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6-DoF Pose Estimation (Six-Degree-of-Freedom Pose Estimation) of objects is widely used in the fields of
augmented reality, robot operation, and unmanned driving. Due to the complexity and variability of real ap-
plication scenarios, its task needs to deal with the interference such as light change, distance change, sensor
noise, and mutual occlusion of chaotic placement. In application scenarios, the implementation of methods
with low hardware cost and also high efficiency on accuracy and time cost is still a challenging problem. At
this time, it is important to recognize the class of the object, determine the area of the object in the image,
and 6-DoF pose estimation of the object that are still challenging problems. In this paper, we proposed a
conceptually simple and data-efficient category-level 6-DoF pose estimation network using Pyramid Pooling
Transformer as the foundation network to enhance the accuracy in image classification, semantic segmen-
tation, object detection, and instance segmentation with low hardware cost application background. In the
cross-modal fusion phase, the implicit Deep recovery technique is used to improve the RGB-D feature rep-
resentation capability, and the compact pyramid refinement operation can efficiently fuse multiple layers of
features with high speed and few parameters. Compared with traditional methods, the methods we proposed
have better resistance to occlusion, MAP of 10° 2cm and 10° 5cm can reach 81.4% and 87.1%, and MAP of 5°
2cm and 5° 5cm can reach 69.2% and 72.9%, which is ahead of NOCS and SPD in comparison test of public
data set CAMERA and REAL. It has obvious advantages especially under the situation that large hardware
and data base is not feasible.

KEYWORDS: Transformer, pyramid pool, efficient self-attention mechanism, cross-modal fusion, 6-DoF pose
estimation.
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1. Introduction

The 6-DoF pose estimation of objects is widely used,
including augmented reality, robot operation, and un-
manned driving. In the field of augmented reality, vir-
tual elements can be superimposed on the object by
using the pose of the object, and the relative pose of
the object remains unchanged with the movement of
the object. In the field of robotics, with the maturity
of simultaneous localization and mapping and other
technologies, robots have been able to position well in
space. Meanwhile, 6-DoF pose estimation technolo-
gy is needed to locate objects to help robots interact
with objects. In the field of autonomous driving, ob-
ject pose estimation technology can sense other traf-
fic participants and obstacles to provide information
needed for decision-making. The result of pose esti-
mation will affect the subsequent operation, and the
low precision estimation result will lead to the failure
of the later operation and planning task.

According to generalization, the existing methods
can be divided into instance level and class level ob-
ject 6-DoF pose estimation methods, which are also
divided into three different algorithms based on cor-
respondence, template and deep learning. The algo-
rithm has the following problems, the corresponding
algorithm relies on rich texture features or promi-
nent shape features, so it is not suitable for objects
with weak texture or not obvious shape features. To
deal with the problems of illumination change, back-
ground clutter, and mutual occlusion between target
objects, 2D detection frame information is generated
by expanding SSD algorithm to infer object pose [15],
or the 6-D pose of object is directly output by fusion
channel spatial attention network CSA6D [11]. Such
direct regression algorithm reduces the processing
amount. However, the accuracy of the network esti-
mation is not optimal in the application backgrounds
such as inferior detection in factories and unmanned
driving. Although the method based on deep learning
to directly regression 6-D pose from a large number
of data has high accuracy, it can only be used for in-
stance-level object pose estimation with poor gener-
alization [3, 10-11]. The algorithm based on template
matching [8, 12] needs to increase the number of tem-
plates to improve the detection accuracy, but the cost
is that the operation takes a long time and cannot re-
alize real-time application. In short, the task of 6-DoF
pose estimation is complicated, which needs to iden-
tify the class of the object, determine the area of the
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object in the image, and estimate the 6-DoF pose of
the object. On the other hand, in order for the technol-
ogy to be really used in practical tasks, it needs to deal
with lighting changes, distance changes, background
clutter, occlusion and hardware cost limitation. The
existing methods are not sufficient for the situation
that requires a high detection accuracy but only al-
lows low hardware cost.

The existing approaches for 6-DoF pose estimation
using RGB-D images can be categorized into three
groups based on the manner in which the two sources
of information are processed.

First kind, at the initial phase of feature extraction,
the 6-DoF pose estimation is accomplished by merg-
ing the RGB and depth data. For example, the depth
map isregarded as new channel information connect-
ed to the RGB channel and input to the CNN network
for pose estimation. Second kind, RGB and depth in-
formation are used separately. Firstly stage, RGB im-
ages are used to predict rough 6D target pose, such as
PoseCNN [7], BBS8 [17], SSD-6D [15], YOLO-6D [1],
PVNet (Pengetal., 2022), etc.,and then ICP algorithm
is used to refine target pose using depth information.
Third kind, the fusion of color and depth informa-
tion is designed to be postponed to feature extraction
stage. Due to the difference over the data structures
between the input color and depth information exist-
edin distinct Spaces, the two heterogeneous informa-
tion sources need to be processed separately, and geo-
metric features and color features should be extracted
on the premise of keeping the original data structure
unchanged. In view of the above existing information
source processing methods and the existing problems
in the algorithm, we propose a novel attention-based
multi-scale network. The core of the method is to use
the attention mechanism to efficiently extract and
fuse color information and geometric information,
and use the multi-scale network structure to extract
multi-scale dense features of different receptive fields
containing target context information. Complete the
6-DoF pose estimation of object.

