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The Rapidly-Exploring Random Tree (RRT) algorithm has demonstrated proficiency in adapting to path 
search challenges within high-dimensional dynamic environments. However, a notable limitation of the 
RRT algorithm lies in its inability to fulfill the criteria for achieving the shortest and smoothest path for mo-
bile sensing nodes. To address the limitations of the conventional RRT algorithm and enhance the path plan-
ning for mobile robots, this paper proposed an innovative approach named M-RRT, designed to overcome the 
aforementioned shortcomings and optimize the path planning process for mobile sensing nodes. First, the 
search area is constructed according to the defined coverage density. After searching the path in the search 
area, the RRT algorithm uses the greedy method to delete the intermediate nodes in the path, and obtains the 
uniquly optimal path. Finally, the Bezier curve is used to optimize the path, which makes the path shortest 
and meets the dynamic requirements of the mobile node. Simulation results show that M-RRT has better 
path and faster convergence speed than traditional RRT, which can better meet the planning requirements 
of mobile nodes.
KEYWORDS: MRRT, search area, coverage density, mobile node.
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1. Introduction
In the rapidly evolving field of wireless sensor net-
works, the path planning problem of mobile nodes 
stands out as a fundamental challenge. The path plan-
ning problem of mobile node is to search an optimal, 
safe (collision-free) and complete path from the start-
ing point to the end point in the robot configuration 
space according to a certain optimization criterion. 
Researchers have proposed that deploying a small 
number of redundant mobile nodes in wireless sen-
sor networks can solve the coverage and node failure 
problems [12-13]. This scheme not only improves the 
network performance but also controls the network 
overhead. However, the process of moving requires 
nodes to navigate obstacles efficiently, follow the 
shortest possible route, and maintain a continuous 
smooth path, aligning with the dynamics and energy 
efficiency needs of mobile nodes [6].
The strategic deployment of redundant mobile nodes 
in wireless sensor networks represents a pivotal en-
hancement, addressing coverage and node failure 
issues effectively. This approach not only boosts net-
work performance but also manages network over-
head, fostering a resilient and efficient system. Nev-
ertheless, the principal challenge lies in the motion of 
these nodes. They must skillfully negotiate obstacles, 
minimize travel distance, and ensure a smooth, unin-
terrupted path, a trio of requirements crucial for their 
operational utility.
Researchers have extensively explored various algo-
rithms to tackle these complex requirements. Clas-
sical pathfinding algorithms like Dijkstra and Floyd 
have been foundational, offering reliable solutions 
that necessitate a thorough understanding of the en-
tire environment and necessitate subsequent path 
smoothing [7]. On the other hand, the A* and D* al-
gorithms represent a leap forward, capable of rapidly 
deriving optimal paths [10]. Their efficiency, however, 
is contingent on factors like grid size and the choice 
of heuristic methods, which can be limiting in more 
dynamic or constrained environments.
The advent of evolutionary intelligence algorithms 
– including genetic algorithms, ant colony optimiza-
tion, simulated annealing, and particle swarm optimi-
zation – marked a significant milestone in global path 
optimization[9]. These methods excel in accuracy 

