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In response to the problems of easily falling into local optima, low path planning accuracy, and slow convergence 
speed when applying the traditional pelican optimization algorithm to the mobile robot path planning problem, a 
multi-strategy improved pelican optimization algorithm (MPOA) is proposed. In the initialization stage, chaotic 
mapping is used to increase the diversity of the pelican population individuals. In the exploration stage, an adap-
tive feedback adjustment factor is proposed to adjust the local optima of pelican individuals’ positions and bal-
ance the algorithm’s local development capability. In the development stage, the Lévy flight strategy is introduced 
to adjust the domain radius of the pelican population individuals, and the Gaussian mutation mechanism is used 
to disturb individuals that have fallen into local optima. Simulation experimental results show that the improved 
algorithm has significantly improved and effectively shortened the length of the planned path.
KEYWORDS: Pelican Optimization Algorithm, mobile robot, path planning, multi strategy improved.

1. Introduction
Mobile robot path planning has consistently remained 
a significant area of research within the field of robot-
ics. The primary objective of this research is to identi-
fy the most efficient route from the initial point to the 

desired destination across a range of different map 
environments. This particular aspect of robot naviga-
tion and autonomous movement is of utmost impor-
tance and finds extensive applications in diverse fields 
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including industrial automation, unmanned vehicles, 
and logistics distribution. In recent years, with the 
rapid development of bio-inspired intelligent opti-
mization algorithms, scholars have conducted a large 
amount of research on improving intelligent optimiza-
tion algorithms applied to robot path planning. Mainly, 
there are ant colony and its improved algorithms [4-5], 
particle swarm and its improved algorithms [10, 13], 
genetic algorithm and its improved algorithms [2, 12], 
etc. In addition, with the introduction of new bio-in-
spired intelligent algorithms, an increasing number 
of intelligent optimization algorithms are being ap-
plied to the research of robot path optimization, such 
as whale optimization algorithm [17], sparrow search 
algorithm [7], artificial fish swarm optimization algo-
rithm [8], albatross algorithm [6], etc.
Based on the hunting behavior of pelicans in the nat-
ural world, Pavel Trojovský and Mohammad Deh-
ghani [11] proposed a novel bio-inspired intelligent 
algorithm called the Pelican Optimization Algorithm 
(POA) in 2022. This algorithm considers candidate 
solutions as the positions of pelicans and the objec-
tive function values as the quality of food, aiming to 
find the optimal solution by simulating the foraging 
behavior of pelicans. The basic steps of the Pelican 
Optimization Algorithm are as follows:
Step 1: Initialize the population by randomly generat-
ing a set of initial solutions as the population.
Step 2: Evaluate fitness by calculating the fitness val-
ue of each individual, which is the value of the objec-
tive function.
Step 3: Update positions by using the fitness value of 
the current individual and neighborhood information 
to update the position of each individual.
Step 4: Update fitness by recalculating the fitness val-
ue of each individual based on the new positions.
Step 5: Determine the termination condition. If the ter-
mination condition is met (e.g., reaching the maximum 
number of iterations or finding a satisfactory solution), 
stop the algorithm; otherwise, go back to Step 3.
By iteratively updating the positions and fitness of 
individuals, the Pelican Optimization Algorithm can 
gradually improve the quality of solutions, eventually 
finding the optimal solution or approaching it. This 
algorithm has potential applications in solving op-
timization problems and can be adapted to different 
problem domains by adjusting parameters and im-
proving algorithm details.

As a result, researchers have successfully applied 
the POA to various engineering problems, including 
network attack detection models [1], image issues 
[13-14], and asynchronous motor fault diagnosis [3]. 
However, when dealing with more complex engineer-
ing problems such as robot path planning, the algo-
rithm still faces challenges such as falling into local 
optima, low accuracy, and slow convergence speed. 
In the literature [15], the pelican optimization algo-
rithm (POA) was first applied to the mobile robot path 
planning problem and demonstrated the feasibility of 
the POA algorithm in robot path planning. The algo-
rithm can obtain shorter movement paths in a shorter 
period of time. However, for more complex engineer-
ing problems, the algorithm still faces some challeng-
es and limitations, including sensitivity to parameter 
selection and susceptibility to local optima. There-
fore, in practical applications, adjustments and im-
provements need to be made based on specific prob-
lems to overcome these challenges and limitations
This paper proposes a multi-strategy improved Peli-
can optimization algorithm (MPOA). The algorithm 
uses the Cubic chaotic mapping to initialize the po-
sitions of the pelican population, aiming to improve 
the randomness issue of randomly generated popula-
tions in traditional POA algorithms and enhance the 
diversity of the population. Additionally, an adaptive 
feedback adjustment factor w is introduced to ensure 
that the updates of the pelican positions are within a 
certain range, thereby addressing the problem of blind 
trend-following in the algorithm’s late-stage local de-
velopment after exploration. During the development 
stage of the algorithm, Levy flight strategy is first em-
ployed to update the positions of the pelican individ-
uals, maintaining their global optimization capability. 
Then, a Gaussian mutation mechanism is introduced 
for the later updates of the pelican positions. Through 
this combination of multiple strategies, the MPOA al-
gorithm is able to better balance the abilities of global 
search and local search, thus improving the algorithm’s 
performance. To evaluate the performance of the pro-
posed improved algorithm, experiments were con-
ducted using the benchmark test suite CEC 2017. The 
experimental results demonstrate that the MPOA al-
gorithm performs well in this test suite. Furthermore, 
the improved algorithm proposed in this paper was 
applied in simulation experiments for mobile robot 
path planning. The simulation results show that the 
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MPOA algorithm can accelerate convergence speed, 
reduce path length, and improve work efficiency. In 
conclusion, the multi-strategy improved Pelican op-
timization algorithm (MPOA) proposed in this paper 
demonstrates good performance in benchmark testing 
and mobile robot path planning, and has the potential 
to play an important role in practical applications.

2. Problem Model
This paper models the working environment of mo-
bile robots as a structurally simple, accurate, and 
reliable grid map environment. The robot’s working 
environment can be simplified as shown in Figure 1, 
which consists of a certain number of identical grid-
ded areas. In the figure, black represents obstacles 
and is denoted by 1, while white represents freely 
passable grids and is denoted by 0. The research con-
tent of this paper is how the robot selects the freely 
passable white grids in the map model to obtain the 
shortest path from the starting point to the end point.

Figure 1
Map model

3. Basic Pelican Optimization 
Algorithm Principles
In the POA algorithm, the behavior and strategy of 
pelicans in attacking and hunting are simulated to 
update candidate solutions. The hunting process is 

divided into two stages: the exploration stage and the 
exploitation stage.

3.1. Initialization
In the POA algorithm, every individual within the 
population serves as a potential solution, and each 
member is responsible for computing the value of 
the optimization problem variables based on its posi-
tion in the search space. Initially, the variable values 
are randomly initialized within the upper and lower 
bounds according to the problem using the Equation, 
as depicted in Equation (1) for the mathematical rep-
resentation of population initialization.
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,i jx represents the position of the j th dime

nsion of the i th pelican, where N  denotes 
the number of pelican populations and m  s
ignifies the dimension of the problem to be 
solved. The variable rand  denotes a rando
m number within the range of  0,1 , while 

ju  and jl  represent the upper and lower bo
unds of the j th dimension of the problem. 

A’s population members of the pelican specie
s use the matrix in Equation (2) to represent e
ach candidate solution, with each row represe
nting a candidate solution and the columns in
 the matrix representing the values of proble
m variables. 
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The matrix X  denotes the population distrib
ution of pelicans, while the variable iX  signif
ies the spatial coordinates of the individual i t
h pelican. 

The POA algorithm utilizes the objective func
tion to compute the objective function value o
f the pelican population. This value can be de
noted by the objective function value vector E
quation (3). 
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F  represents the objective function vector of 
the pelican population; iF represents the obje
ctive function value of the i th pelican. 

