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At present, deep learning techniques are increasingly utilized in computer vision and anomaly detection. To ad-
dress the limitations of inadequate reconstruction capability and subpar performance in reconstruction-based 
anomaly detection, this study enhances the existing algorithm and introduces an unsupervised anomaly detec-
tion of industrial images algorithm based on dual generator reconstruction networks-DGRNet. The network 
consists of two generators and a discriminator, introducing a widely recognized denoising diffusion probabi-
listic model (DDPM) as one of the generators, an autoencoder (AE) as the other generator, and a decoder as 
the discriminator. The model is tested on the MVTec AD dataset, and in the case of no additional training data, 
the anomaly detection AUC result of DGRNet exceeds the baseline method based on reconstruction by 19.6 
percentage points. The experimental results show that DGRNet can improve the detection performance in the 
anomaly detection algorithm based on unsupervised and reconstructed networks.
KEYWORDS: Anomaly detection, unsupervised learning, Denoising Diffusion Probabilistic Model (DDPM), recon-
struction-based network, autoencoder.
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1. Introduction
Anomaly detection is an important branch of machine 
learning, a technology for detecting abnormal situa-
tions and mining illogical data and is widely applied 
in different fields such as credit card fraud, insurance 
or healthcare, cybersecurity intrusions, safety-criti-
cal systems, industrial big data, abnormal behaviors, 
image, and video processing. In image anomaly detec-
tion, there are mainly three aspects of applications, 
namely defect detection, medical image analysis, and 
hyperspectral image processing. Early anomaly de-
tection was mostly applied in the field of data mining, 
and relatively traditional algorithms were used. Tra-
ditional algorithms are generally supervised learning 
methods, which can be divided into three categories: 
similarity measure-based, statistical, and probabili-
ty-based, and linear model-based [9].
In recent years, with the rapid development of deep 
learning methods, anomaly detection has been intro-
duced to the field of image processing to solve problems 
such as target detection which has rare sample [11]. In 
anomaly detection tasks, it is usually difficult to obtain 
well-labeled anomalous samples, so the research on 
unsupervised anomaly detection in deep learning had 
received more attention. Among unsupervised anom-
aly detection algorithms, reconstruction-based algo-
rithm is a natural idea. This kind of algorithms gener-
ally include algorithms based on Autoencoders (AE) 
[16] and Generative Adversarial Networks (GAN) [7], 
as well as algorithms that combine AE and GAN. In the 
case of AE-based algorithms, during the training stage, 
only normal samples are used and during the inference 
stage, the difference between the normal image and its 
reconstructed image is very small, while the difference 
between the abnormal image and its reconstructed im-
age is large, and the size of the difference can be used 
to judge whether the image is abnormal. Mei et al. [12] 
reconstructed images by dividing them into blocks and 
used denoising AE to locate anomalies in texture im-
ages. GAN, as a generation network, can reconstruct 
clearer images in algorithms based on GAN. AnoGAN 
was proposed by Schlegl et al. [19], which directly uti-
lizes GAN iterative optimization to reconstruct im-
ages. However, the main problem of this method is its 
time-consuming during model inference. To solve this 
issue, EBGAN [23] and other models were proposed. 
Xiao Du et al. introduced a correction branch to mod-
ify the original reconstruction results obtained from 
the reconstructed network during the test to solve the 

