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The indoor fall detection for the elderly can effectively help the treatment after falling, but many existing de-
tection methods have the problems of inconvenient use, high misjudgement rate and slow speed. Using deep
learning methods can effectively solve these problems, and YOLOv5s is a kind of deep learning algorithm that
can perform real-time fall detection. In order to achieve a more lightweight and higher detection accuracy, this
paper proposes a fall detection algorithm for the elderly based on improved YOLOV5s, called YOLOv5s-GCC.
Firstly, the original Conv and C3 structures are replaced by GhostConv and C3GhostV?2 structures in back-
bone to achieve model lightweight, which reduces model computation and improves accuracy. Secondly, the
lightweight upsampling operator CARAFE is introduced to expand the receptive field for data feature fusion
and reduce the loss of feature information in upsampling. Finally, the deepest C3 is integrated with CBAM at-
tention mechanism in the neck, because the deepest neck receives more abundant feature information, and
CBAM can increase the efficiency of the algorithm in extracting important information from the feature map.
Experimental results show that YOLOv5s-GCC has increased by 1.2% to 0.935 on the hybrid open source fall
dataset mAP@0.5; FLOPs decreased by 29.1%. Params are reduced by 27.5% and have obvious advantages over
similar object detection algorithms.

KEYWORDS:Fall detection, Improved YOLOvV5s, GhostNetV2, CARAFE, CBAM attention mechanism.

1. Introduction

According to the seventh national census data of the this demographic, individuals aged 60 and above are
National Bureau of Statistics of China, China’s popu- expected to exceed 260 million, constituting approx-
lationis projected to surpass 1.4 billionin 2020, exhib-  imately 18.7% of the national population [2]. Given
iting an average annual growth rate of 0.53%. Among  the progress in economy and society, ensuring the
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well-being of empty nesters has become increasing-
ly imperative. Data from China’s disease surveillance
system reveals that falls remain a predominant cause
of injury among elderly individuals nationwide. In
fact, over 20% of such incidents result in severe in-
juries for older adults in China; even healthy seniors
face a staggering probability (17%) of becoming seri-
ous patients due to falls [4]. Consequently, timely de-
tection and notification regarding falls play a pivotal
role in safeguarding the safety and security of empty
nesters.

At present, the real-time fall detection is mainly di-
vided into three types: wearable fall detection, en-
vironmental fall detection and computer vision fall
detection. The main problem of the first method is
that the elderly may forget to wear the device in dai-
ly life, and the main problem of the second method is
that the layout cost of the environmental equipment
is very high, and the misjudgement rate of these two
methods is generally high.

Fall detection based on computer vision has the char-
acteristics of convenient use, low misjudgement rate,
good real-time performance, and many applicable
scenarios. The feature extraction algorithms can be
mainly divided into three types: threshold analysis,
detection algorithm based on machine learning, and
detection algorithm based on deep learning [28].

2. Related Work

Since 2012, when Krzhevsky et al. [11] proposed the
AlexNet model, the deep learning model using convo-
lutional neural network (CNN) for feature extraction
has gradually become popular, and has been widely
used in fall detection. Nowadays, the object detection
algorithm based on deep learning can be divided into
one-stage and two-stage. The two-stage algorithms
include R-CNN [6], Fast RCNN [5], Faster RCNN
[18], and R-FCN [3], but the processing process of
these algorithms is relatively cumbersome, and the
detection speed is slow. The representative of one-
stage algorithm is SSD [13] algorithm and YOLO [1],
[15-17] series, which have the characteristics of fast
detection speed, good real-time performance, and
still maintain good accuracy. For example, Wang et
al. [24] used YOLOVS algorithm and introduced an-
chor point parameters to detect human falls. Pan-
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igrahi et al. [21] proposed an improved lightweight
MS-ML-SNYOLOvV3 network to obtain better detec-
tion results by increasing the receptive field. Li et al.
[12] improved the YOLOv5 network by embedding the
SE (Squeeze-and-Excitation, SE [10]) channel atten-
tion mechanism. SE pools the global average channel
information of the input feature map, and then nor-
malizes the compressed information and multiplies it
on the input feature map, enhancing the model’s abil-
ity to capture the information of the object of inter-
est and improving the detection accuracy. Shen et al.
[20] proposed a reparameterized backbone network,
in which the Conv module was replaced by DBBConv
and DBBC3 modules, and proposed a new feature
enhancement module (FEM) to enhance the feature
representation and feature fusion of the region of in-
terest (ROI), and added FEM to the feature pyramid
network (FPN) to improve detection accuracy. Yang
et al. [25] proposed MSF-YOLO to fuse multi-scale
features of images. Compared with the original Res-
Net unit, the single convolution scale is increased to
four convolution scales, and the features under each
different perception field are fused to obtain rich hi-
erarchical information from the image. Zhao et al.
[27] proposed a novel attention module SDI based
on coordinate attention and aliasing attention. The
module enhances the feature extraction ability of de-
tection targets. They proposed a novel convolutional
neural network model for fall detection in open space,
named YOLO-Fall. The above methods have achieved
good results in fall detection, but there are still prob-
lems such as large model volume, complex parameter
quantity, poor model feature fusion ability, and insuf-
ficient attention mechanism introduced. If the algo-
rithm has a large number of parameters, it is difficult
to deploy to other mobile devices for real-time fall de-
tection.