In this work, we proposed a low hardware cost 6-DoF
network to improve the accuracy of object detection
and recognition. In the cross-modal fusion procedure,
we merge color and depth information at a basic lev-
el before utilizing the compact pyramid refinement
(CPR) module to efficiently merge depth features
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across different levels, while using the implicit depth
recovery technology (IDR) to enhance feature learn-
ing; The multi-head self-attention module of vision
Transformer is encapsulated in the pyramid pool,
which makes the scene understanding performance of
backbone network P2T significantly superior to that
of networks based on convolutional neural network
and Transformer. Using P2T as backbone network, the
compact pyramid refinement (CPR) module and im-
plicit deep recovery (IDR) technique are used to opti-
mize the 6-DoF pose estimation method for class-level
objects, which improves the robustness and accuracy.

2. Related Work
2.1. Vision Transformer

Efficient modeling of multi-scale information is a key
step in computer vision tasks. For example, semantic
segmentation tasks require local details when deter-
mining object boundaries, whole-object level informa-
tion when identifying object categories, and sometimes
even a larger range of surrounding environment infor-
mation to help make robust judgments. In addition to
semantic segmentation, almost all visual tasks such
as object detection, instance segmentation and object
tracking require powerful multi-scale information
modeling capabilities. In multi-scale modeling, be-
cause of the inherent complexity of large-scale models,
it is very difficult to automatically learn the represen-
tation oflarge-scale features, and it is not very efficient
to improve the receptive field range by stacking convo-
lutional layers. The original purpose of Transformer is
to solve machine translation tasks in the field of natu-
ral language processing [14], which is used to improve
visual tasks due to its advantage of global modeling of
dependencies between vocabularies through self-at-
tention mechanism. Its core is to compute matrix mul-
tiplication of three sets of values of Query, Key and Val-
ue obtained by linear transformation of input sequence
X to realize self-attention modeling of input sequence
X. For example, DETR uses convolutional neural net-
works to extract two-dimensional features of images,
flatten them and then feed them into Transformer [1],
[22], [12], [7]. ViT [5] regards image blocks as lexical
characters and works with Transformer network to di-
rectly process image classification tasks. PVT [18] and
MVIT [6] use single-layer pooling to reduce the num-
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ber of words needed to compute a multi-head self-at-
tention module, and none of the above algorithms seem
powerful enough.

2.2. Pyramid-pool Transformer

Pooling is the one with the lowest computation cost in
the basic operation of building multi-scale, and Pyra-
mid Pooling should be the first step for high-efficien-
cy multi-scale feature modeling. Pyramid pooling is
applied to the vision Transformer backbone network,
which not only reduces sequence length, but also
learns more effective context features [20]. There-
fore, compared with single-layer pooling, pyramid
pooling is more efficient and can better calculate the
self-attention relationship in multi-head self-atten-
tion module. The core of Pyramid Pooling Transform-
er (P2T) backbone network adopted in this paper [19]
is to encapsulate pyramid pooling into multi-head
self-attention module, which can improve the mod-
el’s multi-scale expression ability while reducing the
two matrix dimensions of K and V. The feature di-
mensions are compressed by average pooling of dif-
ferent scales, and the feature sequences after pooling
are concatenated. Because multi-scale information
is involved, the operation of positional embedding
is carried out at the same time in order to avoid the
quadratic change of the embedding in the multi-scale
pooling. The location embedded here is implemented
using DWConv. By controlling the proportion of pool-
ing, the length of the spliced sequence after multi-
scale pooling is slightly less than 1/64 of the original
sequence length N, so that the calculation amount of
Attention matrix can be well controlled, and the cal-
culation process is more efficient. Pyramid pooling
not only increases the computational efficiency, but
also provides stronger multi-scale information pro-
cessing capability. P2T is significantly superior to
convolutional neural network and Transformer net-
work in scene understanding tasks such as semantic
segmentation, image classification, object detection,
and instance segmentation.

