247

2. Bou-Ammar, H., Taylor, M. E., Tuyls, K., Weiss, G. Re-
inforcement Learning Transfer Using a Sparse Cod-
ed Inter-Task Mapping. In EUMAS, 2011. https://doi.
org/10.1007/978-3-642-34799-3_1

3. Chae, H., Park, G., Lee, J., Kim, K., Kim, T., Kim, H. S.,
Seo, T., Façade Cleaning Robot with Manipulating and
Sensing Devices Equipped on a Gondola. IEEE/ASME
Transactions in Mechatronics, 2021, 26(4), 1719-1727.
https://doi.org/10.1109/TMECH.2021.3077634

4. Chen, L., Wang, Y., Miao, Z., Mo, Y., Feng, M., Zhou, Z.,
Wang, H. Transformer-Based Imitative Reinforcement
Learning for Multi-Robot Path Planning. IEEE Trans-
actions on Industrial Informatics, 2023, 1-11. https://
doi.org/10.1109/TII.2023.3240585

5. Chen, N., Yao, X., Yuan, X., Ou, P. Performance Optimi-
zation of Serverless Edge Computing Function Offload-
ing Based on Deep Reinforcement Learning. Available
at SSRN 4029467.

6. Cheong, S., Cho, B., Lee, J., Lee, J., Kim, D. H., Nam, C.,
Kim, C., Park, S. Obstacle Rearrangement for Robotic
Manipulation in Clutter Using a Deep Q-Network. In-
telligent Service Robotics, 2021, 14, 549-561. https://
doi.org/10.1007/s11370-021-00377-4

7. Cruz, F., Magg, S., Weber, C., Wermter, S., Improving
Reinforcement Learning with Interactive Feedback
and Affordances. In 4th International Conference on
Development and Learning and on Epigenetic Robotics
(ICDL-EPIROB), Genoa, Italy, 2014, 165-170. https://
doi.org/10.1109/DEVLRN.2014.6982975

8. Cruz, F., Magg, S., Weber, C., Wermter, S. Training
Agents with Interactive Reinforcement Learning and
Contextual Affordances. IEEE Transactions on Cogni-
tive and Developmental Systems, 2016, 8(4), 271-284.
https://doi.org/10.1109/TCDS.2016.2543839

9. Cruz, F., Parisi, G. I., and Wermter, S. Multi-Modal
Feedback for Affordance-Driven Interactive Reinforce-
ment Learning. In 2018 International Joint Conference
on Neural Networks (IJCNN), 2018, 1-8. https://doi.
org/10.1109/IJCNN.2018.8489237

10. Cruz, F., Twiefel, J., Magg, S., Weber, C., and Wermter, S.
Interactive Reinforcement Learning Through Speech
Guidance in a Domestic Scenario. In 2015 International
Joint Conference on Neural Networks (IJCNN), 2015,
1-8. https://doi.org/10.1109/IJCNN.2015.7280477

11. Deng, Y., Guo, X., Wei, Y., Lu, K., Fang, B., Guo, D., Liu,
H., Sun, F., Deep Reinforcement Learning for Robotic
Pushing and Picking in Cluttered Environment. In 2019
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), 2019, 619-626. https://doi.
org/10.1109/IROS40897.2019.8967899

12. Han, X., Liu, H., Sun, F., Zhang, X. Active Object De-
tection with Multistep Action Prediction Using Deep
Q-Network. IEEE Transactions on Industrial Infor-

https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377247
https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377247
https://doi.org/10.1007/978-3-642-34799-3_1
https://doi.org/10.1007/978-3-642-34799-3_1
https://doi.org/10.1109/TMECH.2021.3077634
https://doi.org/10.1109/TII.2023.3240585
https://doi.org/10.1109/TII.2023.3240585
https://doi.org/10.1007/s11370-021-00377-4
https://doi.org/10.1007/s11370-021-00377-4
https://doi.org/10.1109/DEVLRN.2014.6982975
https://doi.org/10.1109/DEVLRN.2014.6982975
https://doi.org/10.1109/TCDS.2016.2543839
https://doi.org/10.1109/IJCNN.2018.8489237
https://doi.org/10.1109/IJCNN.2018.8489237
https://doi.org/10.1109/IJCNN.2015.7280477
https://doi.org/10.1109/IROS40897.2019.8967899
https://doi.org/10.1109/IROS40897.2019.8967899

267Information Technology and Control 2025/1/54

matics, 2019, 15(6), 3723-3731. https://doi.org/10.1109/
TII.2019.2890849

13. Jagatheesaperumal, S. K., Rajamohan, V. P., Saudagar, A.
K. J., AlTameem, A., Sajjad, M., Muhammad, K. MOMO:
Mouse-Based Motion Planning for Optimized Grasping
to Declutter Objects Using a Mobile Robotic Manip-
ulator. Mathematics, 2023, 11(20), 4371. https://doi.
org/10.3390/math11204371

14. Jang, B., Kim, M., Harerimana, G., Kim, J. W. Q-Learn-
ing Algorithms: A Comprehensive Classification and
Applications. IEEE Access, 2019, 7, 133653-133667.
https://doi.org/10.1109/ACCESS.2019.2941229

