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The influence of robots has been rapidly increasing in domestic scenarios. Robots learning in a self-supervised 
manner will be more efficient than programmed intelligence. In this paper, we present Q-learning-based task 
learning through interaction with the environment in a table-cleaning scenario. The environment consists of 
a table partitioned into two segments with a single object on it. The goal of the agent is to learn the sequence of 
tasks required to clean both segments of the table. Here, the state space is designed in such a way that its size 
is reduced to achieve better training time and success rate. Besides, in this work, four distinct reward patterns 
are utilised. The general reward allocation was based on the effect on the environment. Out of the four reward 
patterns, the one that provides an incentive to attain intermediate success leads to improved performance by 
the agent compared to the other reward which motivates only upon reaching the terminal state. For the re-
ward with an incentive for intermediate success, the average reward begins to converge around 290 iterations 
when rewards are allocated for intermediate performance. By 240 iterations, a success rate of around 84% is 
achieved. Another reward with a small positive value for routine tasks learning performance is poor. Another 
reward is allotted uniquely by establishing a connection between two consecutive states. This strengthens the 
bootstrapping effect and exhibits superior performance in comparison to all four reward schemes. The reward 
associated with the bootstrapping effect demonstrates an average convergence in reward over 220 iterations, 
with an estimated success rate of 84% achieved over 150 iterations.
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1. Introduction
Robots are extensively used for object manipulation in 
various applications, ranging from industry to domes-
tic settings. As population density increases, there is 
a growing demand for task planning and cleaning ro-
bots [23]. These robots play a crucial role in both in-
dustrial and domestic environments. Regular clean-
ing is essential for maintaining the living standards 
and functionality of these buildings [3]. Therefore, 
the automation of cleaning processes in building in-
frastructures has become increasingly necessary. To 
achieve efficient automation, robotic agents need to 
be equipped with intelligent algorithms to perform 
tasks effectively. Infants acquire object manipulation 
skills at an early stage through interaction. Similar-
ly, Reinforcement Learning (RL) solves problems by 
making repeated attempts with appropriate rewards. 
In each instance of interaction, RL performs an ac-
tion that causes a change in the environment’s state. 
The agent is rewarded accordingly based on the state 
change. Through repeated actions, the agent maxi-
mizes the cumulative reward collected [14]. 
Mill´an-Arias et al. [20] proposed three different 
approaches related to object handling by a robotic 
manipulator. These approaches are soft actor-crit-
ic-based Interactive Reinforcement Learning (IRL), 
Robust Reinforcement Learning (RRL), and In-
teractive Robust Reinforcement Learning. These 
techniques were implemented in a simulation envi-
ronment to classify objects manipulated by the ma-
nipulator. In this work, advice is given regarding tasks 
and the dynamics of the environment. The results 
show that IRL outperforms the classic RL algorithm. 
Training episodes in IRL are reduced compared to 
classic RL. Although RRL requires more training epi-
sodes, it achieves good performance even in the pres-
ence of external disturbances. IRRL, a combination 
of IRL and RRL, performs better than RRL in terms 
of training iterations and maintains robustness even 
with changes in the dynamics of the environment.
Cruz et al. [8] proposed a learning algorithm for ob-
ject handling in a simulated domestic cleaning sce-
nario. In this scenario, the agent manipulates obsta-
cles and a sponge to clean the table. The problem was 
addressed using three different algorithms: classic 
RL, RL with affordance, and Interactive Reinforce-
ment Learning (IRL). In classic RL, a success rate of 
35% was achieved with a thousand training episodes. 

In the second and third approaches, the number of 
training episodes was reduced to a hundred. In IRL, 
even receiving small advice, approximately 10%, en-
ables the robot to complete the cleaning task faster. 
The above-mentioned work demonstrates better 
convergence compared to [10]. Munguia-Galeano et 
al. [22] has undertaken a similar study by utilizing 
affordance-based RL in the context of Human-Robot 
Interaction (HRI) applications. Compared to other 
methods such as Q-learning and Deep-Q network, 
this approach achieves a higher success rate. The 
aforementioned works focus on acquiring a sequence 
of actions to accomplish a given task. In contrast, the 
authors of [27] concentrated on area coverage using 
Q-learning. The problem of local optima in Q-learn-
ing is overcome by employing predator-prey reward 
allocation. This approach incorporates three reward 
functions: Predation Avoidance, Smoothness, and 
Boundary. The weighted combination of these three 
rewards provides a better coverage area.
Cheong et al. [6] propose an algorithm for manipulat-
ing obstacles to find a collision-free path to the target 
object. The objects are arranged in a grid-based en-
vironment. A deep Q-network is used to learn which 
object to pick and where to place it in order to obtain 
a collision-free path to the target. Two different deep 
learning architectures, single DQN and sequentially 
separated DQN, are proposed. This work achieves a 
reduction in execution time and the number of obsta-
cles rearranged by up to 35%. Here, the sequentially 
separated DQN performs better as the number of ob-
stacles increases. In [18], an interactive perception 
method for object grasping in a cluttered environment 
is considered. Initially, the affordance map is obtained 
from an RGB-D image. This affordance map indicates 
the confidence level of each pixel for grasping. If the 
affordance map is inappropriate, a push action is per-
formed until a suitable affordance map is obtained. 
The exploration strategy is based on deep reinforce-
ment learning. This work demonstrates a higher suc-
tion success rate and scene success rate. Authors in 
[11] proposes a comparable approach without tactile 
sense, whereas [13] proposes object de-cluttering us-
ing mouse-based grasp planning.
Knowledge about handling objects in one task is trans-
ferred to other tasks in [1]. Here, probability-based pol-
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icy reuse is combined with Q-learning. The learning 
time for new tasks is reduced due to knowledge trans-
fer. Furthermore, this work can be improved to handle 
high sensory inputs. In [19, 12], RL is applied to alter the 
camera viewpoint to improve object detection. Addi-
tionally, RL is discussed in robot cleaning tasks in [21, 
16, 26, 25], and for navigation with obstacle avoidance 
in [4].  Cruz et al. in [9], proposed a multimodal feed-
back for cleaning tasks using a robotic agent. Object de-
tection using deep Q-network and trust region policy 
optimization is described in [12] and [21] respectively.
One of the main problems with RL is the long exe-
cution time required for training [17]. An alteration 
in training approaches aimed at improving learning 
performance is discussed in [15]. In the work [15], 
training is conducted in a manner that alternates 
between unified and separated training approach-
es to improve the learning experience. The method 
of population-directed policy search is introduced 
in [5] to accelerate the learning process of the Deep-
RL-based task offloading technique. A key factor that 
contributes to increased convergence time is a large 
and complex state space [2]. In this study, Q-learning 
is applied to a robotic agent to learn the task of clean-
ing a table with a single object on it. Compared to the 
other mentioned works, this study focuses on reduc-
ing the size of the state space and varying the reward 
allocation. As a result, it reduces the number of train-
ing iterations and increases the success rate in learn-
ing the task of table cleaning. The points mentioned 
below are the significant contributions of this work:
Q-learning algorithm is applied to the task of cleaning 
the table with reduced state space.
 _ The agent’s learning rate is improved by incorpo-

