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As multirotor plant protection drones evolve, using them for pest control has emerged as a mainstream trend.
Nevertheless, lemon orchards often feature trees planned in an unstructured manner, with irregularly distrib-
uted obstacles such as utility poles posing safety threats to the operational tasks of unmanned aerial vehicles
(UAVs) used for plant protection. To address such issues, this study proposes a novel UAV obstacle avoidance
system designed for lemon orchards. The system has two components: a sensing and mapping subsystem using a
depth image inverse projection algorithm, and a path planning subsystem that utilizes B-spline curve trajectory
optimization. The system comprises a hardware description and software integration of the UAV, a map construc-
tion algorithm to sense obstacles in front of the UAV, and a path planning algorithm for obstacle avoidance. Two
experimental scenarios were developed to evaluate the system’s flight performance: a flight test using the Gaze-
bo simulation platform and a real-world test in a lemon orchard. In the simulation results, the flight trajectory’s
average deviation from the original path was 2.77 m, and the maximum yaw angular velocity reached 1.001 rad/s.
In the real-flight experiments, the flight trajectory’s average deviation from the original path was 2.90 m, and the
maximum yaw angular velocity reached 1.545 rad/s. Both the simulation and real-flight experiments demonstrate
that the system is effective in avoiding obstacles and planning paths in lemon orchards, providing a safe, smooth,
and stable flight trajectory that meets the operational safety requirements for plant protection UAVs.

KEYWORDS: Plant protection UAV, Lemon orchard, Depth image, Inverse projection, B-spline curve, Trajec-
tory optimization.
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1. Introduction

Thelemon is a green fruit that is known for its high nu-
tritional and medicinal value [29, 33]. Since the turn of
the 21st century, improvements in the living standards
of Chinese people have considerably increased the de-
mand for lemons, thereby driving rapid development in
lemon cultivation within China [15, 18].

The southern region of China, which is characterized
by a subtropical monsoon climate, offers optimal light,
temperature, and precipitation for lemon growth.
However, this environment also renders the lemons
grown therein susceptible to various pests and diseas-
es, including citrus red and yellow spiders, whiteflies,
aphids, citrus thrips, and gray mold [3, 12, 26]. There-
fore, the daily management of lemon cultivation, par-
ticularly in terms of controlling pests and diseases that
affect lemon trees, requires substantial effort.

In southern China, lemon fruit trees are commonly
planted in mountainous regions due to the scarcity
of arable land per capita. Moreover, nonstructural
planting techniques are widely utilized in these re-
gions [22]. Given the restricted planting conditions
and challenging topography, ground spraying equip-
ment encounters challenges in maneuvering through
mountainous orchards. Consequently, most plant
protection activities in lemon orchards involve man-
ual spraying, entailing a heavy workload, high opera-
tional intensity, and the need for considerable mate-
rial and human resources.

In recent years, there has been a rapid development
of multi-rotor plant protection UAVSs. These UAVs of-
fer advantages such as high speed, efficiency, simple
structure, terrain versatility, and vertical takeoff and
landing capabilities without requiring a runway [19,
28]. This development has positioned multi-rotor
plant protection UAVs as crucial tools in combating
agricultural pests and diseases in China. Moreover,
agricultural aerial plant protection technology has
emerged as a prominent research focus within the
field of agricultural plant protection [6, 30]. Neverthe-
less, the implementation of agricultural aerial plant
protection technology in plant protection operations
within hilly lemon orchards faces several critical
challenges that require immediate resolution.

Solving the path avoidance problem during UAV op-
erations in unstructured planting territories is an
urgent requirement. In general, path planning for
UAV spraying operations in plantations is conducted

2024/3/53

offline, with path points selected via ground station
maps to generate a “[] ”-shaped path. However, or-
chards often contain static obstacles, including util-
ity poles, streetlights, and trees of varying heights.
These obstacles pose major safety threats to plant
protection UAVs during path navigation. To address
this issue, plant protection UAVs should be capable
of generating and executing paths online for obsta-
cle avoidance. Consequently, to ensure safety during
tasks, particularly in hilly orchards, research into
real-time obstacle avoidance path generation algo-
rithms for plant protection UAVs is imperative.

Most existing agricultural UAV obstacle avoidance
systems utilize both traditional vision and deep learn-
ingtechniques to address the obstacle detection prob-
lem, formulating corresponding avoidance strategies
based on the size of the obstacles. Wang et al. capital-
ized on the benefits of deep learning and sophisticated
cameras, enabling UAVSs to discern obstacle attributes
such as categories, contours, and 3D spatial locations.
Based on these detections, they detailed the develop-
ment of collision avoidance strategies and the compu-
tation of optimal flight paths for evasion [38]. Mannar
et al. introduced a monocular vision-based quadrotor
control algorithm tailored for obstacle avoidance in
forest environments, employing a weighted combi-
nation of texture features to calculate distances to
the nearest obstacle across various longitudinal sec-
tions of image frames [25]. Stefas et al. presented a
UAV system with vision-based obstacle detection
and avoidance capabilities for navigation in apple or-
chards, utilizing binocular vision to construct a local
obstacle map and identifying vacant cells within it as
the next safe position for the UAV [32]. Castro et al.
devised an online adaptive path planning scheme by
integrating fast exploratory random trees and deep
reinforcement learning algorithms. This approach is
particularly effective in generating and controlling
autonomous UAV trajectories, especially for tasks
like detecting olive string traps, thereby circumvent-
ing potential obstacles in the environment [5].

However, the obstacle avoidance systems mentioned
above still exhibit certain limitations. Autonomous
navigation systems employing traditional vision
techniques rely heavily on a single feature; when this
feature changes, their robustness and reliability sig-
nificantly diminish. Moreover, deep learning naviga-
tion schemes cannot assure that the deployment of
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deep learning models will meet the real-time require-
ments of UAV navigation, given the limited computa-
tional resources of current airborne equipment. Fur-
thermore, the obstacle avoidance trajectory planning
based on these schemes remains confined to the task
level, lacking in path optimization for effective obsta-
cle avoidance.

Prior to path planning, understanding the distribution
of obstacles in an orchard is crucial to devising a colli-
sion-free operational path. Furthermore, the orchard
map’s accuracy considerably influences the quality of
the path planning. Thus, substantial research efforts
have been directed toward orchard map generation.
Eviatar et al. developed a computer vision algorithm
using UAV aerial images to distinguish trees from
the background, converting RGB images to HSV, fol-
lowed by a series of image manipulations to generate
obstacle maps [9]. In contrast to traditional vision
algorithms, Sun et al. proposed SADNet, a semantic
segmentation network that uses UAV aerial images,
designed to predict pixel labels in orchard images and
construct orchard grid maps from the segmentation
results [34]. Nevertheless, the orchard grid map’s ac-
curacy is inherently associated with that of the se-
mantic segmentation results; in other words, poorer
segmentation results lead to reduced map accuracy.
Martina produced a dense three-dimensional (3D)
point cloud map of a vineyard by deploying a fixed-
wing UAV to capture multispectral images beforehand
[23], utilizing the motion-based commercial software
Agisoft Metashape (Agisoft LLC, located in St. Peters-
burg, Russia). This point cloud map was subdivid-
ed into a grid, enabling the manual customization of
impassable areas, which culminated in the creation
of a global map for UAV path generation. However,
the aforementioned maps are generated in advance
by UAVs equipped with diverse sensors to capture
orchard imagery. These maps necessitate extensive
postprocessing before being utilized for path plan-
ning, a process that falls short of the automation re-
quirements necessary for efficient map construction.