3.2 Exploration Stages 
During the exploration phase, the heron first l
ocates its prey and then advances towards the
 identified area. By emulating the heron’s app
roach to its prey, the POA can survey the sear
ch space and leverage its exploration capabilit
y to uncover various regions within it. A key 
aspect of the POA is the random generation o
f the prey’s location in the search space, whic
h enhances the algorithm’s ability to explore a
nd solve specific search problems accurately. 
Equation (4) illustrates the aforementioned co

(1)

,i jx represents the position of the jth dimension of 
the ith pelican, where N denotes the number of pel-
ican populations and m signifies the dimension of 
the problem to be solved. The variable rand denotes a 
random number within the range of [0,1], while uj and  
lj represent the upper and lower bounds of the jth di-
mension of the problem.
A’s population members of the pelican species use 
the matrix in Equation (2) to represent each candi-
date solution, with each row representing a candidate 
solution and the columns in the matrix representing 
the values of problem variables.
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The matrix X denotes the population distribution of 
pelicans, while the variable Xi signifies the spatial co-
ordinates of the individual ith pelican.
The POA algorithm utilizes the objective function to 
compute the objective function value of the pelican 
population. This value can be denoted by the objective 
function value vector Equation (3).
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F represents the objective function vector of the pel-
ican population; Fi represents the objective function 
value of the ith pelican.

3.2. Exploration Stages
During the exploration phase, the heron first locates 
its prey and then advances towards the identified 
area. By emulating the heron’s approach to its prey, 
the POA can survey the search space and leverage 
its exploration capability to uncover various regions 
within it. A key aspect of the POA is the random gener-
ation of the prey’s location in the search space, which 
enhances the algorithm’s ability to explore and solve 
specific search problems accurately. Equation (4) il-
lustrates the aforementioned concepts and presents 
a mathematical simulation of the heron’s movement 
towards the prey location.

  

ncepts and presents a mathematical simulatio
n of the heron’s movement towards the prey l
ocation. 
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date; rand  is a random number within the ra
nge of [0,1] ; I  is a random integer of 1 or 2; 

jp  represents the position of dimension j  of

 the prey; pF  represents the objective functio
n value of the prey. 

In the POA algorithm, the new position of the
 pelican is accepted on the premise that the ob
jective function value is improved at that posi
tion, which is called effective updating and ca
nnot move to a non-optimal region. Use math
ematical Equation (5) to simulate this process. 

 
1 1,

(5)
,

P P
i i i

i
i

X F F
X

X else
  


 

1P
iX represents the new position of the i th pel
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iF is the objective function value based 

on the updated new position of the i th pelica
n after the first stage. 

3.3 Development Phase 
During the developmental stage, as pelicans a
pproach the water surface, they extend their 
wings, lift the prey upwards, and then deposi
t it into their throat pouch. This surface-flying
 technique employed by pelicans enables the
m to capture a greater number of fish within t
heir attack range. By modeling the behavioral
 process of pelicans, the POA algorithm can b
e guided to converge to a more favorable posi
tion within the hunting area, thereby enhanci
ng the algorithm’s local search and developm
ental capabilities. From a mathematical stand
point, the algorithm needs to explore points i
n close proximity to the pelican’s position in o
rder to converge to an optimal position and a
chieve a superior solution. The mathematical 
representation of the pelican’s developmental
 stage behavior is depicted in Equation (6). 
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Algorithm

4.1. Cubic Chaotic Mapping

Chaos is a relatively common phenomenon in non-
linear systems. The values of the Cubic mapping se-
quence range between (0,1) , and the chaotic variables 
generated when =2.595ρ  has better traversability. 
Figure 2 shows the distribution of the Cubic mapping 
sequence after 2000 iterations.
In this study, we adopted the Cubic chaotic mapping 
to initialize the pelican population in order to enhance 
population diversity and ensure an even distribution. 
Traditional algorithms suffer from random distribu-
tion issues within the population. By using the Cubic 
chaotic mapping to initialize the pelican population, 
we can improve this problem and achieve a more 
evenly distributed population, thereby enhancing the 
initialization performance of the algorithm.
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The Cubic chaotic mapping is a nonlinear dynamical 
system with highly chaotic properties. By utilizing 
the Cubic chaotic mapping to initialize the pelican 
population, we can introduce more randomness and 
diversity into the population. This is because the Cu-
bic chaotic mapping possesses a large iteration range 
and complex nonlinear characteristics, capable of 
generating highly random numerical sequences.
By applying the Cubic chaotic mapping to the ini-
tialization process of the pelican population, we can 
ensure a more uniform distribution of individuals 
within the search space. This helps to avoid the issue 
of individuals clustering in specific areas within the 
population, thereby improving the global search ca-
pability of the algorithm.
This paper presents the Cubic chaotic initialization 
method for the pelican population, with the Equation 
(8) illustrating the calculation of individuals’ posi-
tions within the population.
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In the Equation: ρ  is the control parameter; iX  represents the position of the i th pelican. 
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In the Equation: ρ  is the control parameter; Xi rep-
resents the position of the ith pelican.
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W  is the adaptive inertia weight; maxW  and minW  are 
the maximum and minimum values, which are set to 
0.9 and 0.4, respectively; f  is the fitness value; minf  is 
the optimal fitness value; avgf  is the average fitness 
value.
By introducing the adaptive inertia weight formula, 
we can dynamically adjust the inertia weight based 
on the current iteration number. In the early stages 
of the algorithm, the inertia weight is larger, which 
can help the pelicans explore the search space better, 
thus avoiding falling into a local optimum. As the iter-
ation number increases, the inertia weight gradually 
decreases, making the individuals more inclined to-
wards the current optimal solution, thereby improv-
ing the algorithm’s convergence.
Introducing the adaptive inertia weight W  into the 
pelican position update Equation (4), the new posi-
tion update Equation is obtained as shown in Equa-
tion (10).
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In the Equation, all parameters have the same
 meanings as above. 

4.3 Levy Flight Strategy 
The Levy flight strategy is a random walk stra
tegy obeying the Levy distribution, and its wa
lking step length can achieve a larger range w
hen searching in an unknown range area, ther
eby enhancing the global search capability. In
 practical applications, the Mantegna [9] algori
thm is usually used to simulate Levy’s flight, 
and the calculation method of the step length 
s  is as shown in Equation (11). 
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  represents the gamma function;   is usua

lly taken within the range of  0,2 , and here 

it is taken as 1.5;  is taken as 1. 

In the second stage of the MPO algorithm, wit
h the increase of the number of iterations, the 
value of coefficient .(1 )tTR   decreases, whic
h makes the territorial radius of the pelican p
opulation smaller. This not only improves the
 accuracy of the scanning area but also reduce
s the scanning area. The population individua
ls continuously converge to better solutions, 
making it easy to fall into local optima. In ord
er to expand the scanning area, the Lévy fligh
t strategy is introduced into the position upda
te Equation, as shown in Equation (13). 
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 practical applications, the Mantegna [9] algori
thm is usually used to simulate Levy’s flight, 
and the calculation method of the step length 
s  is as shown in Equation (11). 
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  represents the gamma function;   is usua

lly taken within the range of  0,2 , and here 

it is taken as 1.5;  is taken as 1. 