rating task-customized rewards with a bootstrap-
ping effect.

 _ Impact analysis of discount factor and learning 
rate on Q-value convergence are compared for var-
ious reward patterns.

 _ The behavior of the agent is connected to human 
cognition. To facilitate comprehension of human 
motivation towards task completion.

The rest of this paper is organized as follows: the envi-
ronment definition and RL implementation towards 
a table cleaning scenario are discussed in Section 2. 
The simulation methodology and the results obtained 
are discussed in Section 3. Finally, the conclusion and 
future directions are summarized in Section 4.

2. Problem Formulation and 
Methodology
In this work, Q-learning is effectively applied to teach 
a robotic manipulator (agent) the task of table clean-
ing. Through trial and error, the robot can learn to 
adapt its approach based on the effectiveness of its 
previous actions, resulting in a more efficient learning 
process for cleaning. This section describes Q-learn-
ing and the definition of the environment state for the 
table cleaning task. A state is represented by a set of 
variables that describe the agent’s location, actions, 
and the state of the environment. In this work, the size 
of state space is reduced for improved learning rate 
and success rate. The reward function in Q-learning 
defines the agent’s goal and provides a measure of 
success for its actions. This section also explains the 
distinctive reward allocation mechanism with a boot-
strapping effect to benefit the learning of the agent.
The agent is placed near the table like a janitor ready 
to clean. The table is partitioned into two segments 
and contains an object in any one of the segments. 
Further, a sponge for cleaning is placed in a pre-de-
fined location. The environment is designed in such a 
way that the size of state space is reduced. In work by 
Cruz et al. [8] where a similar table cleaning scenario 
is considered, the cleaning object is placed upon any 
one of the segments therefore leading to increased 
state space size. The simulation scenario with the 
location of the sponge and object is represented in  
Figure 1. Here, the placement of the sponge in a pre-
defined location reduces the state space by half com-
pared to [8]. Moreover, this way environment not 
only reduces the state space size but also is more in 
synchronous with real human cleaning scenarios. In 
most practical cleaning table scenarios, the sponge is 
not located on the table rather the janitor comes with 
a trolley that contains the sponge for cleaning. Thus, 
the environment design consideration taken in this 
work is better in terms of state space size and more 
oriented towards practical table cleaning scenarios.
A state machine is developed to describe the table 
cleaning scenario with reduced state space. In that, 
each state is characterised by the location of the ob-
ject, the agent’s location, and the cleanliness status 
of each segment. For example, in State 1, segments 
are unclean, the object is located in Segment 2, and 
the manipulator is positioned above Segment 1. If 
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the agent performs the clean action from this state, 
it transitions to state-7. In state-7, Segment 1 is clean, 
segment 2 is unclean with the object, and the manip-
ulator is positioned above Segment 1. The complete 
state description is provided in Table 1. The task for 
agent learning presented in [8] was similar but had a 
larger number of states, specifically 45. In this work, 
state reduction is achieved by confining the sponge 
to a predefined location, as highlighted in Figure 1(b). 
The agent is restricted from placing the sponge above 
any of the segments on the table. This modification in 
the environmental design has a positive impact on the 
speed at which agents learn.
The actions performed by the agent are as follows: 
move, pick, place, and clean. When the agent receives 
the ”move” action, it transitions from the current seg-
ment to the other segment, which can be either from 
Segment 1 to Segment 2 or vice versa. During the pick 
action, the agent picks up the object in its current seg-
ment. If the current segment does not contain the ob-
ject, no change in the state occurs. Similarly, the place 