and have found widespread application. Neverthe-
less, these methods require prior global environmen-
tal information, and their time and space complexity 
are high, limiting their adaptability to edge devices 
like mobile robots. Moreover, in most instances, wire-
less sensor networks can only provide limited en-
vironmental data, making the application of such 
algorithms challenging due to the extensive prepro-
cessing needed, especially in dynamic unknown envi-
ronments [3].
It is found that planning algorithms based on random 
sampling can adapt to more complex environments 
with lower time and space complexity and can ef-
fectively adapt to the path planning problem of mo-
bile sensor nodes [16]. such as the Rapidly-exploring 
Random Tree (RRT) and its derivatives, including 
RRT-CONNECT, RRT*, RRT*-FN, Informed RRT* 
and other algorithms [1-2,7], which can well adapt to 
the motion dynamics requirements of mobile nodes 
However, their reliance on random node generation 
introduces a significant drawback: the paths generat-
ed are often longer than optimal, lacking in efficiency 
and practicality for real-world applications. In order 
to obtain smooth, shortest and obstacle-avoiding 
paths, researchers combined Bezier, Benstine and 
other curves with heuristic and artificial intelligence 
methods, and proposed many excellent results [15, 
18]. For example, the artificial potential field method 
based on Bezier curve adopted the quadratic Bezier 
method and artificial potential field method to avoid 
obstacles. Better optimization results can be obtained 
in sparse environment. However, for dense wireless 
sensor networks, performance degrades significantly. 
Therefore, in dense infinite sensor networks, a rea-
sonable path planning algorithm is needed to obtain 
the path.
In recent developments, methods like the Dynamic 
Window Approach combined with deep reinforce-
ment learning have shown improvements in dynamic 
obstacle avoidance, yet they face limitations in move-
ment options and environmental adaptability [8]. 
Bi-layer hybrid algorithms involving ACO, PSO, and 
A* have been explored for multi-task path planning, 
but their complexity and interaction requirements 
limit their efficiency in dynamic environments [14]. 
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The Modified Adaptive Ant Colony Optimization 
(MAACO) algorithm offers faster convergence and 
reduced path lengths but struggles in dynamic sce-
narios requiring real-time adaptability [17]. The Ex-
panding Path RRT (EP-RRT) has improved efficien-
cy but faces challenges in diverse environments and 
dynamic changes [4]. The Probability Smoothing Bi-
RRT (PSBi-RRT) algorithm enhances convergence 
speed and collision reduction but does not guarantee 
initial solution quality [11]. A continuous RRT-based 
method using B-spline curves for non-holonomic 
mobile robots showed promise but needed additional 
collision avoidance mechanisms [5].
In response to these challenges, this paper introduces 
the Modified Rapidly-exploring Random Tree (M-RRT) 
search strategy, an innovative approach designed for 
efficient path planning in dense, dynamic wireless sen-
sor networks. M-RRT represents a novel solution that 
adeptly combines the strengths of various existing algo-
rithms while addressing their primary limitations. This 
strategy is especially suited for real-time applications 
where rapid adaptation to changing environments is 
paramount. The main contributions are:
1 This paper introduces the M-RRT search strategy 

to achieve coverage and connectivity in wireless 
sensor networks. The strategy accounts for the 
distribution of initial access points, obstacles, and 
static nodes, employing a density set to define the 
search area.

2 Enhanced path optimization is proposed, utilizing 
a greedy algorithm to eliminate intermediate nodes 
for a more efficient path. The optimization aims to 
achieve a path that meets mobile nodes’ needs, in-
cluding shortest distance, obstacle avoidance, and 
smooth trajectory.

Path smoothing with quadratic Bezier curves is uti-
lized to refine the solution path obtained through the 
M-RRT strategy. This step aims to minimize angles 
between adjacent segments, ensuring the final path 
is not only optimal but also smooth for mobile nodes.

2. RRT Algorithm 
The RRT algorithm initiates with the root node set at 
the initial point and proceeds to construct a random 
expansion tree by iteratively adding leaf nodes through 

random sampling. The expansion process encompass-
es four essential steps: (1) the random generation of a 
node; (2) identification of the nearest point in the tree 
to the randomly generated node and connecting them; 
(3) generation of a node along the line based on a pre-
determined value; and (4) insertion of the node into 
the tree if it satisfies certain criteria. Illustrated in Fig-
ure 1, the process commences with the starting point, 
represented as , and a randomly selected point

. Subsequently, the nearest node  is deter-
mined, and a point on the line between  and  
is chosen, with the condition that the distance, D(
, ), satisfies the prescribed step size . If this 
condition is met, the newly generated node  is in-
serted into the tree; otherwise, the process is repeated 
until a suitable node is found. This iterative procedure 
continues until the destination point  is reached. 
Ultimately, the constructed random tree provides a 
path from the initial point to the destination point, as 
depicted in Figure 1 and Figure 2.

Figure 1
Schematic diagram of RRT algorithm random tree growth

Figure 2
RRT planning path
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3. M-RRT Algorithm Modeling
After considering the assumptions, M-RRT is elabo-
rated as follows: (1) All mobile nodes, except for them-
selves, are considered as obstacles; (2) The static 
sensing node has a radius of Rstatic and the mobile node 
has a radius of Rmove; (3) Let Robsi represent the project-
ed radius of the ith obstacle in the forward direction; 
(4) By increasing the size of all obstacles by Rmove, the 
algorithm simplifies the search process by not need-
ing to account for its own size.

3.1. Initial Region Setting Based On Coverage 
Density
The performance of the algorithm is directly influ-
enced by the configuration of the initial region, which 
is conducted in two steps. 
1  Establishing the baseline for the initial region: In 

a wireless sensor network, the baseline line refers 
to the line connecting the starting point and ending 
point. The search area extends on both sides of this 
line, with a length denoted as  and .

