
Information Technology and Control 2024/2/53442

Research on Autonomous
Mobile Robot Path
Planning Based on
M-RRT Algorithm

ITC 2/53
Information Technology
and Control
Vol. 53 / No. 2 / 2024
pp. 442-452
DOI 10.5755/j01.itc.53.2.36240

Research on Autonomous Mobile Robot Path Planning Based on M-RRT Algorithm

Received 2024/02/01 Accepted after revision 2024/03/27

HOW TO CITE: Tang, Z., Ma, H., Xue, B. (2024). Research on Autonomous Mobile Robot Path
Planning Based on M-RRT Algorithm. Information Technology and Control, 53(2), 442-452. https://
doi.org/10.5755/j01.itc.53.2.36240

Corresponding author: Zhuozhen Tang, e-mail: tina160@hhu.edu.cn

Zhuozhen Tang
Hohai University, Electrical and Power Engineering College, Nanjing, China
Jiangsu Maritime Institute, Nanjing,China

Hongzhong Ma
Hohai University, Electrical and Power Engineering College, Nanjing, China

Bin Xue
State Grid Jiangsu Electric Power Co., Ltd, Nanjing, China

The Rapidly-Exploring Random Tree (RRT) algorithm has demonstrated proficiency in adapting to path
search challenges within high-dimensional dynamic environments. However, a notable limitation of the
RRT algorithm lies in its inability to fulfill the criteria for achieving the shortest and smoothest path for mo-
bile sensing nodes. To address the limitations of the conventional RRT algorithm and enhance the path plan-
ning for mobile robots, this paper proposed an innovative approach named M-RRT, designed to overcome the
aforementioned shortcomings and optimize the path planning process for mobile sensing nodes. First, the
search area is constructed according to the defined coverage density. After searching the path in the search
area, the RRT algorithm uses the greedy method to delete the intermediate nodes in the path, and obtains the
uniquly optimal path. Finally, the Bezier curve is used to optimize the path, which makes the path shortest
and meets the dynamic requirements of the mobile node. Simulation results show that M-RRT has better
path and faster convergence speed than traditional RRT, which can better meet the planning requirements
of mobile nodes.
KEYWORDS: MRRT, search area, coverage density, mobile node.

443Information Technology and Control 2024/2/53

1. Introduction
In the rapidly evolving field of wireless sensor net-
works, the path planning problem of mobile nodes
stands out as a fundamental challenge. The path plan-
ning problem of mobile node is to search an optimal,
safe (collision-free) and complete path from the start-
ing point to the end point in the robot configuration
space according to a certain optimization criterion.
Researchers have proposed that deploying a small
number of redundant mobile nodes in wireless sen-
sor networks can solve the coverage and node failure
problems [12-13]. This scheme not only improves the
network performance but also controls the network
overhead. However, the process of moving requires
nodes to navigate obstacles efficiently, follow the
shortest possible route, and maintain a continuous
smooth path, aligning with the dynamics and energy
efficiency needs of mobile nodes [6].
The strategic deployment of redundant mobile nodes
in wireless sensor networks represents a pivotal en-
hancement, addressing coverage and node failure
issues effectively. This approach not only boosts net-
work performance but also manages network over-
head, fostering a resilient and efficient system. Nev-
ertheless, the principal challenge lies in the motion of
these nodes. They must skillfully negotiate obstacles,
minimize travel distance, and ensure a smooth, unin-
terrupted path, a trio of requirements crucial for their
operational utility.
Researchers have extensively explored various algo-
rithms to tackle these complex requirements. Clas-
sical pathfinding algorithms like Dijkstra and Floyd
have been foundational, offering reliable solutions
that necessitate a thorough understanding of the en-
tire environment and necessitate subsequent path
smoothing [7]. On the other hand, the A* and D* al-
gorithms represent a leap forward, capable of rapidly
deriving optimal paths [10]. Their efficiency, however,
is contingent on factors like grid size and the choice
of heuristic methods, which can be limiting in more
dynamic or constrained environments.
The advent of evolutionary intelligence algorithms
– including genetic algorithms, ant colony optimiza-
tion, simulated annealing, and particle swarm optimi-
zation – marked a significant milestone in global path
optimization[9]. These methods excel in accuracy

and have found widespread application. Neverthe-
less, these methods require prior global environmen-
tal information, and their time and space complexity
are high, limiting their adaptability to edge devices
like mobile robots. Moreover, in most instances, wire-
less sensor networks can only provide limited en-
vironmental data, making the application of such
algorithms challenging due to the extensive prepro-
cessing needed, especially in dynamic unknown envi-
ronments [3].
It is found that planning algorithms based on random
sampling can adapt to more complex environments
with lower time and space complexity and can ef-
fectively adapt to the path planning problem of mo-
bile sensor nodes [16]. such as the Rapidly-exploring
Random Tree (RRT) and its derivatives, including
RRT-CONNECT, RRT*, RRT*-FN, Informed RRT*
and other algorithms [1-2,7], which can well adapt to
the motion dynamics requirements of mobile nodes
However, their reliance on random node generation
introduces a significant drawback: the paths generat-
ed are often longer than optimal, lacking in efficiency
and practicality for real-world applications. In order
to obtain smooth, shortest and obstacle-avoiding
paths, researchers combined Bezier, Benstine and
other curves with heuristic and artificial intelligence
methods, and proposed many excellent results [15,
18]. For example, the artificial potential field method
based on Bezier curve adopted the quadratic Bezier
method and artificial potential field method to avoid
obstacles. Better optimization results can be obtained
in sparse environment. However, for dense wireless
sensor networks, performance degrades significantly.
Therefore, in dense infinite sensor networks, a rea-
sonable path planning algorithm is needed to obtain
the path.
In recent developments, methods like the Dynamic
Window Approach combined with deep reinforce-
ment learning have shown improvements in dynamic
obstacle avoidance, yet they face limitations in move-
ment options and environmental adaptability [8].
Bi-layer hybrid algorithms involving ACO, PSO, and
A* have been explored for multi-task path planning,
but their complexity and interaction requirements
limit their efficiency in dynamic environments [14].

Information Technology and Control 2024/2/53444

The Modified Adaptive Ant Colony Optimization
(MAACO) algorithm offers faster convergence and
reduced path lengths but struggles in dynamic sce-
narios requiring real-time adaptability [17]. The Ex-
panding Path RRT (EP-RRT) has improved efficien-
cy but faces challenges in diverse environments and
dynamic changes [4]. The Probability Smoothing Bi-
RRT (PSBi-RRT) algorithm enhances convergence
speed and collision reduction but does not guarantee
initial solution quality [11]. A continuous RRT-based
method using B-spline curves for non-holonomic
mobile robots showed promise but needed additional
collision avoidance mechanisms [5].
In response to these challenges, this paper introduces
the Modified Rapidly-exploring Random Tree (M-RRT)
search strategy, an innovative approach designed for
efficient path planning in dense, dynamic wireless sen-
sor networks. M-RRT represents a novel solution that
adeptly combines the strengths of various existing algo-
rithms while addressing their primary limitations. This
strategy is especially suited for real-time applications
where rapid adaptation to changing environments is
paramount. The main contributions are:
1 This paper introduces the M-RRT search strategy

to achieve coverage and connectivity in wireless
sensor networks. The strategy accounts for the
distribution of initial access points, obstacles, and
static nodes, employing a density set to define the
search area.

2 Enhanced path optimization is proposed, utilizing
a greedy algorithm to eliminate intermediate nodes
for a more efficient path. The optimization aims to
achieve a path that meets mobile nodes’ needs, in-
cluding shortest distance, obstacle avoidance, and
smooth trajectory.

Path smoothing with quadratic Bezier curves is uti-
lized to refine the solution path obtained through the
M-RRT strategy. This step aims to minimize angles
between adjacent segments, ensuring the final path
is not only optimal but also smooth for mobile nodes.

2. RRT Algorithm
The RRT algorithm initiates with the root node set at
the initial point and proceeds to construct a random
expansion tree by iteratively adding leaf nodes through

random sampling. The expansion process encompass-
es four essential steps: (1) the random generation of a
node; (2) identification of the nearest point in the tree
to the randomly generated node and connecting them;
(3) generation of a node along the line based on a pre-
determined value; and (4) insertion of the node into
the tree if it satisfies certain criteria. Illustrated in Fig-
ure 1, the process commences with the starting point,
represented as , and a randomly selected point

. Subsequently, the nearest node is deter-
mined, and a point on the line between and
is chosen, with the condition that the distance, D(
,), satisfies the prescribed step size . If this
condition is met, the newly generated node is in-
serted into the tree; otherwise, the process is repeated
until a suitable node is found. This iterative procedure
continues until the destination point is reached.
Ultimately, the constructed random tree provides a
path from the initial point to the destination point, as
depicted in Figure 1 and Figure 2.

Figure 1
Schematic diagram of RRT algorithm random tree growth

Figure 2
RRT planning path

paramount. The main contributions are:

1) This paper introduces the M-RRT search
strategy to achieve coverage and connectivity in
wireless sensor networks. The strategy accounts
for the distribution of initial access points,
obstacles, and static nodes, employing a density
set to define the search area.

2) Enhanced path optimization is proposed,
utilizing a greedy algorithm to eliminate
intermediate nodes for a more efficient path.
The optimization aims to achieve a path that
meets mobile nodes' needs, including shortest
distance, obstacle avoidance, and smooth
trajectory.

Path smoothing with quadratic Bezier curves is
utilized to refine the solution path obtained
through the M-RRT strategy. This step aims to
minimize angles between adjacent segments,
ensuring the final path is not only optimal but
also smooth for mobile nodes.

2. RRT Algorithm
The RRT algorithm initiates with the root node
set at the initial point and proceeds to construct
a random expansion tree by iteratively adding
leaf nodes through random sampling. The
expansion process encompasses four essential
steps: (1) the random generation of a node; (2)
identification of the nearest point in the tree to
the randomly generated node and connecting
them; (3) generation of a node along the line
based on a predetermined value; and (4)
insertion of the node into the tree if it satisfies
certain criteria. Illustrated in Figure 1, the
process commences with the starting point,
represented as , and a randomly selected
point . Subsequently, the nearest node

 is determined, and a point on the line
between and is chosen, with the
condition that the distance, D(,),
satisfies the prescribed step size . If this
condition is met, the newly generated node
is inserted into the tree; otherwise, the process is
repeated until a suitable node is found. This
iterative procedure continues until the
destination point is reached. Ultimately,
the constructed random tree provides a path
from the initial point to the destination point, as
depicted in Figure 1 and Figure 2.