action involves placing the object held by the manip-
ulator onto the current segment. The location of the 
sponge is fixed and predefined. Therefore, when the 
clean action is performed, the agent takes the sponge 
from the predefined location, cleans the current seg-
ment of the manipulator, and then places the sponge 
back in the home location.
In this work, the focus is not on the ability to grasp, 
actuate, and reach mechanisms, but rather on learn-
ing the correct sequence of actions to be performed 
by the agent with minimum training iterations and 
an improved success rate. For example, if the object 
and manipulator are located in Segment 1 of the table, 
the desired sequence for successful task completion 
is as follows: move (right), clean (right), move (left), 
pick (object), move (right), place (object), move (left), 
and clean (left). Therefore, a minimum of eight steps 
is required to reach the terminal state. The objective 
of the agent is to clean both sides by following the 
correct sequence of steps. In this work, the learning 
is attained with minimal training iterations and a 
high success rate. Improvement in learning rate is ob-

Figure 1
Q-Learning employed in a robotic cleaning task simulation environment
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b) Sponge Location 
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state. The objective of the agent is to clean 
both sides by following the correct sequence 
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tained by reducing the size of state space as described 
above. Further, the learning rate and success per-
centage are enhanced by allowing task-customised 
rewards with a bootstrapping effect and encouraging 
in-between success.

2.1. Strategy for Reward Pattern Formulation
Agent’s each interaction with the environment it re-
ceives reward with respect to the state change. This 
encourages learning by performing action and ob-
serving its effect on the environment. The object of 
reinforcement learning is to maximise the reward 
received over some time. The rewards relate to obser-
vations obtained from the surroundings. Additional-
ly, it can be allocated interactively through feedback 
mechanisms. This enhances the agent’s learning with 
changes in environmental conditions. However, this 

Table 1
State definition for table cleaning scenario with reduced state space for improved learning rate

State Count Segment 1 Segment 2 Manipulator
Location

1 Unclean Unclean with object Segment 1

2 Unclean Unclean with object Segment 2

3 Unclean Unclean with object Segment 2 holding the object

4 Unclean with object Unclean Segment 1

5 Unclean with object Unclean Segment 2

6 Unclean with object Unclean Segment 1 holding the object

7 Clean Unclean with object Segment 1

8 Clean Unclean with object Segment 2

9 Clean Unclean with object Segment 2 holding the object

10 Unclean with object Clean Segment 1

11 Unclean with object Clean Segment 2

12 Unclean with object Clean Segment 1 holding the object

13 Clean Clean with object Segment 1

14 Clean Clean with object Segment 2

15 Clean Clean with object Segment 2 holding the object

16 Clean with object Clean Segment 1

17 Clean with object Clean Segment 2

18 Clean with object Clean Segment 1 holding the object

work aims to enhance the agent’s learning by modi-
fying the preprogrammed reward in response to envi-
ronmental observations. Appropriate instant reward 
allotment has a major impact on the agent’s learning. 
In this work, different rewards were being considered. 
The rationale is that rewards that are not appropri-
ately sized may not provide enough motivation for the 
agent to gain new knowledge. Conversely, excessive-
ly big rewards may cause the agent to engage in risky 
behaviors. Enhancing the rewards is a crucial aspect 
of developing an effective reinforcement learning al-
gorithm. Therefore, the present investigation exam-
ines several reward patterns and analyses their per-
formance. The four different reward patterns, namely 
r1, r2, r3, and r4, were used to train the agent as given 
in Table 2. The reward r1 allows the highest positive 
value only when the terminal state is reached, but 
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the reward r2 assigns the highest positive value for 
successes that occur during the intermediate stages. 
Reward r3 provides a slight positive incentive for rou-
tine actions, in addition, reward r4 penalises looping 
by relating two consecutive states.
Reward r4 is allotted in a new way relating two states 
thereby enhancing the bootstrapping effect. Similar-
ly, r2 proves to be better by encouraging in-between 
success. These reward patterns are described in Ta-
ble 2, where the terminal state represents the com-
pletion of cleaning both segments of the table. ”Rele-
vant cleaning” refers to cleaning an unclean segment, 
while “Irrelevant Cleaning” refers to cleaning an al-
ready cleaned segment of the table. Pick, Place, and 
Move are routine tasks that need to be performed 
meaningfully to progress toward the terminal state. 
”Improper action” refers to performing the clean ac-
tion while holding the object in hand or cleaning the 
segment where the object is already present, among 
other cases. Finally, the ”looping action” parameter is 
implemented in a distinct manner where it connects 
two consecutive states to enhance the bootstrapping 
effect. This means that the agent receives a penalty 
when it selects actions that result in switching back 
and forth between two identical states
In the reward pattern r1, a high positive reward of 1 is 
allocated only when the agent reaches the terminal 
state, i.e., when both segments of the table are clean. 
The maximum negative reward is given for improper 
actions performed by the agent from certain states. 
For all other actions (move, pick, place, clean), a less 
significant negative reward of −0.01 is awarded. This 
specific reward pattern has been implemented in the 
work mentioned in reference [8]. The reward pattern 
r2 is also described in Table 2. In r2, a high negative re-
ward of −1 is given for improper actions. A small neg-
ative reward is assigned for all actions, such as mov-