problem that it is difficult to distinguish small anom-
alies in the reconstruction-based network [5]. Zhou 
et al. proposed to reconstruct the image by leveraging 
the structure-texture correspondence [24]. Farady 
et al. proposed Hierarchical Image Transformation 
and Multi-level Features (HIT-MiLF) modules for an 
anomaly detection network to adapt to perturbances 
from novelties in testing images [6]. In the algorithms 
combining AE and GAN, a discriminator is added after 
the AE, which is used to distinguish between the re-
constructed image and the input image. During train-
ing, adversarial training is adopted to enhance the 
reconstruction ability. The ALOOC model proposed 
by Sabokrou et al. [17], the ALOOC model consists of 
two parts: a denoising auto-encoder and a convolu-
tional neural network classifier. These two networks 
work together to improve the performance of anom-
aly detection. The GANomaly [1] network structure 
includes a generator and a discriminator, where the 
generator is in the form of an encoder-decoder-encod-
er. It judges whether the input image is an abnormal 
sample by comparing the potential information of the 
input image and the reconstructed image. Building on 
GANomaly, the Skip-GANomaly [2] model was pro-
posed, which adds a skip connection structure to en-
hance the model’s reconstruction ability. However, this 
model still has the potential to miss detections. When 
performing surface defect detection, some small-scale 
defects are easily reconstructed, resulting in small ab-
normal scores, thereby causing missed detections.
For the past few years, diffusion model (Denoising 
Diffusion Probabilistic Model, DDPM) is emerging 
as an unsupervised generative model is a type of un-
supervised generative mode. It was first proposed in 
2015, but only proposed adding noise to data through 
a Markov chain during the diffusion process, as well as 
learning how to reconstruct from noise to data sam-
ples [20]. In 2020, DDPM was implemented and grad-
ually became a new hotspot in the generation field [8], 
demonstrating its powerful generation capabilities, 
and Dhariwal proved that DDPM can surpass GAN [4]. 
In the recent wave of AI painting in the field of com-
puter vision, DDPM played a crucial role. In popular AI 
painting models, OpenAI’s DALL·E2 [13] can generate 
high-definition images just by inputting text; Google’s 
Image [18] is also an AI painting model that can gen-
erate images that meet requirements through text de-
scriptions; Stability AI’s Stable Diffusion [14] is also 
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such a model, and the generated images can already 
be used commercially. These models all demonstrate 
the powerful image generation capabilities of DDPM. 
In the field of anomaly detection, AnoDDPM [22] im-
proved DDPM by replacing Gaussian noise with multi-
scale simplex noise to capture abnormal areas, without 
the need for stable training on large datasets. Although 
the algorithm based on DDPM is not perfect for anom-
aly detection tasks, DDPM’s powerful generative 
ability is helpful in the field of anomaly detection. We 
can utilize the powerful generative ability of DDPM 
to improve the reconstruction ability of reconstruc-
tion-based networks in anomaly detection.
The proposed algorithm in this paper is an unsuper-
vised anomaly detection algorithm based on recon-
struction. To enhance the reconstruction capability of 
the network model, this paper proposes an unsuper-
vised image anomaly detection algorithm based on a 
dual-generator reconstruction network DGRNet, and 
experiments on industrial images. The algorithm in-
cludes two generators, a DDPM generator and an AE 
generator, and improvements are made to both genera-
tors. Each generator reconstructs the input image, and 
the final reconstructed image is obtained by fusing the 
features of the two generators. Finally, it is input into a 
discriminator network for anomaly detection.

2. Methods
2.1. Overview
The proposed in this paper aims to enhance the per-
formance of anomaly detection algorithms based on 
reconstruction. Compared with existing reconstruc-
tion-based networks, the network proposed in this 
paper has two generators. The overall structure of the 
network includes two generators and a discriminator, 
one generator is DDPM, another generator is AE, and 
a decoder as the discriminator. The generation effect 
of AE on industrial dataset is not very good, especial-
ly when conducting surface defect detection. Some 
small-scale defects are easily reconstructed, result-
ing in a small anomaly score, thereby causing missed 
detection. This paper improves AE by adding atten-
tion modules in the encoder of AE, and adding a Skip 
Connection structure between the last layer of the en-
coder and the decoder. This article takes the popular 
DDPM in the generation model as another generation 
branch, the addition of DDPM improves the ability 
of network generation and the parameterization of 
the noise addition steps in the DDPM diffusion pro-
cess is performed. The overall network structure is 
shown in Figure 1. Images 0x  is put into two genera-

Figure 1 
Overall structure diagram of DGRNet



Information Technology and Control 2024/2/53334

tors, then images 0x′  and image 0x′′  are reconstruct-
ed respectively. Then, the feature fusion of the two 
reconstructed images yields the final reconstructed 
image. Finally, the final reconstructed image is input 
into the discriminator, The latent representation in 
the discriminator is used for training, and the differ-
ence of latent features and the difference between the 
final reconstructed image and the original image 0x
are used to calculate the anomaly score.