Figure 1

Schematic diagram of RRT algorithm random
tree growth

Figure 2

RRT planning path

3. M-RRT Algorithm Modeling
After considering the assumptions, M-RRT is
elaborated as follows: (1) All mobile nodes,
except for themselves, are considered as
obstacles; (2) The static sensing node has a
radius of Rstatic and the mobile node has a radius
of Rmove; (3) Let Robsi represent the projected
radius of the ith obstacle in the forward direction;
(4) By increasing the size of all obstacles by Rmove,
the algorithm simplifies the search process by
not needing to account for its own size.

3.1 Initial Region Setting Based
On Coverage Density
The performance of the algorithm is directly
influenced by the configuration of the initial
region, which is conducted in two steps. (1)
Establishing the baseline for the initial region: In
a wireless sensor network, the baseline line
refers to the line connecting the starting point
and ending point. The search area extends on
both sides of this line, with a length denoted as

 and .(2) Determining the size of
the initial area, as depicted in Figures 3 and
Figure 4, referred to as .

Figure 3

Schematic diagram of the initial expanded area

paramount. The main contributions are:

1) This paper introduces the M-RRT search
strategy to achieve coverage and connectivity in
wireless sensor networks. The strategy accounts
for the distribution of initial access points,
obstacles, and static nodes, employing a density
set to define the search area.

2) Enhanced path optimization is proposed,
utilizing a greedy algorithm to eliminate
intermediate nodes for a more efficient path.
The optimization aims to achieve a path that
meets mobile nodes' needs, including shortest
distance, obstacle avoidance, and smooth
trajectory.

Path smoothing with quadratic Bezier curves is
utilized to refine the solution path obtained
through the M-RRT strategy. This step aims to
minimize angles between adjacent segments,
ensuring the final path is not only optimal but
also smooth for mobile nodes.

2. RRT Algorithm
The RRT algorithm initiates with the root node
set at the initial point and proceeds to construct
a random expansion tree by iteratively adding
leaf nodes through random sampling. The
expansion process encompasses four essential
steps: (1) the random generation of a node; (2)
identification of the nearest point in the tree to
the randomly generated node and connecting
them; (3) generation of a node along the line
based on a predetermined value; and (4)
insertion of the node into the tree if it satisfies
certain criteria. Illustrated in Figure 1, the
process commences with the starting point,
represented as , and a randomly selected
point . Subsequently, the nearest node

 is determined, and a point on the line
between and is chosen, with the
condition that the distance, D(,),
satisfies the prescribed step size . If this
condition is met, the newly generated node
is inserted into the tree; otherwise, the process is
repeated until a suitable node is found. This
iterative procedure continues until the
destination point is reached. Ultimately,
the constructed random tree provides a path
from the initial point to the destination point, as
depicted in Figure 1 and Figure 2.

Figure 1

Schematic diagram of RRT algorithm random
tree growth

Figure 2

RRT planning path

3. M-RRT Algorithm Modeling
After considering the assumptions, M-RRT is
elaborated as follows: (1) All mobile nodes,
except for themselves, are considered as
obstacles; (2) The static sensing node has a
radius of Rstatic and the mobile node has a radius
of Rmove; (3) Let Robsi represent the projected
radius of the ith obstacle in the forward direction;
(4) By increasing the size of all obstacles by Rmove,
the algorithm simplifies the search process by
not needing to account for its own size.

3.1 Initial Region Setting Based
On Coverage Density
The performance of the algorithm is directly
influenced by the configuration of the initial
region, which is conducted in two steps. (1)
Establishing the baseline for the initial region: In
a wireless sensor network, the baseline line
refers to the line connecting the starting point
and ending point. The search area extends on
both sides of this line, with a length denoted as

 and .(2) Determining the size of
the initial area, as depicted in Figures 3 and
Figure 4, referred to as .

Figure 3

Schematic diagram of the initial expanded area

445Information Technology and Control 2024/2/53

3. M-RRT Algorithm Modeling
After considering the assumptions, M-RRT is elabo-
rated as follows: (1) All mobile nodes, except for them-
selves, are considered as obstacles; (2) The static
sensing node has a radius of Rstatic and the mobile node
has a radius of Rmove; (3) Let Robsi represent the project-
ed radius of the ith obstacle in the forward direction;
(4) By increasing the size of all obstacles by Rmove, the
algorithm simplifies the search process by not need-
ing to account for its own size.

3.1. Initial Region Setting Based On Coverage
Density
The performance of the algorithm is directly influ-
enced by the configuration of the initial region, which
is conducted in two steps.
1 Establishing the baseline for the initial region: In

a wireless sensor network, the baseline line refers
to the line connecting the starting point and ending
point. The search area extends on both sides of this
line, with a length denoted as and .

2 Determining the size of the initial area, as depicted
in Figures 3 and Figure 4, referred to as .

Based on the connectivity within a wireless sensor
network, the number and distribution of nodes within
a specific area can be deduced. Despite potential lo-
cal inconsistencies, a generally uniform distribution
is observable. To derive a more accurate initial value,
this paper introduces the concept of obstacle cover-
age density.

Figure 3
Schematic diagram of the initial expanded area

Figure 4
Initial area

Figure 4

Initial area

Based on the connectivity within a wireless
sensor network, the number and distribution of
nodes within a specific area can be deduced.
Despite potential local inconsistencies, a
generally uniform distribution is observable. To
derive a more accurate initial value, this paper
introduces the concept of obstacle coverage
density.

Definition 1: Obstacle Coverage Density. This
metric, defined within wireless sensor networks,
quantifies the ratio of the combined projected
area of all obstacles and static nodes to the total
area covered by the wireless sensor network, as
expressed in Formula (1). In this formula,
represents the transmission area occupied by
obstacles, denotes the individual area of
a static node, signifies the overall area
covered by the wireless sensor network, and

 indicates the quantity of static nodes.

(1)

The calculation of the initial coverage area
width, considering the coverage and
connectivity characteristics of nodes, allows for

the determination of the width of the initial
coverage area () for a given number
of static nodes (M), as shown in Equation
(2).The symbol [] denotes the operation of
taking the integer part.

(2)

The initial area calculated by Equation (2) might
include significant obstacles within the initial
area, rendering the RRT algorithm unable to
find a path from the initial region, as depicted in
Figure 5.

Figure 5

The Obstacle initial region

Obj1

Obj2

Start

End

Obj1

Obj2

Start

End

(1) Obstacle traversing the initial region (2) Obstacle forward direction projection

However, at this time, it is found that the size of
the initial area can be modified according to the
obstacle projection, and the size to be adjusted
can be calculated according to the obstacle
projection, as shown in Equations (3)-(4).
Formula (3) is to calculate the minimum
distance from each obstacle to the baseline
projection, where is the projection length of the
obstacle on the right side of the baseline,

is the projection length of the
obstacle on the left side of the baseline, and

 is to find their minimum value.
Formula (4) means to find the maximum value
after the obstacle projection is solved, so that the
value to be adjusted can be obtained.

 (3)

 (4)

In accordance with the formulations presented
in Equations (4) and (2), the derivation of
Equation (5) is achievable through the process
of unification, wherein the equation is
consolidated to yield the essential initial region,
denoted as .

Figure 4

Initial area

Based on the connectivity within a wireless
sensor network, the number and distribution of
nodes within a specific area can be deduced.
Despite potential local inconsistencies, a
generally uniform distribution is observable. To
derive a more accurate initial value, this paper
introduces the concept of obstacle coverage
density.

Definition 1: Obstacle Coverage Density. This
metric, defined within wireless sensor networks,
quantifies the ratio of the combined projected
area of all obstacles and static nodes to the total
area covered by the wireless sensor network, as
expressed in Formula (1). In this formula,
represents the transmission area occupied by
obstacles, denotes the individual area of
a static node, signifies the overall area
covered by the wireless sensor network, and

 indicates the quantity of static nodes.

(1)

The calculation of the initial coverage area
width, considering the coverage and
connectivity characteristics of nodes, allows for

the determination of the width of the initial
coverage area () for a given number
of static nodes (M), as shown in Equation
(2).The symbol [] denotes the operation of
taking the integer part.

(2)

The initial area calculated by Equation (2) might
include significant obstacles within the initial
area, rendering the RRT algorithm unable to
find a path from the initial region, as depicted in
Figure 5.

Figure 5

The Obstacle initial region

Obj1

Obj2

Start

End

Obj1

Obj2

Start

End

(1) Obstacle traversing the initial region (2) Obstacle forward direction projection

However, at this time, it is found that the size of
the initial area can be modified according to the
obstacle projection, and the size to be adjusted
can be calculated according to the obstacle
projection, as shown in Equations (3)-(4).
Formula (3) is to calculate the minimum
distance from each obstacle to the baseline
projection, where is the projection length of the
obstacle on the right side of the baseline,

is the projection length of the
obstacle on the left side of the baseline, and

 is to find their minimum value.
Formula (4) means to find the maximum value
after the obstacle projection is solved, so that the
value to be adjusted can be obtained.

 (3)

 (4)

In accordance with the formulations presented
in Equations (4) and (2), the derivation of
Equation (5) is achievable through the process
of unification, wherein the equation is
consolidated to yield the essential initial region,
denoted as .

Definition 1: Obstacle Coverage Density. This metric,
defined within wireless sensor networks, quantifies
the ratio of the combined projected area of all obsta-
cles and static nodes to the total area covered by the
wireless sensor network, as expressed in Formula
(1). In this formula, represents the transmis-
sion area occupied by obstacles, denotes the
individual area of a static node, signifies the over-
all area covered by the wireless sensor network, and

 indicates the quantity of static nodes.