Table 2
Multiple Reward Allotment Patterns

Reward Terminal 
State

Relevant 
Cleaning

Irrelevant 
Cleaning

Pick
Place
Move

Improper 
Actions

Looping
Penalty

r1 1 -0.01 -0.01 -0.01 -1 -

r2 1 1 -0.01 -0.01 -1 -

r3 1 1 -0.01 0.01 -1 -

r4 1 1 -0.01 0.01 -1 -0.01

ing, picking, placing, and cleaning an already clean 
segment. The difference compared to r1 is that a high 
positive reward of 1 is allocated for cleaning even one 
unclean segment of the table. In r1, the high reward of 
1 is only given when the terminal state is achieved.
Reward r3, as shown in Table 2, is similar to r2 in many 
ways in terms of awarding high positive rewards and 
less significant negative rewards. The difference is that 
a less significant positive reward of 0.01 is given for 
routine actions like pick and place. Reward r3 follows 
the same pattern as r2 but with the addition of a small 
positive reward for routine actions. However, a new 
aspect is introduced in one of the reward allocations, 
which relates to two consecutive states. In other words, 
the agent receives a small penalty of −0.01 for looping 
between the same states. Looping between the same 
states occurs, when the agent alternates between move 
actions or pick and place actions, resulting the agent 
being stuck between the same two states. This penalty 
is included in reward r4 to prevent infinite looping.

2.2. Cognitive Learning Using RL
Infants continuously learn about different objects in 
their environment by interacting with them. Through 
interaction, they learn various attributes such as col-
or, shape, and usage. This learning occurs naturally as 
they observe the cause-and-effect relationships. Sim-
ilarly, the agents in the RL environment learn through 
repeated interactions with the environment. Like 
other machine learning algorithms, RL’s learning im-
proves with experience. However, unlike other algo-
rithms, the data for learning in RL is collected by the 
agent performing repeated actions on the environ-
ment. As a result, learning in RL happens incremen-
tally in a completely unknown environment.
RL aims to maximise the reward in a given scenario 
to reach the terminal state. Q-learning is a popular RL 
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algorithm used to solve a wide range of problems in ro-
botics and other domains. Q-learning is an off-policy 
RL algorithm that can identify the optimal action to 
take in a given state without requiring a model of the 
environment. The agent decides on the next action 
based on its current location within the environment.
Figure 2 illustrates the complete flow of the learn-
ing sequence in the Q-learning algorithm. The agent 
maintains a table whose dimensions are determined 
by the size of the state space and the number of avail-
able actions. This table is referred to as the Q- table, 
represented as Q [S, A], where S is the set of possible 
states, and A is the set of possible actions that the 
agent can take in those states. The values in the Q-ta-
ble indicate the expected cumulative rewards that the 
agent will receive by taking a particular action in a 
specific state. The Q-table is updated during each it-
eration of the learning process as the agent interacts 
with the environment and receives feedback in the 
form of rewards. This updating of the Q-table during 
learning iterations enables the agent to improve its 
estimates and make better decisions. The Q-table 
is updated using Equation (1), which is commonly 
known as the Bellman equation.

Qπ (st,at )=E[rt+1+γrt+2+ γ2 rt+2+ ….]. (1)

Initially, all the values in the Q-table are set to zero, 
and they are updated as training iterations progress. 
The agent takes an action and receives a reward based 
on the effect it has on the environment. The Q-value 
is calculated based on the current Q-value and the re-
ward received in response to the performed action. The 
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Q- value is computed according to Equation (2). By up-
dating the Q-table in this manner, the value function Q 
is maximized, enabling the agent to make better deci-
sions. This allows the agent to select actions that are 
more likely to result in the highest cumulative rewards

Q(st, at) <=  Q(st , at) + α[rt+1 + γQ(st+1, at+1) −Q(st, at)] (2)

Q∗(s, a) = max Qπ(s, a). (3)

In Equation (5), at represents the current action cho-
sen from a set of available actions A that can be per-
formed by the agent on the environment. Similarly, st 
is the current state from a set of states S representing 
the environment. Among all the states in set S, one 
state ST is called a terminal state, marking the end of 
the training episode. In this work, the terminal state is 
achieved when both segments of the table have been 
cleaned by the agent. rt represents the immediate re-
ward received according to a predefined pattern. With 
each action performed by the agent, there is a state 
transition in the environment. Consequently, a pos-
itive or negative reward is received as feedback for 
each action and corresponding state transition. The 
objective of Q-learning is to learn the policy that max-
imizes the Q-value for a state action pair as represent-
ed in Equation (3).
In this work, out of the four rewards that are allocat-
ed, one is given in a distinct manner that depends on 
the relationship between two consecutive states. The 
agent, present in the environment in the current state 
st ∈ S, performs the action at ∈ A, receives the reward 
rt, and undergoes a state transition to the next state st+1. 
The parameter γ is the discount factor, determining 
the weight given to future rewards. The value of γ in-
fluences the agent’s consideration of long-term versus 
immediate rewards. The parameter α is the learning 
rate, which determines how much new information is 
incorporated into the action selection policy. Striking a 
balance between these parameters allows the agent to 
appropriately value future and current rewards.
Temporal Difference (TD) learning, as given in Equa-
tion (4), is used to update the Q-value estimate of a 
state-action pair. TD learning updates the Q-value 
by bootstrapping the observed value and the esti-
mated value of the next state. The estimates of future 
rewards are obtained by using the current estimate 
of the value function, reducing variance in the esti-
mates. This approach aids in the convergence of the 
optimal value, even in cases of non-deterministic 
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transitions in the environment. The temporal differ-
ence though includes a bootstrapping effect by relat-
ing two states, this is further enhanced in reward r4 to 
make the learning faster with a high success rate.