2 Determining the size of the initial area, as depicted 
in Figures 3 and Figure 4, referred to as .

Based on the connectivity within a wireless sensor 
network, the number and distribution of nodes within 
a specific area can be deduced. Despite potential lo-
cal inconsistencies, a generally uniform distribution 
is observable. To derive a more accurate initial value, 
this paper introduces the concept of obstacle cover-
age density.

Figure 3
Schematic diagram of the initial expanded area

Figure 4
Initial area

 

 

 
 

Figure 4 

Initial area 

 
 

Based on the connectivity within a wireless 
sensor network, the number and distribution of 
nodes within a specific area can be deduced. 
Despite potential local inconsistencies, a 
generally uniform distribution is observable. To 
derive a more accurate initial value, this paper 
introduces the concept of obstacle coverage 
density. 

Definition 1: Obstacle Coverage Density. This 
metric, defined within wireless sensor networks, 
quantifies the ratio of the combined projected 
area of all obstacles and static nodes to the total 
area covered by the wireless sensor network, as 
expressed in Formula (1). In this formula,  
represents the transmission area occupied by 
obstacles,  denotes the individual area of 
a static node,  signifies the overall area 
covered by the wireless sensor network, and 

 indicates the quantity of static nodes. 

 
(1) 

The calculation of the initial coverage area 
width, considering the coverage and 
connectivity characteristics of nodes, allows for 

the determination of the width of the initial 
coverage area (  ) for a given number 
of static nodes (M), as shown in Equation 
(2).The symbol [ ] denotes the operation of 
taking the integer part. 

 
(2)

The initial area calculated by Equation (2) might 
include significant obstacles within the initial 
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find a path from the initial region, as depicted in 
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The calculation of the initial coverage area width, 
considering the coverage and connectivity charac-
teristics of nodes, allows for the determination of the 
width of the initial coverage area (  ) for a 
given number of static nodes (M), as shown in Equa-
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3.2. Extended Search Area Setting Based on 
Coverage Density

Due to the influence of the shape, size and position of 
obstacles, the RRT algorithm cannot find the path in 
the set area. In this case, the search area needs to be 
expanded, as shown in Equation (6).

(6)

In Formula (6), the step size is expanded after each 
search failure. Repeat the preceding steps until the 
search path is found, as shown in Figures 6-7.
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At the same time, if the obstacle is too large after tak-
ing into account the extended area, the Formula (6) 
is used to calculate the adjustment area, so that the 
width of the expanded search area can be obtained 
according to the Formula (7), and  can be 
obtained, as shown in the Formula (8).

(8)

It can be seen from the Formulas (7)-(8) that after 
gradual expansion,  is the sum of the initial val-
ue of the region multiplied by the natural reciprocal; 
from the limit summation formula. After infinite ex-
pansion,  will become infinite to cover the entire 
region, thus satisfying the probability completeness.

3.3. Random Expansion Tree
RRT adds the boundary detection function in the 
search process after increasing the search area lim-
it, as shown in Figure 7(2). When  is not in the 
search area, nodes are generated again. Figure 8 
shows the flow of M-RRT’s random search tree algo-
rithm (Extend_Tree).
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required, and this paper employs a greedy 
algorithm to prune nodes from the expanded 

3.4. Greedily Delete Node Optimization Path
The paths obtained through tree expansion consist of 
a series of nodes, which are not necessarily the short-
est. Further optimization is required, and this paper 
employs a greedy algorithm to prune nodes from the 
expanded tree, resulting in a shorter path. The key 
steps of the proposed greedy algorithm are as follows:
1 Initialization of the original path , where  rep-

resents the path between  and  obtained 
from a random tree .

2 Initialization of the sequence of optimized path 
nodes , with an initial empty value. The starting 
point from  is inserted into  as the first anchor 
point.

3 Iterative selection of anchor points and insertion 
into . Nodes are continuously selected from , 
and it is determined whether the line connecting 
the selected point and the anchor point intersects 
with obstacles. If no intersection occurs, the selec-
tion process continues until an intersection is de-
tected. At this point, the node selected just before 
the intersection becomes the next anchor point, 
and it is inserted into Sk. The search continues un-
til the endpoint becomes the last anchor point and 
is inserted into Sk. This process effectively removes 
many intermediate nodes. In Figure 9, the sequence 
of points  represents the anchor points selected 
from . After this step, in wireless sensor net-
works, situations similar to Figure 10 often arise, 
where obstacles are contained between three an-
chor points. In such cases, the intermediate anchor 
points need to be removed, constituting step (4).
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4 Verification of the equality of lengths between 
 and  sequences. If they are not equal,  is 

cleared,  is copied to ,  is cleared, and step 
(3) is repeated. If they are equal, the optimization 
process is concluded.