(1)

The calculation of the initial coverage area width,
considering the coverage and connectivity charac-
teristics of nodes, allows for the determination of the
width of the initial coverage area () for a
given number of static nodes (M), as shown in Equa-
tion (2).The symbol [] denotes the operation of taking
the integer part.

(2)

The initial area calculated by Equation (2) might in-
clude significant obstacles within the initial area, ren-
dering the RRT algorithm unable to find a path from
the initial region, as depicted in Figure 5.
However, at this time, it is found that the size of the
initial area can be modified according to the obstacle
projection, and the size to be adjusted can be calculat-
ed according to the obstacle projection, as shown in

Information Technology and Control 2024/2/53446

Figure 5
The Obstacle initial region

Figure 4

Initial area

Based on the connectivity within a wireless
sensor network, the number and distribution of
nodes within a specific area can be deduced.
Despite potential local inconsistencies, a
generally uniform distribution is observable. To
derive a more accurate initial value, this paper
introduces the concept of obstacle coverage
density.

Definition 1: Obstacle Coverage Density. This
metric, defined within wireless sensor networks,
quantifies the ratio of the combined projected
area of all obstacles and static nodes to the total
area covered by the wireless sensor network, as
expressed in Formula (1). In this formula,
represents the transmission area occupied by
obstacles, denotes the individual area of
a static node, signifies the overall area
covered by the wireless sensor network, and

 indicates the quantity of static nodes.

(1)

The calculation of the initial coverage area
width, considering the coverage and
connectivity characteristics of nodes, allows for

the determination of the width of the initial
coverage area () for a given number
of static nodes (M), as shown in Equation
(2).The symbol [] denotes the operation of
taking the integer part.

(2)

The initial area calculated by Equation (2) might
include significant obstacles within the initial
area, rendering the RRT algorithm unable to
find a path from the initial region, as depicted in
Figure 5.

Figure 5

The Obstacle initial region

Obj1

Obj2

Start

End

Obj1

Obj2

Start

End

(1) Obstacle traversing the initial region (2) Obstacle forward direction projection

However, at this time, it is found that the size of
the initial area can be modified according to the
obstacle projection, and the size to be adjusted
can be calculated according to the obstacle
projection, as shown in Equations (3)-(4).
Formula (3) is to calculate the minimum
distance from each obstacle to the baseline
projection, where is the projection length of the
obstacle on the right side of the baseline,

is the projection length of the
obstacle on the left side of the baseline, and

 is to find their minimum value.
Formula (4) means to find the maximum value
after the obstacle projection is solved, so that the
value to be adjusted can be obtained.

 (3)

 (4)

In accordance with the formulations presented
in Equations (4) and (2), the derivation of
Equation (5) is achievable through the process
of unification, wherein the equation is
consolidated to yield the essential initial region,
denoted as .

Figure 4

Initial area

Based on the connectivity within a wireless
sensor network, the number and distribution of
nodes within a specific area can be deduced.
Despite potential local inconsistencies, a
generally uniform distribution is observable. To
derive a more accurate initial value, this paper
introduces the concept of obstacle coverage
density.

Definition 1: Obstacle Coverage Density. This
metric, defined within wireless sensor networks,
quantifies the ratio of the combined projected
area of all obstacles and static nodes to the total
area covered by the wireless sensor network, as
expressed in Formula (1). In this formula,
represents the transmission area occupied by
obstacles, denotes the individual area of
a static node, signifies the overall area
covered by the wireless sensor network, and

 indicates the quantity of static nodes.

(1)

The calculation of the initial coverage area
width, considering the coverage and
connectivity characteristics of nodes, allows for

the determination of the width of the initial
coverage area () for a given number
of static nodes (M), as shown in Equation
(2).The symbol [] denotes the operation of
taking the integer part.

(2)

The initial area calculated by Equation (2) might
include significant obstacles within the initial
area, rendering the RRT algorithm unable to
find a path from the initial region, as depicted in
Figure 5.

Figure 5

The Obstacle initial region

Obj1

Obj2

Start

End

Obj1

Obj2

Start

End

(1) Obstacle traversing the initial region (2) Obstacle forward direction projection

However, at this time, it is found that the size of
the initial area can be modified according to the
obstacle projection, and the size to be adjusted
can be calculated according to the obstacle
projection, as shown in Equations (3)-(4).
Formula (3) is to calculate the minimum
distance from each obstacle to the baseline
projection, where is the projection length of the
obstacle on the right side of the baseline,

is the projection length of the
obstacle on the left side of the baseline, and

 is to find their minimum value.
Formula (4) means to find the maximum value
after the obstacle projection is solved, so that the
value to be adjusted can be obtained.

 (3)

 (4)

In accordance with the formulations presented
in Equations (4) and (2), the derivation of
Equation (5) is achievable through the process
of unification, wherein the equation is
consolidated to yield the essential initial region,
denoted as .

(1) Obstacle traversing
the initial region

(2) Obstacle forward
direction projection

Equations (3)-(4). Formula (3) is to calculate the min-
imum distance from each obstacle to the baseline pro-
jection, where is the projection length of the obstacle
on the right side of the baseline,

is the projection length of the ob-
stacle on the left side of the baseline, and

 is to find their minimum value. Formula (4)
means to find the maximum value after the obstacle
projection is solved, so that the value to be
adjusted can be obtained.

(3)

(4)

In accordance with the formulations presented in
Equations (4) and (2), the derivation of Equation (5) is
achievable through the process of unification, where-
in the equation is consolidated to yield the essential
initial region, denoted as .

(5)

3.2. Extended Search Area Setting Based on
Coverage Density

Due to the influence of the shape, size and position of
obstacles, the RRT algorithm cannot find the path in
the set area. In this case, the search area needs to be
expanded, as shown in Equation (6).

(6)

In Formula (6), the step size is expanded after each
search failure. Repeat the preceding steps until the
search path is found, as shown in Figures 6-7.

Figure 6
Region expansion

Figure 7
Extension length and collision detection

(5)

3.2 Extended Search Area Setting
Based on Coverage Density
Due to the influence of the shape, size and
position of obstacles, the RRT algorithm cannot
find the path in the set area. In this case, the
search area needs to be expanded, as shown in
Equation (6).

(6)

In Formula (6), the step size is expanded after
each search failure. Repeat the preceding steps
until the search path is found, as shown in
Figures 6-7.

Figure 6

Region expansion

Figure 7

Extension length and collision detection

(1) Extension length (2) Collision and region detection

Normally, it can be set according to the initial
value, but during the expansion process, the
value depends on: (1) the coverage density, (2)
whether the obstacle crosses the extended area;

(3) , the initial value of , as
shown in Formula (7), k represents the number
of extensions, indicating that the more the
number of extensions, the smaller the area to be
expanded; represents the coefficient,
indicating the size of the initial area in the
default state.

 (7)

At the same time, if the obstacle is too large after
taking into account the extended area, the
Formula (6) is used to calculate the adjustment
area, so that the width of the expanded search
area can be obtained according to the Formula
(7), and can be obtained, as shown in the
Formula (8).

 (8)

It can be seen from the Formulas (7)-(8) that
after gradual expansion, is the sum of the
initial value of the region multiplied by the
natural reciprocal; from the limit summation
formula. After infinite expansion, will
become infinite to cover the entire region, thus
satisfying the probability completeness.

3.3 Random Expansion Tree
RRT adds the boundary detection function in
the search process after increasing the search
area limit, as shown in Figure 7(2). When is
not in the search area, nodes are generated
again. Figure 8 shows the flow of M-RRT's
random search tree algorithm (Extend_Tree).

Figure 8

Extended search tree of M-RRT

Extend_Tree(tree)
1: flag1←0
2: while flag1==0
3: 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟←Random_Configration()
4: 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟←Nearest_Neighbor(tree,𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
5: 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛←New_Configration(𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 ,𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠)
6: if Collision(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 , tree)==0&&Collision_Border(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 ,𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑛𝑛)==0
7: tree.add_node(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛)

8: flag1←1
9: if ∣𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 -𝑞𝑞𝑛𝑛𝑟𝑟𝑟𝑟∣<𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

10: return 1

3.4 Greedily Delete Node
Optimization Path
The paths obtained through tree expansion
consist of a series of nodes, which are not
necessarily the shortest. Further optimization is
required, and this paper employs a greedy
algorithm to prune nodes from the expanded

(5)

3.2 Extended Search Area Setting
Based on Coverage Density
Due to the influence of the shape, size and
position of obstacles, the RRT algorithm cannot
find the path in the set area. In this case, the
search area needs to be expanded, as shown in
Equation (6).

(6)

In Formula (6), the step size is expanded after
each search failure. Repeat the preceding steps
until the search path is found, as shown in
Figures 6-7.

Figure 6

Region expansion

Figure 7

Extension length and collision detection

(1) Extension length (2) Collision and region detection

Normally, it can be set according to the initial
value, but during the expansion process, the
value depends on: (1) the coverage density, (2)
whether the obstacle crosses the extended area;

(3) , the initial value of , as
shown in Formula (7), k represents the number
of extensions, indicating that the more the
number of extensions, the smaller the area to be
expanded; represents the coefficient,
indicating the size of the initial area in the
default state.

 (7)

At the same time, if the obstacle is too large after
taking into account the extended area, the
Formula (6) is used to calculate the adjustment
area, so that the width of the expanded search
area can be obtained according to the Formula
(7), and can be obtained, as shown in the
Formula (8).

 (8)

It can be seen from the Formulas (7)-(8) that
after gradual expansion, is the sum of the
initial value of the region multiplied by the
natural reciprocal; from the limit summation
formula. After infinite expansion, will
become infinite to cover the entire region, thus
satisfying the probability completeness.

3.3 Random Expansion Tree
RRT adds the boundary detection function in
the search process after increasing the search
area limit, as shown in Figure 7(2). When is
not in the search area, nodes are generated
again. Figure 8 shows the flow of M-RRT's
random search tree algorithm (Extend_Tree).