2.3. Mlulti-head Self-attention (MHSA) Module

Self-Attention mechanism, proposed by Bengio’s
team in 2014, has been widely used in various fields
of deep learning in recent years, such as capturing
receptive fields on images in the direction of comput-
er vision, and locating key tokens or features in NLP.
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The BERT algorithm proposed by the Google team  pletely composed of Attention mechanism, and its
has achieved amazing results in 11 tasks of NLP, The  Transformer is composed of self-Attention and Feed
Transformer Network of BERT algorithm is com- Forward Neural Network only. However, the mecha-

Figure 1
Overall flow of P2T-Net network architecture and cross-modal fusion and Structure diagram of multi-head self-attention
mechanism based on pyramid pooling(P-MHSA)
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nism of multi-headed attention further improves the
self-attention layer. P-MHSA, a multi-head self-at-
tention module based on pooling, was adopted in this
paper. Pyramid pooling was used to reduce the two
matrix dimensions of K and V, while improving the
multi-scale representation of the model. Its structure
was shown in Figure 1.

2.4. Cross-mode Fusion and 6-DoF Pose
Estimation

6-DoF pose estimation algorithm based on RGB
data. At present, a large number of 6-DoF pose es-
timation networks based on RGB images have been
studied. Since RGB images are usually represented
in the form of three-dimensional arrays, they are
suitable for Convolutional Neural networks (CNNS)
to extract features. According to the different tasks
performed by the network, the 6-DoF pose esti-
mation network of the target object can be divided
into direct regression and indirect regression. The
6-DoF pose estimation algorithm of indirect regres-
sion is mainly based on the commonly used neural
network framework, which predicts the two-di-
mensional coordinates of key points in the input
RGB image, obtains the correspondence between
the two-dimensional coordinates of key points and
the three-dimensional coordinates of key points in
the target model, and then uses the PnP algorithm
to solve the 6-DoF pose estimation of the target ob-
ject. The 6-DoF pose estimation algorithm of direct
regression adopts an end-to-end architecture to
directly return the input RGB image to 6-DoF pose
estimation, which is simpler and faster than the in-
direct regression method. Direct regression and in-
direct regression methods have better performance
than traditional methods in terms of speed and ro-
bustness, but these methods learn the pose of the
target object from the color features, and do not use
spatial information, so the accuracy of pose estima-
tion is still limited.

6-DoF pose estimation algorithm based on RGB-D
data. The methods for estimating 6-DoF pose esti-
mation based on RGB-D images are mainly divided
into three categories according to the way in which
the two information sources are processed. First,
the RGB and depth information are fused at the ear-
ly stage of feature extraction to complete the 6-DoF
target pose estimation. For example, [11-12] the depth
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map isregarded as new channel information connect-
ed to the RGB channel and input to the CNN network
for pose estimation. Second, RGB and depth informa-
tion are used separately. In the first stage, RGB im-
ages are used to predict rough 6-DoF target pose es-
timation, such as PoseCNN, BBS8, SSD-6D, YOLO-6D
[6], PVNet (Peng et al., 2022), etc., and then ICP
algorithm is used to refine target pose using depth
information. The third method is to fuse color infor-
mation and depth information in the later stage of
feature extraction. Since the input RGB information
and depth information exist in different Spaces and
have different data structures, the two heterogeneous
information sources need to be processed separate-
ly, and geometric features and color features should
be extracted on the premise of retaining the original
structure of the data.

3. Method

In this section, we first introduce the general idea of
P2T-Net network structure in Section 3.1, and show
the multi-head self-attention module based on pool-
ing, which performs semantic segmentation of in-
put RGB image and depth image to obtain the RGB
information and depth information of the region of
interest. In Section 3.2, we show cross-modal fusion
of RGB features and depth features to extract multi-
scale and multi-modal features for 6D pose estima-
tion of target objects. Implicit depth recovery and
compact pyramid thinning are described in Section
3.3.In Section 3.4 we cover loss functions.

3.1. Overview

Figure 1 indicates the P2T-Net network architecture.
We extract features separately using RGB informa-
tion flow and depth information flow respectively.

RGB information flow. For RGB information flow,
similar to CNN’s classic framework ResNet, the
framework structure adopted in this paper includes
four stages to generate feature maps of different siz-
es, each of which includes the patch Embedding lay-
er and Pyramid Pooling Transformer layer. First,

P2T-Net splits the input natural color image into
ii[x Tjzvblocks, each flattened to 48 elements, and these

flattened image blocks are input into an image block
coding module containing a layer of linear projection
with learnable position coding.
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For the sake of simplicity, we discuss a set of self-at-
tention modules without loss of generality. We used
pyramid pooling to reduce the two matrix dimensions
of K and Vwhile improving the multi-scale represen-
tation of the model, as shown in Table 1.

Table 1

Pyramid Pooling based on MHSA
Traditional MHSA Pyramid Pooling based MHSA

QK V)= XWLXWEXW?)  (Q,K,V) = (XW9, PW*, PW")

Attention(Q,K,V) =

Complexity:0(NC? + N2C) Softmax(Q X KT) <V
NEm
N: Sequence length, Computational complexity:
O((N + 2M)C? + 2NMC)
C- feature dimension M: length of pooled feature
M~=N/8?