In view of the above problems, this paper proposes an
elderly fall detection algorithm based on improved
YOLOv5s, which achieves the balance between fast
detection and high accuracy, and meets the condi-
tions for deployment on hardware platforms. The
main contents are as follows: (1) Design a lightweight
backbone network, use the GhostNetV2 network
idea, replace the bottleneck structure in the original
backbone network C3 module with the GhostNetV2
bottleneck module in the GhostNetV2 network, build
the C3GhostV2 module, and use it with Ghostconv
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convolution to effectively reduce the number of mod-
el parameters and reduce the calculation cost. (2) In-
troduce the CARAFE upsampling operator in the fea-
ture extraction network, so that the model can obtain
more detailed information in the upsampling process,
and effectively reduce the information loss caused by
upsampling operation. (3) The convolutional atten-
tion model (CBAM) is introduced into the C3 module
of the feature extraction network, which is helpful for
the reasonable positioning of the bounding box and
the solution of the gradient disappearance problem.

3. YOLOvV5 Detection Algorithm

YOLOVS5 is a classic algorithm of the YOLO series, in-
cludingYOLOvV5s, YOLOv5m, YOLOv5], and YOLOv5x
four models. All models are composed of four parts:
input, backbone network, neck network, and output
detection end. The input is responsible for receiving
image data and preprocessing it to adapt to the input
requirements of the model, such as adjusting the im-
age size to the size required by the model, normalizing
the image, etc. The backbone network is the core of
the entire model and is responsible for extracting the
feature information of the input image. The neck net-
work is located between the backbone network and
the output detection end and is responsible for further
extracting and integrating the feature information
extracted by the backbone network to better adapt to
the specific object detection task. The output detec-
tion end is the last part of the model and is responsible
for outputting the category, location, confidence and
other information of the object according to the fea-
ture information passed by the neck network and the
requirements of the predefined object detection task,
so as to complete the object detection task. The input
part contains data preprocessing operations such as
Mosaic image enhancement, adaptive anchor calcu-
lation, and adaptive image scaling, which increases
the diversity of the dataset, avoids the inaccuracy
of manually setting anchor parameters, solves the
problem of inconsistent detection target size, and im-
proves the detection accuracy and robustness. To be
specific, Mosaic image augmentation introduces pix-
elation in certain areas of the training data, creating
visual distortions and confusion. This simulates the
real-world appearance of objects in complex scenes,
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helping the model adapt better to complex environ-
ments and improve its generalization ability and ac-
curacy. Adaptive anchor calculation dynamically ad-
justs the sizes and ratios of anchor boxes in the model
based on the actual sizes and proportions of objects in
the training dataset. This ensures that the model has
good adaptability when detecting objects of different
sizes and proportions, thereby enhancing accuracy
when dealing with objects of different scales. Adap-
tive image scaling dynamically adjusts the size of
images based on the distribution of object sizes and
proportions in the training data. This allows the mod-
el to encounter a variety of object sizes during train-
ing, helping it learn to adapt to different scale objects
and improve detection capabilities and accuracy. The
backbone network is mainly divided into three parts:
Conv module, CSPDarkNet53 backbone network, and
SPPF structure. In YOLOvV5-6.0 version, the Focus
module in the old version is replaced by a convolution
layer with a size of 6x6, a stride of 2, and a padding of
2, which helps to improve the model efficiency. This
is because the Focus module used in earlier versions
of YOLOV5 to reduce the size of the input image and
increase the number of channels, which is achieved
through slicing operations and channel stacking, a
process that, while effective, has computational effi-
ciency limitations. Using a single convolutional layer
directly instead of the Focus module simplifies the
overall structure of the model, reduces the complexity
of the model, and makes the model more lightweight.
This simplification helps in training and deployment
of the model, especially on resource-limited devices.
CSPDarkNet53 backbone network contains multi-
ple CSP modules. In YOLOv5-6.0 version, the Bottle-
neckCSP module in the old version is replaced by a
more streamlined C3 module. The C3 module trans-
forms the input feature map with two 1x1 convolu-
tions, one way into the Bottleneck module, through
two convolution layers with a size of 1x1 and 3x3, ex-
tracts features and performs feature fusion, and the
other way is directly passed down to the Bottleneck
module output feature map for Concat channel stack-
ing, which obtains rich gradient combination infor-
mation and faster inference speed. The C3 module
optimizes the process of feature extraction by intro-
ducing more convolutional layers and carefully con-
figsuring the parameters of these convolutional layers.
This not only enhances the feature extraction ability
of the module, but also improves the adaptability and
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Model structure of YOLOvV5s-v6.0

Figure 1
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recognition accuracy of the model to complex scenes
through finer-grained feature processing. In addition,
the C3 module improves the parameter efficiency of
the network through this optimized convolutional
layer design, that is, while maintaining or improving
the feature extraction ability, the number of param-
eters and computational complexity are minimized.
In YOLOV5-6.0 version, the SPP structure is replaced
by SPPF structure, which uses multiple small-sized
pooled kernel cascades to fuse feature maps of dif-
ferent receptive fields at a faster running speed. The
neck network adopts FPN+PANet feature pyramid.
FPN transfers rich semantic information from deep
to shallow for feature fusion from top to bottom, and
PANet transfers stronger position information from
shallow to deep for feature fusion from bottom to top.
The output detection end contains three detection
layers of different sizes, corresponding to three dif-
ferent size feature maps in the neck network. CIOU_
Loss is used as the loss function to measure the dif-
ference between predicted frames and real frames,
and non-maximum suppression NMS is introduced
to filter repetitive predicted frames, improving the
detection efficiency. Because YOLOvV5s is the model
with the smallest convolution depth and feature map
width in YOLOVS5, with the smallest amount of calcu-
lation and parameters, it is suitable for deployment
to other mobile devices, which is in line with the re-
search direction of this paper, YOLOv5s-6.0 version is
selected as the improvement object. The model struc-
ture of YOLOV5s-v6.0 is shown in Figure 1.