Figure 8

Extended search tree of M-RRT

Extend_Tree(tree)
1: flag1←0
2: while flag1==0
3: 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟←Random_Configration()
4: 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟←Nearest_Neighbor(tree,𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
5: 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛←New_Configration(𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 ,𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠)
6: if Collision(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 , tree)==0&&Collision_Border(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 ,𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑛𝑛)==0
7: tree.add_node(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛)

8: flag1←1
9: if ∣𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 -𝑞𝑞𝑛𝑛𝑟𝑟𝑟𝑟∣<𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

10: return 1

3.4 Greedily Delete Node
Optimization Path
The paths obtained through tree expansion
consist of a series of nodes, which are not
necessarily the shortest. Further optimization is
required, and this paper employs a greedy
algorithm to prune nodes from the expanded

(5)

3.2 Extended Search Area Setting
Based on Coverage Density
Due to the influence of the shape, size and
position of obstacles, the RRT algorithm cannot
find the path in the set area. In this case, the
search area needs to be expanded, as shown in
Equation (6).

(6)

In Formula (6), the step size is expanded after
each search failure. Repeat the preceding steps
until the search path is found, as shown in
Figures 6-7.

Figure 6

Region expansion

Figure 7

Extension length and collision detection

(1) Extension length (2) Collision and region detection

Normally, it can be set according to the initial
value, but during the expansion process, the
value depends on: (1) the coverage density, (2)
whether the obstacle crosses the extended area;

(3) , the initial value of , as
shown in Formula (7), k represents the number
of extensions, indicating that the more the
number of extensions, the smaller the area to be
expanded; represents the coefficient,
indicating the size of the initial area in the
default state.

 (7)

At the same time, if the obstacle is too large after
taking into account the extended area, the
Formula (6) is used to calculate the adjustment
area, so that the width of the expanded search
area can be obtained according to the Formula
(7), and can be obtained, as shown in the
Formula (8).

 (8)

It can be seen from the Formulas (7)-(8) that
after gradual expansion, is the sum of the
initial value of the region multiplied by the
natural reciprocal; from the limit summation
formula. After infinite expansion, will
become infinite to cover the entire region, thus
satisfying the probability completeness.

3.3 Random Expansion Tree
RRT adds the boundary detection function in
the search process after increasing the search
area limit, as shown in Figure 7(2). When is
not in the search area, nodes are generated
again. Figure 8 shows the flow of M-RRT's
random search tree algorithm (Extend_Tree).

Figure 8

Extended search tree of M-RRT

Extend_Tree(tree)
1: flag1←0
2: while flag1==0
3: 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟←Random_Configration()
4: 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟←Nearest_Neighbor(tree,𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
5: 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛←New_Configration(𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 ,𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠)
6: if Collision(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 , tree)==0&&Collision_Border(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 ,𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑛𝑛)==0
7: tree.add_node(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛)

8: flag1←1
9: if ∣𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 -𝑞𝑞𝑛𝑛𝑟𝑟𝑟𝑟∣<𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

10: return 1

3.4 Greedily Delete Node
Optimization Path
The paths obtained through tree expansion
consist of a series of nodes, which are not
necessarily the shortest. Further optimization is
required, and this paper employs a greedy
algorithm to prune nodes from the expanded

(1) Extension length (2) Collision and region detection

Normally, it can be set according to the initial value,
but during the expansion process, the value depends
on: (1) the coverage density, (2) whether the obstacle
crosses the extended area; (3) , the initial
value of , as shown in Formula (7), k represents
the number of extensions, indicating that the more
the number of extensions, the smaller the area to be
expanded; represents the coefficient, indicating
the size of the initial area in the default state.

(7)

447Information Technology and Control 2024/2/53

At the same time, if the obstacle is too large after tak-
ing into account the extended area, the Formula (6)
is used to calculate the adjustment area, so that the
width of the expanded search area can be obtained
according to the Formula (7), and can be
obtained, as shown in the Formula (8).

(8)

It can be seen from the Formulas (7)-(8) that after
gradual expansion, is the sum of the initial val-
ue of the region multiplied by the natural reciprocal;
from the limit summation formula. After infinite ex-
pansion, will become infinite to cover the entire
region, thus satisfying the probability completeness.

3.3. Random Expansion Tree
RRT adds the boundary detection function in the
search process after increasing the search area lim-
it, as shown in Figure 7(2). When is not in the
search area, nodes are generated again. Figure 8
shows the flow of M-RRT’s random search tree algo-
rithm (Extend_Tree).

Figure 8
Extended search tree of M-RRT

(5)

3.2 Extended Search Area Setting
Based on Coverage Density
Due to the influence of the shape, size and
position of obstacles, the RRT algorithm cannot
find the path in the set area. In this case, the
search area needs to be expanded, as shown in
Equation (6).

(6)

In Formula (6), the step size is expanded after
each search failure. Repeat the preceding steps
until the search path is found, as shown in
Figures 6-7.

Figure 6

Region expansion

Figure 7

Extension length and collision detection

(1) Extension length (2) Collision and region detection

Normally, it can be set according to the initial
value, but during the expansion process, the
value depends on: (1) the coverage density, (2)
whether the obstacle crosses the extended area;

(3) , the initial value of , as
shown in Formula (7), k represents the number
of extensions, indicating that the more the
number of extensions, the smaller the area to be
expanded; represents the coefficient,
indicating the size of the initial area in the
default state.

 (7)

At the same time, if the obstacle is too large after
taking into account the extended area, the
Formula (6) is used to calculate the adjustment
area, so that the width of the expanded search
area can be obtained according to the Formula
(7), and can be obtained, as shown in the
Formula (8).

 (8)

It can be seen from the Formulas (7)-(8) that
after gradual expansion, is the sum of the
initial value of the region multiplied by the
natural reciprocal; from the limit summation
formula. After infinite expansion, will
become infinite to cover the entire region, thus
satisfying the probability completeness.

3.3 Random Expansion Tree
RRT adds the boundary detection function in
the search process after increasing the search
area limit, as shown in Figure 7(2). When is
not in the search area, nodes are generated
again. Figure 8 shows the flow of M-RRT's
random search tree algorithm (Extend_Tree).

Figure 8

Extended search tree of M-RRT

Extend_Tree(tree)
1: flag1←0
2: while flag1==0
3: 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟←Random_Configration()
4: 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟←Nearest_Neighbor(tree,𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
5: 𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛←New_Configration(𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑞𝑞𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 ,𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠)
6: if Collision(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 , tree)==0&&Collision_Border(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 ,𝑟𝑟𝑓𝑓𝑟𝑟𝑛𝑛𝑛𝑛)==0
7: tree.add_node(𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛)

8: flag1←1
9: if ∣𝑞𝑞𝑟𝑟𝑛𝑛𝑛𝑛 -𝑞𝑞𝑛𝑛𝑟𝑟𝑟𝑟∣<𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

10: return 1

3.4 Greedily Delete Node
Optimization Path
The paths obtained through tree expansion
consist of a series of nodes, which are not
necessarily the shortest. Further optimization is
required, and this paper employs a greedy
algorithm to prune nodes from the expanded

3.4. Greedily Delete Node Optimization Path
The paths obtained through tree expansion consist of
a series of nodes, which are not necessarily the short-
est. Further optimization is required, and this paper
employs a greedy algorithm to prune nodes from the
expanded tree, resulting in a shorter path. The key
steps of the proposed greedy algorithm are as follows:
1 Initialization of the original path , where rep-

resents the path between and obtained
from a random tree .

2 Initialization of the sequence of optimized path
nodes , with an initial empty value. The starting
point from is inserted into as the first anchor
point.

3 Iterative selection of anchor points and insertion
into . Nodes are continuously selected from ,
and it is determined whether the line connecting
the selected point and the anchor point intersects
with obstacles. If no intersection occurs, the selec-
tion process continues until an intersection is de-
tected. At this point, the node selected just before
the intersection becomes the next anchor point,
and it is inserted into Sk. The search continues un-
til the endpoint becomes the last anchor point and
is inserted into Sk. This process effectively removes
many intermediate nodes. In Figure 9, the sequence
of points represents the anchor points selected
from . After this step, in wireless sensor net-
works, situations similar to Figure 10 often arise,
where obstacles are contained between three an-
chor points. In such cases, the intermediate anchor
points need to be removed, constituting step (4).

Figure 9
Anchor sequence after iterative selection

tree, resulting in a shorter path. The key steps of
the proposed greedy algorithm are as follows:

(1) Initialization of the original path , where
 represents the path between and

obtained from a random tree .

(2) Initialization of the sequence of optimized
path nodes , with an initial empty value. The
starting point from is inserted into as the
first anchor point.

(3) Iterative selection of anchor points and
insertion into . Nodes are continuously
selected from , and it is determined whether
the line connecting the selected point and the
anchor point intersects with obstacles. If no
intersection occurs, the selection process
continues until an intersection is detected. At
this point, the node selected just before the
intersection becomes the next anchor point, and
it is inserted into Sk. The search continues until
the endpoint becomes the last anchor point and
is inserted into Sk. This process effectively
removes many intermediate nodes. In Figure 9,
the sequence of points represents the anchor
points selected from . After this step, in
wireless sensor networks, situations similar to
Figure 10 often arise, where obstacles are
contained between three anchor points. In such
cases, the intermediate anchor points need to be
removed, constituting step (4).

(4) Verification of the equality of lengths
between and sequences. If they are not
equal, is cleared, is copied to , is
cleared, and step (3) is repeated. If they are
equal, the optimization process is concluded.

Figure 9

Anchor sequence after iterative selection

Figure 10

The obstacle is in the middle of the three
anchors

3.5 Shortest Smooth Path
The path formed by the optimized node
sequence cannot meet the demand of stable
movement of nodes, mainly because the node
sequence cannot meet the kinematic mechanical
demand of mobile nodes at the connection
point. For mobile nodes, their dynamic equation
can be expressed by Formula (9).

(9)

where, v represents the moving speed of the
node, represents the angular speed, and

 represents the maximum angular speed
acceptable to the mobile node. In this way, the
minimum radius of the mobile node when
turning can be obtained, as shown in Formula
(10).

 (10)

The necessary condition for a mobile node to
move smoothly is that the curvature at each
point of the path is less than the value that the
mobile node can bear. Therefore, the average
probability condition [8] is adopted here, which
satisfies Equation (11), where a and b represent
the slope of any two points on the curve and the
change point of P(a).