Path planning after the generation of maps has be-
come a common practice, with numerous scholars
achieving preliminary results in studying UAV path
planning for plant protection. Common obstacle
avoidance algorithms for UAVs include Dijkstra [39],
A* [14, 21], RRT* [13, 17], inform RRT* [11], Dubins
[7, 21], the artificial potential field method [4, 35], the
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simulated annealing algorithm [2, 41], and the ant
colony algorithm [27, 42]. Zhang et al. proposed an en-
hanced Dubins curve algorithm, which established an
obstacle circlemodel and asmall obstacle model based
on UAV flight parameters and field obstacle types.
This algorithm selects appropriate Dubins curves to
generate multiple obstacle avoidance paths, followed
by the application of a genetic algorithm to deter-
mine the optimal path [43]. Huang et al. enhanced
the traditional A* algorithm by integrating dynamic
heuristic functions, merging millimeter-wave radar
and monocular camera data, and optimizing search
and inflection points [16]. One drawback is the UAV’s
requirement to decelerate at inflection points, which
results in a discontinuous flight process. Li et al. pro-
posed a 3D spatial path planning model based on the
R5DOS model, enhancing the model’s directional lay-
er, and developed the RJA star algorithm using an im-
proved jump-point searching A star algorithm. This
approach effectively avoids obstacles and reduces
the UAV reaction time compared to traditional algo-
rithms [20]. Zhang employed the traditional artificial
potential field method for agricultural UAV trajectory
planning, noted its tendency to fall into local minima
in obstacle-rich environments [40]. To address this,
he proposed an improved repulsion function that ran-
domly generates a virtual target point near the local
minima, effectively solving the problem of UAVs be-
coming trapped in local minima before reaching the
target. Martina et al. utilized remote sensing maps
of vineyards, obtained beforehand, to generate glob-
al maps. Both unmanned ground vehicles and UAVs
conduct operational path planning based on these
global maps, using RRT* for global path planning
and DWA for local path planning [23]. The existing
literature primarily concentrates on enhancing and
optimizing traditional path search algorithms, result-
ing in improved algorithmic efficiency. Nevertheless,
researchers often overlook back-end optimization,
particularly in terms of trajectory smoothness, safety,
and dynamic feasibility. Such oversights can result in
poor trajectory quality, including unnecessary turns,
which makes ensuring the flight stability of plant pro-
tection UAVs a complicated task.

To address the current challenges in map construction
redundancy and trajectory optimization for plant pro-
tection UAVs in orchard path planning, we introduce a
novel obstacle avoidance system. This system consists
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of two key components: a sensing and mapping sub-
system based on the depth image inverse projection
algorithm and a path planning subsystem utilizing
B-spline curve trajectory optimization. The method
used by the aforementioned scholars to obtain a global
orchard map through prior acquisition lacks automa-
tion, and the map accuracy comprises postprocessing
algorithms. By contrast, the sensing and mapping sub-
system proposed herein employs a UAV with a depth
camera to capture the depth images of obstacles. This
subsystem constructs a map using an inverse projec-
tion algorithm, combining the rotation matrix and
translation vectors to determine the point cloud posi-
tions of obstacles in a global coordinate system.

The problem of unoptimized trajectories is addressed
by the path planning subsystem proposed in this study
through the construction of global B-spline trajecto-
ries. This approach utilizes the inherently easy-to-op-
timize nature of B-spline curves for generating global
paths. Furthermore, using a local obstacle map gen-
erated by the sensing and mapping subsystem, the A*
algorithm is applied to identify a collision-free path
within this map. Moreover, an optimization function
concerning control points is established for the global
B-spline trajectory based on this path, and path-guid-
ed optimization is conducted to generate the warm-
up trajectory. Finally, a cost function encompassing
trajectory safety, smoothness, and kinetic feasibility
is formulated based on the control points, convex en-
velopes, and derivatives of the B-spline curve. This
function is used to optimize the warm-up trajectory,
generating a trajectory that meets all the requirements.

The study conducted herein can be summarized as
follows, as shown in Figure 1, which illustrates the
overall framework.

1 To address the redundancy and complexity in cur-
rent map construction methods used for orchard
path planning, a sensing and mapping subsystem
utilizing a depth image back-projection algorithm
is proposed, comprising the following steps:

a A UAV is equipped with a depth camera to cap-
ture the depth images of the orchard environment
during flight.

b Utilizing the depth images of the orchard environ-
ment and the UAV’s GPS data, the inverse projec-
tion algorithm is applied. The rotation matrix and
translation vector are integrated to ascertain the
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Figure 1
Overall framework of the research content
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point cloud positions of obstacles within the glob-
al coordinate system, thereby constructing a local
map reflecting the UAV’s current position.

2 To address the problem of insufficient trajectory

optimization in current orchard path planning, a
path planning subsystem utilizing B-spline curve
trajectory optimization is proposed, which com-
prises the following steps:
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a Considering the operational range of the lemon or-
chard, the locations and connection sequence of the
UAV’s operational path points are established, and
these points are then connected to form a global path.

b Utilizing the property of B-spline curves being
easy to optimize, the global path is adapted to cre-
ate a global B-spline trajectory.

¢ The UAV follows the global B-spline trajectory,
conducting trajectory feasibility checks against the
local map from step 1(b). If an obstacle is detected
along the intended trajectory, the A* algorithm is
deployed to identify a preliminary collision-free
path within this map.

d Leveraging the characteristics of the B-spline
curve’s control points, a path guidance optimiza-
tion function is developed. This function minimiz-
es the distance between the B-spline trajectory’s
control points and the geometric guidance path’s
sampling points, which ensures that the B-spline
trajectory aligns closely with the guidance path
and initially secures trajectory safety. The global
B-spline trajectory is thus optimized into a prelim-
inary trajectory at this stage.

e Considering the control points, convex hulls, and
derivatives of the B-spline curve, a cost function
is established to evaluate the trajectory’s safety,
smoothness, and dynamic feasibility. This function is
employed to further refine the preliminary trajectory,
yielding a trajectory that meets all the requirements.

3 Utilizing the robot operating system (ROS) in the
Gazebo software package, an orchard environment
is simulated to validate the obstacle avoidance al-
gorithm.