2.2. DDPM Generator
DDPM is a powerful generative model that consists 
of two processes: forward diffusion process and in-
verse reconstruction process. The diffusion process 
refers to the process of adding noise to images, while 
the reconstruction is the process of denoising imag-
es from noisy images to clear original images. In the 
diffusion process, given the initial data distribution  
x0 ~ q(x) , noise is continuously added to the distribu-
tion, and the standard deviation of the noise is a fixed 
value, and the mean is determined by the fixed value 
and the current data at time t. This process comes from 
a Markov chain, and as t increases, the final data dis-
tribution TX  becomes an isotropic Gaussian distribu-
tion. The reconstruction process is an inverse diffusion 
process, recovering original data from Gaussian noise. 
However, it is unable to fit the distribution gradually, 
requiring the construction of a parameter distribution 
for estimation. The reconstruction process remains 
a Markov chain, where a U-Net network [15] can be 
trained during the reconstruction process to predict 
the denoising process. As shown in Figure 2, noise is 
added to the input image 0x , which can be completed 
in one step, that is, T steps of noise addition are com-
pleted once. Then, a U-Net network is trained to pre-

  

 
 

The full-length Markov chain diffusion process 
increases the time cost of training. This paper 
proposes an anomaly detection method based 
on reconstruction, which does not require a 
full-length Markov chain. By parameterizing 
noisy steps to time t, the noisy image tx  is 
obtained, and the reconstruction process from 

tx  is started, ultimately the reconstructed 
image 0x  is generated. At the training stage of 
the DDPM generator, train on normal samples, 
and use partially long Markov chains for the 
diffusion process. In the inference stage, 
reconstruct images with added noise, and 

abnormal samples to be reconstructed into 
normal images, normal samples to be 
reconstructed into their original images. Figure 
3 shows the reconstruction results of the 
DDPM generator for the defective leather 
dataset. Figure 3(a) represents the input 
defective original image, Figure 3(b) is the 
reconstructed image of DDPM generator for 
Figure 3(a). Figure 3(c) is the residual image of 
Figure 3(a) and Figure (b). Figure 3(d) is the 
residual heatmap, and Figure 3(e) is the 
ground truth. The defective parts in the image 
can be observed in Figures 3(c)-(d), but they are 
not very prominent. 

Figure3  

Reconstruction result of DDPM generator on leather image 

 
 

 

2.3 AE Generator 
When reconstructing abnormal image samples 

using Autoencoders (AE), it is prone to 
reconstructing the easily abnormal parts. To 
enhance AE's reconstruction capability, a 
CBAM module [21], as shown in Figure 4, was 
incorporated in the encoder. 

 

Figure4  

CBAM module added to the encoder 

(a)input image (b)reconstruction image (c)residual image (d)residual heatmap (e)ground truth

Figure 2 
DDPM Generator

Figure 3 
Reconstruction result of DDPM generator on leather image

dict the noisy image. In each step of the reconstruction 
process, the trained U-Net network is used for denois-
ing, aiming to reconstruct the original image 0x′′  as 
much as possible. During inference, defective images 
can be reconstructed into defect-free images.
The full-length Markov chain diffusion process in-
creases the time cost of training. This paper proposes 
an anomaly detection method based on reconstruc-
tion, which does not require a full-length Markov 
chain. By parameterizing noisy steps to time t, the 
noisy image tx  is obtained, and the reconstruction 
process from tx  is started, ultimately the recon-
structed image 0x′′  is generated. At the training stage 
of the DDPM generator, train on normal samples, and 
use partially long Markov chains for the diffusion pro-
cess. In the inference stage, reconstruct images with 
added noise, and abnormal samples to be reconstruct-
ed into normal images, normal samples to be recon-
structed into their original images. Figure 3 shows 
the reconstruction results of the DDPM generator for 
the defective leather dataset. Figure 3(a) represents 
the input defective original image, Figure 3(b) is the 

(a) input image (b) reconstruction image (c) residual image (d) residual heatmap (e) ground truth



335Information Technology and Control 2024/2/53

reconstructed image of DDPM generator for Figure 
3(a). Figure 3(c) is the residual image of Figure 3(a) 
and Figure (b). Figure 3(d) is the residual heatmap, 
and Figure 3(e) is the ground truth. The defective 
parts in the image can be observed in Figures 3(c)-(d), 
but they are not very prominent.

2.3. AE Generator
When reconstructing abnormal image samples using 
Autoencoders (AE), it is prone to reconstructing the 
easily abnormal parts. To enhance AE’s reconstruc-
tion capability, a CBAM module [21], as shown in Fig-
ure 4, was incorporated in the encoder.