 (11)

According to the greedy optimization path,
there must be obstacles between the two-line
segments. In special cases involving a static
sensor node, the radius length is:

. If an arc is arbitrarily
taken from a circle with radius and length R, the
appropriate moving time can be found to enable
smooth movement of the mobile sensing node.
This arc can be replaced by a quadratic Bezier
curve. Therefore, the process of searching for a
smooth path involves search control points in

, ensuring that the path is both smooth and
smooth, and the path is shortest. Given n+1
points, the smooth path is solved by

Figure 10
The obstacle is in the middle of the three anchors

tree, resulting in a shorter path. The key steps of
the proposed greedy algorithm are as follows:

(1) Initialization of the original path , where
 represents the path between and

obtained from a random tree .

(2) Initialization of the sequence of optimized
path nodes , with an initial empty value. The
starting point from is inserted into as the
first anchor point.

(3) Iterative selection of anchor points and
insertion into . Nodes are continuously
selected from , and it is determined whether
the line connecting the selected point and the
anchor point intersects with obstacles. If no
intersection occurs, the selection process
continues until an intersection is detected. At
this point, the node selected just before the
intersection becomes the next anchor point, and
it is inserted into Sk. The search continues until
the endpoint becomes the last anchor point and
is inserted into Sk. This process effectively
removes many intermediate nodes. In Figure 9,
the sequence of points represents the anchor
points selected from . After this step, in
wireless sensor networks, situations similar to
Figure 10 often arise, where obstacles are
contained between three anchor points. In such
cases, the intermediate anchor points need to be
removed, constituting step (4).

(4) Verification of the equality of lengths
between and sequences. If they are not
equal, is cleared, is copied to , is
cleared, and step (3) is repeated. If they are
equal, the optimization process is concluded.

Figure 9

Anchor sequence after iterative selection

Figure 10

The obstacle is in the middle of the three
anchors

3.5 Shortest Smooth Path
The path formed by the optimized node
sequence cannot meet the demand of stable
movement of nodes, mainly because the node
sequence cannot meet the kinematic mechanical
demand of mobile nodes at the connection
point. For mobile nodes, their dynamic equation
can be expressed by Formula (9).

(9)

where, v represents the moving speed of the
node, represents the angular speed, and

 represents the maximum angular speed
acceptable to the mobile node. In this way, the
minimum radius of the mobile node when
turning can be obtained, as shown in Formula
(10).

 (10)

The necessary condition for a mobile node to
move smoothly is that the curvature at each
point of the path is less than the value that the
mobile node can bear. Therefore, the average
probability condition [8] is adopted here, which
satisfies Equation (11), where a and b represent
the slope of any two points on the curve and the
change point of P(a).

 (11)

According to the greedy optimization path,
there must be obstacles between the two-line
segments. In special cases involving a static
sensor node, the radius length is:

. If an arc is arbitrarily
taken from a circle with radius and length R, the
appropriate moving time can be found to enable
smooth movement of the mobile sensing node.
This arc can be replaced by a quadratic Bezier
curve. Therefore, the process of searching for a
smooth path involves search control points in

, ensuring that the path is both smooth and
smooth, and the path is shortest. Given n+1
points, the smooth path is solved by

Information Technology and Control 2024/2/53448

4 Verification of the equality of lengths between
 and sequences. If they are not equal, is

cleared, is copied to , is cleared, and step
(3) is repeated. If they are equal, the optimization
process is concluded.

3.5. Shortest Smooth Path
The path formed by the optimized node sequence

 cannot meet the demand of stable movement of
nodes, mainly because the node sequence cannot
meet the kinematic mechanical demand of mobile
nodes at the connection point. For mobile nodes, their
dynamic equation can be expressed by Formula (9).

(9)

where, v represents the moving speed of the node,
represents the angular speed, and represents the
maximum angular speed acceptable to the mobile
node. In this way, the minimum radius of the mobile
node when turning can be obtained, as shown in For-
mula (10).

(10)

The necessary condition for a mobile node to move
smoothly is that the curvature at each point of the
path is less than the value that the mobile node can
bear. Therefore, the average probability condition [8]
is adopted here, which satisfies Equation (11), where
a and b represent the slope of any two points on the
curve and the change point of P(a).

(11)

According to the greedy optimization path, there
must be obstacles between the two-line segments. In
special cases involving a static sensor node, the radius
length is: . If an arc is arbitrari-
ly taken from a circle with radius and length R, the ap-
propriate moving time can be found to enable smooth
movement of the mobile sensing node. This arc can
be replaced by a quadratic Bezier curve. Therefore,
the process of searching for a smooth path involves
search control points in , ensuring that the path
is both smooth and smooth, and the path is shortest.

Given n+1 points, the smooth path is solved by deter-
mining the junction points a1, a2, ... ,an, ... ,a2n on the two
adjacent line segments, satisfying Formula (11) and
collision avoidance. This makes the path shortest,
that is, satisfying the solution of the Equation (12).

(12)

In the Equation (12), Bi represents the length of the
second Bezier curve. The integral method is employed
for solving, where the a2i subscript in Bi is an even
number to start counting. The control points of the
second quadratic curve, a2i and a2i+1, indicate that the
horizontal coordinate of the previous control point is
less than the horizontal coordinate of the next curve
li represents the remaining line segment on SiSi+1, im-
plying that, after smoothing, some line segments need
to be traversed on SiSi+1. L represents the sum of the
length of the conic and the remaining line segment.
To solve for L is to find an optimal conic so that the
path is the shortest.
During the solution process, if only the quadratic
curve between each two adjacent line segments meets
the conditions for the shortest path. (that is, the qua-
dratic curve does not intersect with obstacles, the
curvature meets the Formula (11)), the path between
the two-line segments is the shortest. The sequence
of control points may cross, that is, the horizontal co-
ordinate of the i control point is greater than the hor-
izontal coordinate of the i+1 control point, resulting
in a conflict, and the required path is not obtained, as
shown in Figure 11, ai+2>ai+3.
This situation, depicted in Figure 11 (ai+2 > ai+3), im-
plies that when the sensor node moves to ai+2, it needs
to fall back to ai+3, which doesn’t align with the re-
quirements.
It is evident from Formula (12) that the process of solv-
ing smooth curves is an NP-difficult problem. How-
ever, it has been observed that minimizing the angle
between two-line segments fulfills the requirements
of smooth processing without control point conflicts.
Figure 12 illustrates this scenario with ai+2 =ai+3, and

449Information Technology and Control 2024/2/53

the NP problem is transformed into a P problem. The
proposed solution path is shorter and meets the colli-
sion avoidance and dynamics requirements of mobile
sensor nodes. Figure 13 is the optimal path obtained
by smooth optimization on the basis of Figure 8.

Figure 11
Cross conflict of control points

Figure 12
Minimum angle priority smoothing treatment

Figure 13
Smooth Optimization Path

determining the junction points a1, a2, ... ,an, ...
,a2n on the two adjacent line segments, satisfying
Formula (11) and collision avoidance. This
makes the path shortest, that is, satisfying the
solution of the Equation (12).

 (12)

In the Equation (12), Bi represents the length of
the second Bezier curve. The integral method is
employed for solving, where the a2i subscript in
Bi is an even number to start counting. The
control points of the second quadratic curve, a2i
and a2i+1, indicate that the horizontal coordinate
of the previous control point is less than the
horizontal coordinate of the next curve li
represents the remaining line segment on SiSi+1,
implying that, after smoothing, some line
segments need to be traversed on SiSi+1. L
represents the sum of the length of the conic
and the remaining line segment. To solve for L
is to find an optimal conic so that the path is the
shortest.

During the solution process, if only the
quadratic curve between each two adjacent line
segments meets the conditions for the shortest
path. (that is, the quadratic curve does not
intersect with obstacles, the curvature meets the
Formula (11)), the path between the two-line
segments is the shortest. The sequence of
control points may cross, that is, the horizontal
coordinate of the i control point is greater than
the horizontal coordinate of the i+1 control
point, resulting in a conflict, and the required
path is not obtained, as shown in Figure 11,
ai+2>ai+3.

This situation, depicted in Figure 11 (ai+2 > ai+3),
implies that when the sensor node moves to ai+2,
it needs to fall back to ai+3, which doesn't align
with the requirements.

It is evident from Formula (12) that the process
of solving smooth curves is an NP-difficult
problem. However, it has been observed that
minimizing the angle between two-line
segments fulfills the requirements of smooth
processing without control point conflicts.
Figure 12 illustrates this scenario with ai+2 =ai+3,
and the NP problem is transformed into a P
problem. The proposed solution path is shorter
and meets the collision avoidance and dynamics
requirements of mobile sensor nodes. Figure 13

is the optimal path obtained by smooth
optimization on the basis of Figure 8.

Figure 11

Cross conflict of control points

Figure 12

Minimum angle priority smoothing treatment

Figure 13

Smooth Optimization Path

3.6 Mobile Node Planning
Strategy
M-RRT includes five key processing processes:
region initialization, random search, region
extension, path optimization, and smoothing, as
shown in Figure 14. The find extend Tree
function calls Extend Tree(tree) and iterates step
by step to determine whether the path can be
searched for a finite number of times. If the path
is found, Greedy Optimal(Tree) is called for
optimization. Then call the Bezier Smooth(Path)
function to smooth and get the required path.

Figure 14

M-RRT path planning strategy

determining the junction points a1, a2, ... ,an, ...
,a2n on the two adjacent line segments, satisfying
Formula (11) and collision avoidance. This
makes the path shortest, that is, satisfying the
solution of the Equation (12).

 (12)

In the Equation (12), Bi represents the length of
the second Bezier curve. The integral method is
employed for solving, where the a2i subscript in
Bi is an even number to start counting. The
control points of the second quadratic curve, a2i
and a2i+1, indicate that the horizontal coordinate
of the previous control point is less than the
horizontal coordinate of the next curve li
represents the remaining line segment on SiSi+1,
implying that, after smoothing, some line
segments need to be traversed on SiSi+1. L
represents the sum of the length of the conic
and the remaining line segment. To solve for L
is to find an optimal conic so that the path is the
shortest.