V(s) <= V(s) + α [r + γV(s′−V(s)]. (4)

Q-learning aims to determine a policy that maximizes 
the cumulative reward over time. An optimal policy, 
denoted as π∗, is one that is either the best or equal to 
all other policies. Such policies share the same opti-
mal action-value function, denoted as Q∗ (as given in 
Equation (3)). Proper reward allocation is crucial in 
Q-learning because rewards have a significant impact 
on the optimal policy that the agent will learn. The 
agent’s objective is to maximize the total reward it re-
ceives over time. Proper reward allocation is crucial in 
Q-learning because rewards play a key role in shaping 
the optimal policy that the agent will learn. Rewards 
should be designed to provide a clear signal to the agent 
about which actions are desirable in a given state. If the 
rewards are ambiguous or do not align well with the 
agent’s objective, the agent may learn a sub-optimal 
policy. Therefore, it is important to carefully design the 
reward function to ensure proper reward allocation. 
The reward function should be customized to suit the 
specific task that the agent is attempting to accomplish.

Algorithm 1: 
Q-Learning for Table Cleaning (Two Segments)

Input: Q[S,A], State Table, List of Actions (A), 
Reward rt

Output: Q[S,A] with optimised Q-values
1 for each episode do
2 Select at ← ε-greedyActionSelection(st)
3 Perform the action at on the table
4 st+1 ← StateTransit(st, at)
5 Allot Reward rt

6 Update Q[S,A] using equation 2
7 itrCnt ← itrCnt + 1
8 if st+1 is Terminal State then
9 End episode
10 else if itrCnt ≥ maxItr then
11 End episode
12 else if st+1 is a failed State then
13 st+1 ← st

14 end if
15 st ← st+1

16 end for

Algorithm 1 presents the framework of Q-learning in 
action for the table cleaning application. It outlines the 
flow of a single episode, which consists of multiple it-
erations. Each episode requires several inputs: a state 
table, action definitions, reward pattern, and Q-table 
initialization. The state table is constructed based on 
the environment specifications, which are described 
in detail in Table 1. Next, a list of actions performed 
by the agent on the environment needs to be provided. 
To quantify the impact of actions on the environment, 
an appropriate reward pattern is designed. Finally, the 
Q-table denoted as Q[S, A], is initially populated with 
zero values, with the table dimensions corresponding 
to the number of states and actions. The Q-learning al-
gorithm takes these inputs and updates the Q-table Q[S, 
A] during each iteration. As a result, the Q-learning al-
gorithm produces an optimized Q-table that guides the 
agent in selecting the appropriate action for each state.

at = argmax Q(St, a). (5)

Each iterations, begins with ϵ-greedy-based action se-
lection, where the value of ϵ is set to 0.1. Equation (5) 
is primarily used to determine the next action. In this 
equation, St represents the current state of the envi-
ronment, a is an action, and A corresponds to the list 
of all possible actions. The agent then performs the 
chosen action on the table, and the state transition in 
the environment is observed. The Q-value is computed 
based on the received reward, followed by an update to 
the Q-table. The iteration count is then incremented. 
If the next state is the terminal state, the current epi-
sode is stopped, and a new episode begins. Similarly, if 
the iteration count reaches its maximum value, the ep-
isode is terminated. This termination is implemented 
to avoid infinite looping within a single episode. When 
the above two conditions are not met, the current state 
is updated to the next state, and the algorithm proceeds 
to the next iteration within the same episode. If the 
next state is a failed state, the current state remains 
the same, and the episode continues. Therefore, a set of 
iterations constitutes an episode, and a series of multi-
ple episodes is referred to as a training run.

3. Simulations and Outcomes
The findings obtained from the application of Q- 
learning-based cleaning with a reduced state space 
are discussed in this section. The simulation investi-
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gations were carried out using the CoppeliaSim soft-
ware [24]. The internal inverse kinematics module of 
CoppeliaSim is used for planning manipulator move-
ments.