The CBAM module combines channel attention and 
spatial attention, enabling the network to focus more 
on normal image information through the CBAM 
module. In the inference stage, the image with defec-
tive parts can be better reconstructed into a normal 
image. The decoder can reduce the difficulty of recon-
struction through Skip Connection; however, if Skip 
Connection is added to each layer, it will reconstruct 
all defects. To address the issue of all defects being 
reconstructed, this study only adds Skip Connection 
to the bottom layer, thereby making it less likely for 
defects to be easily reconstructed during the recon-
struction process.

Figure 4 
CBAM module added to the encoder

2.4. Feature Fusion

The network structure proposed in this paper includes 
two generators. During inference, the reconstructed re-
sults of the two generators need to be feature fused and 
then input into the discriminator for discrimination. 
Since the semantic information of the corresponding 
channels in the generated results of the two generators 
is similar, direct feature addition is chosen for fusion, 
which can retain more information of the generated 
images and then input them into the discriminator.

2.5. Training

In this paper, a DDPM generator is trained on normal 
data samples. During the training, the input images 
are all normal images, and partial Markov chain is 
used to denoise the images during the forward diffu-
sion process ( )1tq x x − ,
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the parameters   can be learned through the 
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on the normal data samples, followed by 
adversarial training with the discriminator. 
Both training processes are unsupervised. Due 
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the three loss values are weighted and 
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capability, the adversarial loss mentioned by 
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adversarial training with the discriminator. 
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to the contribution of adversarial loss, context 
loss, and latent loss to the training objective, 
the three loss values are weighted and 
combined during training in this paper. 
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advL  and conL  enables the model to generate 
realistic and context-similar images, in order to 
enable the model to reconstruct the potential 
distribution of the normal image from the 
input image x  to be consistent, this paper uses 
the last convolution layer of the discriminator 
D  to extract x and x̂  features to reconstruct 
its potential representation. The loss is denoted 
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The weighted sum of the three losses is taken 
as the total training objective L , as shown in 
formula (7), where, adv , con and lat  are the 
weight parameters: 
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2.6 Inference 
In inference stage, image is input into the 
DDPM generator and the AE generator. After 
entering the DDPM generator, part of the 
Markov chain is used for noise addition during 
the diffusion process. In the reconstruction 
process, the denoised reconstruction is 
performed on the noisy image, allowing the 
original image to be reconstructed with the 

same effect. Defective images are 
reconstructed to be defect-free. Similarly, 
when an image enters the AE generator, a 
reconstructed image is obtained. Two 
reconstructed images are obtained from the 
two generators. These two images are fused by 
feature-wise addition and input into the 
discriminator for image identification by  
calculating the difference between the latent 
representation and the difference between the 
reconstructed image and the original image. 
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2.6. Inference
In inference stage, image is input into the DDPM 
generator and the AE generator. After entering the 
DDPM generator, part of the Markov chain is used 
for noise addition during the diffusion process. In the 
reconstruction process, the denoised reconstruction 
is performed on the noisy image, allowing the orig-
inal image to be reconstructed with the same effect. 
Defective images are reconstructed to be defect-free. 
Similarly, when an image enters the AE generator, a 
reconstructed image is obtained. Two reconstructed 
images are obtained from the two generators. These 
two images are fused by feature-wise addition and 
input into the discriminator for image identification 
by calculating the difference between the latent rep-
resentation and the difference between the recon-
structed image and the original image.

3. Experiments

3.1. Dataset
The network proposed in this paper has been experi-
mented and evaluated on the MVTec AD dataset [3], 
which contains images of industrial production, in-
cluding 5334 high-resolution color images, five cate-
gories of texture images from different fields, and ten 
categories of object structure images. Each category 
consists of a training set and a testing set. The train-
ing set only contains normal samples, while the test-
ing set contains both normal and defective samples. 
The resolution of the images is between 700 and 1024, 
and the resolution of the images is reduced to 256 in 
the experiment. Figure 5 shows an abnormal sample 
of each category of images. The first row represents 
part of the abnormal texture image samples, and the 
second and third rows represent part of the abnormal 
object structure image samples.