In order to improve the detection performance of the
model, this paper designed the object detection model
YOLOv5s-GCC based on YOLOv5s as the benchmark
model. The improved model is shown in Figure 2.

4. Improved YOLOv5s Model

4.1. Lightweight Backbone Design Based on
GhostNetV2

Traditional feature networks have the characteristics
of redundant feature information and large amount
of parameters. In order to solve these problems, the
mainstream lightweight networks at present mainly
include MobileNet [9], ShuffleNet [26] and Ghost-
Net [7]. The MobileNet model divides the standard
volume into depthwise convolution and pointwise
convolution, inverted residuals are introduced in Mo-
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bileNetV2 [19], and SE attention mechanism mod-
ule is introduced in MobileNetV3 [8]. In ShuffleNet,
channel shuffle operation is used to help information
flow in feature channels, and channel split operation
is proposed in ShuffleNetV2 [14] to reduce memo-
ry access cost. The effect on the ImageNet dataset
shows that GhostNetV?2 is ahead of other networks in
terms of classification accuracy, parameter number
and detection speed [22]. Therefore, this paper intro-
duces GhostNetV2 into YOLOv5s and proposes the
C3GhostV2 module, which has obvious advantages
compared with the traditional C3 module and is used
together with GhostConv in GhostNet.

GhostNet is a lightweight network designed by Hua-
wei Noah Ark Laboratory in 2020. It can make full use
of limited computing resources to extract redundant
feature information, and maintain the performance
of the network model while reducing the number of
model parameters. GhostConv is a convolution mod-
ule in GhostNet. It can generate enough feature in-
formation at the lowest cost through a series of sim-
ple linear operations, so as to improve the network’s
ability to mine original information, and can replace
ordinary convolution. However, GhostNet has certain
limitations. The convolution and point-by-point con-
volution inlinear transformation have no information
exchange with other pixels, and the ability to capture
spatial information is weak. In order to improve this
shortcoming, Huawei Noah Ark Laboratory launched
a new lightweight network structure GhostNetV2 in
2022. The convolution method of decoupled full-con-
nected DFC attention mechanism is added to the
Ghost convolution method in parallel, which obtains
better accuracy performance while making the net-
work model lightweight.

Figure 3

Comparison between Ghost module and traditional
convolution
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Figure 4
Structure of GhostNetV?2 Bottleneck and C3GhostV?2
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Compared with the traditional convolution method,
for a given input feature X € HxWxC (H, W, and C are
the height, width, and channel number of the feature
map respectively), the Ghost module divides the out-
put channels into two parts. The first part is conven-
tional convolution, but strictly controls the number
of convolution output layers to generate part of the
feature map. The second part generates some other
feature maps through linear transformation with low
computational cost, and finally stitches the two parts
of the feature map to generate the final feature map, so
as to eliminate the redundancy of the feature map and
obtain a better lightweight model. In deep learning
models, many feature maps are similar, and therefore
redundant. By reducing this redundancy, the Ghost
module is able to reduce the amount of computation
and the number of parameters.

In GhostNetV2, the decoupled fully connected at-
tention mechanism DFC is introduced, that is, in the
low-rank feature graph, the horizontal and vertical
fully connected layers are used to realize the atten-
tion graph with a global receptive field. That is, the in-
put feature X is sent to two branches, one is the Ghost
branch, which gets the output feature Y; the other is
the DFC branch, which gets the attention matrix A.

Finally, the two branches are dot multiplied. Formula
1illustrates this process.

O = sigmoid (A)Ov(X). @

DFC enables the network to better focus and process
spatial information by introducing fully connected
attention layers between feature maps. This approach

Figure 5
The module of GhostNetV2
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allows the model to capture spatial relationships on a
global scale, rather than just local regions. This helps
the model to more effectively understand and process
spatial structure and content in images.

GhostNetV2 parallelizes network computing by
grouping channels, which can adapt to input data of
different sizes and have less computing overhead. In
addition, the use of low-rank decomposition technol-
ogy can reduce the number of redundant parameters
while ensuring model accuracy. In the backbone net-
work, we use GhostConv and C3GhostV?2 structures
to ensure accuracy without loss while being light-
weight.

4.2. Upsampling Operator CARAFE

The nearest neighbor interpolation is used by default
in YOLOvV5, which determines the upsampling kernel
by the spatial position of the pixel point. The seman-
tic information of the feature map is not used, which
affects the positioning and recognition of the defect
target, cannot achieve the optimal detection effect,
and has a small receptive field. In view of these prob-
lems, this paper uses the lightweight and efficient up-
sampling operator CARAFE [23], which maintains

Figure 6
Structure of CARAFE
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lightweight functions with a small number of param-
eters and calculations. Compared with the nearest
neighbor interpolation, it has three main advantages:
1. Large receptive field, able to aggregate context in-
formation; 2. Good content awareness ability, dynam-
ically generates adaptive kernels, rather than using a
fixed kernel for all samples (e.g. deconvolution), sup-
porting instance-specific content awareness process-
ing; 3. Light weight, fast calculation speed. CARAFE
introduces little computing overhead and can be easi-
ly integrated into modern network architectures.