3.1. Discussions on Impact of Reward 
Patterns on Learning Speed of Agent
The agent performing an action on the environment, 
causing a state change, is considered a single itera-
tion. A collection of iterations is referred to as an epi-
sode. Each episode ends only when the agent reaches 
the terminal state or after performing a certain num-
ber of iterations. If the agent performs an improper 
action, the training continues from the previous state 
instead of restarting from the initial state. Therefore, 
each episode is terminated after a predefined num-
ber of iterations, even if the agent has not reached 
the terminal state, to avoid infinite looping within an 
episode. The iteration count may be higher in certain 
cases, even if the episode count is lower. Therefore, in 
the results graph, the average reward and success rate 
are plotted against iterations rather than episodes. 
A collection of episodes is considered a single run. 
In the graphs, the average reward and success rate 
values represent averages across different runs. The 
agent’s learning is quantified using two parameters 
namely average reward convergence and success rate. 
Average reward convergence tells about the stabili-
ty and speed at which the agent learns. Success rate 
analysis gives inference about the maximum efficien-
cy reached by the agent.
The success rate obtained for different reward vari-
ations is shown in Figure 3. It can be observed that 
the agent achieves a success rate of approximately 
84% for all four types of rewards applied to the table 
cleaning scenario. However, the difference lies in the 
number of training iterations required to reach the 
maximum success rate. Rewards r1 and r2 exhibit 
similar patterns with small differences, as shown in 
Table 2. With this variation in reward allocation, r2 
enables the agent to reach the maximum success rate 
400 iterations earlier than r1. The slope of the curve 
for reward r2 is steeper compared to the slope for re-
ward r1. A similar trend can be observed in the con-
vergence curve of the average reward value, as depict-
ed in Figure 4. Reward r2 converges 400 iterations 
earlier compared to reward r1. The maximum average 
reward value for r2 is 0.3, while it is 0.17 for r1. This 
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The average reward convergence graph using SAR-
SA (State-action- reward-state-action) RL is given 
in Figure 5. The mean reward value in SARSA has 
decreased substantially than Q-learning. This greatly 
diminishes the success rate in SARSA. The improved 
performance in Q-learning can be attributed to the 
utilisation of exploitation behavior in selecting the 
next state-action pair. Nevertheless, the reward pat-
tern behavior remains consistent in both algorithms, 
with the observation that the intermediate success in 
r2 leads to more effective learning than r1. Moreover, r4 
relating two states enhances the bootstrapping effect 
resulting in better performance.
Reward r3 differs from r2 by allocating small positive 
rewards for routine actions like pick and place. This 
minor change has had a significant negative impact 
on the agent’s learning. With reward r3, the agent re-
quires an additional 2080 iterations to reach the max-
imum success rate of approximately 84% (Figure 3). 
Similarly, the convergence of the average reward with 
reward r3 also takes an additional 2080 iterations 
(Figure 4). The low positive value for routine tasks 
causes the agent to get occupied with routine tasks 
rather than actively pushing towards the terminal 
state. A reward system that aligns with the agent’s 
progress towards the goal, rather than routine ac-
tions, would be more effective. The final reward, r4, in-
troduces changes to reward r3 by including a loop pen-
alty. This customized reward modification is specific 
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to this particular scenario. With the inclusion of the 
loop penalty, the agent’s training iterations are signifi-
cantly improved, even slightly surpassing the perfor-
mance of r2. The average reward value of r4 is slightly 
higher than that of r2, mainly due to the presence of 
a less significant positive reward of 0.01. This slight 
increase tends to better performance of r4 compared 
to r2. From reward r4, it can be inferred that a tailored 
reward allocation has a highly positive impact on im-
proving the agent’s learning speed. The favorable im-
pact in r4 is attributed to its ability to impose a looping 
penalty. This phenomenon of allowing a looping pen-
alty establishes a connection between two consecu-
tive states, hence amplifying the bootstrapping effect. 
This impact is in addition to the existing bootstrap-
ping effect gained from temporal difference learning, 
as shown in Equation (2).
Table 3 presents a comparison of the training iter-
ations required to achieve the maximum possible 
success percentage across various reward patterns. 
In this particular environment design, the success 
rate obtained was approximately 84% for all the re-
ward patterns. The lowest success rate of 81.08% 
is achieved using reward r3 after 2360 iterations 
(70 episodes). For reward r1, the agent achieves a 
success rate of 83.94% after 630 iterations (25 epi-
sodes). With reward r2, the agent achieves a success 
rate of 84.73% after 240 iterations (14 episodes). 
Similarly, with reward r2, the agent achieves a suc-
cess rate of 84.73% after 630 iterations (25 episodes). 
A minor variation in reward r4 results in the agent 
achieving a success rate of around 84.77% after 142 
iterations (10 episodes). A comparable task involv-
ing learning to clean a table with a single object on 
it was performed in [8]. In that work, the learning 
was performed using classic RL with a reward pat-
tern of r1, and the success rate obtained was 35%. 
The comparison with similar works is given in table 
4. It is observed that the proposed method has fast-
er average reward convergence and a higher success 
rate compared to other works. Though the method 
Affordance-RL has a high success rate it needs a lot 
of pre-knowledge about the environment. In Affor-
dance-RL the pre-knowledge need to be hard-coded 
into the program. Whereas this work using Q-learn-
ing learns incrementally during the training phase 
itself. Therefore, a small modification in the envi-
ronment and reward impacts positively the learning 
efficiency of the agent.
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The convergence of average reward for different re-
ward patterns in the table cleaning learning task is 
also described in Table 3. In the work [8], a similar ta-
ble cleaning scenario trained using classic RL with re-
ward r1 is proposed. It takes nearly 1000 episodes for 
the average reward to converge, and the convergence 
is not smooth. In this work, with the same reward of 
r1, the average reward converges in 31 episodes. Other 
methods mentioned in [8] are Interactive-RL (IRL) 
and affordance-based RL, which have average reward 
convergences of around 40 and 55 episodes, respec-
tively. Except for the reward pattern r3, the proposed 
work shows better convergence speed compared to all 
the methods mentioned in [8]. The reduction in state 
count has a positive impact on improving the success 
rate and reducing the training iterations. Further-