3.2. Implementation Details
The AE generator includes an encoder and a decod-
er. In the encoder structure, this paper adds CBAM 
attention module to improve the performance of the 
network, so that the network can pay more attention 
to the normal image information. To retain global and 
local image information, the Skip Connection struc-
ture in U-net network is introduced to enhance the 
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network’s reconstruction capability, but to avoid the 
network to reconstruct more defects, the Skip Con-
nection structure is only added in the last layer of 
the network. During training, set epoch as 50 and the 
batch size as 100, use Adam optimizer [10] to optimize 
the target L, set the learning rate as 32e− , use lambda 
decay, 1 0 5.β = , 2 0 999.β = . The weighted parameters 

advλ , conλ , latλ  of L are selected as 1, 40 and 1 respective-
ly after the experiment.
During the training of DDPM generator, use the 
improved U-Net in Dhariwal et al. [4] to train the 
de-noising model, and use the Adam optimizer for 
training. The learning rate was set as 41e− , the batch 
size was 32, and the epochs was 100. Considering that 
full-length Markov chain diffusion is not required for 
anomaly detection based on reconstruction, the num-
ber of steps is parameterized and the partial length 
Markov chain is used for diffusion.

Figure 5 
Display of defect images in MVTec AD dataset
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3.3. Ablation Study
To evaluate whether the improvement in this paper 
enhances the model’s performance, ablation exper-
iments were conducted on the model. The ablation 
experiments include comparing the SkipGANomaly 
algorithm with no attention mechanism and full Skip 
Connection in the AE generator (Algorithm 1), the AE 
generator algorithm with attention mechanism in the 
encoder and only one layer of Skip Connection (Algo-
rithm 2), and the proposed DGRNet with dual genera-
tors based on Algorithm 2, adding a DDPM generator. 
The results are shown in Tables 1-2; Table 1 shows the 
results for texture images and Table 2 for object images.
The evaluation metric used is the area under the ROC 
curve (AUC). From Table 1, it can be seen the AUC for 
texture images, and from Table 2, it can be seen the 
AUC for object structure images. From these two ta-
bles, it can be seen the improvement of the AE gener-
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Table 1 
Comparison of AUC results of texture images in ablation 
experiments

Category Algorithm 1 Algorithm 2 DGRNet

Carpet 41 42.3 45.2

Grid 47.7 76.9 69.3

Leather 60.9 65.3 64.2

Tile 29.9 74.6 72.1

Wood 19.9 57.5 56.9

avg. textures 39.5 63.3 61.5

Table 2 
Comparison of AUC results of object structure images in 
ablation experiments

Category Algorithm 1 Algorithm 2 DGRNet

Bottle 52.7 46.4 56.9

Cable 48.1 64 55.2

Capsule 50 57 61.9

Hazelnut 24.5 64.9 51.9

Metal Nut 33.7 51.4 52.1

Pill 34.8 40 51.5

Screw 46.4 18.3 89.9

Toothbrush 55.6 42.5 58.6

Transistor 48.5 55.6 61.8

Zipper 47.6 53.3 51.9

avg. objects 44.2 49.3 59.2

ator significantly outperforms the baseline network 
SkipGANomaly algorithm. The detection results on 12 
category datasets have been improved. The DGRNet in 
this paper outperforms Algorithm 2, especially show-
ing significant improvement on the dataset of object 
structure type, demonstrating the strong generation 
and reconstruction capabilities of the DDPM gener-
ator for image of object structure type. The average 
AUC of the three algorithms for the MVTecAD data set 
is 42.6, 55, 60 respectively. It can be seen from the re-
sults of the ablation experiment that the improvement 
of the network structure in this paper is very useful to 
improve the performance of the network.

3.4. Experiments Results
The model was evaluated using AUC, which is a per-
formance metric for assessing anomaly detection, 
the value of AUC ranges from 0.1 to 1.0, A higher val-
ue indicates better model performance. In this study, 
we compared DGRNet with AnoGAN, GANomaly 
and SkipGANomaly models. The results are shown 
in Tables 3-4. We divided the dataset into two cat-
egories: texture and object structure, Table 3 is the 
results for texture images and Table 4 is for object 
structure images. On average, the model proposed in 
this study outperforms the other network models in 
both texture and object structure datasets. The aver-
age AUC of the AnoGAN, GANomaly, SkipGANoma-
ly and DGRNet models for the MVTecAD data set is 
40.4, 42.1, 42.6 and 60, respectively. It can be seen that 
DGRNet in this paper is 19.6 percentage points higher 
than the baseline network. Furthermore, the DGRNet 
model exhibits more stable performance across the 
fifteen category datasets.