In P MHSA, X as the input is adjusted and rectified
into a two-dimensional space, and we apply multiple
average pool layers of different proportions to X to
generate a pyramid feature map. The details are as
follows:

Pooling:

B, = AvgPool (X)
P, = AvgPool,(X)
P = AvgPool (X)

Concatenate:
P =DWConv(P)+P,i=1,2,...,n
P = LNorm(Concat(P“...)).

Here there is a convolution layer with step size 2 af-
ter each stage, so after each stage, the resolution of
the feature map will be downsampled to half of the
original. We represent the output mapping of the five
stagesas: F|, F,, F, F,, F,with steps of 2,22, 23, 24,25,
respectively.

Deep information flow. Similar to the RGB flow, the
deep flow has five phases with the same step size. For
the reason that, compared with the corresponding
color image, the depth map image reduces the seman-
tic information, its convolutional blocks are used less
than the RGB information flow. Depth maps distin-
guish foreground objects from backgrounds by inter-
preting the spatial cues in RGB images, which works
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more effectively when applying to images containing
complex textures and scenes. In the two inverted re-
sidual blocks used in the previous stage, we first ex-
tend the feature graph M times along the channel di-
mension by 1 x 1 convolution into a depth-separable
3 x 3 convolution with the number of input channels
and output channels remaining the same. The feature
channel is then compressed to the original ;—4 by an-

other1 x 1 convolution, and each convolution has a BN
layer and a ReLU layer, except the last one that passes
through a1 x 1 convolution. The output characteristic
graphs of the depth information flow in the five stages
are D,, D,, D,, D,, D,, in which the first four channels
have 16, 32, 64 and 96 channels respectively. During
the process, the quantity and step length of D, as well
as F'; channels are the same.

3.2. Cross-modal Fusion of Color Information
and Depth Information

To reduce the computing cost caused by a large fea-
ture resolution, we integrated RGB features and depth
features at the coarser level by applying a cross-mod-
al fusion (CMF) module to. Depth maps convey a
smooth prior of deep regions that are able to roughly
represent the shape and structure of a complete tar-
get or object. Therefore, multiplying the depth fea-
ture with the semantic feature of RGB information to
enhance the semantic feature of RGB information is
a strong regularization operation. Other modes of in-
teraction can only be based on the equal treatment of
the characteristics of the two characteristics. These
operations are just orthogonal to our goal and not
consistent with it [21].

Figure 2
Cross-modal Fusion module (CMF) structure
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We start by fusing the extracted RGB feature F; and
depth feature D,, which utilize the output of RGB in-
formation flow and depth information flow, in order
to generate the RGB-D feature F;’ This process can
be expressed as:
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1=IRB(F,® D;)
v=0(FF,(R;LU(FF(GAP(F;)))))
FP” =IRB(v®1®D,).

3.3. Depth Recovery (IDR) and Pyramid
Thinning (CPR)

In the IDR module shown in Figure 3(a), a1 x 1 con-
volution is applied to reduce the channel count for F,
F, F, F, F?to 256. Afterwards, adjust the size of the
output feature maps to be consistent with F, and con-
nect them. Four consecutive IRB modules are then
used to fuse the multilevel features to generate signif-
icant multi-scale features. Finally, we utilize a basic 1
x 1 convolution to convert the fused feature map into a
map with only one channel. By employing a standard
sigmoid function and bilinear upsampling, the resto-
ration process yields a depth map that matches the
dimensions of the original input image.

As shown in Figure 3(b) of the CPR module, assum-
ing that the input of the CPR module is y, CPR uses
1 x 1 convolution to increase the input channel num-
ber with a multiplication of M. Three 3 x 3 depth sep-
arable convolution with expansion rates of 1, 2 and
3 were paralleled to achieve the fusion over several
scales. This process is able to be expressed as:

X, = Convy, (%)

15 = Convyly(1,)

15 = Conviz (1)

X? = Convjzs ()

12 =ReLUBN (' +x5 +x5),

where d,, d,, d, are the expansion rates, which are 1, 2,
3 respectively.

Xz = Convy, (X, +%

y=v'® Conv,, ()

The adjusted fused features are determined by global
context information according to formula above.

In each decoder stage, initially halve the number of
channels in the two feature maps from the top decoder
and corresponding encoder stage using 1 x 1 convolu-
tion. Then concatenate these results by channel dimen-
sion, followed by feature fusion using the CPR module.