4 An experimental platform for drones is construct-
ed, and field experiments are conducted in alemon
orchard to evaluate the effectiveness of the drone’s
obstacle avoidance capabilities.

The remainder of this paper is structured as follows:
Section 2 details the experimental site of the lemon
orchard. Section 3 introduces the sensing and map-
ping subsystem. Section 4 outlines the path planning
subsystem, encompassing global path generation and
trajectory optimization. Section 5 presents the out-
comes of the proposed algorithm within a simulation
environment. Finally, Section 6 highlights the UAV
experimental platform and the outcomes of the field
experiments conducted in the lemon orchard.
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2. Experimental Site of a Lemon
Orchard

The experimental site was situated within alemon or-
chard (23°27'N, 112°68’ E) in Huadu District, Guang-
zhou City, Guangdong Province, China, as shown in
Figure 2(a)-(b). The site features a subtropical mon-
soon climate conducive to lemon cultivation. Overall,
the orchard exhibits an irregular shape and an un-
structured distribution. As shown in Figure 3, the or-
chard exhibits the presence of scattered utility poles,
which pose a major risk to the operating safety of
plant protection UAVs. Based on the spatial arrange-
ment of the obstacles inside the orchard, a designated
portion was selected as the flight test area, as shown
in Figure 2(c). Notably, the utility poles are positioned
at the midpoint of the lemon tree columns, which rep-
resent a common obstruction encountered by plant
protection UAVs during operational flights.

Figure 2

Geographic location and division of the experimental area.
(a) Geographic location of the experimental plot.

(b) Aerial view of the experimental field in the orchard. (c)
Designated area for flight experiments
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3. Sensing and Mapping Subsystem

To equip the UAV with the ability to detect obstacles
in its path, an onboard sensing and mapping subsys-
tem was developed, encompassing both hardware and
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software integration, as illustrated in Figure 4. In ad-
dition to facilitating obstacle detection for the UAV,
this subsystem constructs maps detailing upcoming
obstacles, which aids the path planning subsystem in
its operations. These details are elaborated upon in
this section.

Figure 3

The presence of electric poles dispersed throughout the
lemon orchard, positioned between two lemon trees,
represents a potential safety risk for plant protection drones

(@) (b)

Figure 4

Sensing and mapping subsystem, including hardware
integration and software integration

Hardware Software
Translati
UAV Position | Vector
_
Data
GPS Module Toverce
Rotati Projection it
Matrix | Algorithm 5 §s %
Imu Data -k m - %
LHE
eRa
-
Pixhawk 6C &
s ccupancy
Distance .
‘ 3> Data Gird Map
RGB-D Camera
Depth Images

Lemon Orchard Environment

Thelemon orchard presents an unstructured environ-
ment wherein obstacle distribution is unpredictable,
including varied elements such as scattered trees,
utility poles, and lemon canopies of differing heights.
Figure 3 illustrates the distribution of obstacles in the
orchard, highlighting utility poles as the most preva-
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lent and disorganized form of obstruction. As shown
in Figure 3, most utility poles are positioned between
lemon trees, thereby posing a major safety hazard to
the plant protection UAVs that operate in the orchard.
A fundamental requirement for a drone to navigate
these obstacles is its ability to accurately determine
the location of the obstacles interspersed among the
fruit trees. To address this challenge, we use a depth
camera as a sensor to capture obstacle data. This
camera generates depth images, enabling the UAV to
easily ascertain the positions of the obstacles ahead.

The depth camera parameters are divided into inter-
nal and external categories. Internal parameters, set
during factory production, define the camera’s intrin-
sic properties. External parameters, conversely, rep-
resent the camera’s relationship with the world coor-
dinate system. The internal reference matrix K of the
depth camera is represented as follows:

K=|0 [f ¢ |, @

where f, fy , ¢, ,and c, are the internal parameters
of the depth camera. In camera parameters, f, rep-
resents the focal length in the horizontal direction,
and f represents the focal length in the vertical di-
rection. ¢, is the horizontal coordinate of the optical
center on the image plane, whereas c, indicates the
vertical coordinate of the principal point on the same
plane. The outer reference matrix T of the depth
camera is denoted as follows:

R t
T= . ®)
0 1

The external reference matrix denotes the transfor-
mation relationship between the camera coordinate
system and the world coordinate system. R refers
to the rotation matrix, which signifies the rotational
relationship between the world coordinate system
and the camera coordinate system. Furthermore, t
represents the translation vector, which indicates
the translational relationship between the world co-
ordinate system and the camera coordinate system. A
utility pole represents a typical obstacle in alemon or-
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chard.InFigure 5, point Pisidentified as apointonthe
pole. Point P is denoted as P, in the world coordinate
system, P_in the camera coordinate system, and P in
the pixel coordinate system, wherep, = [x , Yz B
p=[x v zJ],andp =[u v 1].

Figure 5
Process of projecting a point on a telegraph pole into a pixel
coordinate system
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System

Pixel Coordinate System
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Camera Coordinate

Telegraph Pole System O —x —y —z

To accomplish this process, point P, on the pole in
the world coordinate system is first projected to the
camera coordinate system to obtain P. and then
transformed to the pixel coordinate system to obtain
P . The projection of P, from the camera coordinate
system to the pixel coordinate system involves pass-
ing through the normalization plane. This plane, de-
finedas Z_ =1, coincides with the location of the pixel
plane. In summary, obtaining P , which represents
the position of point P on the pole in the orchard in
the image, necessitates multiple coordinate trans-
formations. The sequence of projection is as follows:
world to camera, camera to normalization plane, and
normalization plane to pixel. For UAV obstacle avoid-
ance, the objective is to use the depth camera to ascer-
tain P ,thepositionofpoint P onthepoleintheworld
coordinate system, facilitating the construction of an
obstacle map. Furthermore, acquiring P, involves the
back-projection of P . First, P, is back-projected into
the camera coordinate system to obtain P,:

wl |/,

0 c ||X

x C
0 f ¢ | Y. |2KP, 3)
1 0 0 1]z

C
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where Z_ represents the distance from point P. to
the camera, which is equivalent to the distance be-
tween the UAV and the utility pole and directly mea-
surable via the depth camera. The internal parameter
K is determined via prior calibration. Subsequently,
Equation (3) is transformed as follows:

X =—(u_cX)ZC, @
T

—¢)Z
YC=—(V ;) = )

The coordinates of P, are thus solved for, and P, is
obtained by back projecting P_ into the world coor-
dinate system:

XC
¥,

R t] 7,
- . ®)
Zz 0 1|72

¢

1 1

Subsequently, Equation (6) is transformed into

XC w
Y. |=R| 7Y, |+t )
ZC w

X, X,
Y, |=R7| Y, |-t. ®)
ZW ZC

As indicated by the above equations, acquiring the
external parameter matrix of the depth camera is es-
sential to obtaining P, . Given that the depth camera is
mounted on the UAYV, its external reference matrix can
be derived from the UAV’s sensor data. The UAV’s flight
controller, equipped with an inertial measurement
unit (IMU) sensor, acquires the UAV’s attitude infor-
mation to calculate the rotation matrix. Moreover, the
UAV’s onboard GPS gathers the position information
required for determining the translation vector.
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The two-dimensional pixel point coordinates and
depth information of the utility pole obstacle in the
orchard’s depth image can be converted into point
cloud coordinates of the utility pole in the global coor-
dinate system. By integrating the UAV’s position data
with the point cloud coordinates of the utility poles,
an orchard map detailing the utility pole obstacles is
created. The obstacle map is represented using an oc-
cupancy grid map. In an occupancy grid map, space is
discretized into cell grids approximating real-world
obstacles, with each cell storing the probability of
occupancy by an obstacle. A 3D grid map reflecting
the current UAV position is constructed in real time
using the point cloud data of obstacles in the global
coordinate system. In consideration of factors such
as navigation accuracy, sensor precision, and com-
putational cost, the cell grid size is set at 0.1 m. A re-
al-time local map updates the global occupancy grid
map, reflecting the UAV’s current global attitude, with
the occupancy probability of each grid updated using
Bayesian probability [36]. As the subsystem updates
each grid state by incorporating previous data with
each new observation, it achieves a high degree of
reproducibility in environmental information. This
strategy is widely employed in mapping applications
utilizing sensors such as depth cameras and LiDAR.

4. Path Planning Subsystem

To enable a UAV to navigate and avoid obstacles, it
must not only sense obstacles and generate an obsta-
cle map but also execute path planning from its current
location to a designated target point. Consequently,
we developed a path planning subsystem primarily
designed to facilitate safe UAV travel from point A to
point B, ensuring the generation of smooth, dynam-
ic, and collision-free trajectories. Figure 6 shows the
three stages involved in trajectory optimization.

During operations in a lemon orchard, a plant protec-
tion UAV typically follows a “[] ”-shaped path. Given
the orchard’s unstructured layout, unavoidable ob-
stacles such as utility poles between lemon trees (as
shown in Figure 2(c)) pose safety risks to the UAV’s
operation. Consequently, to ensure the UAV’s safe op-
eration, generating collision-free trajectories that the
UAV can execute is essential. Our proposed path plan-
ning algorithm, delineated in Figure 7, encompasses
three main phases:
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Figure 6

Three stages of trajectory optimization: (a) obstacles in
the trajectory, (b) generation of warm-up trajectory, (c)
B-spline trajectory optimization

Figure 7
Flowchart of the path planning algorithm
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a Initially, all path points are sequentially connected
to form the global operation path. Taking advan-
tage of the B-spline’s property of easy optimiza-
tion, B-spline curve fitting is applied to the global
path points to generate the initial B-spline trajec-
tory, setting the stage for subsequent optimization.
At this stage, the global B-spline trajectory may
contain obstacles, as obstacle avoidance process-
ing has not yet been implemented.

b The UAV follows a global B-spline trajectory, con-
ducting trajectory feasibility checks using the lo-
cal map. Upon detecting an obstacle along the in-
tended trajectory, a geometric collision-free path
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is identified within the local map using the A* al-
gorithm. The global B-spline trajectory intersect-
ing the obstacle is then optimized for path guid-
ance based on this geometric collision-free path.
Moreover, a path guidance optimization function
is constructed based on the nature of the B-spline
control points. The control points of the B-spline
trajectory are aligned with the sampling points on
the geometric path, which results in the trajectory
being optimized into a preliminary trajectory.

¢ An optimization function is constructed to further
enhance the warm-up trajectory. This function is
based on the characteristics of the control points,
convex envelopes, and derivatives of B-spline
curves. The trajectory is tuned to ensure smooth-
ness, safety, and kinetic feasibility. Ultimately, a
collision-free trajectory that is both smooth and
executable is obtained.

4.1. Path Initialization

Prior to initiating operations, the plant protection
UAV must first plan its waypoints. These waypoints
are connected to form the global operational path,
which initially includes right-angle turns. Such an-
gles can result in considerable changes in the UAV’s
yaw angle and lead to flight oscillations. To address
this issue, preprocessing the global path is necessary.
This involves fitting the path with a B-spline curve,
which not only smoothens the path but also facilitates
subsequent trajectory optimization.

A B-spline is a segmented polynomial curve. Its shape
is determined by its order p,, n+1 control points
{QO,Q],...QM }, and node vectors [tU,tl,...,tM], where
Q R, { ¢R, and M =n+p, +1. A B-spline
is a trajectgr parameterized with respect to time
t, where t € r,tp »t, |- B-spline fitting of the glob-
al path involves determining the sequence of global
path points, setting the B-spline order, selecting the
number of control points, and incorporating these el-
ements into the B-spline fitting formula. The number
of control points substantially influences the fitting
accuracy of the global path; that is, a larger value of n
results in a more precise fit. Nevertheless, an exces-
sively large value of n may lead to a trajectory that
lacks smoothness, adversely affecting the flight of the
plant protection UAV. In light of the flight stability of
the plant protection UAV, the B-spline curve’s order
D, is defined as 3. The number of control points is set
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to 2/, where | denotes the length of the global path.
If the B-spline curve is linear, the distance between
each control point is maintained at 0.5 m.

The equation that defines the B-spline curve is as fol-
lows:

C(t) = ZNi.ph (t)Qi’ (9)

where Q, isthe¢control point and N . isthe B-spline
basis function with the transfer equation:

1 ift <t<t
N, (1)= (10)
' 0 otherwise
t—t
Ni,pb (t) = ﬁNi.pb—l (t) +
i+py i
€4y
i+p,+1 _t
_ Ni+1,pb—1 (t)
i+py+1 i+1

The B-spline curve can be expressed for each path
point D, using the following expression:

C(ti) = Z:]vi,ph ti )Qi' (12)
i=0

N, (t,) represents the B-spline basis function val-
ue at the 7 control point for the parameter ¢,. The dis-
tance error, calculated as [D, - C(¢ )|, arises between
the path point D and its corresponding point on the
curve for #,. This distance error is squared, and a least
squares formula is applied to resolve the issue:

f(Qo""’Qn):Z|Di_C(t1)|2' 13)

Ultimately, the global B-spline trajectory is derived
by calculating the control points Q,, .., Q, in a man-
ner that minimizes the function f (Qo,...,Qn ) The
global B-spline trajectory possesses the following
characteristics:

a Four control points govern a segment of the curve,
and adjusting their positions alters the curve’s shape.
This characteristic is instrumental in the develop-
ment of the path-guided optimization function.

b The convex hull property ensures that the curve
lies within the convex shape formed by the four
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control points. This characteristic is utilized in op-
timization to ensure trajectory safety.