CARAFE is divided into two main modules, name-
ly the upsampling kernel prediction module and the
feature reorganization module. Assuming the upsam-
pling rate is o, given an input feature map with shape
HxWxC, in the upsampling prediction module, for the
input feature image X, the channel compression is
first performed through the ordinary convolution op-
eration to generate the compressed image Y with size
HxW=xC,_, which reduces the network calculation.
Set the size of the upsampling kernel as k, xk . Com-
bined with the input image size and the upsampling
rate o, the predicted size of the upsampling kernel is
obtained through the convolution operation, and the
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size of the upsampling kernel is cHxocWxk, xk . Fi-
nally, the softmax algorithm is used to normalize the
sampling kernel, so that the sum of the weights of the
convolution kernel is 1. For any target position 1’(i’,j")
in the new output graph X’, there is al(i,j) correspond-
ing to it in the original feature graph, and the mapping
relationship is i=[i’/c], j=[j’/c]. N(X,k) is represented
as the kxk interval of X with 1 as the center, and the
upsampling kernel prediction module y predicts the
position kernel W, of each position I’ according to X,.
Formula 2 illustrates this process.

Wr= 1.’) (N (Xl,kencoder) ) . &)

Inthe feature recombination module, for the obtained
compressed image Y, the feature map with the corre-
sponding size of k xk,, is taken at the center of the
feature map Y and the prediction of the upsampling
kernel is performed to perform convolution opera-
tion. Finally, the output feature map X’ with the size
of cHxcWxC is obtained. Formula 3 illustrates this
process.

r r
X"':ZZm%n,mern,ﬂm). ®

n=-r m=-r

X, represents the I'(i’,j”) position of the new feature
map X,, W represents the convolution kernel, and
X represents the original feature map. The original
feature map is the region from -r to r with (i,j) as the
center.

In summary, CARAFE offers a more advanced up-
sampling method compared to the default nearest
neighbor interpolation in YOLOvV5s. Its main advan-
tages are the ability to generate smoother feature
maps with richer semantic information, which helps
improve the detection accuracy of small objects and
the precision of boundary localization. Additionally,
CARAFE employs content-aware weighting, allow-
ing the reconstructed feature maps to more accu-
rately reflect the detailed characteristics of the in-
put data.

4.3. C3CBAM Attention Mechanism

The attention mechanism module can effectively
improve the efficiency of the network by selecting
information features, estimating the importance of
different information, weakening useless informa-
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tion and strengthening important information. Due to
the factors of image occlusion, complex background,
and small proportion of distant target image, the de-
tection accuracy will be seriously affected by the real
situation. In order to solve these problems, we intro-
duce the attention mechanism. By weighting import-
ant features, attention mechanisms can identify and
emphasize target objects in images, even when these
objects are partially occluded or highly fused with the
surrounding environment. This enhances the mod-
el’s ability to capture details, especially when dealing
with images containing complex scenes or multiple
overlapping targets, and can effectively distinguish
foreground targets from background noise, signifi-
cantly improving the quality and reliability of detec-
tion results. Therefore, the application of attention
mechanisms in advanced object detection models
such as YOLOVS5s is crucial to improve performance
in complex visual environments.

CBAM (Convolutional Block Attention Module)
contains two submodules, CAM (Channel Atten-
tion Module) and SAM (Spartial Attention Module),
which are respectively channel and spatial attention.
In the channel attention module, the channel dimen-
sion is kept constant, the spatial dimension is com-
pressed, and the meaningful information in the input
image is focused on. In the spatial attention module,
the spatial dimension is kept constant, the channel
dimension is compressed, and the focus is on the lo-
cation information of the target.

Figure 7
Structure of CBAM attention and C3CBAM module
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In this paper, CBAM module is introduced into C3
module to form C3CBAM module, which improves
the network’s ability to extract the characteristics of
the detection target.
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5. Experiment and Analysis
5.1. Dataset and Evaluation Index

The experimental data set is a mixture of three public
datasets: UR Fall Detection Dataset, Fall Detection
Dataset (2017 IAPR MVA Conference), and Multi-
ple Cameras Fall Dataset, with a total of 3502 imag-
es. Since there are few falls covered in the dataset, in
order to enrich the fall backgrounds under different
conditions, 801 falls in COCO dataset are selected,
a total of 4303 images, which are divided into train-
ing set, validation set, and test set according to 8:1:1.
Labeling software is used for data labeling, and the
labels of the dataset are Fall, Stand, and Sit. The label-
ing of some datasets is shown in Figure 8.

UR Fall Detection Dataset: This dataset was devel-
oped by the University of Rochester to support re-
search in fall detection and everyday behavior recog-
nition. It contains videos from different angles and in
different lighting environments, covering a variety of
fall and non-fall scenarios. Individuals in the videos
perform various activities such as walking, running,
sitting, and falling, to provide diverse data for model
training and testing.

Fall Detection Dataset (2017 IAPR MVA Confer-
ence): This dataset was presented at the 15th IAPR
International Conference on Machine Vision Appli-
cations in 2017 and was designed specifically for fall
detection research. The images in the dataset are
recorded in 5 different rooms which consist of 8 dif-
ferent view angles. There are 5 different participants
out of which there are two male participants of age 32
and 50 and three female participants of age 19, 28 and

Figure 8
Sample images of the dataset
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40. All the activities of the participants represent 5
different categories of poses that are standing, sitting,
lying, bending and crawling. There is only one partic-
ipantin each image.