In the second stage of the MPO algorithm, wit
h the increase of the number of iterations, the 
value of coefficient .(1 )tTR   decreases, whic
h makes the territorial radius of the pelican p
opulation smaller. This not only improves the
 accuracy of the scanning area but also reduce
s the scanning area. The population individua
ls continuously converge to better solutions, 
making it easy to fall into local optima. In ord
er to expand the scanning area, the Lévy fligh
t strategy is introduced into the position upda
te Equation, as shown in Equation (13). 
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Among them, µ and υ  follow a normal distribution 
and satisfy the following conditions:
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4.2 Adaptive Feedback Control F
actor 
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W  is the adaptive inertia weight; maxW  and 

minW  are the maximum and minimum values,
 which are set to 0.9 and 0.4, respectively; f i
s the fitness value; minf  is the optimal fitness 
value; avgf  is the average fitness value. 
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In the second stage of the MPO algorithm, wit
h the increase of the number of iterations, the 
value of coefficient .(1 )tTR   decreases, whic
h makes the territorial radius of the pelican p
opulation smaller. This not only improves the
 accuracy of the scanning area but also reduce
s the scanning area. The population individua
ls continuously converge to better solutions, 
making it easy to fall into local optima. In ord
er to expand the scanning area, the Lévy fligh
t strategy is introduced into the position upda
te Equation, as shown in Equation (13). 
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Γ  represents the gamma function; β  is usually taken 
within the range of [0, 2], and here it is taken as 1.5; υσ  is taken as 1.
In the second stage of the MPO algorithm, with the in-
crease of the number of iterations, the value of coeffi-
cient .(1 )t

TR −  decreases, which makes the territorial 
radius of the pelican population smaller. This not only 
improves the accuracy of the scanning area but also 
reduces the scanning area. The population individu-
als continuously converge to better solutions, making 
it easy to fall into local optima. In order to expand the 
scanning area, the Lévy flight strategy is introduced 
into the position update Equation, as shown in Equa-
tion (13).  
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 bestx  represents the current optimal position 
of the pelican, and the meanings of other para
meters are the same as Equation (6). 

Based on the position update Equation integr
ating the Levy flight strategy, the individuals 
of the pelican population can maintain excelle
nt global search ability in the later stage of the
 algorithm. At the same time, the slow conver
gence speed of the Levy flight strategy is com
pensated by dynamically adjusting the step si
ze of the pelican’s position update. 

4.4 Gaussian Mutation Mechanis
m 
As the number of iterations increases, the peli
can population continues to converge toward
s smaller radius areas in the domain. The Lév
y flight strategy introduced in Section 2.3 hel
ps the pelicans to some extent to escape from 
local optima and improve global search capab
ility. The step size of the Lévy flight strategy i
s random, alternating between short-distance 
search and occasional longer-distance walks. 
Therefore, when the generated step size is sho
rt, the pelican population tends to concentrate
 on searching in short-distance areas, making 
it susceptible to blindly following a certain loc
al optimal value. If it is found that an individ
ual has fallen into a local optimum and canno
t escape to search for a better value in other d
omains, a Gaussian mutation mechanism gui
ded by the optimal solution is introduced for 
disturbance. Gaussian mutation is an optimiz
ation strategy that uses random numbers foll
owing a normal distribution to act on the orig
inal position vector to generate new positions,
 equivalent to performing domain search with
in a small range. In the Gaussian mutation, th
e current global optimal solution value is intr
oduced to achieve information sharing betwe
en the population individuals and the current
 optimal solution, and to update the pelican’s 
position through Gaussian mutation processi
ng as shown in Equation (14). 
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  is the Gaussian mutation parameter, with 
a value of 0.1; bestx  is the current optimal pos
ition of albatross (current global optimal solut
ion). 

4.5 MPOA Algorithm Description 

MPOA algorithm idea: Based on the tradition
al POA algorithm, the Cubic chaotic mapping
 is applied to the population initialization to i
mprove the diversity of the population; in the
 later stage of the exploration phase, an adapti
ve feedback regulation factor W  is introduce
d to regulate the problem of blindly following
 the local development and falling into the pr
oblem of local optimal solution in the later sta
ge of the algorithm; the Lévy flight strategy is
 introduced to update the individual position 
calculation Equation of the pelican in the later
 stage of the development, broadening the sea
rch domain; using the Gaussian mutation mec
hanism obeying the normal distribution to ac
hieve information sharing between the popul
ation individuals and the optimal pelican posi
tion, and perturbing the update of the individ
ual position vector. The specific implementati
on steps of the algorithm are as follows: 

Step 1: Set the number of pelican population 
N , the maximum iteration times T , the Gau
ssian mutation parameter  , the Lévy flight 
strategy parameter  , and calculate the para

meters maxW  and minW . 

Step 2: Use the Cubic Chaotic Mapping Strate
gy Equation (8) to initialize the pelican popul
ation individual positions, and calculate the p
elican individual objective function value acc
ording to Equation (3). 

Step 3: Calculate the adaptive feedback contro
l factor W  value according to Equation (9), a
nd update the pelican position according to E
quation (10). 

Step 4: Calculate the objective function value 
of the pelican individual according to Equatio
n (3). If the new objective function value is bet
ter than the current one, replace it and set the 
optimal objective function value as the curren
t global optimal value bestx . 

Step 5: Update the position of the pelican indi
viduals according to the updated Equation (1
3) incorporating the Levy flight strategy. Calc
ulate the objective function value of the pelica
n individual based on Equation (3). If the new
 objective function value is better than the cur
rent one, replace it and set the optimal objecti
ve function value as the current global optima
l value bestx . 

Step 6: Update the position of the pelican indi
viduals according to the update Equation (14)
 incorporating the Gaussian mutation mechan

(13)

bestx  represents the current optimal position of the 
pelican, and the meanings of other parameters are the 
same as Equation (6).
Based on the position update Equation integrating 
the Levy flight strategy, the individuals of the pelican 
population can maintain excellent global search abili-
ty in the later stage of the algorithm. At the same time, 
the slow convergence speed of the Levy flight strategy 
is compensated by dynamically adjusting the step size 
of the pelican’s position update.

4.4. Gaussian Mutation Mechanism
As the number of iterations increases, the pelican 
population continues to converge towards smaller 
radius areas in the domain. The Lévy flight strategy 
introduced in Section 2.3 helps the pelicans to some 
extent to escape from local optima and improve glob-
al search capability. The step size of the Lévy flight 
strategy is random, alternating between short-dis-
tance search and occasional longer-distance walks. 
Therefore, when the generated step size is short, the 
pelican population tends to concentrate on searching 

in short-distance areas, making it susceptible to blind-
ly following a certain local optimal value. If it is found 
that an individual has fallen into a local optimum and 
cannot escape to search for a better value in other do-
mains, a Gaussian mutation mechanism guided by the 
optimal solution is introduced for disturbance. Gauss-
ian mutation is an optimization strategy that uses ran-
dom numbers following a normal distribution to act 
on the original position vector to generate new posi-
tions, equivalent to performing domain search within 
a small range. In the Gaussian mutation, the current 
global optimal solution value is introduced to achieve 
information sharing between the population individ-
uals and the current optimal solution, and to update 
the pelican’s position through Gaussian mutation pro-
cessing as shown in Equation (14).
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search and occasional longer-distance walks. 
Therefore, when the generated step size is sho
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it susceptible to blindly following a certain loc
al optimal value. If it is found that an individ
ual has fallen into a local optimum and canno
t escape to search for a better value in other d
omains, a Gaussian mutation mechanism gui
ded by the optimal solution is introduced for 
disturbance. Gaussian mutation is an optimiz
ation strategy that uses random numbers foll
owing a normal distribution to act on the orig
inal position vector to generate new positions,
 equivalent to performing domain search with
in a small range. In the Gaussian mutation, th
e current global optimal solution value is intr
oduced to achieve information sharing betwe
en the population individuals and the current
 optimal solution, and to update the pelican’s 
position through Gaussian mutation processi
ng as shown in Equation (14). 
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  is the Gaussian mutation parameter, with 
a value of 0.1; bestx  is the current optimal pos
ition of albatross (current global optimal solut
ion). 