During the solution process, if only the
quadratic curve between each two adjacent line
segments meets the conditions for the shortest
path. (that is, the quadratic curve does not
intersect with obstacles, the curvature meets the
Formula (11)), the path between the two-line
segments is the shortest. The sequence of
control points may cross, that is, the horizontal
coordinate of the i control point is greater than
the horizontal coordinate of the i+1 control
point, resulting in a conflict, and the required
path is not obtained, as shown in Figure 11,
ai+2>ai+3.

This situation, depicted in Figure 11 (ai+2 > ai+3),
implies that when the sensor node moves to ai+2,
it needs to fall back to ai+3, which doesn't align
with the requirements.

It is evident from Formula (12) that the process
of solving smooth curves is an NP-difficult
problem. However, it has been observed that
minimizing the angle between two-line
segments fulfills the requirements of smooth
processing without control point conflicts.
Figure 12 illustrates this scenario with ai+2 =ai+3,
and the NP problem is transformed into a P
problem. The proposed solution path is shorter
and meets the collision avoidance and dynamics
requirements of mobile sensor nodes. Figure 13

is the optimal path obtained by smooth
optimization on the basis of Figure 8.

Figure 11

Cross conflict of control points

Figure 12

Minimum angle priority smoothing treatment

Figure 13

Smooth Optimization Path

3.6 Mobile Node Planning
Strategy
M-RRT includes five key processing processes:
region initialization, random search, region
extension, path optimization, and smoothing, as
shown in Figure 14. The find extend Tree
function calls Extend Tree(tree) and iterates step
by step to determine whether the path can be
searched for a finite number of times. If the path
is found, Greedy Optimal(Tree) is called for
optimization. Then call the Bezier Smooth(Path)
function to smooth and get the required path.

Figure 14

M-RRT path planning strategy

determining the junction points a1, a2, ... ,an, ...
,a2n on the two adjacent line segments, satisfying
Formula (11) and collision avoidance. This
makes the path shortest, that is, satisfying the
solution of the Equation (12).

 (12)

In the Equation (12), Bi represents the length of
the second Bezier curve. The integral method is
employed for solving, where the a2i subscript in
Bi is an even number to start counting. The
control points of the second quadratic curve, a2i
and a2i+1, indicate that the horizontal coordinate
of the previous control point is less than the
horizontal coordinate of the next curve li
represents the remaining line segment on SiSi+1,
implying that, after smoothing, some line
segments need to be traversed on SiSi+1. L
represents the sum of the length of the conic
and the remaining line segment. To solve for L
is to find an optimal conic so that the path is the
shortest.

During the solution process, if only the
quadratic curve between each two adjacent line
segments meets the conditions for the shortest
path. (that is, the quadratic curve does not
intersect with obstacles, the curvature meets the
Formula (11)), the path between the two-line
segments is the shortest. The sequence of
control points may cross, that is, the horizontal
coordinate of the i control point is greater than
the horizontal coordinate of the i+1 control
point, resulting in a conflict, and the required
path is not obtained, as shown in Figure 11,
ai+2>ai+3.

This situation, depicted in Figure 11 (ai+2 > ai+3),
implies that when the sensor node moves to ai+2,
it needs to fall back to ai+3, which doesn't align
with the requirements.

It is evident from Formula (12) that the process
of solving smooth curves is an NP-difficult
problem. However, it has been observed that
minimizing the angle between two-line
segments fulfills the requirements of smooth
processing without control point conflicts.
Figure 12 illustrates this scenario with ai+2 =ai+3,
and the NP problem is transformed into a P
problem. The proposed solution path is shorter
and meets the collision avoidance and dynamics
requirements of mobile sensor nodes. Figure 13

is the optimal path obtained by smooth
optimization on the basis of Figure 8.

Figure 11

Cross conflict of control points

Figure 12

Minimum angle priority smoothing treatment

Figure 13

Smooth Optimization Path

3.6 Mobile Node Planning
Strategy
M-RRT includes five key processing processes:
region initialization, random search, region
extension, path optimization, and smoothing, as
shown in Figure 14. The find extend Tree
function calls Extend Tree(tree) and iterates step
by step to determine whether the path can be
searched for a finite number of times. If the path
is found, Greedy Optimal(Tree) is called for
optimization. Then call the Bezier Smooth(Path)
function to smooth and get the required path.

Figure 14

M-RRT path planning strategy

3.6. Mobile Node Planning Strategy
RRT includes five key processing processes: region
initialization, random search, region extension, path
optimization, and smoothing, as shown in Figure 14.

The find extend Tree function calls Extend Tree(tree)
and iterates step by step to determine whether the
path can be searched for a finite number of times. If
the path is found, Greedy Optimal(Tree) is called for
optimization. Then call the Bezier Smooth(Path)
function to smooth and get the required path.

Figure 14
M-RRT path planning strategy

1. Init dfree ; // region initialization (1)
2. While fpath = 0;
3. fpath=find_Extend_Tree(dfree,N); // Search in restricted area (2)
4 if(fpath==1 | dfree>S) break;

5. dfree=Extend(dfree); // expand area (3)
6. End
7. Path=Greedy_Optimal(Tree); // Path optimization (4)
8. Path=Bezier_Smooth(Path) ; // Smooth optimization (5)
9. return Path;

4. Experimental Results and
Analysis

This study conducts simulations in a
rectangular coordinate system [0, 100] × [0, 100],
deploying 120 static sensing nodes and 5
redundant mobile nodes, where Nodes=125,
k=10, S=100, M=1, featuring low-density circular
obstacles. The radius of static nodes is denoted
as r = 0.1, while the radius of mobile nodes is
represented by R=0.2. For the R-RRT algorithm,
the step size is set to 3, is 10, is 2,
and N is 200. The outcomes of the M-RRT
algorithm, as depicted in Figure 15, and the RRT
algorithm, as illustrated in Figure 16, are
compared. The results reveal that the enhanced
M-RRT algorithm confines the search region to
a smaller space, yielding paths significantly
superior to those generated by the RRT
algorithm.

Figure 15

Path planning of M-RRT

Figure 16

Path planning of RRT

To further verify the improved strategy
proposed in this paper, the number of obstacles
was increased to 100, with other conditions
unchanged. The results, shown in Figure 17 for
M-RRT and Figure 18 for RRT, clearly
demonstrate M-RRT's superior performance.

Figure 17

M-RRT planning after adding obstacles

Figure 18

RRT algorithm after adding obstacles

In order to further verify the superiority of
M-RRT algorithm, a case study involving
autonomous vehicle navigation with dynamic
obstacles (e.g., moving vehicles and pedestrians)
was examined. five maps were randomly
generated by changing the number of obstacles,
and M-RRT and RRT algorithms were used to

4. Experimental Results and Analysis
This study conducts simulations in a rectangular co-
ordinate system [0, 100] × [0, 100], deploying 120 stat-
ic sensing nodes and 5 redundant mobile nodes, where
Nodes=125, k=10, S=100, M=1, featuring low-density
circular obstacles. The radius of static nodes is denot-
ed as r = 0.1, while the radius of mobile nodes is rep-
resented by R=0.2. For the R-RRT algorithm, the step
size is set to 3, is 10, is 2, and N is 200.
The outcomes of the M-RRT algorithm, as depicted
in Figure 15, and the RRT algorithm, as illustrated in

Figure 15
Path planning of M-RRT

1. Init dfree ; // region initialization (1)
2. While fpath = 0;
3. fpath=find_Extend_Tree(dfree,N); // Search in restricted area (2)
4 if(fpath==1 | dfree>S) break;

5. dfree=Extend(dfree); // expand area (3)
6. End
7. Path=Greedy_Optimal(Tree); // Path optimization (4)
8. Path=Bezier_Smooth(Path) ; // Smooth optimization (5)
9. return Path;

4. Experimental Results and
Analysis

This study conducts simulations in a
rectangular coordinate system [0, 100] × [0, 100],
deploying 120 static sensing nodes and 5
redundant mobile nodes, where Nodes=125,
k=10, S=100, M=1, featuring low-density circular
obstacles. The radius of static nodes is denoted
as r = 0.1, while the radius of mobile nodes is
represented by R=0.2. For the R-RRT algorithm,
the step size is set to 3, is 10, is 2,
and N is 200. The outcomes of the M-RRT
algorithm, as depicted in Figure 15, and the RRT
algorithm, as illustrated in Figure 16, are
compared. The results reveal that the enhanced
M-RRT algorithm confines the search region to
a smaller space, yielding paths significantly
superior to those generated by the RRT
algorithm.

Figure 15

Path planning of M-RRT

Figure 16

Path planning of RRT

To further verify the improved strategy
proposed in this paper, the number of obstacles
was increased to 100, with other conditions
unchanged. The results, shown in Figure 17 for
M-RRT and Figure 18 for RRT, clearly
demonstrate M-RRT's superior performance.

Figure 17

M-RRT planning after adding obstacles

Figure 18

RRT algorithm after adding obstacles

In order to further verify the superiority of
M-RRT algorithm, a case study involving
autonomous vehicle navigation with dynamic
obstacles (e.g., moving vehicles and pedestrians)
was examined. five maps were randomly
generated by changing the number of obstacles,
and M-RRT and RRT algorithms were used to

Information Technology and Control 2024/2/53450

Figure 17
M-RRT planning after adding obstacles

Figure 16, are compared. The results reveal that the
enhanced M-RRT algorithm confines the search re-
gion to a smaller space, yielding paths significantly
superior to those generated by the RRT algorithm.

Figure 18
RRT algorithm after adding obstacles

Figure 19
Comparison of average search time

Figure 16
Path planning of RRT

1. Init dfree ; // region initialization (1)
2. While fpath = 0;
3. fpath=find_Extend_Tree(dfree,N); // Search in restricted area (2)
4 if(fpath==1 | dfree>S) break;

5. dfree=Extend(dfree); // expand area (3)
6. End
7. Path=Greedy_Optimal(Tree); // Path optimization (4)
8. Path=Bezier_Smooth(Path) ; // Smooth optimization (5)
9. return Path;

4. Experimental Results and
Analysis

This study conducts simulations in a
rectangular coordinate system [0, 100] × [0, 100],
deploying 120 static sensing nodes and 5
redundant mobile nodes, where Nodes=125,
k=10, S=100, M=1, featuring low-density circular
obstacles. The radius of static nodes is denoted
as r = 0.1, while the radius of mobile nodes is
represented by R=0.2. For the R-RRT algorithm,
the step size is set to 3, is 10, is 2,
and N is 200. The outcomes of the M-RRT
algorithm, as depicted in Figure 15, and the RRT
algorithm, as illustrated in Figure 16, are
compared. The results reveal that the enhanced
M-RRT algorithm confines the search region to
a smaller space, yielding paths significantly
superior to those generated by the RRT
algorithm.