3.5. Shortest Smooth Path
The path formed by the optimized node sequence 

 cannot meet the demand of stable movement of 
nodes, mainly because the node sequence cannot 
meet the kinematic mechanical demand of mobile 
nodes at the connection point. For mobile nodes, their 
dynamic equation can be expressed by Formula (9).

(9)

where, v represents the moving speed of the node,  
represents the angular speed, and  represents the 
maximum angular speed acceptable to the mobile 
node. In this way, the minimum radius of the mobile 
node when turning can be obtained, as shown in For-
mula (10).

(10)

The necessary condition for a mobile node to move 
smoothly is that the curvature at each point of the 
path is less than the value that the mobile node can 
bear. Therefore, the average probability condition [8] 
is adopted here, which satisfies Equation (11), where 
a and b represent the slope of any two points on the 
curve and the change point of P(a).

(11)

According to the greedy optimization path, there 
must be obstacles between the two-line segments. In 
special cases involving a static sensor node, the radius 
length is: . If an arc is arbitrari-
ly taken from a circle with radius and length R, the ap-
propriate moving time can be found to enable smooth 
movement of the mobile sensing node. This arc can 
be replaced by a quadratic Bezier curve. Therefore, 
the process of searching for a smooth path involves 
search control points in , ensuring that the path 
is both smooth and smooth, and the path is shortest. 

Given n+1 points, the smooth path is solved by deter-
mining the junction points a1, a2, ... ,an, ... ,a2n on the two 
adjacent line segments, satisfying Formula (11) and 
collision avoidance. This makes the path shortest, 
that is, satisfying the solution of the Equation (12).

(12)

In the Equation (12), Bi represents the length of the 
second Bezier curve. The integral method is employed 
for solving, where the a2i subscript in Bi is an even 
number to start counting. The control points of the 
second quadratic curve, a2i and a2i+1, indicate that the 
horizontal coordinate of the previous control point is 
less than the horizontal coordinate of the next curve 
li represents the remaining line segment on SiSi+1, im-
plying that, after smoothing, some line segments need 
to be traversed on SiSi+1. L represents the sum of the 
length of the conic and the remaining line segment. 
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ordinate of the i control point is greater than the hor-
izontal coordinate of the i+1 control point, resulting 
in a conflict, and the required path is not obtained, as 
shown in Figure 11, ai+2>ai+3. 
This situation, depicted in Figure 11 (ai+2 > ai+3), im-
plies that when the sensor node moves to ai+2, it needs 
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ever, it has been observed that minimizing the angle 
between two-line segments fulfills the requirements 
of smooth processing without control point conflicts. 
Figure 12 illustrates this scenario with ai+2 =ai+3, and 



449Information Technology and Control 2024/2/53

the NP problem is transformed into a P problem. The 
proposed solution path is shorter and meets the colli-
sion avoidance and dynamics requirements of mobile 
sensor nodes. Figure 13 is the optimal path obtained 
by smooth optimization on the basis of Figure 8.
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Figure 13
Smooth Optimization Path
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searched for a finite number of times. If the path 
is found, Greedy Optimal(Tree) is called for 
optimization. Then call the Bezier Smooth(Path) 
function to smooth and get the required path. 

 

Figure 14 

M-RRT path planning strategy 

 

 

determining the junction points a1, a2, ... ,an, ... 
,a2n on the two adjacent line segments, satisfying 
Formula (11) and collision avoidance. This 
makes the path shortest, that is, satisfying the 
solution of the Equation (12). 

  (12)

In the Equation (12), Bi represents the length of 
the second Bezier curve. The integral method is 
employed for solving, where the a2i subscript in 
Bi is an even number to start counting. The 
control points of the second quadratic curve,  a2i 
and a2i+1, indicate that the horizontal coordinate 
of the previous control point is less than the 
horizontal coordinate of the next curve li 
represents the remaining line segment on SiSi+1, 
implying that, after smoothing, some line 
segments need to be traversed on SiSi+1.  L 
represents the sum of the length of the conic 
and the remaining line segment. To solve for L 
is to find an optimal conic so that the path is the 
shortest. 

