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This research introduces a novel method for fusing multi-view skeleton data to address the limitations encoun-
tered by a single vision sensor in capturing motion data, such as skeletal jitter, self-pose occlusion, and the re-
duced accuracy of three-dimensional coordinate data for human skeletal joints due to environmental object 
occlusion. Our approach employs two Kinect vision sensors concurrently to capture motion data from distinct 
viewpoints extract skeletal data and subsequently harmonize the two sets of skeleton data into a unified world 
coordinate system through coordinate conversion. To optimize the fusion process, we assess the contribution 
of each joint based on human posture orientation and data smoothness, enabling us to fine-tune the weight ra-
tio during data fusion and ultimately produce a dependable representation of human posture. We validate our 
methodology using the FMS public dataset for data fusion and model training. Experimental findings demon-
strate a substantial enhancement in the smoothness of the skeleton data, leading to enhanced data accuracy and 
an effective improvement in human posture recognition following the application of this data fusion method.
KEYWORDS: human posture recognition, vision sensor, multi-view, data fusion, coordinate transformation.

1. Introduction
Human posture recognition involves the extraction 
of human skeleton data from video sequences. Com-
puter algorithms utilize this skeleton data to identify 
specific human posture classifications. This research 

direction is pivotal within computer vision and 
finds applications across diverse fields such as hu-
man-computer interaction, medical sports rehabili-
tation, pedestrian recognition, and virtual reality. In 
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these scenarios, vision sensors capture video image 
data containing human movements, which are sub-
sequently processed and integrated to derive human 
skeleton data for analysis.
Many researchers have introduced effective meth-
ods for human posture recognition. These approaches 
predominantly rely on video images captured from a 
single-view camera to discern human movements and 
trajectories, constituting single-view human posture 
recognition. However, the accuracy of human pose rec-
ognition from a solitary camera perspective is limited 
due to inherent constraints in capturing comprehen-
sive human joint data, resulting in diminished accuracy. 
Common challenges encompass self- occlusion of joint 
movements, jitter in joints due to random noise, data 
loss, and data oscillation, among others. These issues 
compromise data quality and accuracy, consequently 
diminishing the precision of human posture recogni-
tion. To address these challenges, this paper proposes 
a data fusion method employing multi-view Kinects to 
enhance the reliability of generated human poses.
This research presents an innovative approach em-
ploying two visual sensors to simultaneously capture 
human body motion data from distinct angles (Figure 1. 
a). This optimization of the existing single-view human 
posture recognition method leverages multi-view data 
fusion techniques to harness the organic complemen-
tarity inherent in data collected from various perspec-
tives. After aligning the data from different devices into 

a common coordinate system, fusion weights are deter-
mined based on the angle of the human body relative to 
the cameras and the smoothness of the data, resulting 
in the generation of a more trustworthy representation 
of human posture (Figure 1. b). This enhances the reli-
ability of the fused data and addresses prevalent issues 
in current algorithms, notably the lack of interactivity 
in the data fusion process and the overly rigid selection 
of high-credibility data. The improved data fusion algo-
rithm presented in this article yields more dependable 
three-dimensional coordinate data for human skeletal 
joint points, substantially enhancing the accuracy of 
human posture recognition.
To validate the proposed method, we applied it to the 
publicly available FMS dataset for fusing the skeleton 
data collected by two vision sensors and integrated 
it into the training and testing phases of the human 
posture recognition algorithm. The principal contri-
butions of this study are twofold: (1) We introduce a 
data fusion method that combines skeletal data from 
multiple devices to produce reliable human posture 
data. This method enhances the accuracy of human 
posture recognition and bolsters the robustness of 
the entire data collection system, effectively address-
ing potential issues such as data loss and data jitter; 
(2) We apply this fusion method to the FMS dataset, 
utilizing the merged data with multiple advanced hu-
man pose recognition algorithms to further substan-
tiate its effectiveness.

Figure 1 
(a) Multi-view data collection (b) Coordinate calibration and data fusion

  

joint movements, jitter in joints due to random noise, 
data loss, and data oscillation, among others. These is-
sues compromise data quality and accuracy, conse-
quently diminishing the precision of human posture 
recognition. To address these challenges, this paper pro-
poses a data fusion method employing multi-view Ki-
nects to enhance the reliability of generated human 
poses. 

This research presents an innovative approach employ-
ing two visual sensors to simultaneously capture human 
body motion data from distinct angles (Figure 1. a). This 
optimization of the existing single-view human posture 
recognition method leverages multi-view data fusion 
techniques to harness the organic complementarity in-
herent in data collected from various perspectives. After 
aligning the data from different devices into a common 
coordinate system, fusion weights are determined based 
on the angle of the human body relative to the cameras 
and the smoothness of the data, resulting in the genera-
tion of a more trustworthy representation of human pos-
ture (Figure 1. b). This enhances the reliability of the 
fused data and addresses prevalent issues in current al-
gorithms, notably the lack of interactivity in the data fu-
sion process and the overly rigid selection of high-cred-
ibility data. The improved data fusion algorithm pre-
sented in this article yields more dependable three-di-
mensional coordinate data for human skeletal joint 
points, substantially enhancing the accuracy of human 
posture recognition. 

To validate the proposed method, we applied it to the 
publicly available FMS dataset for fusing the skeleton 
data collected by two vision sensors and integrated it into 
the training and testing phases of the human posture 
recognition algorithm. The principal contributions of this 
study are twofold: (1) We introduce a data fusion method 

that combines skeletal data from multiple devices 
to produce reliable human posture data. This 
method enhances the accuracy of human posture 
recognition and bolsters the robustness of the entire 
data collection system, effectively addressing po-
tential issues such as data loss and data jitter; (2) 
We apply this fusion method to the FMS dataset, 
utilizing the merged data with multiple advanced 
human pose recognition algorithms to further sub-
stantiate its effectiveness. 

