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In response to the problems of easily falling into local optima, low path planning accuracy, and slow convergence
speed when applying the traditional pelican optimization algorithm to the mobile robot path planning problem, a
multi-strategy improved pelican optimization algorithm (MPOA) is proposed. In the initialization stage, chaotic
mapping is used to increase the diversity of the pelican population individuals. In the exploration stage, an adap-
tive feedback adjustment factor is proposed to adjust the local optima of pelican individuals’ positions and bal-
ance the algorithm’s local development capability. In the development stage, the Lévy flight strategy is introduced
to adjust the domain radius of the pelican population individuals, and the Gaussian mutation mechanism is used
to disturb individuals that have fallen into local optima. Simulation experimental results show that the improved
algorithm has significantly improved and effectively shortened the length of the planned path.
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1. Introduction

Mobile robot path planning has consistently remained  desired destination across a range of different map
a significant area of research within the field of robot-  environments. This particular aspect of robot naviga-
ics. The primary objective of this research is to identi-  tion and autonomous movement is of utmost impor-
fy the most efficient route from the initial point to the  tance and finds extensive applications in diverse fields



Information Technology and Control

including industrial automation, unmanned vehicles,
and logistics distribution. In recent years, with the
rapid development of bio-inspired intelligent opti-
mization algorithms, scholars have conducted a large
amount of research on improving intelligent optimiza-
tion algorithms applied to robot path planning. Mainly,
there are ant colony and its improved algorithms [4-5],
particle swarm and its improved algorithms [10, 13],
genetic algorithm and its improved algorithms [2, 12],
etc. In addition, with the introduction of new bio-in-
spired intelligent algorithms, an increasing number
of intelligent optimization algorithms are being ap-
plied to the research of robot path optimization, such
as whale optimization algorithm [17], sparrow search
algorithm [7], artificial fish swarm optimization algo-
rithm [8], albatross algorithm [6], etc.

Based on the hunting behavior of pelicans in the nat-
ural world, Pavel Trojovsky and Mohammad Deh-
ghani [11] proposed a novel bio-inspired intelligent
algorithm called the Pelican Optimization Algorithm
(POA) in 2022. This algorithm considers candidate
solutions as the positions of pelicans and the objec-
tive function values as the quality of food, aiming to
find the optimal solution by simulating the foraging
behavior of pelicans. The basic steps of the Pelican
Optimization Algorithm are as follows:

Step 1: Initialize the population by randomly generat-
ing a set of initial solutions as the population.

Step 2: Evaluate fitness by calculating the fitness val-
ue of each individual, which is the value of the objec-
tive function.

Step 3: Update positions by using the fitness value of
the current individual and neighborhood information
to update the position of each individual.

Step 4: Update fitness by recalculating the fitness val-
ue of each individual based on the new positions.

Step 5: Determine the termination condition. Ifthe ter-
mination condition is met (e.g., reaching the maximum
number of iterations or finding a satisfactory solution),
stop the algorithm; otherwise, go back to Step 3.

By iteratively updating the positions and fitness of
individuals, the Pelican Optimization Algorithm can
gradually improve the quality of solutions, eventually
finding the optimal solution or approaching it. This
algorithm has potential applications in solving op-
timization problems and can be adapted to different
problem domains by adjusting parameters and im-
proving algorithm details.
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As a result, researchers have successfully applied
the POA to various engineering problems, including
network attack detection models [1], image issues
[13-14], and asynchronous motor fault diagnosis [3].
However, when dealing with more complex engineer-
ing problems such as robot path planning, the algo-
rithm still faces challenges such as falling into local
optima, low accuracy, and slow convergence speed.