During the solution process, if only the 
quadratic curve between each two adjacent line 
segments meets the conditions for the shortest 
path. (that is, the quadratic curve does not 
intersect with obstacles, the curvature meets the 
Formula (11)), the path between the two-line 
segments is the shortest. The sequence of 
control points may cross, that is, the horizontal 
coordinate of the i control point is greater than 
the horizontal coordinate of the i+1 control 
point, resulting in a conflict, and the required 
path is not obtained, as shown in Figure 11, 
ai+2>ai+3.  

This situation, depicted in Figure 11 (ai+2 > ai+3), 
implies that when the sensor node moves to ai+2, 
it needs to fall back to ai+3, which doesn't align 
with the requirements. 

It is evident from Formula (12) that the process 
of solving smooth curves is an NP-difficult 
problem. However, it has been observed that 
minimizing the angle between two-line 
segments fulfills the requirements of smooth 
processing without control point conflicts. 
Figure 12 illustrates this scenario with ai+2 =ai+3, 
and the NP problem is transformed into a P 
problem. The proposed solution path is shorter 
and meets the collision avoidance and dynamics 
requirements of mobile sensor nodes. Figure 13 

is the optimal path obtained by smooth 
optimization on the basis of Figure 8. 

 

Figure 11 

Cross conflict of control points 

 
 

Figure 12 

Minimum angle priority smoothing treatment 

 
 

Figure 13 

Smooth Optimization Path 

 
 

3.6 Mobile Node Planning 
Strategy 
M-RRT includes five key processing processes: 
region initialization, random search, region 
extension, path optimization, and smoothing, as 
shown in Figure 14. The find extend Tree 
function calls Extend Tree(tree) and iterates step 
by step to determine whether the path can be 
searched for a finite number of times. If the path 
is found, Greedy Optimal(Tree) is called for 
optimization. Then call the Bezier Smooth(Path) 
function to smooth and get the required path. 

 

Figure 14 

M-RRT path planning strategy 

 

 

determining the junction points a1, a2, ... ,an, ... 
,a2n on the two adjacent line segments, satisfying 
Formula (11) and collision avoidance. This 
makes the path shortest, that is, satisfying the 
solution of the Equation (12). 

  (12)

In the Equation (12), Bi represents the length of 
the second Bezier curve. The integral method is 
employed for solving, where the a2i subscript in 
Bi is an even number to start counting. The 
control points of the second quadratic curve,  a2i 
and a2i+1, indicate that the horizontal coordinate 
of the previous control point is less than the 
horizontal coordinate of the next curve li 
represents the remaining line segment on SiSi+1, 
implying that, after smoothing, some line 
segments need to be traversed on SiSi+1.  L 
represents the sum of the length of the conic 
and the remaining line segment. To solve for L 
is to find an optimal conic so that the path is the 
shortest. 

During the solution process, if only the 
quadratic curve between each two adjacent line 
segments meets the conditions for the shortest 
path. (that is, the quadratic curve does not 
intersect with obstacles, the curvature meets the 
Formula (11)), the path between the two-line 
segments is the shortest. The sequence of 
control points may cross, that is, the horizontal 
coordinate of the i control point is greater than 
the horizontal coordinate of the i+1 control 
point, resulting in a conflict, and the required 
path is not obtained, as shown in Figure 11, 
ai+2>ai+3.  

This situation, depicted in Figure 11 (ai+2 > ai+3), 
implies that when the sensor node moves to ai+2, 
it needs to fall back to ai+3, which doesn't align 
with the requirements. 

It is evident from Formula (12) that the process 
of solving smooth curves is an NP-difficult 
problem. However, it has been observed that 
minimizing the angle between two-line 
segments fulfills the requirements of smooth 
processing without control point conflicts. 
Figure 12 illustrates this scenario with ai+2 =ai+3, 
and the NP problem is transformed into a P 
problem. The proposed solution path is shorter 
and meets the collision avoidance and dynamics 
requirements of mobile sensor nodes. Figure 13 

is the optimal path obtained by smooth 
optimization on the basis of Figure 8. 

 

Figure 11 

Cross conflict of control points 

 
 

Figure 12 

Minimum angle priority smoothing treatment 

 
 

Figure 13 

Smooth Optimization Path 

 
 

3.6 Mobile Node Planning 
Strategy 
M-RRT includes five key processing processes: 
region initialization, random search, region 
extension, path optimization, and smoothing, as 
shown in Figure 14. The find extend Tree 
function calls Extend Tree(tree) and iterates step 
by step to determine whether the path can be 
searched for a finite number of times. If the path 
is found, Greedy Optimal(Tree) is called for 
optimization. Then call the Bezier Smooth(Path) 
function to smooth and get the required path. 