 

2. Related Work 

2.1 Skeleton-Based Human Posture 
Recognition 
In light of the continuous advancements in deep 
learning techniques for data analysis and pro-
cessing, the adoption of deep learning for skeleton-
based human posture recognition has emerged as a 
dominant trend.  The Convolutional Neural Net-
work (CNN) [Error! Reference source not 
found.] approach, while effectively representing 
the skeleton as a pseudo image and capturing local 
correlations, is not ideally suited for sequential 
tasks. Li et al. [Error! Reference source not 
found.] addressed this limitation by dividing the 
human skeleton into five segments, transforming 
them into two-dimensional action images, and sub-
sequently applying image classification tech-
niques. Simonyan and Zisserman [Error! Refer-
ence source not found.] first proposed a dual 
stream framework to capture spatio-temporal in-
formation in video frame sequences, this frame-
work consists of two separately running CNNs, 
one extracting spatial information from a single 
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2. Related Work
2.1. Skeleton-Based Human Posture 
Recognition
In light of the continuous advancements in deep 
learning techniques for data analysis and processing, 
the adoption of deep learning for skeleton-based hu-
man posture recognition has emerged as a dominant 
trend. The Convolutional Neural Network (CNN) [11] 
approach, while effectively representing the skele-
ton as a pseudo image and capturing local correla-
tions, is not ideally suited for sequential tasks. Li et al. 
[13] addressed this limitation by dividing the human 
skeleton into five segments, transforming them into 
two-dimensional action images, and subsequently 
applying image classification techniques. Simon-
yan and Zisserman [22] first proposed a dual stream 
framework to capture spatio-temporal information 
in video frame sequences, this framework consists of 
two separately running CNNs, one extracting spatial 
information from a single RGB image and the oth-
er extracting motion information from video optical 
flow sequences, the two sets of features are fused in 
the final classification layer. Liu et al. [15] added a spa-
tio-temporal interactive learning block in the middle 
of the network to complete feature fusion in the ear-
ly stages. Wang et al. [24] changed the spatial feature 
extraction and recognition of RGB images from single 
frames to multiple frames, improving the network’s 
ability to describe spatial features. In contrast, the 
Recurrent Neural Network (RNN) [29] method con-
structs the skeleton as a sequence of joint coordinate 
vectors. Wu and Shao [26] introduced a dynamic 
framework, pioneering the extraction of high-level 
bone joint features. Meanwhile, Liu et al. [14] main-
tained a single-stream approach, treating the human 
body as a tree structure and feeding the human body 
joint nodes into the Long Short-Term Memory net-
work (LSTM) [8] in a depth-first order traversal man-
ner. This allowed them to capture temporal relation-
ships by stacking LSTM modules. Han and Shan [7] 
increase feature extraction channels by optimizing 
feature extraction methods or improving feature ex-
traction efficiency to improve the recognition perfor-
mance of the model.
However, representing the human skeleton as a se-
quence of vectors or a two-dimensional mesh falls 
short of capturing the intricate dependencies among 

interconnected joints. The structure of human joint 
points and the skeleton naturally forms a graph-like 
structure, where the Graph Convolutional Network 
(GCN) [10] emerges as a more adept tool for captur-
ing the intricate relationships among different joint 
points during human motion. ST-GCN [28] pioneers 
the application of graph convolution networks to the 
realm of human action recognition. This ground-
breaking approach leverages both spatial edges 
naturally connecting joint points and the temporal 
edges stemming from the same joint points across 
continuous time. It constructs a spatio-temporal 
graph convolution, significantly enhancing the mod-
el’s ability to grasp the temporal and spatial relation-
ships. 2S-AGCN [21] introduces a dual-level graph 
representation, featuring a global graph capturing 
common patterns across all data and individual 
graphs tailored to unique data instances. This inno-
vative approach overcomes the constraints associat-
ed with predefined and unmodifiable skeleton graphs 
in ST-GCN, introducing a new paradigm known as 
Adaptive Graph Convolutional Networks. In the 
same vein, MS-G3D [16] puts forth a multi-scale ad-
jacency matrix and a unified spatio-temporal model. 
The multi-scale convolution effectively mitigates 
issues related to biased weighting, while the unified 
spatio-temporal model introduces cross-spatio-
temporal jump connections. Furthermore, it incor-
porates a time window mechanism in the temporal 
dimension to enhance the flow of spatio-temporal 
information. In a parallel development, Shift-GCN 
[4] introduces the concept of shift convolution [25] 
to the realm of human motion recognition. By com-
bining the convolution operator with spatial shift 
operations, this approach simultaneously integrates 
information from both spatial and channel domains, 
strategically offsetting channels in the temporal and 
spatial dimensions. This novel approach more accu-
rately represents human joint constraints and tem-
poral information. Lee et al. [12] sorted all nodes and 
generated a new adjacency matrix, improving the 
algorithm’s robustness against certain key point ex-
changes, displacements, or losses.