Figure 15

Path planning of M-RRT

Figure 16

Path planning of RRT

To further verify the improved strategy
proposed in this paper, the number of obstacles
was increased to 100, with other conditions
unchanged. The results, shown in Figure 17 for
M-RRT and Figure 18 for RRT, clearly
demonstrate M-RRT's superior performance.

Figure 17

M-RRT planning after adding obstacles

Figure 18

RRT algorithm after adding obstacles

In order to further verify the superiority of
M-RRT algorithm, a case study involving
autonomous vehicle navigation with dynamic
obstacles (e.g., moving vehicles and pedestrians)
was examined. five maps were randomly
generated by changing the number of obstacles,
and M-RRT and RRT algorithms were used to

To further verify the improved strategy proposed in
this paper, the number of obstacles was increased to
100, with other conditions unchanged. The results,
shown in Figure 17 for M-RRT and Figure 18 for RRT,
clearly demonstrate M-RRT’s superior performance.

1. Init dfree ; // region initialization (1)
2. While fpath = 0;
3. fpath=find_Extend_Tree(dfree,N); // Search in restricted area (2)
4 if(fpath==1 | dfree>S) break;

5. dfree=Extend(dfree); // expand area (3)
6. End
7. Path=Greedy_Optimal(Tree); // Path optimization (4)
8. Path=Bezier_Smooth(Path) ; // Smooth optimization (5)
9. return Path;

4. Experimental Results and
Analysis

This study conducts simulations in a
rectangular coordinate system [0, 100] × [0, 100],
deploying 120 static sensing nodes and 5
redundant mobile nodes, where Nodes=125,
k=10, S=100, M=1, featuring low-density circular
obstacles. The radius of static nodes is denoted
as r = 0.1, while the radius of mobile nodes is
represented by R=0.2. For the R-RRT algorithm,
the step size is set to 3, is 10, is 2,
and N is 200. The outcomes of the M-RRT
algorithm, as depicted in Figure 15, and the RRT
algorithm, as illustrated in Figure 16, are
compared. The results reveal that the enhanced
M-RRT algorithm confines the search region to
a smaller space, yielding paths significantly
superior to those generated by the RRT
algorithm.

Figure 15

Path planning of M-RRT

Figure 16

Path planning of RRT

To further verify the improved strategy
proposed in this paper, the number of obstacles
was increased to 100, with other conditions
unchanged. The results, shown in Figure 17 for
M-RRT and Figure 18 for RRT, clearly
demonstrate M-RRT's superior performance.

Figure 17

M-RRT planning after adding obstacles

Figure 18

RRT algorithm after adding obstacles

In order to further verify the superiority of
M-RRT algorithm, a case study involving
autonomous vehicle navigation with dynamic
obstacles (e.g., moving vehicles and pedestrians)
was examined. five maps were randomly
generated by changing the number of obstacles,
and M-RRT and RRT algorithms were used to

1. Init dfree ; // region initialization (1)
2. While fpath = 0;
3. fpath=find_Extend_Tree(dfree,N); // Search in restricted area (2)
4 if(fpath==1 | dfree>S) break;

5. dfree=Extend(dfree); // expand area (3)
6. End
7. Path=Greedy_Optimal(Tree); // Path optimization (4)
8. Path=Bezier_Smooth(Path) ; // Smooth optimization (5)
9. return Path;

4. Experimental Results and
Analysis

This study conducts simulations in a
rectangular coordinate system [0, 100] × [0, 100],
deploying 120 static sensing nodes and 5
redundant mobile nodes, where Nodes=125,
k=10, S=100, M=1, featuring low-density circular
obstacles. The radius of static nodes is denoted
as r = 0.1, while the radius of mobile nodes is
represented by R=0.2. For the R-RRT algorithm,
the step size is set to 3, is 10, is 2,
and N is 200. The outcomes of the M-RRT
algorithm, as depicted in Figure 15, and the RRT
algorithm, as illustrated in Figure 16, are
compared. The results reveal that the enhanced
M-RRT algorithm confines the search region to
a smaller space, yielding paths significantly
superior to those generated by the RRT
algorithm.

Figure 15

Path planning of M-RRT

Figure 16

Path planning of RRT

To further verify the improved strategy
proposed in this paper, the number of obstacles
was increased to 100, with other conditions
unchanged. The results, shown in Figure 17 for
M-RRT and Figure 18 for RRT, clearly
demonstrate M-RRT's superior performance.

Figure 17

M-RRT planning after adding obstacles

Figure 18

RRT algorithm after adding obstacles

In order to further verify the superiority of
M-RRT algorithm, a case study involving
autonomous vehicle navigation with dynamic
obstacles (e.g., moving vehicles and pedestrians)
was examined. five maps were randomly
generated by changing the number of obstacles,
and M-RRT and RRT algorithms were used to

In order to further verify the superiority of M-RRT
algorithm, a case study involving autonomous vehicle
navigation with dynamic obstacles (e.g., moving vehi-
cles and pedestrians) was examined. five maps were
randomly generated by changing the number of ob-
stacles, and M-RRT and RRT algorithms were used
to search the path. The experiments were repeated for
100 times, and their average convergence time and av-
erage path length were obtained, as shown in Figure 19
and 20, respectively. It can be seen from the results that
the search time of M-RRT is much shorter than RRT,
and the path length of M-RRT is also much shorter
than RRT. The M-RRT algorithm facilitated efficient
path planning, optimizing the route in real-time as the
environmental conditions changed. This application
highlighted the algorithm’s potential in industries such
as autonomous driving and drone navigation, where
adaptability and real-time processing are critical.

search the path. The experiments were repeated
for 100 times, and their average convergence
time and average path length were obtained, as
shown in Figure 19 and 20, respectively. It can
be seen from the results that the search time of
M-RRT is much shorter than RRT, and the path
length of M-RRT is also much shorter than RRT.
The M-RRT algorithm facilitated efficient path
planning, optimizing the route in real-time as
the environmental conditions changed. This
application highlighted the algorithm's
potential in industries such as autonomous
driving and drone navigation, where
adaptability and real-time processing are
critical.

Figure 19

Comparison of average search time

Figure 20

Comparison of average path length

5. Conclusion
By leveraging the coverage and connectivity of
wireless sensor networks, this paper introduces
the M-RRT strategy for efficient path planning
of mobile nodes. From setting the initial search
area based on coverage density to optimizing
paths using a greedy algorithm and smoothing
with quadratic Bezier curves, the M-RRT
strategy not only reduces search time and path
length but also provides a smooth and optimal
path for mobile sensor nodes. Compared to the
traditional RRT algorithm, the M-RRT
algorithm demonstrates superior performance,
especially in dense sensor networks,
underscoring its advantages in terms of search
efficiency and path quality.

Future work will focus on expanding the
algorithm's applicability to a wider range of
real-world scenarios, further refining its
computational efficiency, and exploring its
integration into larger-scale autonomous
systems.

Acknowledgment
This work was sponsored in part by Science
and Technology Project of State Grid Jiangsu
Electric Power Co., Ltd (Ref. No.: 2023-1-32).
Competing Interests
The authors have no relevant financial or
non-financial interests to disclose.

References

1. Aggarwal, S., Kumar, N. Path Planning Techniques
for Unmanned Aerial Vehicles: A Review,
Solutions, and Challenges. Computer
Communications, 2020, 149, 270–299.
https://doi.org/10.1016/j.comcom.2019.10.014

2. Cao, X., Zou, X., Jia, C., Chen, M., Zeng, Z.
RRT-based Path Planning for an Intelligent
Litchi-Picking Manipulator. Computers and
Electronics in Agriculture, 2019, 156, 105–118.
https://doi.org/10.1016/j.compag.2018.10.031

3. David Boon Moses, E., Anitha, G. Goal Directed
Approach to Autonomous Motion Planning for
Unmanned Vehicles. Defence Science Journal,
2016, 67(1), 45. https:// doi.org/10.14429/dsj.67.1029

4. Ding, J., Zhou, Y., Huang, X., Song, K., Lu, S.,
Wang, L. An Improved RRT* Algorithm for Robot
Path Planning based on Path Expansion Heuristic
Sampling. Journal of Computational Science, 2023,
67, 101937–101937.
https://doi.org/10.1016/j.jocs.2022.101937

5. Eshtehardian, S. A., Khodaygan, S. A continuous
RRT*-based Path Planning Method for
Non-Holonomic Mobile Robots Using B-Spline
Curves. Journal of Ambient Intelligence and
Humanized Computing, 2022, 14, 8693–8702.
https://doi.org/10.1007/s12652-021-03625-8

6. Han, G., Jiang, J., Chao, J., Yang, X. Path Planning
for a Group of Mobile Anchor Nodes Based on
Regular Triangles in Wireless Sensor Networks.
Neurocomputing, 2017, 270, 198–208.
https://doi.org/10.1016/j.neucom.2016.10.097

7. Huang, H., Savkin, A. V. Viable Path Planning for
Data Collection Robots in a Sensing Field with
Obstacles. Computer Communications, 2017, 111,
84–96. ttps://doi.org/10.1016/j.comcom.2017.07.010

8. Kim, J., Yang, G.-H. Improvement of Dynamic
Window Approach Using Reinforcement Learning
in Dynamic Environments. International Journal
of Control, Automation and Systems, 2022.
https://doi.org/10.1007/s12555-021-0462-9

451Information Technology and Control 2024/2/53

Figure 20
Comparison of average path length

5. Conclusion
By leveraging the coverage and connectivity of wire-
less sensor networks, this paper introduces the
M-RRT strategy for efficient path planning of mobile
nodes. From setting the initial search area based on
coverage density to optimizing paths using a greedy
algorithm and smoothing with quadratic Bezier
curves, the M-RRT strategy not only reduces search

search the path. The experiments were repeated
for 100 times, and their average convergence
time and average path length were obtained, as
shown in Figure 19 and 20, respectively. It can
be seen from the results that the search time of
M-RRT is much shorter than RRT, and the path
length of M-RRT is also much shorter than RRT.
The M-RRT algorithm facilitated efficient path
planning, optimizing the route in real-time as
the environmental conditions changed. This
application highlighted the algorithm's
potential in industries such as autonomous
driving and drone navigation, where
adaptability and real-time processing are
critical.