15. Jiang, W., Han, H., Zhang, Y., Mu, J. Federated Split
Learning for Sequential Data in Satellite-Terrestrial
Integrated Networks. Information Fusion, 2024, 103,
102141. https://doi.org/10.1016/j.inffus.2023.102141

16. Kim, J., Cauli, N., Vicente, P., Damas, B. D., Bernardino, A., San-
tos-Victor, J., Cavallo, F. Cleaning Tasks Knowledge Transfer
Between Heterogeneous Robots: A Deep Learning Approach.
Journal of Intelligent & Robotic Systems, 2019, 98, 191-205.
https://doi.org/10.1007/s10846-019-01072-4

17. Knox, W. B., Stone, P. Interactively Shaping Agents via
Human Reinforcement: The TAMER Framework. In
The Fifth International Conference on Knowledge Cap-
ture, 2009. https://doi.org/10.1145/1597735.1597738

18. Liu, H., Deng, Y., Guo, D., Fang, B., Sun, F., Yang, W. An
Interactive Perception Method for Warehouse Auto-
mation in Smart Cities. IEEE Transactions on Indus-
trial Informatics, 2021, 17(2), 830-838. https://doi.
org/10.1109/TII.2020.2969680

19. Liu, H., Wu, Y., Sun, F. Extreme Trust Region Policy Op-
timization for Active Object Recognition. IEEE Trans-
actions on Neural Networks and Learning Systems,
2018, 29(6), 2253-2258. https://doi.org/10.1109/TNN-
LS.2017.2785233

20. Millán-Arias, C., Torres Fernandes, B. J., Cruz, F., Daze-
ley, R., Fernandes, S. M. M. A Robust Approach for Con-

tinuous Interactive Actor-Critic Algorithms. IEEE Ac-
cess, 2021, 9, 104242-104260. https://doi.org/10.1109/
ACCESS.2021.3099071

21. Moon, W., Park, B., Nengroo, S. H., Kim, T., Har, D.
Path Planning of Cleaning Robot with Reinforce-
ment Learning. In IEEE Robotics and Sensors Envi-
ronments (ROSE), 2022, 1-7. https://doi.org/10.1109/
ROSE56499.2022.9977430

22. Munguia-Galeano, F., Veeramani, S., Hernández, J. D.,
Wen, Q., Ji, Z. Affordance-Based Human-Robot Inter-
action with Reinforcement Learning. IEEE Access,
2023, 11, 31282-31292. https://doi.org/10.1109/AC-
CESS.2023.3262450

23. Parween, R., Clarissa, L. T. L., Naing, M. Y., Fuad, N. A. F.
B. M., Elara, M. R. Modeling and Analysis of the Clean-
ing System of a Reconfigurable Tiling Robot. IEEE Ac-
cess, 2020, 8, 137770-137782. https://doi.org/10.1109/
ACCESS.2020.3009120

24. Rohmer, E., Singh, S. P. N., Freese, M. V-REP: A Ver-
satile and Scalable Robot Simulation Framework. In
2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2013, 1321-1326. https://doi.
org/10.1109/IROS.2013.6696520

25. Sun, C., van der Tol, R., Melenhorst, R., Ponce Pacheco,
L. A., Koerkamp, P. G. Path Planning of Manure-Robot
Cleaners Using Grid-Based Reinforcement Learning.
Computers and Electronics in Agriculture, 2024, 226,
109456. https://doi.org/10.1016/j.compag.2024.109456

26. Thakar, S., Malhan, R. K., Bhatt, P. M., Gupta, S. K. Ar-
ea-Coverage Planning for Spray-Based Surface Dis-
infection with a Mobile Manipulator. Robotics and
Autonomous Systems, 2022, 147, 103920. https://doi.
org/10.1016/j.robot.2021.103920

27. Zhang, M., Cai, W., Pang, L. Predator-Prey Re-
ward-Based Q-Learning Coverage Path Planning for
Mobile Robot. IEEE Access, 2023, 11, 29673-29683.
https://doi.org/10.1109/ACCESS.2023.3255007

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/TII.2019.2890849
https://doi.org/10.1109/TII.2019.2890849
https://doi.org/10.3390/math11204371
https://doi.org/10.3390/math11204371
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1016/j.inffus.2023.102141
https://doi.org/10.1007/s10846-019-01072-4
https://doi.org/10.1145/1597735.1597738
https://doi.org/10.1109/TII.2020.2969680
https://doi.org/10.1109/TII.2020.2969680
https://doi.org/10.1109/TNNLS.2017.2785233
https://doi.org/10.1109/TNNLS.2017.2785233
https://doi.org/10.1109/ACCESS.2021.3099071
https://doi.org/10.1109/ACCESS.2021.3099071
https://doi.org/10.1109/ROSE56499.2022.9977430
https://doi.org/10.1109/ROSE56499.2022.9977430
https://doi.org/10.1109/ACCESS.2023.3262450
https://doi.org/10.1109/ACCESS.2023.3262450
https://doi.org/10.1109/ACCESS.2020.3009120
https://doi.org/10.1109/ACCESS.2020.3009120
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1016/j.compag.2024.109456
https://doi.org/10.1016/j.robot.2021.103920
https://doi.org/10.1016/j.robot.2021.103920
https://doi.org/10.1109/ACCESS.2023.3255007