2.2. Multi-view Data Fusion
Currently, research on the fusion of multi-view data 
is relatively limited. Tong et al. [23] proposed a meth-
od utilizing multiple Kinects to scan distinct areas of 
the human body and fuse them into a comprehensive 
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three-dimensional human body model. Geerse et al. 
[5] positioned four Kinect devices along one side of 
a corridor to extract gait parameters and analyze hu-
man gait. Müller et al. [17] strategically deployed six 
Kinects on both sides of a corridor, fusing skeletal 
data from both sides to enhance three-dimensional 
reconstruction for gait assessment, thereby improv-
ing the accuracy of skeletal data. Guo et al. [6] intro-
duced a dual Kinect data fusion technology based on 
posture angles. They devised a corresponding data 
selection mechanism that leveraged the angle rela-
tionship between different body posture directions 
and sensor positions, offering a straightforward and 
rapid data fusion solution. This approach effectively 
addressed data loss arising from the self-occlusion of 
the human skeleton. Jiang et al. [9] proposed a data 
fusion method based on joint angles. They performed 
data fusion by calculating the weighted average of 
data from two Kinect devices placed orthogonally. 
However, this approach did not account for compen-
sating for data loss in cases of missing data. Peng et al. 
[18] introduced a fusion algorithm that used redun-
dant data to compensate for occlusion. Nonetheless, 
there was a substantial disparity between redundant 
data and original data, leading to poor correlation 
with previous and subsequent frame data, resulting 
in reduced action recognition accuracy. Chen et al. [2] 
adopted a data screening approach based on the phys-
iological constraints of human joints. They exclusive-
ly used data from the primary device when it success-
fully tracked the data and only resorted to data fusion 
with another device when the primary device failed to 
track the data. However, the effectiveness of this data 
fusion approach requires further improvement.

3. Data Fusion
The visual sensor is proficient in capturing human 
motion data, and then bone extraction techniques 
can be used to extract skeletal data, but when utilized 
as a single sensor for motion capture, it encounters 
self-occlusion issues that compromise the accuracy 
of the acquired three-dimensional coordinate data 
for human skeletal joint points. This research intro-
duces a novel data fusion model predicated on hu-
man body posture orientation and data smoothness. 
It fuses and processes two sets of data acquired from 
different perspectives. Initially, a coordinate trans-

formation is employed to align the joint data captured 
at varying angles, into a shared world coordinate 
system, establishing a uniform data platform. Sub-
sequently, the choice of data fusion method depends 
on the successful data capture by device. If only one 
camera effectively captures data, that data is utilized 
directly. However, when both cameras successfully 
record data, data fusion is implemented. Lastly, the 
model integrates joint posture orientation and data 
smoothness to assess the data contributions of the 
two devices, optimize the data fusion weight coeffi-
cients, and generate a reliable representation of hu-
man posture. This model significantly enhances the 
accuracy of motion-captured human posture data and 
resolves the issue of data loss due to self-occlusion in 
single-view data capture.

3.1. Coordinate Calibration
In practice, when employing a single vision sensor de-
vice, it captures human skeleton joint data based on 
its own camera coordinate system. Therefore, when 
using two or more vision sensors to collect data, en-
suring accurate data fusion necessitates the harmo-
nization of the data acquired by these devices into a 
common world coordinate system-referred to as co-
ordinate calibration. The primary objective of coor-
dinate calibration is to establish a shared reference 
coordinate system, guaranteeing uniformity in the 
coordinate standards across different datasets. This 
standardization enables consistent processing and 
analysis of skeletal joint data gathered from diverse 
devices, serving as a fundamental prerequisite for 
effective data fusion. It is only when the data exists 
within the same coordinate system that meaningful 
data comparisons and fusion can occur, ultimately 
enabling precise motion capture.
During the process of converting coordinate systems, 
it is crucial to account for variations in scale, rotation, 
and translation. In our study, we specifically focus on 
the transformation between the reference coordinate 
systems of two Kinects. Given that the parameters 
and characteristics of the two Kinect sensors are 
identical, including their scale, our coordinate trans-
formation considerations primarily revolve around 
rotation and translation transformations. During the 
coordinate transformation procedure, we apply rota-
tions around different coordinate axes at specific an-
gles to derive the coordinate transformation matrix. 
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The three-dimensional coordinate conversion mere-
ly necessitates knowledge of the corresponding joint 
point coordinates in the two coordinate systems, al-
lowing us to accurately calculate the rotation matrix  
R and translation matrix T that facilitate the transfor-
mation between these coordinate systems.
We establish the original coordinate system, denoted 
as S2, of device2 as the reference world coordinate 
system. Subsequently, we perform the conversion of 
data obtained from device 1 into the S2 world coordi-
nate system. The corresponding three-dimensional 
coordinate transformation is articulated in Equation 
(1). In this equation, the rotation matrix R charac-
terizes the angular adjustment between the new co-
ordinate system and the original coordinate system, 
while the translation matrix T defines the spatial dis-
placement of the origin of the new coordinate system 
relative to the old one. Notably, (x, y, z) denotes the 
coordinates within the original coordinate system S1 
of device 1, whereas (x', y', z') represents the new co-
ordinates post-conversion into S2. Consequently, the 
converted coordinates (x', y', z') in conjunction with 
the coordinates acquired by device2 collectively pin-
point the three-dimensional coordinate location of 
the same bone joint point.
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This study derives the rotation matrix and translation ma-
trix utilizing the geometric principles of Singular Value 
Decomposition (SVD) Error! Reference source not 
found.. SVD is a widely employed matrix decomposi-
tion technique within the realm of mathematics and com-
putational science. From a geometric perspective, apply-
ing singular value decomposition to a matrix is akin to 
executing a sequence of transformations encompassing 
rotation, scaling, and vector space adjustments. Our 
method relies on knowledge of corresponding points in 
the two coordinate systems, subsequently employing 
SVD to calculate the rotation and translation matrices. 
This process facilitates the comprehensive transfor-
mation of points from one coordinate system to another, 
thereby enabling seamless data fusion between disparate 
coordinate systems. 