Figure 19

Comparison of average search time

Figure 20

Comparison of average path length

5. Conclusion
By leveraging the coverage and connectivity of
wireless sensor networks, this paper introduces
the M-RRT strategy for efficient path planning
of mobile nodes. From setting the initial search
area based on coverage density to optimizing
paths using a greedy algorithm and smoothing
with quadratic Bezier curves, the M-RRT
strategy not only reduces search time and path
length but also provides a smooth and optimal
path for mobile sensor nodes. Compared to the
traditional RRT algorithm, the M-RRT
algorithm demonstrates superior performance,
especially in dense sensor networks,
underscoring its advantages in terms of search
efficiency and path quality.

Future work will focus on expanding the
algorithm's applicability to a wider range of
real-world scenarios, further refining its
computational efficiency, and exploring its
integration into larger-scale autonomous
systems.

Acknowledgment
This work was sponsored in part by Science
and Technology Project of State Grid Jiangsu
Electric Power Co., Ltd (Ref. No.: 2023-1-32).
Competing Interests
The authors have no relevant financial or
non-financial interests to disclose.

References

1. Aggarwal, S., Kumar, N. Path Planning Techniques
for Unmanned Aerial Vehicles: A Review,
Solutions, and Challenges. Computer
Communications, 2020, 149, 270–299.
https://doi.org/10.1016/j.comcom.2019.10.014

2. Cao, X., Zou, X., Jia, C., Chen, M., Zeng, Z.
RRT-based Path Planning for an Intelligent
Litchi-Picking Manipulator. Computers and
Electronics in Agriculture, 2019, 156, 105–118.
https://doi.org/10.1016/j.compag.2018.10.031

3. David Boon Moses, E., Anitha, G. Goal Directed
Approach to Autonomous Motion Planning for
Unmanned Vehicles. Defence Science Journal,
2016, 67(1), 45. https:// doi.org/10.14429/dsj.67.1029

4. Ding, J., Zhou, Y., Huang, X., Song, K., Lu, S.,
Wang, L. An Improved RRT* Algorithm for Robot
Path Planning based on Path Expansion Heuristic
Sampling. Journal of Computational Science, 2023,
67, 101937–101937.
https://doi.org/10.1016/j.jocs.2022.101937

5. Eshtehardian, S. A., Khodaygan, S. A continuous
RRT*-based Path Planning Method for
Non-Holonomic Mobile Robots Using B-Spline
Curves. Journal of Ambient Intelligence and
Humanized Computing, 2022, 14, 8693–8702.
https://doi.org/10.1007/s12652-021-03625-8

6. Han, G., Jiang, J., Chao, J., Yang, X. Path Planning
for a Group of Mobile Anchor Nodes Based on
Regular Triangles in Wireless Sensor Networks.
Neurocomputing, 2017, 270, 198–208.
https://doi.org/10.1016/j.neucom.2016.10.097

7. Huang, H., Savkin, A. V. Viable Path Planning for
Data Collection Robots in a Sensing Field with
Obstacles. Computer Communications, 2017, 111,
84–96. ttps://doi.org/10.1016/j.comcom.2017.07.010

8. Kim, J., Yang, G.-H. Improvement of Dynamic
Window Approach Using Reinforcement Learning
in Dynamic Environments. International Journal
of Control, Automation and Systems, 2022.
https://doi.org/10.1007/s12555-021-0462-9

time and path length but also provides a smooth and
optimal path for mobile sensor nodes. Compared to
the traditional RRT algorithm, the M-RRT algorithm
demonstrates superior performance, especially in
dense sensor networks, underscoring its advantages
in terms of search efficiency and path quality.
Future work will focus on expanding the algorithm’s
applicability to a wider range of real-world scenarios,
further refining its computational efficiency, and ex-
ploring its integration into larger-scale autonomous
systems.

Acknowledgment
This work was sponsored in part by Science and
Technology Project of State Grid Jiangsu Electric
Power Co., Ltd (Ref. No.: 2023-1-32).

Competing Interests
The authors have no relevant financial or non-finan-
cial interests to disclose.

References
1. Aggarwal, S., Kumar, N. Path Planning Techniques for

Unmanned Aerial Vehicles: A Review, Solutions, and
Challenges. Computer Communications, 2020, 149,
270-299. https://doi.org/10.1016/j.comcom.2019.10.014

2. Cao, X., Zou, X., Jia, C., Chen, M., Zeng, Z. RRT-based Path
Planning for an Intelligent Litchi-Picking Manipulator.
Computers and Electronics in Agriculture, 2019, 156,
105-118. https://doi.org/10.1016/j.compag.2018.10.031

3. David Boon Moses, E., Anitha, G. Goal Directed Appro-
ach to Autonomous Motion Planning for Unmanned
Vehicles. Defence Science Journal, 2016, 67(1), 45.
https://doi.org/10.14429/dsj.67.10295

4. Ding, J., Zhou, Y., Huang, X., Song, K., Lu, S., Wang, L.
An Improved RRT* Algorithm for Robot Path Planning
based on Path Expansion Heuristic Sampling. Journal
of Computational Science, 2023, 67, 101937-101937.
https://doi.org/10.1016/j.jocs.2022.101937

5. Eshtehardian, S. A., Khodaygan, S. A continuous RRT*-ba-
sed Path Planning Method for Non-Holonomic Mobile
Robots Using B-Spline Curves. Journal of Ambient Intel-
ligence and Humanized Computing, 2022, 14, 8693-8702.
https://doi.org/10.1007/s12652-021-03625-8

6. Han, G., Jiang, J., Chao, J., Yang, X. Path Planning for
a Group of Mobile Anchor Nodes Based on Regular

Triangles in Wireless Sensor Networks. Neurocompu-
ting, 2017, 270, 198-208. https://doi.org/10.1016/j.neu-
com.2016.10.097

7. Huang, H., Savkin, A. V. Viable Path Planning for Data
Collection Robots in a Sensing Field with Obstacles.
Computer Communications, 2017, 111, 84-96. https://
doi.org/10.1016/j.comcom.2017.07.010

8. Kim, J., Yang, G.-H. Improvement of Dynamic Window
Approach Using Reinforcement Learning in Dynamic
Environments. International Journal of Control, Au-
tomation and Systems, 2022. https://doi.org/10.1007/
s12555-021-0462-9

9. Lamini, C., Benhlima, S., Elbekri, A. Genetic Algorithm
Based Approach for Autonomous Mobile Robot Path
Planning. Procedia Computer Science, 2018, 127, 180-
189. https://doi.org/10.1016/j.procs.2018.01.113

10. Liu, L., Wang, X., Yang, X., Liu, H., Li, J., Wang, P. Path Plan-
ning Techniques for Mobile Robots: Review and Prospect.
Expert Systems with Applications, 2023, 227, 120254-
120254. https://doi.org/10.1016/j.eswa.2023.120254

11. Ma, G., Duan, Y., Li, M., Xie, Z., Zhu, J. A Probability Smo-
othing Bi-RRT Path Planning Algorithm for Indoor Ro-
bot. Future Generation Computer Systems, 2023, 143,
349-360. https://doi.org/10.1016/j.future.2023.02.004

Information Technology and Control 2024/2/53452

12. Sabiha, A. D., Kamel, M. A., Said, E., Hussein, W. M. Re-
al-Time Path Planning for Autonomous Vehicle Based
on Teaching-Learning-Based Optimization. Intelligent
Service Robotics, 2022, 15(3), 381-398. https://doi.
org/10.1007/s11370-022-00429-3

13. Senturk, I. F., Akkaya, K., Janansefat, S. Towards Realis-
tic Connectivity Restoration in Partitioned Mobile Sen-
sor Networks. International Journal of Communication
Systems, 2014, 29(2), 230-250. https://doi.org/10.1002/
dac.2819

14. Sui, F., Tang, X., Dong, Z., Gan, X., Luo, P., Sun, J. ACO+P-
SO+A*: A Bi-Layer Hybrid Algorithm for Multi-Task
Path Planning of an AUV. Computers & Industrial En-
gineering, 2023, 175, 108905. https://doi.org/10.1016/j.
cie.2022.108905

15. Wang, B., Ju, D., Xu, F., Feng, C. Bi-RRT*: An Improved
Bidirectional RRT* Path Planner for Robot in Two-Di-

mensional Space. IEEJ Transactions on Electrical
and Electronic Engineering, 2023, 18(10), 1639-1652.
https://doi.org/10.1002/tee.23898

16. Wu, D., Sun, Y., Wang, X., Wang, X. AN IMPROVED RRT
ALGORITHM FOR CRANE PATH PLANNING. Inter-
national Journal of Robotics and Automation, 2016, 31(2).
https://doi.org/10.2316/Journal.206.2016.2.206-4180

17. Wu, L., Huang, X., Cui, J., Liu, C., Xiao, W. Modified
Adaptive Ant Colony Optimization Algorithm and Its
Application for Solving Path Planning of Mobile Robot.
Expert Systems with Applications, 2023, 215, 119410-
119410. https://doi.org/10.1016/j.eswa.2022.119410

18. Xie, C., Wang, Y., Liu, Y., Li, Z., Zhu, J., Qin, J. An AUV
Path Planning Method Based on Improved APF-RRT*.
2023 IEEE International Conference on Mechatronics
and Automation (ICMA), 2023, 1190-1195. https://doi.
org/10.1109/ICMA57826.2023.10216242

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