Multiple Cameras Fall Dataset: This dataset con-
tains 24 scenes recorded using 8 IP cameras. The
dataset focuses on using a multi-camera system to
improve the accuracy of fall detection. By collecting
data from different angles, the dataset aims to address
the perspective limitations that a single camera may
encounter. This setup helps to generate a more com-
prehensive view that can provide more details about
fall events, allowing fall detection algorithms to work
more accurately in complex environments.

COCO Dataset: This is a widely used large-scale im-
age dataset, which contains more than 200,000 imag-
es, dedicated to computer vision tasks such as object
detection, human key-point detection, and image de-
scription. The dataset was released by the Microsoft
team to promote research and development of scene
understanding technology. The COCO Dataset pro-
vides images of objects in their natural environment,
emphasizing the interaction between different ob-
jects and the overall understanding of the scene.

By combining these datasets, the strength and robust-
ness of the fall detection system can be significantly
improved. Here are some key advantages: 1. These
datasets contain data collected from different envi-
ronments, which improves the generalization ability
of the model in various scenarios. In particular, the
Multiple Cameras Fall Dataset increases the perspec-
tive diversity of the data by providing multiple camera
views. In addition, these datasets may involve differ-

fall stand

sit multi-label
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ent populations, including different ages, genders,
body types and behavior patterns, which improves
the model’s ability to deal with the diversity of human
behavior. 2. Combining different datasets can provide
more comprehensive and integrated data, so that the
model can learn more complex features and patterns,
improving the robustness and accuracy under com-
plex real-world conditions. 3. Using data from mul-
tiple sources increases the size and diversity of the
training set, helping to reduce model overfitting, mak-
ing the model more able to generalize to unseen data.

5.2. Experimental Environment

The experimental computer processor is Intel(R)
Core(TM) i7-12650H CPU @ 2.30 GHz, the GPU is
NVIDIA A100 80GB PCle, the operating system is
Ubuntu 20.04.2, the deep learning framework is Py-
Torch 2.0.1, the Python version is 3.8.0, and the CUDA
versionis 11.7.

The model training parameters are set as follows: the
batch size is 32, the epoch is 100, the imgz is 640, the
initial learning rate is 0.01, the weight attenuation co-
efficientis 0.0005, and the momentum is 0.937. SGD is
used as the optimizer for iterative training.

5.3. Experimental Evaluation Index

In this paper, average precision (AP) is used as the
evaluation index for each defect class, and mean av-
erage precision (mAP) is used to evaluate the per-
formance of the entire network model. AP (Average
Precision) refers to the area under the PR curve (Pre-
cision-Recall Curve), which is the average of the ac-
curacy at different recall points. mAP@0.5 refers to
the average of the AP values of all classes when the
IoU value is equal to 0.5. mAP@0.5:0.95 represents
the average mAP at different IoU thresholds (from 0.5
to 0.95, step size 0.05), which takes into account the
accuracy P and recall R of object detection. Precision
refers to the proportion of all results predicted as pos-
itive samples that are correctly predicted, and recall
refers to the proportion of all positive samples that
are correctly predicted as positive samples. The num-
ber of parameters (Params) of the model is used to
evaluate the complexity of the model. The smaller the
number of parameters, the lighter the model is. The
FLOPsindex is used to evaluate the computational ef-
ficiency of the model. The lower the FLOPs, the high-
er the computational efficiency of the model is.
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P.isthe number of positive samples that are correctly
predicted; P is the number of positive samples that
are wrongly predicted; Ny is the number of negative
samples that are wrongly predicted; m is the number
of classes that are detected.

5.4. Analysis of Experimental Results

5.4.1. Experimental Analysis of Lightweight
Improvement

In this paper, the original YOLOv5s model is im-
proved by replacing the ordinary convolution and C3
module with GhostConv and C3GhostV2 modules. In
order to verify whether different replacement parts
can effectively reduce the amount of model parame-
ters and explore the impact of different replacement
parts on the model accuracy, four sets of experiments
are designed, which are YOLOv5s, YOLOv5s-all-
Ghost, YOLOv5s-backbone-Ghost and YOLOv5s-
neck-Ghost. The model in which all the Conv and C3
are replaced by GhostConv and C3GhostV2 modules
is named YOLOv5s-all-Ghost. The model in which
all the Conv and C3 in the backbone are replaced
by GhostConv and C3GhostV2 modules is named
YOLOv5s-backbone-Ghost. The model in which all
the Conv and C3 in the neck are replaced by Ghost-
Conv and C3GhostV2 modules is named YOLOv5s-
neck-Ghost. The comparison results are shown in
Table 1.

As can be seen from Table 1, after the model replaces
GhostConv and C3GhostV2 modules completely, the
parameter amount and FLOPs of the improved mod-
el are reduced by 42.74% and 43.04% respectively,
the detection accuracy is improved by 0.3%, and the
generalization ability of the model is good. After the
model backbone replaces GhostConv and C3GhostV?2
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Table 1

Comparison of lightweight improvement effect in different
positions

Model mAP@0.5 Params(M) FLOPs(G)
YOLOv5s 0.923 7.02 15.8
YOLOv5s-all-Ghost 0.926 4.02 9.0
é(;cl).g%s—Backbone— 0.929 5.0 111
YOLOv5s-Neck-Ghost 0.919 577 13.6

modules, the parameter amount and FLOPs of the
improved model are reduced by 24.93% and 29.75%,
respectively, the detection accuracy is improved by
0.6%, and the model has the best generalization ability.
After the YOLOv5s model neck replaces GhostConv
and C3GhostV2 modules, the parameter amount and
FLOPs of the improved model are reduced by 17.81%
and 13.92% respectively, the detection accuracy is
reduced by 0.4%, the detection accuracy is reduced
by much, and the generalization ability is poor. In
order to obtain the best detection accuracy and the
best generalization ability of the model, this paper
determines the experimental scheme of the YOLOv5s
model backbone network replacing C3GhostV?2
and Ghost modules, which can also reduce a certain
amount of model parameters, and the model is named
YOLOv5s-G.