To streamline the calculations, we begin by relocating 
both sets of data, centering their centroid coordinates at 
the origin. This simplification eliminates the need to fac-
tor in translation operations, allowing us to solely focus 
on the rotation operation, aligning the two coordinate 
systems for straightforward computation of the rotation 
matrix, denoted as R. The calculation formula for deter-
mining the center of mass is illustrated in Formula (2). 
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Among them, A represents the collection of data points 
obtained from device 1, where A� signifies the coordi-
nates of the i-th joint. The value of N is set to 32, repre-
senting the total number of joint points on the human 
body. The calculation for determining the center of mass 
for device 2 aligns with the principles described in Equa-
tion (3). 

We proceed by accumulating two sets of decentralized 
data, denoted as �A � centroid��  and �B �
centroid��, into a symmetric matrix H. 

  TA BH A centroid B centroid    (3) 

Employ singular value decomposition technology 
to decompose H (Formula (4)). Where U is an 
orthogonal matrix, representing a rotation opera-
tion, while S is a diagonal matrix with elements 
along the diagonal representing singular values, in-
dicating a scaling operation. Additionally, V� 
corresponds to another orthogonal matrix, repre-
senting an additional rotation operation. 
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The rotation matrix can be calculated according to 
Equation (5). 
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Once the rotation matrix is determined, it can be 
employed to compute the translation matrix. This 
computation relies on identifying corresponding 
points between the two datasets, and the specific 
translation matrix can be computed following 
Equation (6). Here, R represents the rotation ma-
trix obtained earlier, while centroid�  and 
centroid�denote the central points of the data col-
lected by device 1 and device 2 devices, respec-
tively. Employing centroids for the translation ma-
trix calculation yields results that are both more 
stable and accurate, as it mitigates the influence of 
sampling variance or outliers. 
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3.2 Data Fusion 
Following the coordinate calibration procedure, 
each joint is characterized by two sets of coordi-
nates, denoted as g��  and g�� . Here, g��  repre-
sents the coordinates of the i-th joint after conver-
sion by device 1, while g��  corresponds to the 
original coordinate data for the same joint collected 
by device 2. To merge these two sets of data, we 
employ the fusion algorithm outlined in Equation 
7, where w��  represents the fusion weight as-
signed to the i-th joint from device 1, and w�� sig-
nifies the fusion weight for the identical joint from 
device 2. 
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nifies the fusion weight for the identical joint from 
device 2. 

1 1 2 2i i i i ig g w g w   (7) 

In instances where the device fails to successfully 
capture data for a specific joint point within a data 

(3)

Employ singular value decomposition technology to 
decompose H (Formula (4)). Where U is an orthogo-
nal matrix, representing a rotation operation, while S 
is a diagonal matrix with elements along the diagonal 
representing singular values, indicating a scaling op-
eration. Additionally, VT corresponds to another or-
thogonal matrix, representing an additional rotation 
operation.

 

 

within the original coordinate system S1 of device 1, 
whereas �x′, y′, z′� represents the new coordinates post-
conversion into S2. Consequently, the converted coor-
dinates �x′, y′, z′� in conjunction with the coordinates 
acquired by device2 collectively pinpoint the three-di-
mensional coordinate location of the same bone joint 
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executing a sequence of transformations encompassing 
rotation, scaling, and vector space adjustments. Our 
method relies on knowledge of corresponding points in 
the two coordinate systems, subsequently employing 
SVD to calculate the rotation and translation matrices. 
This process facilitates the comprehensive transfor-
mation of points from one coordinate system to another, 
thereby enabling seamless data fusion between disparate 
coordinate systems. 

To streamline the calculations, we begin by relocating 
both sets of data, centering their centroid coordinates at 
the origin. This simplification eliminates the need to fac-
tor in translation operations, allowing us to solely focus 
on the rotation operation, aligning the two coordinate 
systems for straightforward computation of the rotation 
matrix, denoted as R. The calculation formula for deter-
mining the center of mass is illustrated in Formula (2). 
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Once the rotation matrix is determined, it can be em-
ployed to compute the translation matrix. This com-
putation relies on identifying corresponding points 
between the two datasets, and the specific transla-
tion matrix can be computed following Equation (6). 
Here, R represents the rotation matrix obtained ear-
lier, while centroidA and centroidB denote the central 
points of the data collected by device 1 and device 2 
devices, respectively. Employing centroids for the 
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translation matrix calculation yields results that are 
both more stable and accurate, as it mitigates the in-
fluence of sampling variance or outliers.
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3.2. Data Fusion
Following the coordinate calibration procedure, each 
joint is characterized by two sets of coordinates, denot-
ed as g1i and g2i. Here, g1i represents the coordinates of 
the i-th joint after conversion by device 1, while g2i  cor-
responds to the original coordinate data for the same 
joint collected by device 2. To merge these two sets of 
data, we employ the fusion algorithm outlined in Equa-
tion 7, where w1i  represents the fusion weight assigned 
to the i-th joint from device 1, and w2i  signifies the fu-
sion weight for the identical joint from device 2.
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each joint is characterized by two sets of coordi-
nates, denoted as g��  and g�� . Here, g��  repre-
sents the coordinates of the i-th joint after conver-
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original coordinate data for the same joint collected 
by device 2. To merge these two sets of data, we 
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nifies the fusion weight for the identical joint from 
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In instances where the device fails to successfully 
capture data for a specific joint point within a data 
frame, it becomes imperative to compensate for this 
missing data. A commonly employed method involves 
utilizing the corresponding joint point data from the 
preceding and subsequent frames and computing 
their average value to serve as the predicted value for 
the absent data. This approach offers the advantage 
of requiring minimal computational effort, ensuring 
speedy predictions, and achieving an acceptable level 
of prediction accuracy.
The Kinect SDK provides information regarding the 
tracking status of skeletal joint points, classifying 
them into tracked, inferred, and lost statuses. Among 
these, the data in the tracked status is the most reli-
able, followed by the inferred status, while data in the 
lost status cannot be deemed trustworthy. In cases 
where both Kinect devices are in the tracked or in-
ferred states, their respective fusion weights for skel-
etal joint point data depend on the posture orienta-
tion and data stability of the human body in relation 
to the two Kinect devices. When only one Kinect is in 
either the tracked or inferred state, its data should be 
prioritized, and its fusion weight set to 1. In this case, 
the data from the other Kinect device, which is expe-
riencing data loss, should be disregarded, with its fu-
sion weight set to 0.
In summary, the fusion process is shown in Figure 2.