more, the variation in reward allocation has positive-
ly influenced the reduction in training iterations with 
a better success rate.
The impact of the success rate on the alteration of 
parameters γ and α is given in Figure 6. Despite vari-
ations in γ and α, the agent achieves a success rate of 
around 82%. However, it has an impact on the training 
iterations. With γ and α values of 0.3, fewer iterations 
are required, and the agent attains a success rate of 
84% by 150 iterations. Subsequently, it consistent-
ly reaches the terminal stage with a success rate of 
around 84%. When the α value is changed to 0.5, an 
additional 33 iterations are needed to reach the 84% 
success rate. The agent’s performance degrades fur-
ther with a higher α value. Similar behaviour is ob-
served for the convergence of average reward values 
in Figure 7. The variation in the γ parameter has lit-
tle or no impact on the speed of convergence. When 
choosing a learning rate α, it’s important to experi-
ment and adjust accordingly based on factors like the 
reward system and environment complexity. In this 
scenario, it was observed through the graphs of av-
erage reward and success rate that an α of 0.3 yields 
better learning compared to its higher values. The 
learning parameter α has a decaying effect upon the 
instantaneous reward rt. This implies that the latest 
reward significantly influences the estimation more 
than previous rewards, leading to better learning.
Hence, the use of better environmental design in this 
study resulted in better learning outcomes by the 
agent. Then the agent’s learning is analysed with di-
verse set of reward patterns. The conclusion drawn 
from the varied reward pattern is the utilisation of 
positive incentives, even in a limited manner, for rou-
tine tasks hinders the process of learning. In contrast, 
minor negative incentives for repetitive tasks result 
in more effective learning. The agent’s learning pace 
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Reward r3 differs from r2 by allocating small 
positive rewards for routine actions like pick and 
place. This minor change has had a significant 
negative impact on the agent’s learning. With 
reward r3, the agent requires an additional 2080 
iterations to reach the maximum success rate of 
approximately 84% (Figure 3). Similarly, the 
convergence of the average reward with reward r3 
also takes an additional 2080 iterations (Figure 4). 
The low positive value for routine tasks causes the 
agent to get occupied with routine tasks rather 
than actively pushing towards the terminal state. 
A reward system that aligns with the agent’s 
progress towards the goal, rather than routine 
actions, would be more effective. The final reward, 
r4, introduces changes to reward r3 by including a 
loop penalty. This customized reward 
modification is specific to this particular scenario. 
With the inclusion of the loop penalty, the agent’s 
training iterations are significantly improved, even 
slightly surpassing the performance of r2. The 
average reward value of r4 is slightly higher than 
that of r2, mainly due to the presence of a less 
significant positive reward of 0.01. This slight 
increase tends to better performance of r4 
compared to r2. From reward r4, it can be inferred 
that a tailored reward allocation has a highly 
positive impact on improving the agent’s learning 
speed. The favorable impact in r4 is attributed to its 
ability to impose a looping penalty. This 
phenomenon of allowing a looping penalty 
establishes a connection between two consecutive 
states, hence amplifying the bootstrapping effect. 
This impact is in addition to the existing 
bootstrapping effect gained from temporal 
difference learning, as shown in Equation (2). 
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Table 3 presents a comparison of the training 
iterations required to achieve the maximum 
possible success percentage across various 
reward patterns. In this particular 
environment design, the success rate obtained 
was approximately 84% for all the reward 
patterns. The lowest success rate of 81.08% is 
achieved using reward r3 after 2360 iterations 
(70 episodes). For reward r1, the agent 
achieves a success rate of 83.94% after 630 
iterations (25 episodes). With reward r2, the 
agent achieves a success rate of 84.73% after 
240 iterations (14 episodes). Similarly, with 
reward r2, the agent achieves a success rate of 
84.73% after 630 iterations (25 episodes). A 
minor variation in reward r4 results in the 
agent achieving a success rate of around 
84.77% after 142 iterations (10 episodes). A 
comparable task involving learning to clean a 
table with a single object on it was performed 
in [8]. In that work, the learning was 
performed using classic RL with a reward 
pattern of r1, and the success rate obtained 
was 35%. The comparison with similar works 
is given in table 4. It is observed that the 
proposed method has faster average reward 
convergence and a higher success rate 
compared to other works. Though the 
method Affordance-RL has a high success 
rate it needs a lot of pre-knowledge about the 
environment. In Affordance-RL the pre-
knowledge need to be hard-coded into the 
program. Whereas this work using Q-
learning learns incrementally during the 
training phase itself. Therefore, a small 
modification in the environment and reward 
impacts positively the learning efficiency of 
the agent. 

Table 3 

Table 3
Learning Speed Comparisons for Different Reward Patterns

Methodology
Average Reward Convergence Maximum Success Rate

Iterations Episodes Iterations Episodes

r1 680 31 630 25

r2 290 21 240 14

r3 2350 70 2350 70

r4 190 15 140 10



265Information Technology and Control 2025/1/54

Figure 7 
Average reward with variations in learning rate for the 
reward r4 (Q-Learning)

  

performance. 

Figure 6  

Success rate with variations in learning rate for the 
reward r4 (Q-Learning). 

 
Reward r3 differs from r2 by allocating small 
positive rewards for routine actions like pick and 
place. This minor change has had a significant 
negative impact on the agent’s learning. With 
reward r3, the agent requires an additional 2080 
iterations to reach the maximum success rate of 
approximately 84% (Figure 3). Similarly, the 
convergence of the average reward with reward r3 
also takes an additional 2080 iterations (Figure 4). 
The low positive value for routine tasks causes the 
agent to get occupied with routine tasks rather 
than actively pushing towards the terminal state. 
A reward system that aligns with the agent’s 
progress towards the goal, rather than routine 
actions, would be more effective. The final reward, 
r4, introduces changes to reward r3 by including a 
loop penalty. This customized reward 
modification is specific to this particular scenario. 
With the inclusion of the loop penalty, the agent’s 
training iterations are significantly improved, even 
slightly surpassing the performance of r2. The 
average reward value of r4 is slightly higher than 
that of r2, mainly due to the presence of a less 
significant positive reward of 0.01. This slight 
increase tends to better performance of r4 
compared to r2. From reward r4, it can be inferred 
that a tailored reward allocation has a highly 
positive impact on improving the agent’s learning 
speed. The favorable impact in r4 is attributed to its 
ability to impose a looping penalty. This 
phenomenon of allowing a looping penalty 
establishes a connection between two consecutive 
states, hence amplifying the bootstrapping effect. 
This impact is in addition to the existing 
bootstrapping effect gained from temporal 
difference learning, as shown in Equation (2). 