3.4. Loss Function

In order to solve the problems of occlusion and trun-
cation, this paper conducts intensive regression on
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Figure 3
Implicit Depth Restoration (IDR) (a) and Compact
Pyramid Refinement (CPR) (b)
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the extracted multi-scale intensive discriminant fea-
tures and obtains the intensive prediction results. We
defined the loss estimated by pose as the distance be-
tween the sampling points on the target model after
the real pose transformation and the predicted pose
transformation with multi-scale feature intensive re-
gression, and the loss function of each intensive pre-
diction result is as follows:

1 ~ ~
r 72” (Rx, +1)—(Ri x; +1:) ||,

where, ;is the point of the target 3D model, p=[R|t] is
the marked real pose, p, = [R/|t] is the pose predicted
from the network dense feature, and M is the number
of target 3D model points. However, this specific loss
function is unable to effectively deal with objects that
possess symmetry, because there are unpredicted
numbers of correct rotations for a symmetric object.
To avoid penalizing our network by reverting to one
of the optional correct rotations, we use a loss func-
tion for symmetric objects, which defines the loss as
the distance between the sampling point on the tar-
get model after the true pose transformation and the
nearest point after the predicted pose transformation.
In this case, the densely predicted loss function is:

O0<k<M

1 . - -
r =MZ min || (Rx; +1)—(Ri x, +1:)|],
J

For intensive prediction results, the best result needs
to be selected as the network output, so our network
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also needs to learn to independently select the most
likely correct pose [f{i|fi]. For this reason, we add the
self-supervised dense confidence c, to the loss func-
tion of intensive prediction for weighting, and add a
confidence regularization term. Make the pose corre-
sponding to the highest confidence be the pose of the
final network output:

L= (W ~ologle)),

where N is the pose number of dense predictions, and
w is a confidence regularization term of a balanced
hyperparameter that provides a high penalty for loss-
es with low confidence. L, is the loss function corre-
sponding to multimodal features of different scales.
Thus, the loss function for minimizing this loss to es-
timate the pose is:

L :ZLS)

where S is the number of multimodal features of dif-
ferent sizes, and S set to 3 represents the three scales
of multimodal features.

4. Experimental Results and Analysis

In the experiment platform, the hardware includes:
Intel Xeon Silver 4210R, 24G RAM, and RTX3090
GPU; The software includes: 64-bit Ubuntu operating
system, version 18.04LTS, Python3.6, Cudal1.0, Cud-
nn8.1.1, Anaconda 3, and Pytorch1.7.1.

4.1. Data Set

In this paper, Linemod, CAMERA, REAL and
YCB-Video, four authoritative public data sets in the
field of 6-DoF pose estimation of class-level objects,
are used for training and testing. In this paper, the
performance of the pose estimation network is ver-
ified on these four data sets and compared with the
existing algorithms.

The Linemod dataset includes 13 kinds of low-tex-
ture objects with complex background, occlusion
and truncation, and noise in the depth data. In order
to properly evaluate the comparison with the previ-
ous work, we used 85% of the images in the dataset as
training images, while 15% were used for testing.

CAMERA is acomposite dataset containing 300K com-
posite images; the training set is 275K, including 1085
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different object instances; The remaining 25K is used
as atest set, containing 184 different object instances.

REAL is a supplement to CAMERA. 4,300 images in
7 scenarios were used for training; 2,750 images in 6
scenarios were used for testing; The training and test
sets contain three different object instances per class.

YCB-Video dataset contains 92 videos. Each video
randomly selects the target from 21 objects for ar-
bitrary placement, then moves the camera to finish
shooting, and finally selects the video frame as the
data set. The whole dataset contains 133827 frames
of images, each including RGB information and depth
information, and 6-D pose annotation is carried outin
a semi-automatic way. In order to compare with the
existing work, According to our previous work, 16,989
frames ofimages were randomly selected from 80 vid-
eos together with 80,000 frames of composite images
as the training set, and then 2949 frames were ran-
domly selected from the remaining 12 videos as the
training set. Our experimental results are compared
with existing advanced pose estimation networks
using the semantic segmentation results provided in
the YCB-Video dataset. The YCB-Video dataset has
objects and occlusion conditions of various shape and
texture levels under different lighting, making it ideal
for evaluating the robustness of methods.

4.2. Evaluation Indicators

In this paper, the 6-DoF pose estimation and mean
distance (ADD) measurement are utilized as a stan-
dard to rate the effectiveness of 6DoF pose estimation
for class-level objects.

n° m cm (average precision (mAP)) means that when
the rotation error of the estimated pose is less than n®
and the translation error is less than m cm, the pose
is considered correct. It is worth noting that for sym-
metrical objects (such as bottles, bowls, and jars), any
prediction of rotation along the axis of symmetry is
considered correct. In addition, when the handle of
the mug is not visible, it is considered to be a symmet-
ric object, and the reverse is an asymmetric object. In
this paper, the mAP of intersection over union (3D
IoU), whose accuracy threshold is 75%, is abbreviated
as 3D75[11].