¢ Thederivative of a B-spline curve is also a B-spline
curve, and this property is leveraged to ensure the
dynamic feasibility of the trajectory.

Following the global path fitting, the resulting glob-
al B-spline trajectory ensures smooth transitions at
turns. Nevertheless, as obstacle information is not yet
considered, obstacles may be present on the trajecto-
ry, requiring further optimization.

4.2. A* Algorithm

Upon initiating operation, the UAV initially follows
the global path, during which the depth proximity
sensor acquires obstacle information in front of the
UAV and generates a local map. Given that the global
path does not account for obstacle information, ob-
stacles present on the path may pose a threat to the
UAV’s flight safety. Should obstacles be detected on
the impending path on the local map, the UAV’s cur-
rent position will serve as the starting point for em-
ploying the A* algorithm to identify a collision-free
path. The A* algorithm has identified the yellow line
in Figure 8(a) as the initial collision-free path.

The strategy of the A* algorithm is to maintain a prior-
itized queue to store all the nodes to be expanded, and
the cost function of each node is defined as follows:

S (n) = g(n) +h(n). (14)

Here, g(n) is the best estimate of the current cumula-
tive cost from the start state to the node, /(n) is the
minimum cost estimated from the node to the end
node, and the %(n) heuristic function uses the Euclid-
ean distance.

4.3. Path-guided Trajectory Optimization

The trajectory found by A* in Section 4.2, which
avoids collisions, is considered a geometric guidance
trajectory. This trajectory is used to guide the global
B-spline trajectory, pulling it away from obstacles
and toward free space, which ensures the initial safe-
ty of the trajectory. This is the initial stage of global
B-spline trajectory optimization for creating the
warm-up trajectory in unoccupied space. The overall
cost function for this phase is as follows:

fmmll = /llsf:v + ;tldfd' 15)
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Figure 8

Range of the current local map where the utility poles
appear on the global path. (a) Use the A* algorithm to find
a collision-free path from the current location, and use the
collision-free path as a guide to pull the global path away
from free space as a warm-up trajectory. (b) The warm-
up trajectory is further optimized into a smooth, safe, and
dynamically feasible trajectory

| I !
Global B-spline Trajectory Warmup Trajectory A* Geometrically
' | Guided Path

/,
- s . A
_ Optimized B-spline Trajectory n Lemon Tree I '8 Telegraph Pole

Here, f, is the trajectory smoothness cost function,
and fd is the distance function between the penalized
bootstrap path and the global trajectory B-spline. f is
defined as follows:

N-p,+1

ﬁ = Z dl'S”Qi_Zine(QileHl)

i=p,—1

5 (16)

where Q, Q,  is a straight line that connects the
control points Q _, and Q, ; the above equation
represents the distance between minimizing Q, to
the straight line Q_Q, . In Figure 9(a), the pre-op-
timization B-spline trajectory is presented, showing
the seven control points Q,, Q,, .., Q.. Currently, the
trajectory exhibits a greater curve at control point
Q, and lacks smoothness. The spikes in the B-spline
trajectory occur because of the substantial distance
between Q, and the straight line(Q3Q5 ) . To provide
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Figure 9

(a) There is alarge distance between Q, and the straight
Q; Q.. (b) The distance between the optimized Q,’ and the
straight Q, Q, is reduced

a smooth and gentle trajectory, the curve in Figure
9(b) is optimized, which results in the selection of the
optimum control point Q,'. At present, the distance
from the straight line (Q3Q5 ) is decreased, leading to
areduction in curvature. Consequently, the optimized
trajectory exhibits greater smoothness and seamless-
ness compared to the trajectory prior to optimization.

Giventhat a B-spline’s shape is determined by its con-
trol points, steering the global path into free space re-
quires aligning the B-spline’s control points as close-
ly as possible with the geometric steering trajectory.
Figure 8(a) illustrates the assignment of an associat-
edpoint G, onthebootstrap path to each control point
Q, onthe B-sample. The points G, are evenly sampled
on the bootstrap path. f, is defined as the sum of the
Euclidean distances between Q,and G :

N-p, 5 )
fi=21Q -G a”

i=py

Figure 8(a) illustrates the optimal global B-spline
trajectory (blue) achieved by the geometric bootstrap
path (yellow). This trajectory results in a warm-up
trajectory (green), during which the trajectory moves
away from the utility pole barrier toward free space.
Nevertheless, this trajectory is not yet optimal and
necessitates a secondary stage of optimization.

4.4. B-spline Optimization

During the second stage of optimization, the objec-
tive is to further refine the preliminary trajectory into
a smooth, safe, and dynamically feasible one. To this
end, the overall cost function is formulated accord-
ing to the control points, convex hull, and derivative
properties of the B-spline trajectory:
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oz =2, fs+ Dacf o+ 2oy (S, + 1,)- 18)

The cost functions f and f represent the trajectory
smoothness and collision costs, respectively. More-
over, f, and f are cost functionsrelated to UAV veloc-
ity and acceleration, respectively, whereas 4, , 4, , and
4,, denote the respective weights of these three cost
functions. The cost function fs is defined similarly to
Equation (14), as optimized in the first stage.

The definition of f’ is as follows:

N-p

f=2L(d(Q)) 19)

i=p

L,(d(Q))= {2 (a(@)-d) o= (20)
0

d(Ql) > dthr .

The variable d (Q,) represents the distance between
the control point Q, of the obstacle avoidance tra-
jectory and the closest orchard utility pole obstacle.
L (d(Q,)) is a function that is divided into segments
based on d (Qi ), and dthr is a specified threshold for the
minimum distance from the control point to the clos-
est obstacle of an orchard utility pole. If the distance
between the control point Q, and the utility pole is be-
low the specified threshold, the trajectory is adjusted
to maximize the movement away from the utility pole.
Figure 10 depicts the initial trajectory in red, which is
in close proximity to the utility poles. By contrast, the
enhanced track in green is noticeably distant from the

Figure 10

Property of convexity in B-spline packets. The initial
trajectory exhibits proximity to the obstacle, whereas the
improved trajectory’s convex envelope resides outside the
impediment, guaranteeing safety

Start Point
End Point

Control Point

'ﬁ Telegraph Pole

Initial Trajectory

Optimized Trajectory
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utility pole obstacles. Because of the B-spline’s convex
packet nature, the convex packet is outside the obstruc-
tion, guaranteeing the safety of the trajectory.