Figure 7  

Average reward with variations in learning rate 
for the reward r4 (Q-Learning). 

 
Table 3 presents a comparison of the training 
iterations required to achieve the maximum 
possible success percentage across various 
reward patterns. In this particular 
environment design, the success rate obtained 
was approximately 84% for all the reward 
patterns. The lowest success rate of 81.08% is 
achieved using reward r3 after 2360 iterations 
(70 episodes). For reward r1, the agent 
achieves a success rate of 83.94% after 630 
iterations (25 episodes). With reward r2, the 
agent achieves a success rate of 84.73% after 
240 iterations (14 episodes). Similarly, with 
reward r2, the agent achieves a success rate of 
84.73% after 630 iterations (25 episodes). A 
minor variation in reward r4 results in the 
agent achieving a success rate of around 
84.77% after 142 iterations (10 episodes). A 
comparable task involving learning to clean a 
table with a single object on it was performed 
in [8]. In that work, the learning was 
performed using classic RL with a reward 
pattern of r1, and the success rate obtained 
was 35%. The comparison with similar works 
is given in table 4. It is observed that the 
proposed method has faster average reward 
convergence and a higher success rate 
compared to other works. Though the 
method Affordance-RL has a high success 
rate it needs a lot of pre-knowledge about the 
environment. In Affordance-RL the pre-
knowledge need to be hard-coded into the 
program. Whereas this work using Q-
learning learns incrementally during the 
training phase itself. Therefore, a small 
modification in the environment and reward 
impacts positively the learning efficiency of 
the agent. 

Table 3 

is enhanced by providing incentives for achieving in-
termediate successes. Another reward is granted in 
a unique way relating two successive states, acceler-
ating the bootstrapping process and leading to better 
learning. Furthermore, the insight relating the agent’s 
learning to human motivation is described in the up-
coming section 3.2.

3.2. Inference Related to Human Cognition
This section relates the agent’s learning process to 
the application of human intelligence. So that the hu-

man’s cognition can be better understood and trained. 
The reward r2 learns better than r1 with the only dif-
ference of awarding maximum reward for relevant 
cleaning action. That is giving a reward for interme-
diate success will improve the agent’s performance 
and also motivate the humans as well. The efficiency 
of r3 falls drastically just by awarding a small positive 
reward for routine actions instead of a small negative 
reward. Thus, to humans, the reward ought to be giv-
en for goal-oriented work instead of routine work for 
better productivity. As seen with r3, the learning gets 
dragged by focusing on getting small benefits instead 
of high-value goals. Finally, in r4 the learning is im-
proved by penalising meaningless redundant work. 
Again, this is inferred as for productive learning, 
progress is important than just staying busy with too 
many activities

4. Conclusions and Future Work
This paper proposes a methodology to apply Q- learn-
ing to a table-cleaning scenario with a reduced state 
space. As a result, the agent’s training iterations are 
reduced while achieving an increased success rate. 
Furthermore, different reward patterns are specif-
ically altered for the task to obtain a better success 
rate with fewer training iterations. The reward r4 is 
allotted in a distinct manner enhancing the boot-
strapping effect of consecutive states. Reward r2 en-
courages in-between success and discourages routine 
actions. The reward allotment of r2 and r4 proves to be 

Table 4
Success Rate Comparison

Methodology
Average Reward Convergence Maximum Success Rate

Episodes Success Rate (%) Episodes

Classic RL [8] 1000 35 1000

Classic RL [7] - 4 1000

Affordanace RL [8] 48 99.9 -

Interactive RL (L=0.5) [8] 40 - -

This work with reward r1 31 83.94 25

This work with reward r2 21 84.73 14

This work with reward r3 70 81.08 70

This work with reward r4 15 84.77 10
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efficient, as they achieve a maximum success rate of 
around 84% in 240 and 150 iterations, respectively. 
Similarly, their average reward convergence occurs 
in 290 and 190 iterations, respectively. The number of 
training iterations needed for average reward conver-
gence varies by 2210 iterations between the best-case 
and worst- case reward patterns mentioned in this 
work. Thus, this work addresses the major challenge 
of high training iterations in RL by properly altering 
the environment design and reward allotment. In this 
context, rewards are distributed according to a pre-
determined analysis of the environment. However, 
the rewards can also be adjusted based on interactive 

feedback from the environment, which allows for 
more effective learning in dynamic environmental 
conditions. Further progress can be made by incorpo-
rating the adaptive ϵ-greedy strategy for action selec-
tion. Additionally, the agent can be trained to handle 
multiple static and dynamic objects. With an increase 
in complexity regarding object count and environ-
ment dynamics, Deep-RL may be suitable for efficient 
learning. The choice of parameters α and γ requires 
experimentation and tuning, as the optimal values 
depend on the problem and environment. Therefore, 
optimisation techniques for selecting parameters 
with optimal values can be employed
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