Average point distance Measurement method (ADD).
ADDreferstotheaverage Euclidean distance between
the points on the CAD model of the target object after
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real rotation R and translation # and corresponding to
the predicted rotation R and translation ¢:

ADD =iz | (Rx+t)—(Rx+1)]],
m yem

where m is the number of model points and M is the
model point set. In Linemod dataset, we set the eval-
uation threshold of ADD as 10% of the diameter of the
target object, that is, when the ADD score of the net-
work output pose is less than 10% of the diameter of
the target object, we call this pose the correct pose.

4.3. Experimental Conclusion

On Linemod dataset, ADD and ADD-S evaluation in-
dexes are used for quantitative evaluation. If ADD(-S)
is less than 10% of the object diameter, the attitude
estimation is considered to be correct, and the AD-
D(-S) score is defined as the correct ratio of attitude
estimation. Where ADD(-S) represents the ADD of
an asymmetric object and the Add-S metric of a sym-
metric object, respectively. In the experiment, we
compare the proposed network with the results of
existing advanced algorithms BB8, PVNet, PoseCNN,
SSD-6D and DenseFusion. Table 2 shows the eval-
uation results of each algorithm on all 13 objects in

Table 2
Quantitative evaluation of ADD score on Linemod dataset

Method BBS PVNet lz‘]’)seeeilfl\l/}l
Data RGB

ape 404 43.6 77

bench 91.8 99.9 975
camera 557 86.9 93.5
can 64.1 95.5 96.5
cat 62.6 79.3 82.1
driller 744 96.4 95

duck 443 52.6 777
egghox 57.8 99.2 971
glue 41.2 957 994
hole 67.2 81.9 52.8
iron 847 98.9 98.3
lamp 76.5 99.3 975
phone 54 924 877
MEAN 627 86.3 88.6

Note: The bold part is the optimal value of the line.
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Linemod dataset, in which the average ADD(-S) score
of our network among the 13 objects is 94.6, showing
advanced performance.

In the test on CAMERAZR5, the value of 3D,, mAP in
this paper is 86.3%, which is higher than the base-
line method NOCS (He et al., 2019), and SPD [13] is
16.8% and 3.2%, respectively, which is higher than
SAR-NET [11] 7.3%. In this method, mAP of 10°2cm
and 10°5cm reached 81.4% and 87.1%, which exceeded
SAR-Net [11] by 6.1% and 6.8%. At the more stringent
standards of 5°2cm and 5°5cm, the proposed method
still has a significant advantage of 69.2% and 72.9%,
which exceeds that of SAR-Net [11]2.5% and 2.0%.

In the test on REAL275, the 3D, mAP of this paper
is 65.1%, which exceeds the baseline method NOCS
(He et al., 2019) and SPD [13] by 35% and 11.9%, re-
spectively. In this paper, mAP of 10°2cm and 110°5cm
reaches 61.4% and 71.2%, which exceeds SAR-Net
[11] by 11.1% and 2.9%. The superiority of the pro-
posed method is also demonstrated in the more strin-
gent standards of 5°2cm and 5°5c¢m, which are 7.6%
and 1.0% higher than SAR-Net [11] and 3.0% and 3.4%
higher than SGPA [2]. The results above show that
the proposed method has strong universality and can
accurately estimate the pose of new objects of the

SSD-6D Dense- Dense-Fusion
+ICP Fusion +refinement ours
RGB-D
65 79.5 92.3 90.1
80 84.2 93.2 94.5
78 76.5 944 95.9
86 86.6 931 95.3
70 88.8 96.5 937
73 7T 87 91.3
66 76.3 92.3 894
100 99.9 99.8 100
100 994 100 100
49 79 92.1 92.6
78 921 97 96.5
73 92.3 95.3 95.2
79 88 92.8 94.8
767 86.2 94.3 94.6
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Table 3
Comparative results on REAL275 and CAMERAZ25 datasets

Data set Method

3D,

NOCS (He et al., 2019) 301

SPD[13] 53.2

DualPoseNet[10] 62.2

SGPA[2] 64.8
CenterSnap|[8] -

REAL275 SAR-Net[11] 624
iCaps[4] -

FS-Net[3] 63.5

CR-Net[17] 55.9

Ours 65.1

NOCS (He et al., 2019) 69.5

SPD[13] 83.1

DualPoseNet[10] 864

CAMERAZ25 SGPA[2] 85.6
CenterSnap[8] -

SAR-Net[11] 79.0

Ours 86.3

same class, which is in line with the needs of practical
applications. The quantitative comparison with cut-
ting-edge methods shows that the proposed method
has advanced performance. Table 3 compares the per-
formance of each method on the data set CAMERA25
and REALZ275.