5.4.2. Experimental Analysis of the Improvement
of the Upsampling Operator

In order to verify the effectiveness of the upsampling
operator CARAFE, the algorithm using the upsam-
pling operator CARAFE on the basis of the algorithm
YOLOv5s-G is called YOLOvV5s-GC. The upsampling
operator CARAFE is used to replace the nearest
neighbor interpolation of the original neck network to
obtain ahigher quality upsampling feature map. In the

Table 2
Comparison results of upsampling operator

Upsampling Operator Precision Recall
nearest_neighbor 0.913 0.89
CARAFE 0.943 0.88
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paper [23], Wang et al. believe that k... = k,,- 2 can
achieve the best performance under the condition of
a similar amount of calculation, and only by increas-
ing the two at the same time can the performance be
improved, but it will also increase the amount of cal-
culation. Therefore, we set the CARAFE operator of
Kencoder = 35 Kyp = 5 to seek to improve the model accura-
cy as much as possible under the condition of a cer-
tain amount of calculation. The comparison results
are shown in Table 2.

As can be seen from Table 2, after using CARAFE op-
erator, mMAP@0.5 and mAP@0.5:0.95 are improved
compared with the basic model using the nearest
neighbor interpolation, mAP@0.5 is improved by
0.1%, and mAP@0.5:0.95 is improved by 1.1%, indicat-
ing that the average mAP of the model at different IoU
thresholds is improved, and Precision is improved
by 3%, indicating that the accuracy of the model is
improved to some extent. The experimental results
show that the CARAFE operator can better capture
the spatial relationship between features, which can
make the model more accurate.

5.4.3. Experimental Analysis of C3CBAM
Improvement

5.4.3.1. Analysis of C3CBAM Replacement
Positions

In order to verify the effectiveness of the C3CBAM
module withimproved attention mechanism, the algo-
rithm using C3CBAM on the basis of YOLOv5s-GC is
called YOLOv5s-GCC. In addition, in order to explore
the optimal position of C3CBAM embedding, this pa-
per fused CBAM at the four C3 modules of the neck
network, which were labeled as CBAM_A, CBAM_B,
CBAM_C and CBAM_D from shallow to deep. The
other parts remained unchanged, and the comparison
experiment was conducted with YOLOv5s-GC algo-
rithm. The comparison results are shown in Table 3,
where “v” indicates the use of an improved method.

mAP@0.5 mAP@0.5:0.95 FLOPs(G) Params(M)
0.929 0.67 111 5.27
0.93 0.681 114 541



Information Technology and Control

Table 3
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Comparison of improvement effects of C3CBAM modules in different positions

Model A B
YOLOv5s-GC

YOLOV5s-GC-CBAM_A \
YOLOv5s-GC-CBAM_B v

YOLOv5s-GC-CBAM_C
YOLOv5s-GC-CBAM_D
YOLOv5sGC-CBAM_ABCD N \

As can be seen from Table 3, not all fusions of CBAM
modules at all positions can improve the detection
effect. After the fusion of the deepest CBAM_D part,
mAP@0.5 is increased by 0.5%, which is the best ef-
fect, and the fusion of the rest parts is not good.

The fusion works best when CBAM is integrated at the
top of the PANet, i.e. in the case of CBAM_D. We ana-
lyze this result for two main reasons: 1. The lateral con-
nections of the PANet allow for the fusion of feature in-
formation from different layers of the Backbone. These
connections enhance the flow of information and pro-
vide a more detailed and comprehensive feature rep-
resentation by combining high-resolution but seman-
tically shallow low-level features with low-resolution
but semantically rich deep-level features. The fusion
of CBAM, especially at the top layer after these later-
al connections from the Backbone, allows the model
to further refine and focus on this fused information;
2. PANet is known for its ability to enhance feature
hierarchy through bottom-up paths and horizontal
connections. By placing CBAM at the top of the PANet,
you effectively take advantage of the rich hierarchical
information provided by the bottom layer. CBAM’s
spatial and channel attention mechanisms refine this

Table 4

C D mAP@0.5

0.93
0.927

0.931

\ 0.926
\ 0.935

\ \ 0.93

information, allowing the network to more effectively
encapsulate it into the fusion features for prediction.

5.4.3.2. Comparison to Other Attention
Mechanisms

In order to evaluate the improvement effect of the
CBAM attention mechanism module selected in this
paper, we fused the same C3 position of C3CBAM in
YOLOvV5s-GC and fused different attention mecha-
nisms of SE and ECA. The SE mechanism focuses on
feature weighting between feature channels, learns
the importance of each channel, adjusts the weight of
the channel according to the importance to enhance
important features and suppress features that are not
important for the current task. The two fully connect-
ed layers of the SE mechanism will reduce the channel
size and there is a problem of channel feature loss. In
the ECA mechanism, the fully connected layer is re-
moved and one-dimensional convolution is used to
complete the information interaction between chan-
nels. However, these two attention mechanisms only
focus on channel information, while CBAM introduces
two analysis dimensions of spatial attention and chan-
nel attention at the same time. It not only processes the

Comparison of the improvement effect of different attention mechanism modules

Model mAP@0.5 Precision/% Recall/% FLOPs(G) Params(M)
YOLOv5s-GC 0.93 0.943 0.88 114 541
YOLOv5s-GC+C3SE 0.929 0.926 0.874 114 542
YOLOv5s-GC+C3ECA 0.934 0.922 0.895 114 541
YOLOv5s-GC+C3CBAM 0.935 0.912 0.911 11.2 5.09
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allocation of feature map channels through channel at-
tention, but also pays more attention to the pixel areain
the image that plays a decisive role in classification and
ignores the irrelevant area through spatial attention.
The comparison results are shown in Table 4.