Given that the derivative of a B-spline curve remains
a B-spline curve, the control points V, and A, for the
derived velocity and acceleration B-spline curves, re-
spectively, can be expressed as follows:

V. = Qi+1 _Qi ‘IH-] V

i i @D
At At
The definitions of f and f areas follows:
N-p,
/= Z z (22)
XY Z}l =Pb-1
N-py

/e Z DL, @3)

uexyztpbz

L ( (v -V ) v, >vmax, o
0 v, v
2
— >
L(4,)= (4, -a..) “ am; (25)
0 a <a

where v and a, represent the velocity and acceler-
ation in a single dimension of the UAYV, respective-
ly. v and a_ , respectively, signify the maximum
linear velocity and acceleration in that dimension.
Should the UAV’s current velocity and acceleration
exceed its dynamic limits, these aspects are opti-
mized to remain below these thresholds. Following
the second stage of optimization, as shown in Figure
8(b), the global B-spline trajectory diverges from the
utility pole, moving toward a safe area in free space,
which results in a trajectory that is smooth and meets
dynamic requirements.

5. Simulation Experiment

5.1. Simulation Environment and System
Construction

To validate the effectiveness of our proposed meth-
od, a lemon orchard simulation environment was
established using the Gazebo software package, with
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the simulated UAV controlled via ROS. The simula-
tion environment, depicted in Figure 11, features a
blue sky with white clouds, lemon trees, grass, utility
poles, and a simulated UAV. The simulation UAV uti-
lizes the Iris UAV model, with its nose equipped with
a RealSense depth camera module to capture RGB-D
images of the environment. The lemon orchard simu-
lation consists of seven rows of lemon trees, with each
row containing varying numbers of trees. The spacing
between trees in each row ranges from 2.5 m to 4 m,
with a 6-m interval between rows. Four utility poles,
serving as obstacles, are strategically positioned in
the second, third, and sixth rows. Specifically, to as-
sess the UAV’s performance in continuous obstacle
avoidance, two poles are consecutively placed among
the fruit trees in the sixth row.

Figure 11

Alemon orchard simulation environment was constructed
in Gazebo, featuring lemon trees, utility poles, and Iris
drones. Subpanels (a)-(c) depict various angles of the
simulation environment. Subpanels (d)-(e) show close-up
details of the lemon orchard trees and Iris drones

© (@

Figure 12 displays the overall block diagram of the
simulation system. The sensing and mapping sub-
system captures the depth image information with-
in the lemon orchard simulation environment and
merges this information with the simulated UAV’s
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Figure 12
Simulation system framework
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position data in Gazebo to create a grid map, which
is subsequently visualized in Rviz. The path plan-
ning subsystem identifies a collision-free trajectory
using the current UAV position and the constructed
map, thereby generating control commands for nav-
igating this trajectory. These control commands are
relayed to the simulation system’s PX4 firmware via
MAVROS communication. Finally, the PX4 firmware
produces the fundamental control instructions to pi-
lot the simulated UAYV, enabling it to perform obstacle
avoidance simulation tasks.

5.2. Simulated Flight Experiment

In the lemon orchard simulation environment, the
flight path, as illustrated in Figure 13, includes 14
path points. These points are positioned 3.5 m above
the center of each column of the head and tail lemon
trees and are sequentially connected to form the ini-
tial flight path. The UAV is programmed to take off
from the starting point, maintaining a flight altitude
of 3.5 m and a maximum speed of 1 m/s. The UAV fol-
lows the initial flight path, which spans a distance of
306.43 m. The orientation of the fruit tree columns
aligns with the X-axis, whereas the rows of fruit trees
align with the Y-axis. In this simulation, the Iris UAV
is equipped with a depth camera to capture the depth
images of the simulated lemon orchard and utilize its
positional data to create a grid map of the orchard.

Figure 14 displays various flight states during the ex-
ecution of the operation path by the simulated UAV.
In each subpart, the leftmost image displays the depth
and RGB images captured using the UAV from the
front. The image in the middle depicts the UAV’s flight
scenario in the Gazebo simulation. The rightmost im-
age shows the UAV’s flight trajectory along the estab-
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Figure 13
UAV flight paths in simulated environments
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Figure 14

The UAV exhibits four distinct states during the simulated
flight: (a) executing an operational path flight; (b) detecting
obstacles on the path; (¢) navigating an obstacle avoidance
path; and (d) successfully completing the obstacle
avoidance task
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lished occupancy grid map of the lemon orchard in
Rviz. In Figure 14, the UAV follows a predetermined
flight path, initially flying above a column of lemon
fruit trees, as illustrated in Figure 14(a). Subsequent-
ly, obstacles are detected on the path ahead, as de-
picted in Figure 14(b), leading the UAV to execute the
obstacle avoidance maneuver shown in Figure 14(c).
This maneuver culminates in the UAV successfully
bypassing the obstacles, as shown in Figure 14(d).

For performance comparison, our proposed algorithm
and the ego-planner [44] were tested under identical
flight parameters. The simulated UAV was set to fly at
an altitude of 3.5 m with a maximum speed of 1 m/s,
following a predetermined path. The comparison
covered various parameters, including the flight dis-
tance, flight time, average deviation from the original
path, three-axis linear velocity, and maximum and
average yaw angular velocities. Table 1 presents the
values of these parameters for both methods during
the simulated flight.

Figure 15 shows a comparison of the flight trajectories
of the proposed algorithm, the ego-planner, and the
originally set path. The proposed algorithm covers a
flight distance of 311.36 m, takes 333.54 s, and reaches a
maximum speed 0of1.279 m/s. By contrast, the ego-plan-
ner covers adistance of 302.87 m, requires 352.80 s, and
attains a maximum speed of 1.270 m/s. Thus, while ad-
hering to the UAV’s maximum dynamic requirements,
the proposed algorithm demonstrates higher opera-
tional efficiency compared to the ego-planner.

Moreover, as presented in Figure 15(b), the ego-plan-
ner’s strategy involves a decrease in UAV flight alti-
tude during obstacle avoidance. This algorithm is not
viable for plant protection UAV operations in lemon
orchards due to its adverse impact on the efficacy of
fog droplet deposition. Consequently, the algorithm
results in inconsistent deposition on the fruit trees
before and after the obstacle [31]. The average de-
viation of the proposed algorithm’s flight trajectory

Table 1
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Figure 15

Comparison of the three trajectories. The proposed method
trajectory is shown in blue, the ego-planner trajectory is
shown in red, and the original trajectory is shown in green. (a)
Trajectory in the X-Y plane. (b) Three-dimensional trajectory
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from the original path is 2.77 m, whereas that of the
ego-planner is 3.08 m, which indicates a closer fit of
the proposed algorithm to the original path.

Furthermore, Figure 15(a) demonstrates that the pro-
posed algorithm’s trajectory deviation when avoiding

Comparison of the parameters of the proposed method with the ego-planner in the Gazebo simulation flight

Method Distance (m) Time (s)
Proposed 311.36 333.54
ego 302.87 46767

Average deviation Max yaw angular | Average yaw angular
(m) velocity (rad/s) velocity (rad/s)
277 1.001 0.078
3.08 3.348 0.067
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obstacles is smaller than that of the ego-planner. In
the context of plant protection UAV operations, where
the original paths traverse the center of the fruit trees,
a better alignment of the flight trajectory with these
paths leads to minimal droplet offset. Moreover, this
alignment results in reduced pesticide drift to adja-
cent fruit trees [10].