Figure 4

2024/3/53
mAP
5°2cm 5°5cm 10°2cm 10°5cm
7.2 10.0 13.8 25.2
19.3 214 43.2 541
29.3 359 50.0 66.8
36.2 39.9 61.5 707

- 29.1 - 64.3
316 42.3 50.3 68.3

- 22.3 - -

- 28.2 - 60.8
27.8 34.3 472 60.8
39.2 43.3 614 71.2
32.3 40.9 48.2 64.6
54.3 59.0 73.3 81.5
64.7 70.7 772 84.7
68.3 72.3 81.2 86.8

- 66.2 - 81.3
66.7 70.9 75.3 80.3
69.2 72.9 814 871

Figure 4 clearly shows the performance compari-
son curve between the proposed method and the two
baseline methods, NOCS and SPD. It can be seen from
the figure that the proposed method has a significant
advantage when the 3D IOU threshold is greater than
75%, and the estimation of rotation and migration is

Comparison of the performance curves of CAMERAZ25 (top) and REAL275 (bottom) for different methods

3D loU/s

100

Average accuracy

Average accuracy

rotate/ translation/cm

NOCS+
SPD+
OURS+

10 15

NOCS
SPD
OURS
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significantly improved compared with the baseline
method.

In Table 4, we compare the speed of our approach
to the most advanced methods based on RGB and
RGB-D data. We can see that our method performs 6%
better in ADD(-S) accuracy than PoseCNN+DeepIM
and runs almost 4 times faster. Compared to Dense-
Fusion+refinement, our method achieves 0.3% higher
ADD(-S) score and is 25% faster.

Table 4
The speed (frames per second, FPS) of different methods
for pose estimation

PoseCNN = Densefusion

Method ST +DeepIM +refinement QoL
Speed(FPS) 25 5 16 20
Table 5

2024/3/53

Table 5 shows the evaluation results of 21 objects in
the YCB-Video dataset using semantic segmentation
of PoseCNN. If ADD(-S) is less than the mean dis-
tance threshold, the pose estimate is considered cor-
rect, and the ADD(-S) score is defined as the percent-
age of pose estimates that are correct. Two evaluation
indicators are used here to measure the effective-
ness of our approach. One is the area under the AD-
D(-S) score-threshold curve (AUC), whose threshold
changes from Ocm to 10cm. Another indicator is the
ADD(-S) score, which has a threshold of 2 cm.

In Table 5, we can see that our method outperforms
Densefusion and PoseCNN+ICP by 2.2% and 3.8%
on the second metric, and by 1.2% on the first metric.
Since the YCB-Video dataset has objects under differ-
ent lighting and occlusion conditions, our method is

Quantitative evaluation of ADD(-S) AUC and ADD(-S) scores (<2cm) on the YCB-Video Dataset

PoseCNN+ICP
Method

AUC <2cm
master_chef__can 68.1 511
cracker_box 834 73.3
sugar_box 975 99.5
tomato_soup_can 81.8 76.6
mustard_bottle 98.0 98.6
tuna_fish _can 83.9 72.1
pudding_box 96.6 100.0
gelatin_box 981 100.0
potted_meat_can 83.5 779
banana 91.9 88.1
pitcher_base 96.9 977
bleach_cleaner 92.5 92.7
bowl 81.0 54.9
mug 811 55.2
power_drill 977 99.2
wood_block 87.6 80.2
scissor 784 49.2
large_marker 85.3 87.2
large_clamp 75.2 74.9
extra_large_clamp 644 48.8
foam brick 97.2 100

MEAN 86.6 79.9

DenseFusion OURS
AUC <2cm AUC <2cm
70.7 707 677 65.6
86.8 88.6 89.9 95.2
90.8 96.8 971 99.5
847 82.8 85.2 844
90.9 94.1 90.7 93.8
79.5 58.5 79.5 63.0
894 944 89.3 931
957 100.0 93.5 100.0
79.6 76.9 81.3 773
76.8 60.2 80.0 64.5
871 87.2 91.0 914
87.5 854 88.3 89.1
86.1 61.3 931 98.9
83.9 80.5 83.3 73.0
837 831 82.6 770
894 98.8 91.0 99.1
771 50.8 770 49.2
89.1 90.6 911 98.0
71.5 78.0 715 773
701 72.0 68.3 68.7
92.2 100.0 95.1 100.0
83.9 815 85.1 83.8



Information Technology and Control

more robust to lighting and occlusion changes. Objects
in the YCB-Video dataset can be classified and ana-
lyzed based on their texture and geometric features. In
“cracker_box”, “sugar_box”, “tomato_soup_can”, and
“wood_block”. On objects with smooth surfaces and
rich textures, our method has better performance than
SOTA method. The ADD(-S) performance is greatly
improved on smooth and untextured objects such as
“bowl]” and “large_marker”, indicating that the type of
context information extraction target of these objects
can improve the accuracy of pose estimation.