4.5 MPOA Algorithm Description 

MPOA algorithm idea: Based on the tradition
al POA algorithm, the Cubic chaotic mapping
 is applied to the population initialization to i
mprove the diversity of the population; in the
 later stage of the exploration phase, an adapti
ve feedback regulation factor W  is introduce
d to regulate the problem of blindly following
 the local development and falling into the pr
oblem of local optimal solution in the later sta
ge of the algorithm; the Lévy flight strategy is
 introduced to update the individual position 
calculation Equation of the pelican in the later
 stage of the development, broadening the sea
rch domain; using the Gaussian mutation mec
hanism obeying the normal distribution to ac
hieve information sharing between the popul
ation individuals and the optimal pelican posi
tion, and perturbing the update of the individ
ual position vector. The specific implementati
on steps of the algorithm are as follows: 

Step 1: Set the number of pelican population 
N , the maximum iteration times T , the Gau
ssian mutation parameter  , the Lévy flight 
strategy parameter  , and calculate the para

meters maxW  and minW . 

Step 2: Use the Cubic Chaotic Mapping Strate
gy Equation (8) to initialize the pelican popul
ation individual positions, and calculate the p
elican individual objective function value acc
ording to Equation (3). 

Step 3: Calculate the adaptive feedback contro
l factor W  value according to Equation (9), a
nd update the pelican position according to E
quation (10). 

Step 4: Calculate the objective function value 
of the pelican individual according to Equatio
n (3). If the new objective function value is bet
ter than the current one, replace it and set the 
optimal objective function value as the curren
t global optimal value bestx . 

Step 5: Update the position of the pelican indi
viduals according to the updated Equation (1
3) incorporating the Levy flight strategy. Calc
ulate the objective function value of the pelica
n individual based on Equation (3). If the new
 objective function value is better than the cur
rent one, replace it and set the optimal objecti
ve function value as the current global optima
l value bestx . 

Step 6: Update the position of the pelican indi
viduals according to the update Equation (14)
 incorporating the Gaussian mutation mechan

(14)

σ  is the Gaussian mutation parameter, with a value 
of 0.1; bestx  is the current optimal position of albatross 
(current global optimal solution).

4.5. MPOA Algorithm Description

MPOA algorithm idea: Based on the traditional POA 
algorithm, the Cubic chaotic mapping is applied to 
the population initialization to improve the diversity 
of the population; in the later stage of the exploration 
phase, an adaptive feedback regulation factor W  is in-
troduced to regulate the problem of blindly following 
the local development and falling into the problem of 
local optimal solution in the later stage of the algo-
rithm; the Lévy flight strategy is introduced to update 
the individual position calculation Equation of the 
pelican in the later stage of the development, broad-
ening the search domain; using the Gaussian muta-
tion mechanism obeying the normal distribution to 
achieve information sharing between the population 
individuals and the optimal pelican position, and per-
turbing the update of the individual position vector. 
The specific implementation steps of the algorithm 
are as follows:
Step 1: Set the number of pelican population N , the 
maximum iteration times T , the Gaussian mutation 
parameter σ , the Lévy flight strategy parameter β , 
and calculate the parameters maxW  and minW .

~ ~
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Step 2: Use the Cubic Chaotic Mapping Strategy 
Equation (8) to initialize the pelican population indi-
vidual positions, and calculate the pelican individual 
objective function value according to Equation (3).
Step 3: Calculate the adaptive feedback control factor 
W  value according to Equation (9), and update the 
pelican position according to Equation (10).
Step 4: Calculate the objective function value of the 
pelican individual according to Equation (3). If the 
new objective function value is better than the cur-
rent one, replace it and set the optimal objective func-
tion value as the current global optimal value bestx .
Step 5: Update the position of the pelican individuals 
according to the updated Equation (13) incorporating 
the Levy flight strategy. Calculate the objective func-
tion value of the pelican individual based on Equation 
(3). If the new objective function value is better than 
the current one, replace it and set the optimal objective 
function value as the current global optimal value bestx .
Step 6: Update the position of the pelican individuals 
according to the update Equation (14) incorporating 
the Gaussian mutation mechanism. Calculate the ob-
jective function value of the pelican individuals ac-
cording to Equation (3). If the new objective function 
value is better than the current one, replace it, and set 
the optimal objective function value as the current 
global optimal value bestx .
Step 7: Check if the algorithm iteration has conclud-
ed. If the maximum number of iterations has been 
reached, then return the global optimal solution bestx ; 
otherwise, proceed to step 3 and continue the itera-
tive process.

5. Experiment and Analysis
5.1. Experimental Environment
In order to verify the effectiveness and feasibility of 
the proposed MPOA algorithm in the CEC2017 test 
suite and mobile robot path planning, we conducted 
simulation experiments using MATLAB R2021b. The 
software and hardware environment for the experi-
ments are as follows:
Operating System: Windows 10 Professional 64-bit
Processor: 11th Gen Intel® Core™ i7-11700, with a 
frequency of 2.50GHz
Memory: 32GB

We will conduct the experiments in this environment 
to evaluate the performance of the MPOA algorithm 
in solving the CEC2017 test suite and mobile robot 
path planning problems. Through these experiments, 
we hope to validate the effectiveness and feasibility of 
the MPOA algorithm and provide references for fur-
ther research and applications.

5.2. CEC2017 Comparative Experiment

CEC2017 is a testing suite used for evaluating and 
comparing algorithm performance. It provides 29 
multi-feature functions, including unimodal, bi-
modal, and multimodal functions, along with cor-
responding evaluation metrics. This testing suite 
can be used for problems of different dimensions, 
including 2, 10, 30, 50, and 100 dimensions. To verify 
the acceptability of the improved algorithm MPOA’s 
performance, we conducted experimental compar-
isons with traditional POA algorithm, Moth Flame 
Optimization algorithm MFO, and Grey Wolf Op-
timization algorithm GWO. In this section, we se-
lected two sets of experiments for comparison, with 
dimension D as 30 and dimension D as 50. We com-
pared the experimental data from five aspects: opti-
mal value, mean square value, mean value, median, 
and worst value. The specific experimental data are 
shown in Tables 1-2.
Through the data analysis of Tables 1-2, this paper 
proposes that the MPOA algorithm demonstrates 
competitive performance in solving CEC2017 bench-
mark functions with dimensions of 30 and 50. Partic-
ularly, it shows significant advantages in functions 
F3, F10, F11, F13, F14, F15, and F18. These results 
indicate that the MPOA algorithm possesses high 
performance and adaptability in multi-dimensional 
problems. These findings are of great significance for 
further research and practical application of optimi-
zation algorithms in real-world problems.

5.3. Path Planning Simulation Experiment

In order to verify the effectiveness of the MPOA al-
gorithm in mobile robot path planning, Matlab 2021a 
was used to simulate the program, and simulations 
were conducted in two grid map environments, M1 
and M2, and compared with the traditional POA al-
gorithm [15], traditional Sparrow Search Algorithm 
(SSA), and traditional Gray Wolf Optimization Algo-
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Table 1 
Experimental Comparative Data for Dimension D=30

F Metrics MFO GWO POA MPOA

F1

min 1.7560E+09 4.4542E+08 1.1160E+10 1.5320E+08
std 7.8575E+09 1.3470E+09 4.5683E+09 2.0933E+09
avg 1.0940E+10 2.5543E+09 1.7488E+10 1.5353E+09

median 9.7989E+09 2.4079E+09 1.7287E+10 8.5161E+08
worse 3.3101E+10 5.9399E+09 3.0084E+10 9.4718E+09

F3

min 1.3244E+05 4.8276E+04 2.7936E+04 2.4066E+04
std 5.4257E+04 1.7350E+04 8.8355E+03 6.1303E+03
avg 2.0122E+05 7.5784E+04 4.8026E+04 4.0269E+04

median 1.9614E+05 7.2861E+04 4.8848E+04 4.0862E+04
worse 3.9200E+05 1.1778E+05 6.4789E+04 4.9677E+04

F4

min 5.4756E+02 5.2884E+02 7.2404E+02 5.4334E+02
std 1.0442E+03 1.0254E+02 1.6142E+03 1.5740E+02
avg 1.3945E+03 6.6378E+02 2.7961E+03 6.4821E+02

median 9.8753E+02 6.2848E+02 2.4671E+03 6.0628E+02
worse 4.7418E+03 9.3495E+02 7.0207E+03 1.4283E+03