As can be seen from Table 4, the maximum mAP can
be obtained by integrating the CBAM attention mech-
anism at the same position, which is 0.5% higher than
YOLOvV5s. Moreover, compared with other attention
mechanisms, the model calculation is smaller and the
number of parameters is greatly reduced while im-
proving more accuracy, indicating that CBAM better
improves the model performance through the atten-
tion mechanism in the two dimensions of space and
channel.

6. Contrastive Analysis
6.1. Ablation Experiments

In this paper, improvements are made based on the
YOLOvV5s model, which are lightweight backbone im-
provement, upsampling operator CARAFE improve-
ment, and C3 module fusion CBAM attention mech-
anism. In order to fully verify the effectiveness of the
improvements proposed in this paper, ablation exper-
iments are conducted on mixed datasets to verify the
importance of each improvement. Each improvement
is embedded into the YOLOv5s model in turn, and the
same training parameters and environmental condi-
tions are used in each set of experiments. The experi-
mental results are shown in Table 5. “V/” indicates that
a certain improvement method is used.

It can be seen from Table 5 that the detection perfor-
mance of YOLOvV5s model is low. After the improve-
ment of lightweight backbone, FLOPs and Params are

Table 5
Comparison of ablation experiments

Ghost CARAFE C3CBAM AP
stand fall
0989 | 0823
0.99 0.824
\ 0.99 0.82
v 0987 | 0846
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greatly reduced, and mAP@0.5 is improved to a cer-
tain extent, up 0.6%. We analyze that the reason for
the improvement in accuracy while being lightweight
is due to the introduction of the DFC attention mech-
anism in GhostNetV2. The DFC attention mecha-
nism focuses on both global and local information by
dynamically adjusting the weights of the convolution
kernel to gather information from different locations.
This enables the network to capture feature repre-
sentations with rich contextual information very ef-
ficiently without significantly increasing the number
of parameters and computational complexity, thereby
improving detection accuracy. On this basis, after the
improvement of the upsampling operator CARAFE,
although the CARAFE operator involves the reorgani-
zation and weighting operation of features, resulting
in the increase of the amount of calculation and pa-
rameter of the model, mAP@0.5 and mAP@0.5:0.95
are improved by 0.1% and 1.1% respectively. Finally,
the CBAM attention mechanism is fused to obtain
the highest AP value of fall, reaching 0.846. At this
time, although mAP@0.5:0.95 is reduced, mAP@0.5
reaches the highest 0.935. It can be seen from the ex-
perimental results that after the fusion of CBAM, the
amount of calculation and parameter of the model are
reduced compared with those before the fusion, and
the Params after fusion reach the lowest 5.10M, and
the FLOPs are only 11.2G, which achieves the purpose
of high-precision fall detection in complex environ-
ments with the best effect. These data illustrate that
the CBAM module can help reduce the number of pa-
rameters by adaptively recalibrating the feature map
so that the model can focus on important features
and reduce redundancy. By integrating the attention
mechanism, it also allows the model to efficiently
allocate computing resources by focusing on the rel-

o mAP@0.5 = mAP@0.5:0.95 Fl(‘g)P S P*g‘;‘[)ms
0.958 0.923 0.676 15.8 702
0.973 0.929 0.67 111 5.27
0.979 0.93 0.681 114 541
0972 0935 0.676 1.2 5.09
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evant parts of the input, which can save computing
resources during inference without compromising
detection performance.

The training visualization parameters of YOLO-GCC
are shown in Figure 9. Box Loss (box_loss) is used to
measure the position accuracy of the target box predic-
tion, that is, the difference between the position of the
target box and the position of the real box. Objectness
Loss (obj_loss) is used to measure whether the target
is correctly detected, that is, whether the target exists
and its confidence. Class Loss (cls_loss) is used to mea-
sure the class classification of the target, that is, the
category to which the target belongs. Train/loss means
the mean loss in the training set, and val/loss means
the mean loss in the validation set. Ideally, we hope
that the training loss and validation loss are relatively
small, and the difference between them is small, which
means that the model can not only fit the training data,
but also have good generalization ability.

6.2. Visual Comparison of Detection Effect
of Three Types of Tags Before and After
Improvement

It can be seen from Table 5 that, compared with the AP
data of each label of YOLOvV5s and YOLOv5s-GCC be-

Figure 9
The training visualization parameters of YOLO-GCC

train/box_loss train/obj_loss

train/cls_loss
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fore and after the improvement, the AP of stand label
decreased by 0.2%, but still reached 0.987, indicating
that the accuracy of stand recognition before and af-
ter the improvement was very high, with little differ-
ence. For the slight drop in accuracy on the stand label
caused by our improvement, our analysis is that the
addition of attention mechanism often improves the
overall performance of the model, but in some specif-
ic cases, it may have a slight impact on one or several
labels. This is because for labels that already have a
high accuracy, the model may have learned enough fea-
tures for this particular task without using attention.
Introducing attention risks making the model focus
too much on certain features and ignoring other equal-
ly important information. Since our fall detection is
not particularly strict for standing, the impact on this
non-critical task may be negligible, so this slight drop
in accuracy may not have a significant negative impact
on the final actual results. However, the AP of fall label
and sit label increased by 2.3% and 1.4% before and af-
ter the improvement, respectively, indicating that the
model’s recognition ability of fall and sit before and af-
ter the improvement was greatly improved. The com-
parison of the detection results is as follows:

As can be seen from Figure 10, in different scene envi-
ronments, the improved model YOLOv5s-GCC has al-

metrics/precision metrics/recall

0.10 —e— results
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0.015 0.2
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Figure 10
Comparison of stand test results before and after
improvement

YOLOvV5s YOLOv5s-GCC

most the same stand recognition ability as YOLOV5s,
and both maintain high recognition accuracy.