To analyze flight stability, we examine three key pa-
rameters: triaxial linear velocity, maximum yaw
angular velocity, and average yaw angular velocity.
Figure 16 illustrates the time-based graphs of triax-
ial velocities for both the proposed algorithm and
the ego-planner. The proposed algorithm’s velocity
change curve is smoother than that of the ego-plan-
ner. The ego-planner’s velocity change curve exhibits

Figure 16
Three-axis velocity profiles in the Gazebo simulation
flight. (a) Proposed method. (b) Ego-planner
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spikes, which indicate considerable variations in UAV
speed over briefintervals. In an orchard environment,
frequent acceleration and deceleration within brief
periods can result in substantial fluctuations in UAV
flight. Such fluctuations can lead to increased unnec-
essary energy consumption and are unfavorable for
efficient UAV operations in agriculture [37].

The ego-planner’s maximum acceleration reaches 0.9
m/s2, whereas the proposed algorithm’s maximum
acceleration is limited to 0.27 m/s2. The proposed
algorithm exhibits a maximum yaw angular velocity
0f 1.001 rad/s and an average yaw angular velocity of
0.078 rad/s. By contrast, the ego-planner has a maxi-
mum yaw angular velocity of 3.348 rad/s and an aver-
age of 0.067 rad/s. The considerably lower maximum
yaw angular velocity of the proposed algorithm com-
pared to that of the ego-planner implies that the plant
protection UAV will not undergo drastic steering ma-
neuvers. In particular, in orchard environments, ex-
cessive yaw angular velocities can result in unstable
control, thereby influencing the coverage and unifor-
mity of applications [1].

The analysis of the simulation flight results indi-
cates that the proposed algorithm outperforms the
ego-planner in terms of flight operation efficiency,
obstacle avoidance effectiveness, and flight stability.
Specifically, the proposed algorithm achieves a 28.7%
reduction in the flight time, a 10.1% decrease in the
deviation from the original path, and a 70.1% reduc-
tion in the maximum yaw angular velocity.

6. Flight Experiment

This section details the UAV flight hardware plat-
form, the UAV flight experiment carried out in alem-
on orchard, and the subsequent analysis of the exper-
imental results.

6.1. UAV Flight Hardware Platform

The X500 (v2, Holybro, China) development kit was
selected as the drone platform due to its affordability,
lightweight design, and robustness as a professional
carbon fiber drone kit. The kit includes motors (2216
KV920, Holybro, China), an ESC (BLHeli S, Holybro,
China), propellers (1045, Holybro, China), a switch-
board (XT30 Pre-soldered, Holybro, China), and a
GPS module (M9N, Holybro, China), along with a



Information Technology and Control

depth camera mount, all of which facilitate easy devel-
opment on the platform. The MON GPS system boasts
a measurement accuracy of 1.5 m CEP and a naviga-
tion update frequency of 25 Hz. Our research em-
ployed a depth camera (Realsense D455, Intel, Amer-
ica) that offers a depth detection range from 0.6 m to
6 m and a depth image output at a frame rate of 90 fps.
The depth technology of the Realsense D455, based on
stereoscopy, is well-suited for outdoor applications,
offering reliable data across varying weather lighting
conditions, diverse crop growth stages, and obstacle
densities [8]. The algorithms operate on an onboard
computer (NUC11TNKv7, Intel, America), powered
by an Intel 11th i7 processor. Its compact size, light-
weight, and high performance make it ideal for UAV
integration. Equipping a UAV with GPS, depth cam-
eras, and on-board computers incurs a cost of $950, a
figure that represents a cost-effective deployment rel-
ative to obstacle avoidance solutions utilizing LIDAR
sensors. This setup, suitable for agricultural environ-
ments, seamlessly integrates into existing agricultural
UAV platforms. In terms of power supply, the selected
battery (4 s-5300 mAh, Gens, China) offers approxi-
mately 10 minutes of UAV endurance.

Figure 17 illustrates our comprehensive hardware
system, wherein the depth camera and GPS module
transmit the depth images and position information
of the UAV to the onboard computer. The sensing and
mapping subsystem and the path planning subsystem
operating on the onboard computer process this in-
formation to construct an environmental map, devel-
op an obstacle avoidance trajectory, and relay flight
control commands to the flight controller via MAV-
ROS communication. A laptop computer, designated
as the ground station, monitors the onboard com-

Figure 17
Comprehensive hardware system
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puter’s operations and controls it via remote control
software. The ground station communicates with the
onboard computer via the same Wi-Finetwork.

6.2. Real-flight Experiment

Figure 18 presents the setup of the UAV flight hard-
ware platform at the experimental site. This setup
includes the integrated UAV flight platform, a laptop
ground station, a mobile Wi-Fi module (3Pro, Hua-
wei, China), and a remote control (AT9S Pro, Radio-
Link, China). Prior to obtaining the path point loca-
tion information, preliminary data collection at the
site is required. This process involved measuring the
distances between lemon tree columns, the distances
between rows, and the height of the lemon trees in the
experimental area, as shown in Figure 19.

Figure 18
Laboratory equipment in the lemon orchard experiment

As illustrated in Figure 20, the flight path for the lem-
on orchard experiment involves 10 path points, akin
to the Gazebo simulation environment. These points
are positioned approximately 3 m above the center of
the lemon trees at both ends of each row, linked se-
quentially to form the initial flight path. The experi-
ment was conducted on September 18, 2023, under
clear weather conditions, with the UAV flying at an
altitude of 3 m. The UAV initiated its flight from the
starting point, following the predefined initial path of
224.33 m. The direction of the fruit tree rows aligns
with the X-axis, whereas the columns align with the
Y-axis. Equipped with a depth camera, the UAV cap-
tures the depth images of the lemon orchard and,
combined with its own localization data, generates a
grid map of the area.
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Figure 19

Process of gathering information about the lemon
orchard to determine path point locations. (a) Measuring
the distance between columns of the lemon trees. (b)
Measuring the distance between rows of the lemon trees.
(¢) Assessing the height of the lemon trees

(b) (©

Figure 20

Three-dimensional path of plant protection drones
operating in the orchard; there are electric poles on the
operation path, which pose a security threat to the drones
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Figure 21 depicts the multiple flight states of the UAV
as it carries out the operational path. In each subpart,
the leftmost image shows the real-time depth and
RGB images captured using the depth camera. The
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image in the middle shows UAV’s flight over the lemon
orchard. The rightmost image depicts the UAV’s flight
trajectory along the established occupancy grid map
of the lemon orchard in Rviz. Similar to the simula-
tion flight of UAVS, the experimental UAV deployed in
the lemon orchard must undergo four distinct flight
states while conducting the predetermined flight tra-

Figure 21

There are four distinct flight states of the UAV in the lemon
orchard experiment: (a) executing an operational path
flight; (b) detecting obstacles on the path; (¢) navigating an
obstacle avoidance path; (d) successfully completing the
obstacle avoidance task
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jectory. As shown in Figure 21(a), the UAV flies above
the lemon tree canopy. Figure 21(b) illustrates the de-
tection of a utility pole obstacle ahead, signaling the
UAV’s readiness to initiate obstacle avoidance. In Fig-
ure 21(c), the UAV commences its obstacle avoidance
maneuver around the utility pole. Figure 21(d) illus-
trates the UAV completing the obstacle avoidance
maneuver, successfully bypassing the utility pole.
Thus, as demonstrated in Figure 21, the proposed
method ensures the UAV’s safe flight in the actual en-
vironment of a lemon orchard.