F5

min 5.9865E+02 5.7585E+02 6.9587E+02 7.2533E+02
std 5.7977E+01 5.7952E+01 3.8575E+01 2.5319E+01
avg 7.1049E+02 6.3553E+02 7.7944E+02 7.7516E+02

median 7.0103E+02 6.2240E+02 7.7990E+02 7.7613E+02
worse 8.4984E+02 8.1898E+02 8.5142E+02 8.0534E+02

F6

min 6.2373E+02 6.0466E+02 6.4974E+02 6.4250E+02
std 8.1070E+00 7.6552E+00 5.6680E+00 5.6455E+00
avg 6.3652E+02 6.1511E+02 6.6311E+02 6.5867E+02

median 6.3583E+02 6.1402E+02 6.6272E+02 6.5917E+02
worse 6.5822E+02 6.4214E+02 6.7279E+02 6.6730E+02

F7

min 8.8931E+02 8.4573E+02 1.0939E+03 1.0120E+03
std 1.5723E+02 5.2188E+01 6.0082E+01 9.7418E+01
avg 1.0989E+03 9.1976E+02 1.2835E+03 1.2279E+03

median 1.0380E+03 9.0906E+02 1.3021E+03 1.2672E+03
worse 1.4001E+03 1.0043E+03 1.3615E+03 1.3592E+03

F8

min 9.3125E+02 8.5967E+02 9.5831E+02 9.4196E+02
std 3.8595E+01 2.2200E+01 2.2135E+01 1.8385E+01
avg 1.0040E+03 9.0587E+02 1.0073E+03 9.8206E+02

median 1.0064E+03 9.0559E+02 1.0108E+03 9.8092E+02
worse 1.0915E+03 9.5311E+02 1.0418E+03 1.0188E+03

F9

min 3.4690E+03 1.5890E+03 4.4531E+03 5.5195E+03
std 2.3967E+03 1.3192E+03 6.3650E+02 2.2766E+02
avg 7.6607E+03 3.2220E+03 6.1285E+03 5.9036E+03

median 7.5305E+03 2.8978E+03 6.1794E+03 5.8511E+03
worse 1.2604E+04 7.7224E+03 7.5284E+03 6.5714E+03

F10

min 4.4357E+03 3.9848E+03 4.4575E+03 4.9916E+03
std 8.9990E+02 1.7875E+03 4.6762E+02 3.8522E+02
avg 5.6193E+03 5.6983E+03 5.4683E+03 5.5060E+03

median 5.4621E+03 5.1215E+03 5.4870E+03 5.4146E+03
worse 7.8650E+03 9.7767E+03 6.2369E+03 6.6801E+03
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F Metrics MFO GWO POA MPOA

F11

min 1.3470E+03 1.3879E+03 1.3935E+03 1.2622E+03
std 5.9146E+03 1.4661E+03 7.1075E+02 3.8761E+02
avg 6.1782E+03 2.8744E+03 2.2187E+03 1.4431E+03

median 3.9158E+03 2.3997E+03 2.0097E+03 1.3744E+03
worse 3.0571E+04 7.6574E+03 4.8237E+03 3.4720E+03

F12

min 1.9572E+06 3.5371E+06 7.9285E+07 9.8764E+06
std 2.0369E+08 1.1931E+08 1.5729E+09 6.7209E+08
avg 1.3572E+08 1.1902E+08 1.5419E+09 2.3710E+08

median 2.3357E+07 6.8571E+07 9.3520E+08 4.7187E+07
worse 6.3892E+08 4.2281E+08 5.8658E+09 3.2754E+09

F13

min 1.5573E+04 1.1457E+05 1.3024E+05 6.2978E+04
std 3.0722E+08 1.9183E+07 7.2336E+08 1.2295E+06
avg 9.1156E+07 9.3256E+06 1.6815E+08 4.6887E+05

median 3.6001E+05 3.8924E+05 1.2549E+06 1.6624E+05
worse 1.3577E+09 6.4117E+07 3.9765E+09 6.7475E+06

F14

min 2.1277E+04 7.8602E+03 2.0694E+03 1.9479E+03
std 2.0595E+06 8.5452E+05 5.9730E+04 2.7704E+04
avg 1.1818E+06 7.1266E+05 4.3936E+04 2.7173E+04

median 4.7305E+05 2.8271E+05 9.0742E+03 1.7064E+04
worse 1.0503E+07 2.9621E+06 1.9245E+05 9.1712E+04

F15

min 2.8186E+03 1.8364E+04 1.2287E+04 1.0567E+04
std 5.1537E+04 3.2484E+06 6.2290E+04 1.8046E+04
avg 5.3092E+04 1.6589E+06 5.9741E+04 3.0710E+04

median 3.9117E+04 1.2021E+05 4.2305E+04 2.2445E+04
worse 2.1979E+05 1.1473E+07 3.1176E+05 7.9524E+04

F16

min 2.2734E+03 2.2052E+03 2.6484E+03 2.6259E+03
std 3.4425E+02 4.1159E+02 3.7007E+02 2.7453E+02
avg 3.0289E+03 2.7277E+03 3.2541E+03 3.0722E+03

median 3.0289E+03 2.5943E+03 3.1916E+03 3.0796E+03
worse 3.5968E+03 3.6483E+03 4.1431E+03 3.5946E+03

F17

min 1.9316E+03 1.8391E+03 1.8343E+03 1.8274E+03
std 3.5786E+02 1.6858E+02 1.9900E+02 1.7830E+02
avg 2.5256E+03 2.1257E+03 2.2884E+03 2.1679E+03

median 2.5226E+03 2.1326E+03 2.3086E+03 2.1665E+03
worse 3.2872E+03 2.4824E+03 2.7518E+03 2.5712E+03

F18

min 1.7614E+05 6.3944E+04 3.2999E+04 1.9368E+04
std 7.5124E+06 5.6556E+06 9.8713E+05 2.6044E+05
avg 6.0094E+06 3.9586E+06 4.7103E+05 2.6315E+05

median 2.9738E+06 1.8134E+06 1.8078E+05 1.5457E+05
worse 2.7219E+07 2.8099E+07 5.5206E+06 1.1602E+06

F19

min 5.5405E+03 2.3144E+04 8.5120E+04 1.6934E+04
std 3.6680E+07 6.8542E+05 3.5842E+06 4.1573E+05
avg 1.1925E+07 6.8487E+05 2.3634E+06 4.4139E+05

median 1.1552E+05 5.0358E+05 1.5870E+06 3.1093E+05
worse 1.7905E+08 3.3649E+06 2.0015E+07 1.7516E+06

F20

min 2.1832E+03 2.2249E+03 2.3376E+03 2.4693E+03
std 2.7130E+02 1.9500E+02 1.0740E+02 1.9273E+02
avg 2.7128E+03 2.5419E+03 2.5190E+03 2.8693E+03

median 2.7231E+03 2.5278E+03 2.5181E+03 2.8875E+03
worse 3.2404E+03 2.8670E+03 2.7251E+03 3.3419E+03
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F Metrics MFO GWO POA MPOA

F21

min 2.4293E+03 2.3700E+03 2.4563E+03 2.2650E+03
std 4.3067E+01 2.8701E+01 5.1156E+01 7.7490E+01
avg 2.4945E+03 2.4158E+03 2.5771E+03 2.4996E+03

median 2.4932E+03 2.4052E+03 2.5711E+03 2.5113E+03
worse 2.5635E+03 2.5044E+03 2.6997E+03 2.6269E+03