Figure 5 visualises PoseCNN+ICP, DenseFusion,
DenseFusion + refinement, our network pose predic-
tion results and marked real poses, and transforms
objects of different colors into predicted poses. The
red boxes highlight objects where our method per-
forms significantly better than the other three meth-
ods, from left to right “bowl,” “banana,” and “clamp.”
It can be seen that all networks are occlusion-resis-
tant on smooth, untextured objects, such as “toma-
to_soup_can”, “mustard_bottle” in class 21 objects
in the YCB-Video dataset. For “mug”, “banana” and
“pudding_box”, the attitude estimated by our method
is closest to the real marked pose. This is because the
object context considered in our proposed method

Table 6
RGB - D fusion and melting IDR branch research

Features for fusion
No.
c, c, c, c,
1 v \ \
2 \ v
3 v y \
4 v v
5 v
6
7 V \/ \
8 \ V
9 \ v \
10 y \
11 \
12
13
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Figure 5
Some qualitative results on the YCB-Video dataset

PoseCNN+
icre

Dense-
Fusion

DenseFusion
with
refinement

Ours

Ground
Truth

enriches the information of untextured objects and
helps to improve the accuracy of pose estimation. For
the challenge of poor segmentation results, our net-
work can position these objects (such as “clamps” and
“scissors”) well through prediction, and can further
improve the rotation transformation performance of
these objects.

In order to further demonstrate the performance
of this method in dealing with similar new objects,

max

. IDR F} MAE
V V 0.899 0.052
V 0.894 0.050

\ 0.897 0.047

V 0.902 0.048

y \/ 0.902 0.046
V V 0.906 0.045
V 0.895 0.047
0.892 0.049

0.896 0.048

0.895 0.048

V 0.898 0.048
Y 0.896 0.047
0.887 0.052



Information Technology and Control

the method is tested against 4 types of interference
scenes, 5 types of objects, and 6 object examples.
The four types of interference include illumination
change, distance change, background clutter and oc-
clusion. The 5 categories of objects include cameras,
bottles, mugs, bowls, and cans. Figure 6 shows some
of'the test results in real world scenarios, showing ro-
bust and excellent performance.

Table 6 shows the results of RGB-D fusion at different
stages. When IDR branch training is used, the model
fuses RGB features and depth features at the coarsest
level, and No.6 performs best. In the case of No IDR
branch, the model fuses the RGB and depth features
of the three layers, and the training results of No.11
are the best. In most cases, IDR branches significantly
improve performance, which validates the effective-
ness of our proposed combination of fusion strategy
and IDR branches. Although the earlier fusion strate-
gy was more efficient in linking the input RGB image
with the depth map at the input stage, Table 7 shows
that our initial fusion strategy was significantly supe-
rior to it. To ensure accuracy and efficiency, we blend
RGB and snake venom features at the coarsest level.
In ablation studies, we mainly used ;" and MAE as
indicators.

Table 7
Comparison of fusion strategies

Single Stream Two Streams
Metric
IDRY IDRx IDRY IDRx
F/,max 0.900 0.894 0.906 0.896
MAE 0.048 0.051 0.045 0.047

Table 8 shows the trial results of CPR, in which differ-
ent inflation strategies were used. We tested the de-
fault setting (No. 1), a single convolution with different
expansion rates (No. 2-4), and multiple convolution

Table 8
CPR expansion rate of melting

No. 1 2

Expansion rate 1,2,3 1
F 0.906 0.901
MAE 0.045 0.047

2024/3/53

with sparse combinations of expansion rates (No. 5-6),
respectively. The compression spread rate (1, 2, 3) of
the default setting is significantly better than the other
Settings, illustrating the effectiveness of CPR.

5. Conclusion

In order to achieve accurate and fast 6-DoF pose es-
timation of objects and solve the problem of pose es-
timation under interference scenes, in this paper, we
creatively proposed a P2T-Net-network based meth-
od combining both RGB channel and depth channel
in analysis. In the process of cross-modal fusion, RGB
information and depth information are first fused at
the rough level, and then the compact pyramid re-
finement (CPR) module is used to effectively inte-
grate multi-level depth features. At the same time,
the implicit deep recovery technology (IDR) is used
to strengthen feature learning, effectively aggregate
details and overall information, highlight important
information, and improve accuracy and speed. At the
same time, through experiments on public data sets
Linemod, CAMERA and REAL, the mean average ac-
curacy of the proposed method is better than NOCS,
SPD, SGPA and some other mainstream 6-DoF pose
estimation methods for class-level objects. Further
experiments show that the proposed method can ac-
curately estimate the 6-DoF pose of objects in the
scene with illumination variation, distance variation,
background clutter, occlusion and other disturbanc-
es. Using P2T as backbone network, the compact pyr-
amid refinement (CPR) module and implicit deep re-
covery (IDR) technique are used to optimize the 6DoF
pose estimation method for class-level objects, which
improves the robustness and accuracy. In the future,
we will further improve our method to apply to pose
estimation of transparent objects, which are more
common in family scenes and have practical value.

3 4 5 6

2 3 1,3,6 14,8
0.892 0.897 0.903 0.900
0.049 0.047 0.046 0.048
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