It is worth noting that the accuracy of vision sensor 
data detection is influenced by the orientation of the 
human body posture. Different orientations yield 
varying levels of data accuracy. When the human body 
is directly facing the device, the quality of the data it 
captures is notably higher, as the sensor can obtain 
more direct visual information. To quantify the hu-
man posture orientation, we generate a posture vec-
tor for the human body using the position data of the 
left and right shoulder joints. The difference between 
these two positions constitutes the vector N. We then 
calculate the angles α and β between the human pos-
ture vector N and the XOY plane of the two devices 
using the following formulas:
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bly higher, as the sensor can obtain more direct visual 
information. To quantify the human posture orientation, 

we generate a posture vector for the human body 
using the position data of the left and right shoulder 
joints. The difference between these two positions 
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Among them, N��  and N��  are the vector N 
components along the X  and Y  axes, respec-
tively, in the S1  coordinate system, while N�� 
and N��  represent the vector N  components 
along the X and Y axes, respectively, in the S2 
coordinate system. The angle α characterizes the 
orientation between the human body's shoulder 
joint and the front of device1, serving as a measure 
of the extent to which the human body faces de-
vice1. A smaller α signifies a more direct align-
ment of the human body with Kinect1, thereby en-
hancing the credibility of the data collected by de-
vice1. Similarly, β signifies the angle between the 
human shoulder joint vector and the front of de-
vice2. A smaller β implies a more direct align-
ment of the human body with device2, resulting in 
increased reliability of the data collected by de-
vice2. 

Inherent in the data obtained by the vision sensor 
are noise and outliers that necessitate identification 
and processing. Given the inherent coherence of 
human motion sequences, discrepancies between 
frames corresponding to different actions should 
generally be modest. This implies that the data 
should exhibit a certain degree of smoothness. We 
can assign weights to the fusion operation based on 
the smoothness of the data, thereby diminishing the 
influence of outliers. Consequently, the fused skel-
etal data becomes smoother and more natural, ele-
vating its credibility. By computing the positional 
error of the same joint point between two consecu-
tive frames, as elucidated in Equation (10), we de-
termine the data weight. A larger error indicates a 
higher likelihood of the data being an outlier with 
low credibility, warranting a lower weight. Con-
versely, a smaller error suggests less data irregular-
ity and higher credibility, justifying a higher 
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device1. A smaller α signifies a more direct alignment 
of the human body with Kinect1, thereby enhancing 
the credibility of the data collected by device1. Simi-
larly, β signifies the angle between the human shoul-
der joint vector and the front of device2. A smaller β  
implies a more direct alignment of the human body 
with device2, resulting in increased reliability of the 
data collected by device2.
Inherent in the data obtained by the vision sensor are 
noise and outliers that necessitate identification and 
processing. Given the inherent coherence of human 
motion sequences, discrepancies between frames cor-
responding to different actions should generally be 
modest. This implies that the data should exhibit a cer-
tain degree of smoothness. We can assign weights to the 
fusion operation based on the smoothness of the data, 
thereby diminishing the influence of outliers. Conse-
quently, the fused skeletal data becomes smoother and 
more natural, elevating its credibility. By computing 
the positional error of the same joint point between 
two consecutive frames, as elucidated in Equation (10), 
we determine the data weight. A larger error indicates 
a higher likelihood of the data being an outlier with low 
credibility, warranting a lower weight. Conversely, a 
smaller error suggests less data irregularity and higher 
credibility, justifying a higher weight. 
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Considering the factors outlined above, it becomes evi-
dent that a smaller angle between the human posture and 
the vision sensor device corresponds to a reduced 
smoothness error between frames, resulting in a higher 
fusion weight. This signifies that when the human pos-
ture is more closely aligned with the sensor device or 
when the data captured from the device exhibits lower 
inter-frame smoothness error, the device will carry 
greater weight in the fusion process of skeletal joints. 
Adhering to this principle, we can establish a weight for 
device1, as expressed in Equation (11), while a compa-
rable weight for device2 is defined in Equation (12). 

 1 )
2

(2 2 1 2i
errW

err err


 
 

   
(11) 

 2 )
1

(2 2 1 2i
errW

err err

 

 
   

(12) 

 

4. Experimental Verification and Anal-
ysis 

4.1 Dataset 
To evaluate the reasonableness and effectiveness of the 
data fusion method proposed in this paper and to validate 
the effectiveness of the fusion algorithm for pose recog-
nition, this paper uses the FMS (functional movement 
screen) dataset Error! Reference source not found. for 
data fusion and model training. 