F22

min 2.6398E+03 2.4583E+03 3.3054E+03 2.4465E+03
std 1.4103E+03 2.0306E+03 1.5503E+03 2.1100E+03
avg 6.4934E+03 5.4138E+03 6.0834E+03 6.5699E+03

median 6.8891E+03 5.9035E+03 6.2535E+03 7.5720E+03
worse 8.8902E+03 1.0215E+04 8.2037E+03 8.4143E+03

F23

min 2.7554E+03 2.7360E+03 2.9475E+03 2.7829E+03
std 4.1231E+01 4.9803E+01 7.2962E+01 7.0405E+01
avg 2.8359E+03 2.8010E+03 3.0550E+03 2.8707E+03

median 2.8311E+03 2.7895E+03 3.0547E+03 2.8645E+03
worse 2.9233E+03 2.9934E+03 3.2292E+03 3.0965E+03

F24

min 2.9007E+03 2.9054E+03 3.0733E+03 2.8869E+03
std 3.3477E+01 5.7654E+01 7.8054E+01 5.2922E+01
avg 2.9850E+03 2.9740E+03 3.2321E+03 3.0211E+03

median 2.9877E+03 2.9536E+03 3.2421E+03 3.0287E+03
worse 3.0630E+03 3.1349E+03 3.4379E+03 3.0964E+03

F25

min 2.9336E+03 2.9263E+03 3.0610E+03 2.9401E+03
std 3.7767E+02 6.9652E+01 2.4166E+02 3.9461E+01
avg 3.3813E+03 3.0254E+03 3.3449E+03 3.0182E+03

median 3.2600E+03 3.0142E+03 3.2780E+03 3.0204E+03
worse 4.4852E+03 3.2844E+03 4.1235E+03 3.0873E+03

F26

min 3.8938E+03 4.2237E+03 4.0726E+03 3.4249E+03
std 6.4277E+02 4.4006E+02 1.3633E+03 1.8152E+03
avg 5.8484E+03 5.0238E+03 7.4506E+03 5.7696E+03

median 5.8255E+03 4.8937E+03 7.6673E+03 6.0688E+03
worse 7.9196E+03 6.2523E+03 9.2217E+03 8.4634E+03

F27

min 3.2094E+03 3.2314E+03 3.3012E+03 3.2302E+03
std 2.3145E+01 2.5058E+01 7.9952E+01 2.9408E+01
avg 3.2480E+03 3.2749E+03 3.4086E+03 3.2701E+03

median 3.2449E+03 3.2723E+03 3.3865E+03 3.2634E+03
worse 3.3141E+03 3.3370E+03 3.6204E+03 3.3392E+03

F28

min 3.3677E+03 3.3714E+03 3.4931E+03 3.3623E+03
std 8.4850E+02 1.5852E+02 6.2741E+02 5.1939E+01
avg 4.3913E+03 3.5465E+03 4.3227E+03 3.4433E+03

median 4.1340E+03 3.4928E+03 4.2845E+03 3.4317E+03
worse 6.2811E+03 3.9155E+03 6.1631E+03 3.5793E+03

F29

min 3.7485E+03 3.6799E+03 3.8150E+03 3.7805E+03
std 3.6448E+02 1.9709E+02 4.3219E+02 3.1846E+02
avg 4.2009E+03 4.0150E+03 4.7444E+03 4.2426E+03

median 4.1239E+03 3.9881E+03 4.6889E+03 4.2453E+03
worse 5.0875E+03 4.4674E+03 6.3031E+03 5.1866E+03

F30

min 1.6999E+04 1.8601E+06 2.1171E+06 3.8008E+05
std 1.4751E+06 1.2102E+07 8.8374E+06 3.5472E+06
avg 1.0034E+06 1.4539E+07 1.1364E+07 5.6332E+06

median 2.9816E+05 9.9051E+06 8.1183E+06 5.0668E+06
worse 5.6395E+06 4.1396E+07 4.3863E+07 1.6210E+07
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Table 2 
Experimental Comparative Data for Dimension D=50

F Metrics MFO GWO POA MPOA

F1

min 1.4290E+10 4.0800E+09 3.4628E+10 3.0588E+09
std 1.6337E+10 4.5068E+09 9.4800E+09 3.6856E+09
avg 3.5817E+10 1.1525E+10 5.4322E+10 8.0595E+09

median 3.3137E+10 1.1543E+10 5.2173E+10 7.4397E+09
worse 8.2591E+10 2.2011E+10 7.2626E+10 1.8590E+10

F3

min 2.9859E+05 1.4263E+05 8.4292E+04 1.0835E+05
std 8.0072E+04 4.2716E+04 2.3001E+04 1.2175E+04
avg 4.4314E+05 2.2355E+05 1.3362E+05 1.3580E+05

median 4.4543E+05 2.1938E+05 1.3279E+05 1.3594E+05
worse 5.8704E+05 3.1228E+05 2.0155E+05 1.5866E+05

F4

min 1.2026E+03 8.1375E+02 5.4961E+03 8.8140E+02
std 2.5451E+03 6.6452E+02 2.1501E+03 5.7993E+02
avg 4.9416E+03 1.7692E+03 8.9501E+03 1.6469E+03

median 4.4068E+03 1.6189E+03 8.9781E+03 1.5048E+03
worse 1.2640E+04 3.4934E+03 1.3596E+04 3.4294E+03

F5

min 8.5008E+02 7.0694E+02 8.7615E+02 8.8969E+02
std 7.6296E+01 3.5391E+01 4.0571E+01 2.0518E+01
avg 1.0094E+03 7.8700E+02 9.4918E+02 9.2284E+02

median 1.0175E+03 7.8135E+02 9.4853E+02 9.2613E+02
worse 1.1529E+03 8.5034E+02 1.0204E+03 9.5292E+02

F6

min 6.3690E+02 6.1907E+02 6.6087E+02 6.5742E+02
std 1.1599E+01 4.8933E+00 5.5844E+00 4.1767E+00
avg 6.6543E+02 6.2850E+02 6.7274E+02 6.6870E+02

median 6.6671E+02 6.3012E+02 6.7443E+02 6.6833E+02
worse 6.8663E+02 6.3597E+02 6.8402E+02 6.7594E+02

F7

min 1.4384E+03 1.0473E+03 1.6411E+03 1.4991E+03
std 3.3627E+02 7.3142E+01 7.8132E+01 8.3242E+01
avg 2.0236E+03 1.1926E+03 1.8038E+03 1.7435E+03

median 2.0092E+03 1.1742E+03 1.8090E+03 1.7737E+03
worse 2.6319E+03 1.3544E+03 1.9493E+03 1.8343E+03

F8

min 1.1979E+03 9.8314E+02 1.2179E+03 1.1747E+03
std 6.8202E+01 5.9055E+01 3.3269E+01 1.8995E+01
avg 1.3216E+03 1.0834E+03 1.2773E+03 1.2130E+03

median 1.3189E+03 1.0755E+03 1.2711E+03 1.2138E+03
worse 1.4846E+03 1.3199E+03 1.3425E+03 1.2523E+03

F9

min 1.3464E+04 5.1102E+03 1.3854E+04 1.4550E+04
std 3.8215E+03 4.9555E+03 2.3594E+03 2.6011E+03
avg 2.2025E+04 1.2651E+04 1.9470E+04 1.9076E+04

median 2.2656E+04 1.2386E+04 1.9313E+04 1.8887E+04
worse 3.0890E+04 2.4863E+04 2.4915E+04 2.4566E+04

F10

min 7.1384E+03 7.1237E+03 8.0821E+03 8.6223E+03
std 9.7700E+02 2.1899E+03 7.1657E+02 1.1042E+03
avg 8.9592E+03 9.0480E+03 9.7342E+03 1.0550E+04

median 8.9726E+03 8.2642E+03 9.6665E+03 1.0542E+04
worse 1.1065E+04 1.5443E+04 1.1080E+04 1.2892E+04
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F Metrics MFO GWO POA MPOA