AscanbeseenfromFigure11,in different scenarios, the
improved model YOLOvV5s-GCC can greatly improve
the recognition ability of fall compared with YOLOv5s.
In the first scenario, the detection confidence of fall by
YOLOvV5s is 0.79, and that of fall by YOLOv5s-GCC is
0.84. In the second scenario, the detection confidence
of fall by YOLOV5s is 0.81, and that of fall by YOLOv5s-
GCC is 0.91. The improved model has better detection
effect on fall than the original model.

Figure 11
Comparison of fall test results before and after improvement

YOLOv5s-GCC

YOLOv5s
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Figure 12
Comparison of sit test results before and after improvement

YOLOv5s

YOLOv5s-GCC

As can be seen from Figure 12, in different scenarios,
the improved model YOLOv5s-GCC has improved the
recognition ability of sit compared with YOLOvV5s. In
the first scenario, the detection confidence of sit by
YOLOvS5s is 0.89, and that of sit by YOLOv5s-GCC is
0.91. In the second scenario, since the person is in the
stand state and about to fall, it should not be detected
as sit, but the detection confidence of sit by YOLOv5s
is 0.63, and that of stand is 0.53, while that of stand by
YOLOv5s-GCC is only 0.74. The improved model is
better than the original model in the detection effect
of sit.

6.3. Comparative Experiments

Compared with traditional models, YOLO series has
higher detection accuracy and speed. In order to ver-
ify the effectiveness of improving the performance of
the model, we trained YOLOv3 and YOLOvV3-tiny al-
gorithms on the same dataset under the same train-
ing parameters, for comparison with YOLOv5s-GCC.
YOLOv3-tiny is a lightweight version of the YOLOv3
model, designed for scenarios that require higher
speed and smaller model size. The comparison results
are shown in Table 6.

As can be seen from Table 6, YOLOv5s-GCC has the
highest mAP@O0.5, 1.3% higher than YOLOv3 and
2.2% higher than YOLOv3-tiny; the weight size is
the smallest, only 10.1M, 91.8% lower than YOLOv3
and 42.3% lower than YOLOv3-tiny; the calculation
amount is the smallest, only 11.2G, 92.8% lower than
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YOLOv3 and 13.2% lower than YOLOv3-tiny. It indi-
cates that the improved model YOLOv5s-GCC has
higher detection accuracy and faster speed for fall de-
tection, and the weight file is smaller, which is condu-
cive to deployment on other hardware platforms.

Table 6
Comparative experiments

Model mAP@0.5 Weights(IM) FLOPs(G)
YOLOv3 0.922 123.6 154.6
YOLOV3-tiny 0.913 175 12.9
YOLOv5s-GCC 0.935 101 11.2

The comparison of mMAP@0.5 curve during training is
as follows:

Figure 13
mAP@0.5 change curve comparison

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
epoch
@ —YOLOv3 (@ YOLOv3_tiny (3—YOLOvSs-GCC

As can be seen from Figure 13, the mAP@0.5 of
YOLOvV5s-GCC is higher than that of the other two
models in most of the last 40 rounds of training, re-
flecting the effectiveness of the improvement.

7. Conclusion

In order to solve the problem that the elderly fall in-
doors and cannot be found in time, this paper pro-
poses a fall detection model for the elderly based on
improved YOLOv5s. Compared with YOLOv5s, the
improved YOLOvV5s-GCC has 1.2% higher mAP@0.5,
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reaching 0.935; 29.1% lower FLOPs, which is reduced
to 11.2G; 27.5% lower Params, which is reduced to
5.09M. While significantly reducing the amount of
calculation and parameters of the model, it effectively
improves the detection accuracy, and provides a new
idea for computer vision to help indoor fall detection.

The follow-up work can be carried out around 3D
indoor fall detection, such as building a spatial co-
ordinate system to achieve more accurate fall detec-
tion through the change of human joint spatial co-
ordinates. In the development and evaluation of fall
detection models, it is necessary to ensure that the
privacy of participants is protected, and any data col-
lection and use must comply with ethical standards.
We believe that privacy protection technologies can
be explored, such as differential privacy mechanism
and data desensitization technology, to reduce the in-
fringement of personal privacy.

Appendix A

The download addresses of the four datasets used in
this article are as follows:

UR Fall Detection Dataset: http:// fenix.univ.rzeszow.
pl/~mkepski/ds/uf. html

Fall Detection Dataset (2017 IAPR M VA Conference):
http://falldataset.com/

Multiple Cameras Fall Dataset: https:// www.iro.
umontreal.ca/~labimage/Dataset/

COCO Dataset: https://cocodataset.org/#home
Data Sharing Agreement

The datasets used and/or analyzed during the current
study are available from the corresponding author on
reasonable request.
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