The FMS dataset contains 3624 motion sequence sam-
ples, covering 7 major categories and 15 subcategories. 
This dataset was captured from two perspectives using 
two Azure Kinect cameras simultaneously, and can be 
used to validate the data fusion method proposed in this 
study. Each perspective contributed 1812 samples, total-
ing 3624 samples. These exercise samples were com-
pleted by 45 volunteers. In addition, two auxiliary Azure 
Kinect cameras were used to collect color images to sup-
plement the data. Therefore, the dataset contains 3624 
sets of color images and 3624 sets of depth images, each 
corresponding to an action sequence. In order to train and 
validate the data, this paper divides the dataset into train-
ing and validation sets. Specifically, actions performed 
by 30 participants were used as the training set, while the 

remaining 15 participants performed actions as the 
validation set.  

4.2 Coordinate Transformation Verifi-
cation 
Verify the feasibility of coordinate conversion by 
performing coordinate calibration processing on 
bone data collected from two devices with different 
perspectives. To this end, we execute coordinate 
transformations on the data sourced from the FMS 
public dataset, following the procedure outlined in 
Section 2.1. This process serves to consolidate the 
coordinates into a unified world coordinate system. 
To evaluate the effectiveness of the coordinate 
transformation algorithm, the study randomly se-
lected eight sets of sample data. Using the Spine-
Base joints, we compute two key metrics, namely 
RMSE (Root Mean Square Error) and MAE (Mean 
Absolute Error), to gauge the performance of the 
coordinate transformation algorithm. RMSE and 
MAE serve as measures of the coordinate transfor-
mation error, with smaller values signifying higher 
accuracy in the coordinate transformation process. 
Experimental results are shown in Tables 1-2, re-
spectively. 
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Among them, y  is the actual value, while h  
is the value following coordinate conversion. 

 

Table 1 
Root mean square error (RMSE) of X-axis, Y-axis, and 
Z-axis（unit: mm） 

X-axis Y-axis Z-axis Triaxial average 

30.5 26.6 22.4 26.5 

24.6 28.9 21.5 25.0 

26.2 29.7 18.4 24.7 

28.3 30.0 24.6 27.6 

14.0 12.1 17.5 14.5 

16.9 18.7 30.5 22.0 

20.1 26.2 15.4 20.6 
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Considering the factors outlined above, it becomes ev-
ident that a smaller angle between the human posture 
and the vision sensor device corresponds to a reduced 
smoothness error between frames, resulting in a higher 
fusion weight. This signifies that when the human pos-
ture is more closely aligned with the sensor device or 
when the data captured from the device exhibits low-
er inter-frame smoothness error, the device will carry 
greater weight in the fusion process of skeletal joints. 
Adhering to this principle, we can establish a weight 
for device1, as expressed in Equation (11), while a com-
parable weight for device2 is defined in Equation (12).
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4. Experimental Verification and 
Analysis
4.1. Dataset
To evaluate the reasonableness and effectiveness of 
the data fusion method proposed in this paper and to 
validate the effectiveness of the fusion algorithm for 
pose recognition, this paper uses the FMS (function-
al movement screen) dataset [27] for data fusion and 
model training.
The FMS dataset contains 3624 motion sequence 
samples, covering 7 major categories and 15 subcat-
egories. This dataset was captured from two perspec-
tives using two Azure Kinect cameras simultaneous-
ly, and can be used to validate the data fusion method 
proposed in this study. Each perspective contributed 
1812 samples, totaling 3624 samples. These exercise 
samples were completed by 45 volunteers. In addi-
tion, two auxiliary Azure Kinect cameras were used 
to collect color images to supplement the data. There-
fore, the dataset contains 3624 sets of color images 
and 3624 sets of depth images, each corresponding to 
an action sequence. In order to train and validate the 
data, this paper divides the dataset into training and 
validation sets. Specifically, actions performed by 30 
participants were used as the training set, while the 
remaining 15 participants performed actions as the 
validation set. 

4.2. Coordinate Transformation Verification
Verify the feasibility of coordinate conversion by per-
forming coordinate calibration processing on bone 
data collected from two devices with different per-
spectives. To this end, we execute coordinate trans-
formations on the data sourced from the FMS public 
dataset, following the procedure outlined in Section 
2.1. This process serves to consolidate the coordinates 
into a unified world coordinate system. To evaluate 
the effectiveness of the coordinate transformation 
algorithm, the study randomly selected eight sets of 
sample data. Using the SpineBase joints, we compute 
two key metrics, namely RMSE (Root Mean Square 
Error) and MAE (Mean Absolute Error), to gauge 
the performance of the coordinate transformation 
algorithm. RMSE and MAE serve as measures of the 
coordinate transformation error, with smaller values 
signifying higher accuracy in the coordinate transfor-
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mation process. Experimental results are shown in 
Tables 1-2, respectively.
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Considering the factors outlined above, it becomes evi-
dent that a smaller angle between the human posture and 
the vision sensor device corresponds to a reduced 
smoothness error between frames, resulting in a higher 
fusion weight. This signifies that when the human pos-
ture is more closely aligned with the sensor device or 
when the data captured from the device exhibits lower 
inter-frame smoothness error, the device will carry 
greater weight in the fusion process of skeletal joints. 
Adhering to this principle, we can establish a weight for 
device1, as expressed in Equation (11), while a compa-
rable weight for device2 is defined in Equation (12). 
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Considering the factors outlined above, it becomes evi-
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Among them, y  is the actual value, while h  
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Table 1 
Root mean square error (RMSE) of X-axis, Y-axis, and 
Z-axis（unit: mm） 

X-axis Y-axis Z-axis Triaxial average 

30.5 26.6 22.4 26.5 

24.6 28.9 21.5 25.0 

26.2 29.7 18.4 24.7 

28.3 30.0 24.6 27.6 

14.0 12.1 17.5 14.5 

16.9 18.7 30.5 22.0 

20.1 26.2 15.4 20.6 
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Among them, yi is the actual value, while h(xi) is the 
value following coordinate conversion.