F11

min 3.3326E+03 4.3429E+03 3.2924E+03 1.9104E+03
std 1.4128E+04 3.3617E+03 2.5328E+03 9.1565E+02
avg 2.1464E+04 9.7222E+03 8.5252E+03 3.6262E+03

median 1.6684E+04 9.1446E+03 8.8377E+03 3.7486E+03
worse 6.5226E+04 1.7329E+04 1.3542E+04 5.0296E+03

F12

min 3.9083E+08 2.0616E+08 5.3903E+09 6.1706E+07
std 5.2212E+09 2.2097E+09 1.0565E+10 2.5808E+09
avg 5.7228E+09 2.3735E+09 2.0084E+10 1.5484E+09

median 3.3998E+09 1.6041E+09 1.8894E+10 5.1878E+08
worse 1.9446E+10 8.7327E+09 3.9790E+10 1.1336E+10

F13

min 1.0537E+05 5.2284E+06 2.0219E+08 5.5974E+06
std 1.6020E+09 3.1267E+08 3.5388E+09 1.5791E+09
avg 1.0196E+09 2.8543E+08 3.3077E+09 4.0686E+08

median 2.2556E+07 2.2475E+08 1.5416E+09 9.7627E+07
worse 6.2608E+09 1.5350E+09 1.1548E+10 8.7425E+09

F14

min 9.5380E+04 9.2459E+04 8.2062E+04 6.0104E+04
std 2.6797E+06 2.3335E+06 5.3369E+05 3.3825E+05
avg 2.2419E+06 2.3778E+06 7.0915E+05 5.2050E+05

median 1.6124E+06 1.5645E+06 6.0468E+05 4.5859E+05
worse 1.4158E+07 8.3721E+06 2.1907E+06 1.1712E+06

F15

min 9.8104E+03 1.0658E+05 4.0817E+05 3.5652E+04
std 6.0057E+08 7.9762E+07 3.4831E+08 5.6777E+06
avg 1.5842E+08 3.6683E+07 2.4723E+08 1.5784E+06

median 1.1720E+05 1.7525E+07 6.0390E+07 3.1627E+05
worse 2.8503E+09 4.3711E+08 1.2107E+09 3.1441E+07

F16

min 3.5025E+03 2.7586E+03 3.5692E+03 2.8834E+03
std 5.5253E+02 6.2238E+02 6.7805E+02 3.4024E+02
avg 4.4595E+03 3.6591E+03 4.6357E+03 3.5615E+03

median 4.4432E+03 3.4520E+03 4.6963E+03 3.5668E+03
worse 5.4713E+03 5.2201E+03 5.8728E+03 4.4363E+03

F17

min 3.3453E+03 2.7641E+03 2.5968E+03 2.5189E+03
std 5.2125E+02 3.3114E+02 4.7194E+02 3.1654E+02
avg 4.1427E+03 3.1787E+03 3.7079E+03 3.2871E+03

median 4.1841E+03 3.1320E+03 3.6935E+03 3.1801E+03
worse 5.4792E+03 4.1524E+03 4.5039E+03 4.0008E+03

F18

min 7.9204E+05 1.4299E+06 1.0242E+06 6.5958E+05
std 1.9280E+07 1.6911E+07 7.5481E+06 4.4026E+06
avg 1.3093E+07 1.6866E+07 6.8556E+06 2.8380E+06

median 6.9459E+06 1.0063E+07 4.5713E+06 1.6771E+06
worse 1.0298E+08 6.3072E+07 3.7837E+07 2.5217E+07

F19

min 1.8058E+04 1.0616E+05 3.5094E+05 4.9628E+04
std 4.7356E+07 2.9381E+07 3.3146E+08 1.1290E+06
avg 1.3992E+07 1.3887E+07 1.6453E+08 1.1048E+06

median 6.7022E+05 2.6476E+06 1.5620E+07 6.6174E+05
worse 1.9658E+08 1.3930E+08 1.3501E+09 5.4038E+06

F20

min 3.0367E+03 2.6532E+03 2.8345E+03 3.1234E+03
std 3.1336E+02 4.3140E+02 1.8097E+02 2.2984E+02
avg 3.5971E+03 3.3207E+03 3.1733E+03 3.6965E+03

median 3.5972E+03 3.2321E+03 3.1530E+03 3.7305E+03
worse 4.3498E+03 4.1547E+03 3.5812E+03 4.0162E+03
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F21

min 2.6137E+03 2.5002E+03 2.7468E+03 2.6461E+03
std 8.2179E+01 4.3581E+01 7.3378E+01 6.8697E+01
avg 2.7694E+03 2.5719E+03 2.8877E+03 2.7732E+03

median 2.7690E+03 2.5679E+03 2.8763E+03 2.7617E+03
worse 2.9436E+03 2.6599E+03 3.0389E+03 2.9737E+03

F22

min 9.3004E+03 8.6960E+03 9.7977E+03 1.1557E+04
std 9.7078E+02 2.2100E+03 8.4355E+02 5.2564E+02
avg 1.1141E+04 1.0823E+04 1.1912E+04 1.2695E+04

median 1.1032E+04 1.0272E+04 1.1972E+04 1.2836E+04
worse 1.3224E+04 1.7411E+04 1.3432E+04 1.3603E+04

F23

min 3.0324E+03 2.9325E+03 3.4153E+03 3.1030E+03
std 7.7316E+01 8.2419E+01 1.6732E+02 6.1492E+01
avg 3.2033E+03 3.0816E+03 3.6836E+03 3.2137E+03

median 3.1924E+03 3.0780E+03 3.6897E+03 3.2136E+03
worse 3.3972E+03 3.3410E+03 4.0233E+03 3.3870E+03

F24

min 3.1369E+03 3.1015E+03 3.4554E+03 3.2449E+03
std 5.5067E+01 9.8117E+01 1.4576E+02 9.0179E+01
avg 3.2596E+03 3.2316E+03 3.8110E+03 3.3786E+03

median 3.2663E+03 3.2043E+03 3.8314E+03 3.3533E+03
worse 3.3736E+03 3.5364E+03 4.0167E+03 3.6082E+03

F25

min 3.5481E+03 3.2040E+03 4.9419E+03 3.5512E+03
std 2.7879E+03 6.0030E+02 1.5027E+03 3.4745E+02
avg 6.3201E+03 3.9922E+03 7.2773E+03 4.0372E+03

median 5.2588E+03 3.7916E+03 7.0025E+03 4.0342E+03
worse 1.4253E+04 5.4570E+03 1.0681E+04 4.9947E+03

F26

min 7.2262E+03 5.6350E+03 9.5006E+03 7.4236E+03
std 6.9455E+02 7.3001E+02 1.3385E+03 1.3951E+03
avg 8.7629E+03 7.0355E+03 1.3285E+04 1.0339E+04

median 8.8864E+03 7.1199E+03 1.3484E+04 1.0219E+04
worse 9.9569E+03 8.8258E+03 1.5714E+04 1.3131E+04

F27

min 3.4475E+03 3.4988E+03 3.7528E+03 3.4403E+03
std 1.0736E+02 1.4518E+02 2.9622E+02 1.7144E+02
avg 3.6494E+03 3.7587E+03 4.2899E+03 3.6949E+03

median 3.6418E+03 3.7218E+03 4.2508E+03 3.6707E+03
worse 3.9222E+03 4.0924E+03 4.8582E+03 4.1918E+03

F28

min 5.3453E+03 3.8223E+03 6.0391E+03 4.0347E+03
std 9.1052E+02 6.0678E+02 7.3120E+02 2.2286E+02
avg 8.2755E+03 4.8205E+03 7.1097E+03 4.4929E+03

median 8.5233E+03 4.7335E+03 7.0666E+03 4.4842E+03
worse 9.6339E+03 6.5296E+03 9.0748E+03 4.9638E+03