 

Figure 14 

M-RRT path planning strategy 

3.6. Mobile Node Planning Strategy
RRT includes five key processing processes: region 
initialization, random search, region extension, path 
optimization, and smoothing, as shown in Figure 14. 

The find extend Tree function calls Extend Tree(tree) 
and iterates step by step to determine whether the 
path can be searched for a finite number of times. If 
the path is found, Greedy Optimal(Tree) is called for 
optimization. Then call the Bezier Smooth(Path) 
function to smooth and get the required path.

Figure 14
M-RRT path planning strategy

 

 

 

1. Init dfree ;                          // region initialization (1) 
2. While fpath = 0; 
3.  fpath=find_Extend_Tree(dfree,N);     // Search in restricted area (2) 
4   if(fpath==1 | dfree>S)  break; 

5.     dfree=Extend(dfree);         // expand area (3) 
6. End 
7.  Path=Greedy_Optimal(Tree);      // Path optimization (4) 
8.  Path=Bezier_Smooth(Path) ;       // Smooth optimization (5) 
9.  return Path;  

 

4. Experimental Results and  
Analysis 

This study conducts simulations in a 
rectangular coordinate system [0, 100] × [0, 100], 
deploying 120 static sensing nodes and 5 
redundant mobile nodes, where Nodes=125, 
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represented by R=0.2. For the R-RRT algorithm, 
the step size  is set to 3,  is 10,  is 2, 
and N is 200. The outcomes of the M-RRT 
algorithm, as depicted in Figure 15, and the RRT 
algorithm, as illustrated in Figure 16, are 
compared. The results reveal that the enhanced 
M-RRT algorithm confines the search region to 
a smaller space, yielding paths significantly 
superior to those generated by the RRT 
algorithm. 
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In order to further verify the superiority of M-RRT 
algorithm, a case study involving autonomous vehicle 
navigation with dynamic obstacles (e.g., moving vehi-
cles and pedestrians) was examined. five maps were 
randomly generated by changing the number of ob-
stacles, and M-RRT and RRT algorithms were used 
to search the path. The experiments were repeated for 
100 times, and their average convergence time and av-
erage path length were obtained, as shown in Figure 19 
and 20, respectively. It can be seen from the results that 
the search time of M-RRT is much shorter than RRT, 
and the path length of M-RRT is also much shorter 
than RRT. The M-RRT algorithm facilitated efficient 
path planning, optimizing the route in real-time as the 
environmental conditions changed. This application 
highlighted the algorithm’s potential in industries such 
as autonomous driving and drone navigation, where 
adaptability and real-time processing are critical.
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5. Conclusion  
By leveraging the coverage and connectivity of 
wireless sensor networks, this paper introduces 
the M-RRT strategy for efficient path planning 
of mobile nodes. From setting the initial search 
area based on coverage density to optimizing 
paths using a greedy algorithm and smoothing 
with quadratic Bezier curves, the M-RRT 
strategy not only reduces search time and path 
length but also provides a smooth and optimal 
path for mobile sensor nodes. Compared to the 
traditional RRT algorithm, the M-RRT 
algorithm demonstrates superior performance, 
especially in dense sensor networks, 
underscoring its advantages in terms of search 
efficiency and path quality. 

Future work will focus on expanding the 
algorithm's applicability to a wider range of 
real-world scenarios, further refining its 
computational efficiency, and exploring its 
integration into larger-scale autonomous 
systems.  
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the M-RRT strategy for efficient path planning 
of mobile nodes. From setting the initial search 
area based on coverage density to optimizing 
paths using a greedy algorithm and smoothing 
with quadratic Bezier curves, the M-RRT 
strategy not only reduces search time and path 
length but also provides a smooth and optimal 
path for mobile sensor nodes. Compared to the 
traditional RRT algorithm, the M-RRT 
algorithm demonstrates superior performance, 
especially in dense sensor networks, 
underscoring its advantages in terms of search 
efficiency and path quality. 

Future work will focus on expanding the 
algorithm's applicability to a wider range of 
real-world scenarios, further refining its 
computational efficiency, and exploring its 
integration into larger-scale autonomous 
systems.  
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