Table 1
Root mean square error (RMSE) of X-axis, Y-axis, and 
Z-axis (unit: mm)

X-axis Y-axis Z-axis Triaxial average

30.5 26.6 22.4 26.5

24.6 28.9 21.5 25.0

26.2 29.7 18.4 24.7

28.3 30.0 24.6 27.6

14.0 12.1 17.5 14.5

16.9 18.7 30.5 22.0

20.1 26.2 15.4 20.6

27.0 30.8 24.9 27.6

Table 2
Mean absolute error (MAE) of X-axis, Y-axis, Z-axis (unit: mm)

X-axis Y-axis Z-axis Triaxial average

24.2 21.3 15.2 20.3

22.4 22.5 18.6 21.2

23.4 24.3 15.9 21.2

21.1 26.4 18.9 22.2

12.0 9.6 14.4 12.0

13.7 14.9 25.1 17.9

15.8 19.9 12.4 16.0

23.8 25.4 20.3 23.2

According to the results shown in the tables, the max-
imum root mean square errors for the X, Y, and Z axes 
are 30.5, 30.8, and 30.5, respectively, while the average 
maximum root mean square error for the three axes 
is 27.6. In addition, the maximum average absolute er-
rors of the X, Y, and Z axes are 24.2, 26.4, and 23.2, re-
spectively, while the average maximum absolute error 
of the three axes is 23.2.
These indicators collectively demonstrate that the 
data transformation method yields favorable fitting 
results on this dataset. Specifically, its root mean 
square error and mean absolute error are both low, 
indicating that this method has high accuracy. There-
fore, it can be concluded that the coordinate transfor-
mation method used has shown significant superiori-
ty and effectiveness on this dataset.

4.3. Data Fusion Experimental Verification
To verify the effectiveness of data fusion methods in 
compensating for data loss and handling noise issues, 
we used the standard deviation of all joints for overall 
validation. Meanwhile, the square root of SpineBase 
joints was also used to verify the effectiveness of the 
fusion method in handling individual joint outliers.
By calculating the standard deviation of all joints, the 
overall effectiveness of data fusion methods in han-
dling outliers can be evaluated. Standard deviation 
is an indicator of the degree of dispersion of points 
in a dataset, and a larger standard deviation implies 
greater data dispersion and variability. However, due 
to the inherent dispersion of human joints, using a to-
tal of 32 nodes to calculate the overall standard devia-
tion may result in larger values of standard deviation. 
Therefore, when evaluating the effectiveness of data 
fusion algorithms, the continuity and smoothness of 
standard deviation should be mainly observed to ver-
ify whether the algorithm can effectively solve prob-
lems such as data missing and jumping, so as to make 
the generated motion data coherent and consistent. 
In addition, we chose to use the square root of Spine-
Base joints as an indicator to verify the effectiveness 
of handling individual joint outliers. The SpineBase 
joint is located at the base of the human spine, and its 
movement characteristics have a significant impact 
on body posture and movement patterns. By observ-
ing the outlier handling effect of the joint, we can eval-
uate the robustness and accuracy of the data fusion 
method at the individual joint level.
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Figure 4 
Square root of SpineBase joint in consecutive frames

In summary, by comprehensively considering the 
standard deviation of all joints and the outlier pro-
cessing effect for SpineBase joints, we can compre-
hensively evaluate and verify the outlier processing 
effect of the data fusion method. The standard devi-
ation of all joints is shown in Figure 3, and the square 
root result of the SpineBase joint is shown in Figure 4.
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As shown in the figures, the data resulting from the fu-
sion process exhibits a relatively comprehensive and 
continuous profile, effectively addressing issues such as 
data gaps and discontinuities. These observations affirm 
the effectiveness of the fusion algorithm proposed in this 
article. Additionally, data fusion enhances the smooth-
ness of the acquired data, consequently enhancing the re-
liability of data and accuracy of posture recognition. 

4.4 Human Posture Recognition Verifica-
tion 

4.4.1 Comparisons with Other Fusion 
Methods 

ST-GCN (Spatial-Temporal Graph Convolutional 
Network Error! Reference source not found.) 
stands out as the pioneer network to introduce 
graph convolutional networks into the field of hu-
man posture recognition. To capture the intricate 
relationships among human skeletal components, 
ST-GCN incorporates a graph structure, which 
serves as a representation of the connections be-
tween joints in the human body. It introduces tem-
poral convolution and spatial convolution tech-
niques tailored to this graph structure, enabling the 
handling of temporal sequencing relationships. 
Figure 5 visually delineates the human body graph 
structure. Within ST-GCN, each joint point is 
treated as a node within the graph, with the inter-
connections between them represented by the 
graph edges. These edges delineate the adjacency 
relationships among human body joint points, en-
compassing aspects such as bone connections and 
limb movement directions. Additionally, in the 
temporal dimension, the same node corresponding 
to the human body is linked by supplementary 
edges, accounting for temporal relationships. 

 
Figure 5  
Spatial temporal graph of a skeleton sequence proposed 
by ST-GCN. 

 
 

Through the construction of a graph structure rep-
resenting the human skeleton, ST-GCN harnesses 
the power of graph convolution operations in the 
realm of posture recognition. These graph convo-
lution operations excel at aggregating information 
from proximate regions and disseminating it across 
the global scale, enabling a more comprehensive 
understanding of spatial and temporal interdepend-
encies within human poses. 
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Through the construction of a graph structure rep-
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lution operations excel at aggregating information 
from proximate regions and disseminating it across 
the global scale, enabling a more comprehensive 
understanding of spatial and temporal interdepend-
encies within human poses. 