F29

min 4.2564E+03 4.3101E+03 5.5523E+03 4.5912E+03
std 6.9230E+02 4.7607E+02 9.5542E+02 5.8591E+02
avg 5.4157E+03 5.0888E+03 7.4758E+03 5.5518E+03

median 5.3203E+03 5.1369E+03 7.4031E+03 5.3896E+03
worse 7.6277E+03 6.2149E+03 9.5163E+03 6.9618E+03

F30

min 3.2461E+06 9.5712E+07 1.2069E+08 6.1319E+07
std 1.0682E+08 5.4832E+07 5.7650E+08 1.7736E+07
avg 5.5534E+07 1.9728E+08 3.9531E+08 8.4684E+07

median 1.5206E+07 1.8565E+08 2.5389E+08 8.2339E+07
worse 4.3562E+08 3.5260E+08 3.2967E+09 1.2472E+08
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rithm (GWO). M1 is a relatively simple environment 
model of 2020, and M2 is a more complex environ-
ment model of 4040. Both models have the robot 
path planning starting from the bottom left corner 
node and ending at the top right corner node. The 
population size for both is set to 30, and the maxi-
mum number of iterations is set to 200. Under the 
M1 environment, the convergence curve of various 
algorithms is shown in Figure 3, and the simulation 
results of a specific path planning experiment for 
various algorithms are shown in Figure 4. The simu-
lation experiment results indicate that the improved 
MPOA algorithm outperforms other algorithms in 
terms of convergence speed and path length in rela-
tively simple map environments.

Figure 3
Convergence Curve Graph of Path in M1 Map Environment

Figure 4
Route simulation results in M1 map environment

(a) The path under GWO (b) The path under SSA

(c) The path under POA (d) The path under MPOA



Information Technology and Control 2024/2/53386

Figure 5
Convergence Curve Graph of Path in M2 Map Environment

Figure 6
Route simulation results in M2 map environment

(a) The path under GWO

(c) The path under POA (d) The path under MPOA

(b) The path under SSA

In the M2 environment, the convergence curves of 
various algorithm paths are shown in Figure 5, and 
the results of a single path planning simulation ex-
periment for various algorithms are shown in Figure 
6. The simulation experiment results show that the 
improved MPOA algorithm, in a relatively complex 
map environment, although converges slower than 
the SSA algorithm, it converges at 13 iterations, 
which is still relatively fast, and it has a better ad-
vantage in terms of path length.
To verify the stability of the algorithm, the algorithm 
was run 20 times in two different map environments, 
and the average path length, variance, and average 
path shortening rate were obtained as shown in Table 
3. In the M1 map environment, the improved MPOA 
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Table 3
Performance Comparison of 4 Algorithms Running 20 Times

Environment M1

algorithm MPOA POA GWO SSA

mean 29.10594 31.897415 31.39047 33.643415

std 1.014380 1.570274 2.865174 1.775402

MPOA average path 
shortening rate / 0.08751414 0.10079715 0.16101263

Environment M2

algorithm MPOA POA GWO SSA

mean 67.06096 105.846095 115.235485 76.5132

std 6.580373 8.766548 10.233988 2.8421E-14

MPOA average path 
shortening rate / 0.36642953 0.41805286 0.12353737

algorithm had an average path length of 29.10594 and 
a variance of 1.014380736, which was better than the 
other three algorithms. In the M2 map environment, 
the variance of the improved MPOA algorithm was 
6.580373756, which was worse than the result of 
the SSA algorithm, but the average path length was 
67.06096, which was better than the other three al-
gorithms. This indicates that the proposed MPOA 
algorithm is feasible for mobile robot path planning 
in both simple and complex map environments, and 
it has good advantages in terms of convergence speed 
and shortest path.

6. Conclusions and Future Work
The POA algorithm is a heuristic optimization algo-
rithm based on the behavior of pelicans, used to solve 
optimization problems. This algorithm simulates the 
foraging strategy of pelicans by iteratively searching 
the solution space to find the optimal solution. It fea-
tures diversity, adaptability, and parallelism, and has 
been widely applied in fields such as function optimi-
zation, machine learning, and image processing. How-
ever, when the POA algorithm is applied to complex 
problems such as mobile robot path planning, it often 
suffers from issues of being trapped in local optima 
and premature convergence due to its population ran-
domness and insufficient global exploration capabil-
ity. To address these problems, this paper proposes a 
multi-strategy improved MPOA algorithm. The MPOA 

algorithm improves the random generation of the peli-
can population by using the Cubic chaotic map for ini-
tialization, enhancing the population’s diversity. Addi-
tionally, an adaptive feedback regulation factor W  is 
introduced to ensure that the updates of pelican posi-
tions occur within a certain range, solving the problem 
of blindly following local development in the later stage 
of the exploration phase. In the development stage of 
the algorithm, Levy flight strategy is first employed to 
update the positions of individual pelicans to maintain 
global optimization capability. Then, in the later stage 
of pelican position update, the Gaussian mutation 
mechanism is introduced to address the slow conver-
gence issue in the Levy flight strategy.
To validate the performance of the improved algo-
rithm, two different experiments are conducted in 
this paper. In the first experiment, the performance 
of the MPOA algorithm is compared with traditional 
POA algorithm, Moth Flame Optimization algorithm 
(MFO), and Grey Wolf Optimization algorithm (GWO) 
using 30-dimensional and 50-dimensional CEC 2017 
benchmark functions. The results demonstrate the 
feasibility and advantages of the MPOA algorithm in 
solving various types of real optimization problems. 
In the second experiment, the proposed MPOA al-
gorithm is simulated for mobile robot path planning 
in map environments of two different scales, 2020 
and 4040, and compared with traditional POA algo-
rithm, traditional Sparrow Search Algorithm (SSA), 
and traditional GWO algorithm. After 20 statistical 
data iterations, the results show that the MPOA algo-
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rithm exhibits superior path planning performance 
and algorithm stability in this experiment. In con-
clusion, the proposed MPOA algorithm addresses the 
drawbacks of the traditional POA algorithm in terms 
of slow convergence speed, low optimization accura-
cy, and poor robustness in engineering applications 
by improving the population initialization, position 
update strategy, and introducing Gaussian mutation 
mechanism. The experimental results demonstrate 
the feasibility and advantages of the MPOA algorithm 
in solving various types of real optimization problems 
and mobile robot path planning.
MPOA algorithm is an emerging optimization algo-
rithm that improves upon the POA algorithm. The 
MPOA algorithm has the potential for broader appli-
cation and development in the future. Researchers 
can continue to improve the algorithm’s performance 
and efficiency to further enhance its applicability 
in practical problems. One method to improve the 
performance of the MPOA algorithm is optimizing 
parameter selection. By selecting parameters rea-
sonably, the algorithm can better adapt to different 
types of problems. Researchers can determine the 
optimal parameter settings through experimentation 
and analysis to improve the algorithm’s convergence 
speed and ability to solve complex problems. Another 
method to improve the MPOA algorithm is enhanc-
ing the neighborhood search strategy. Neighborhood 

search is an important step in optimization algo-
rithms as it determines whether the algorithm can 
find better solutions. Researchers can design more ef-
fective neighborhood search strategies, such as intro-
ducing a combination of local and global search strat-
egies, to improve the algorithm’s search efficiency and 
problem-solving ability. Additionally, introducing 
new heuristic mechanisms is another approach to im-
proving the MPOA algorithm. Heuristic mechanisms 
can help the algorithm explore the solution space 
better and guide the algorithm towards searching 
for better solutions. Researchers can design fitness 
functions and search strategies adapted to multi-ob-
jective problems to improve the performance of the 
MPOA algorithm in handling more complex practical 
problems. In conclusion, as an emerging optimization 
algorithm, the MPOA algorithm has the potential for 
broader application and development in the future. 
Researchers can further improve the algorithm’s per-
formance and efficiency by optimizing parameter se-
lection, enhancing the neighborhood search strategy, 
and introducing new heuristic mechanisms to enable 
it to handle more complex practical problems.
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