To evaluate the performance of our proposed method,
the ego-planner algorithm was executed using identi-
cal flight parameters. The comparison encompasses
several aspects: flight distance, flight time, average
deviation from the original path, three-axis linear
velocity, maximum yaw angular velocity, and aver-
age yaw angular velocity. Table 2 details the values of
these parameters for both methods in the real lemon
orchard flight experiment.

In the real experiment, the proposed algorithm cov-
ered a distance of 226.53 m, consumed 244.44 s of
flight time, and reached a maximum speed of 1.29 m/s.
The ego-planner, conversely, flew 220.90 m, took
25713 s, and achieved a maximum speed of 1.17 m/s.
Therefore, the proposed algorithm, while adhering
to the maximum kinetic speed constraints, operates
more efficiently in the lemon orchard environment
than the ego-planner.

Figure 22 presents a comparison of the flight trajecto-
ries in the real lemon orchard experiment, including
those of the proposed algorithm, the ego-planner, and
the originally set path. Figure 22(b) illustrates the
ego-planner engaged in obstacle avoidance, where
the UAV exhibits the same drop in altitude observed
during the simulation. The average deviation of the
proposed algorithm’s flight trajectory from the orig-
inal path is 2.90 m. By contrast, the ego-planner’s
average deviation is 3.18 m, indicating that the pro-

Table 2
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Figure 22

Comparison of the three trajectories in the lemon orchard
flight experiment. The proposed method trajectory is shown
in blue, the ego-planner trajectory is shown in red, and the
original trajectory is shown in green. (a) Trajectories in the
X-Y plane. (b) Three-dimensional trajectories
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Comparison of the parameters of the proposed method with the ego-planner in the real lemon environment flight experiment

Method Distance (m) Time (s)
Proposed 226.53 24444
ego 220.90 338.55

Average devia- Max yaw angular Average yaw angular
tion (m) velocity (rad/s) velocity (rad/s)
2.90 1.545 0.068
3.18 3.523 0.059
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posed algorithm has a more precise alignment with
the original path in the real lemon orchard environ-
ment. Similarly, as in the simulated flight, Figure
22(a) shows that the proposed algorithm’s trajectory
deviation when avoiding obstacles is less than that of
the ego-planner.

Figure 23 displays the three-axis linear velocity ver-
sus time graphs for both the proposed algorithm and
the ego-planner in the real lemon orchard experi-
ment. These graphs illustrate that the proposed al-
gorithm features smoother velocity change curves
in comparison to those of the ego-planner. The

Figure 23
Three-axis velocity profiles of the flight experiment at the
lemon orchard. (a) Proposed method. (b) Ego-planner
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ego-planner’s velocity change curves exhibit spikes,
with a maximum acceleration of 0.9 m/s? which in-
dicates drastic velocity changes over short intervals.
This results in additional energy consumption during
the flight of heavily loaded plant protection UAVs.
The proposed algorithm’s maximum acceleration is
limited to 0.27 m/s? and its velocity change is smooth,
aligning with the flight requirements of plant protec-
tion UAVs. Furthermore, the proposed algorithm ex-
hibits a maximum yaw angular velocity of 1.545 rad/s
and an average yaw angular velocity of 0.068 rad/s.
Conversely, the ego-planner’s maximum yaw angu-
lar velocity reaches 3.523 rad/s, with an average of
0.067 rad/s. Although the proposed algorithm’s av-
erage yaw angular velocity is marginally higher than
the ego-planner’s, its maximum yaw angular velocity
is substantially lower. This aligns with the simula-
tion results, indicating that the proposed algorithm
ensures less intense steering in a real lemon orchard
environment. As a result, the smoother steering con-
tributes to the flight stability of heavily loaded plant
protection UAVs.

The analysis of the lemon orchard flight results in-
dicates that the proposed method outperforms the
ego-planner in terms of flight operational efficiency,
obstacle avoidance effectiveness, and flight stability
in a real orchard environment. Specifically, the pro-
posed algorithm achieves a 27.8% reduction in the
flight time, an 8.8% decrease in the deviation from the
original path, and a 56.1% reduction in the maximum
yaw angular velocity. The results from the lemon or-
chard flight experiment show slight variances when
compared with the simulation flight experiment.
Overall, the proposed method demonstrates satisfac-
tory performance for the safe operation of plant pro-
tection UAVs in actual lemon orchard scenarios.

7. Conclusion

This study proposed a novel UAV obstacle avoidance
system specifically designed for lemon orchards. The
system comprises two main components: a sensing
and mapping subsystem utilizing a depth image in-
verse projection algorithm and a path planning sub-
system based on B-spline curve trajectory optimi-
zation. To evaluate the performance of the proposed
system within a lemon orchard environment, a sim-
ulated lemon orchard environment was constructed,
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and corresponding simulation experiments were con-
ducted. The simulation experiments demonstrate that
the average deviation of the flight trajectory from the
original path is 2.77 m. Moreover, the maximum yaw
angular velocity recorded is 1.001 rad/s, with an aver-
age yaw angular velocity of 0.078 rad/s. Furthermore,
the obstacle avoidance system was integrated into the
UAY, and a UAV flying platform was constructed to
conduct on-site flight experiments in an actual lem-
on grove. The field experiments demonstrate that the
flight trajectory deviates from the original course by
an average of 2.90 m. The maximum yaw angular ve-
locity is 1.545 rad/s, whereas the average yaw angular
velocity is 0.068 rad/s, proving its effectiveness.

Both simulation and field experiments demonstrate
that our proposed algorithm equips plant protection
UAVs with the capability to effectively navigate ob-
stacles in unstructured lemon orchards, ensuring
a stable flight process and the safe operation of the
UAVs. This research offers a technical solution for the
autonomous flight of planting UAVs in precision ag-
riculture, particularly in lemon orchards. It enhances
the intelligent operational capabilities of these UAVs
and diminishes the risk of crashes, thereby safeguard-
ing the economic interests of orchard farmers. Con-
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