As shown in the figures, the data resulting from the 
fusion process exhibits a relatively comprehensive 
and continuous profile, effectively addressing issues 
such as data gaps and discontinuities. These observa-
tions affirm the effectiveness of the fusion algorithm 
proposed in this article. Additionally, data fusion en-
hances the smoothness of the acquired data, conse-
quently enhancing the reliability of data and accuracy 
of posture recognition.

4.4. Human Posture Recognition Verification
4.4.1. Comparisons with Other Fusion Methods
ST-GCN (Spatial-Temporal Graph Convolution-
al Network [28]) stands out as the pioneer network 
to introduce graph convolutional networks into the 
field of human posture recognition. To capture the 
intricate relationships among human skeletal com-
ponents, ST-GCN incorporates a graph structure, 
which serves as a representation of the connections 
between joints in the human body. It introduces tem-
poral convolution and spatial convolution techniques 
tailored to this graph structure, enabling the handling 
of temporal sequencing relationships. Figure 5 visual-
ly delineates the human body graph structure. Within 
ST-GCN, each joint point is treated as a node within 
the graph, with the interconnections between them 
represented by the graph edges. These edges delineate 
the adjacency relationships among human body joint 
points, encompassing aspects such as bone connec-
tions and limb movement directions. Additionally, in 
the temporal dimension, the same node correspond-
ing to the human body is linked by supplementary 
edges, accounting for temporal relationships.
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Through the construction of a graph structure repre-
senting the human skeleton, ST-GCN harnesses the 
power of graph convolution operations in the realm 
of posture recognition. These graph convolution op-
erations excel at aggregating information from prox-
imate regions and disseminating it across the global 
scale, enabling a more comprehensive understanding 
of spatial and temporal interdependencies within hu-
man poses.
In order to compare the effect of the data fusion meth-
od proposed in this article with the previous fusion 
method in terms of human posture recognition, we in-
put the fused joint three-dimensional coordinate data 
into ST-GCN for training. Considering that the direc-
tion and length of human bones are crucial for posture 
recognition, we also input bone data and joint-bone 
data into ST-GCN for training to compare the results. 
The experimental results are shown in Table 3.

Figure 5 
Spatial temporal graph of a skeleton sequence proposed by 
ST-GCN
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Through the construction of a graph structure rep-
resenting the human skeleton, ST-GCN harnesses 
the power of graph convolution operations in the 
realm of posture recognition. These graph convo-
lution operations excel at aggregating information 
from proximate regions and disseminating it across 
the global scale, enabling a more comprehensive 
understanding of spatial and temporal interdepend-
encies within human poses. 

The experimental results demonstrate that the data 
fusion method proposed in this study outperforms 
previous methods in human pose recognition tasks. 
Specifically, this fusion method has achieved superi-
or performance in both joint and joint bone scenarios. 
These findings provide substantial evidence to sup-
port the advantages of the data fusion method.

4.4.2. Human Posture Recognition Experiment
The objective of this experiment is to investigate the 
influence of data fusion on human posture recogni-
tion and validate the efficacy of the data fusion algo-
rithm in enhancing posture recognition accuracy. Our 
approach involved conducting posture recognition on 
the original data and on fused skeleton data utilizing 
various state-of-the-art algorithms. Subsequently, we 
conducted a comparative analysis of the recognition 
accuracy, and the results are presented in Table 4.
The aforementioned experimental results clearly 
demonstrate that the data fusion method proposed 
in this study leads to a substantial enhancement in 
the accuracy of human posture recognition. Among 
the six human posture recognition models examined, 
the fused data consistently yielded the most favorable 

Table 3 
Comparison of accuracy (%) of different fusion methods on ST-GCN model

Front Side Fusion1 [2] Fusion2 [9] Fusion3 (ours)

Joint 86.9 83.5 88.1 86.9 89.1

Bone 82.5 86.2 81.6 85.2 85.7

Joint-Bone 85.2 85.8 80.9 86.1 87.5

Table 4
Comparison of accuracy (%) of data before and after fusion 
on state-of-the-art methods

Method Fusion 
(ours) Front Side

Shift-GCN [4] 95.9 95.5 95.9

2s-AGCN [21] 98.2 96.9 95.7

DualHead-Net [3] 98.0 97.1 97.8

DGNN [20] 97.3 96.9 96.7

MS_G3D [16] 97.6 97.5 95.7

GCN-NAS [19] 98.0 98.0 95.2
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outcomes. This validation underscores the efficacy of 
the data fusion approach presented in this study, par-
ticularly in addressing issues related to self-occlusion 
of skeletal joints and underscores the practical appli-
cability of the study.

5. Conclusion
This article introduces a data fusion method designed 
to amalgamate skeletal data collected from two vision 
sensor devices. The approach leverages human body 
posture orientation and data smoothness to deter-
mine the fusion weights for skeletal data, resulting 
in more dependable human posture data and an en-
hancement in the accuracy of skeletal data acquired 
through the vision sensor. The study draws upon the 
FMS public datasets for data fusion and the training 

of advanced human posture recognition algorithms. 
A comparative analysis of recognition accuracy be-
tween the original and fused data validates the effica-
cy of the proposed data fusion method, contributing 
significantly to the advancement of the field of human 
posture recognition.
In future endeavors, we can explore the integration 
of additional sensor devices for skeletal data fusion, 
expanding the scope of experiments and investigat-
ing optimal device placement strategies to attain the 
highest data accuracy and reliability. Furthermore, 
the inclusion of data from other sensors, such as iner-
tial measurement units (IMU) or cameras, in skeletal 
data fusion is worth considering. This multi-modal 
data integration has the potential to further elevate 
the accuracy and resilience of posture recognition, 
offering broader possibilities for developments in re-
lated domain
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