Table 3 
AUC results of GANomaly, SkipGANomaly, and the model DGRNet in this paper of texture images in MVTec AD dataset

Category AnoGAN[19] GANomaly[1] SkipGANomaly[2] DGRNet

Carpet 20.4 20.3 41 45.2

Grid 22.6 40.4 47.7 69.3

Leather 37.8 41.3 60.9 64.2

Tile 17.7 40.8 29.9 72.1

Wood 38.6 74.4 19.9 56.9

avg. textures 27.4 43.4 39.5 61.5
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Table4 
AUC results of GANomaly, SkipGANomaly, and the model DGRNet in this paper of object images in MVTec AD dataset

Category AnoGAN[19] GANomaly[1] SkipGANomaly[2] DGRNet

Bottle 62 25.1 52.7 56.9

Cable 38.3 45.7 48.1 55.2

Capsule 30.6 68.2 50 61.9

Hazelnut 50 53.7 24.5 51.9

Metal Nut 32 27 33.7 52.1

Pill 62 47.2 34.8 51.5

Screw 35 23.1 46.4 89.9

Toothbrush 57 37.2 55.6 58.6

Transistor 54.9 44 48.5 61.8

Zipper 46.7 43.4 47.6 51.9

avg. objects 46.9 41.5 44.2 59.2

Taking the leather dataset as an example, Figure 6 
displays the reconstruction results of DGRNet mod-
el on the leather dataset. Figure 6(a) represents the 
input defective original image, Figure 6(b) is the re-
constructed image for Figure 6(a), Figure 6(c) is the 
residual image of Figures 6(a)-(b). Figure 6(d) is the 
residual heatmap, and Figure 6(e) is the ground truth. 
The defective parts in the image can be observed in 
Figures 6(c)-(d). Compared Figure 3 that with the re-

Figure 6 
Reconstruction results of leather dataset through DGRNet model

construction results obtained only using the DDPM 
generator mentioned above. It can be observed that 
the detection effect of the proposed network is more 
significant, with the defective parts being recon-
structed closer to normal images. The residual heat-
map also more clearly reveals the previously defective 
abnormal regions. When compared with the true la-
bels, the results are closer to the true labels, indicat-
ing that the proposed method can effectively recon-
struct the image more efficiently.

(a) input image (b) reconstruction image (c) residual image (d) residual heatmap (e) ground truth
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4. Conclusion
The proposed dual-generator reconstruction net-
work in this paper is a novel algorithm based on the 
reconstruction network and has been experimented 
on industrial images. This algorithm is an unsuper-
vised method consisting of two generators and a dis-
criminator. One of the generators utilizes the power-
ful generation capability of the DDPM to enhance the 
reconstruction ability of the reconstruction network, 
while the other generator is an AE with Skip Connec-
tion and attention mechanisms to improve its gener-
ation capability. The DDPM has recently been gar-
nering attention but has not been widely applied in 
the field of industrial image anomaly detection. This 
network applies DDPM to the field of anomaly detec-
tion, leveraging its powerful generation capability. In 
this paper, two generators are used to reconstruct the 
input image and the reconstructed images of the two 
generators are fused to improve the generating abili-
ty of the network. The algorithm has been verified on 
the MVTec AD dataset, showing significant improve-
ments compared to the baseline network’s detection 
results on the same dataset.
Due to the lack of computing power in the experimen-
tal environment, the number of iterations and the 

training batch size set in the experiment of training 
DDPM generator are small, so the generation ability 
of DDPM may not be fully developed, and there is still 
a certain gap between the results of the best industrial 
image anomaly detection algorithms. In the following 
work, DDPM generator will be further improved to 
give full play to its generation ability and improve its 
training speed. Relevant experiments also have done 
on other data sets, such as breast ultrasound data set, 
but the results are not very satisfactory, which may be 
related to the low quality of ultrasound images them-
selves. After that, image preprocessing and network 
structure optimization may improve the detection 
performance on this kind of data set. On the data set 
of fabric texture class, the performance is very good, 
and it can be applied to fabric defect detection in the 
future, but the detection effect on object structure im-
ages is significantly improved. The next step will also 
be to improve this problem.
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