In the literature [15], the pelican optimization algo-
rithm (POA) was first applied to the mobile robot path
planning problem and demonstrated the feasibility of
the POA algorithm in robot path planning. The algo-
rithm can obtain shorter movement paths in a shorter
period of time. However, for more complex engineer-
ing problems, the algorithm still faces some challeng-
es and limitations, including sensitivity to parameter
selection and susceptibility to local optima. There-
fore, in practical applications, adjustments and im-
provements need to be made based on specific prob-
lems to overcome these challenges and limitations

This paper proposes a multi-strategy improved Peli-
can optimization algorithm (MPOA). The algorithm
uses the Cubic chaotic mapping to initialize the po-
sitions of the pelican population, aiming to improve
the randomness issue of randomly generated popula-
tions in traditional POA algorithms and enhance the
diversity of the population. Additionally, an adaptive
feedback adjustment factor w is introduced to ensure
that the updates of the pelican positions are within a
certain range, thereby addressing the problem of blind
trend-following in the algorithm’s late-stage local de-
velopment after exploration. During the development
stage of the algorithm, Levy flight strategy is first em-
ployed to update the positions of the pelican individ-
uals, maintaining their global optimization capability.
Then, a Gaussian mutation mechanism is introduced
for the later updates of the pelican positions. Through
this combination of multiple strategies, the MPOA al-
gorithm is able to better balance the abilities of global
search and local search, thus improving the algorithm’s
performance. To evaluate the performance of the pro-
posed improved algorithm, experiments were con-
ducted using the benchmark test suite CEC 2017. The
experimental results demonstrate that the MPOA al-
gorithm performs well in this test suite. Furthermore,
the improved algorithm proposed in this paper was
applied in simulation experiments for mobile robot
path planning. The simulation results show that the
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MPOA algorithm can accelerate convergence speed,
reduce path length, and improve work efficiency. In
conclusion, the multi-strategy improved Pelican op-
timization algorithm (MPOA) proposed in this paper
demonstrates good performance in benchmark testing
and mobile robot path planning, and has the potential
to play an important role in practical applications.

2. Problem Model

This paper models the working environment of mo-
bile robots as a structurally simple, accurate, and
reliable grid map environment. The robot’s working
environment can be simplified as shown in Figure 1,
which consists of a certain number of identical grid-
ded areas. In the figure, black represents obstacles
and is denoted by 1, while white represents freely
passable grids and is denoted by 0. The research con-
tent of this paper is how the robot selects the freely
passable white grids in the map model to obtain the
shortest path from the starting point to the end point.

Figure 1
Map model

3. Basic Pelican Optimization
Algorithm Principles

In the POA algorithm, the behavior and strategy of
pelicans in attacking and hunting are simulated to
update candidate solutions. The hunting process is
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divided into two stages: the exploration stage and the
exploitation stage.

3.1. Initialization

In the POA algorithm, every individual within the
population serves as a potential solution, and each
member is responsible for computing the value of
the optimization problem variables based on its posi-
tion in the search space. Initially, the variable values
are randomly initialized within the upper and lower
bounds according to the problem using the Equation,
as depicted in Equation (1) for the mathematical rep-
resentation of population initialization.

X, ; :lj +rand.(uj —lj),i=l,2,...,N,j:l,2,...,m, @

X, ; represents the position of the jth dimension of
the ith pelican, where N denotes the number of pel-
ican populations and m signifies the dimension of
the problem to be solved. The variable rand denotes a
random number within the range of [0,1], while «, and
l; represent the upper and lower bounds of the jth di-

mension of the problem.

A’s population members of the pelican species use
the matrix in Equation (2) to represent each candi-
date solution, with each row representing a candidate
solution and the columns in the matrix representing
the values of problem variables.

X, X X, Xim
X=X, =\ Xia Xi Xim (©))
XN Nxm Xyg 0 Xy XNom Nxm

The matrix X denotes the population distribution of
pelicans, while the variable X; signifies the spatial co-
ordinates of the individual 7th pelican.

The POA algorithm utilizes the objective function to
compute the objective function value of the pelican
population. This value can be denoted by the objective
function value vector Equation (3).

K F(X))
F=|F| =FX)| - (3)
FN Nxl F(XN) Nxl
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F represents the objective function vector of the pel-
ican population; F, represents the objective function
value of the ith pelican.

3.2. Exploration Stages

During the exploration phase, the heron first locates
its prey and then advances towards the identified
area. By emulating the heron’s approach to its prey,
the POA can survey the search space and leverage
its exploration capability to uncover various regions
within it. A key aspect of the POA is the random gener-
ation of the prey’s location in the search space, which
enhances the algorithm’s ability to explore and solve
specific search problems accurately. Equation (4) il-
lustrates the aforementioned concepts and presents
a mathematical simulation of the heron’s movement
towards the prey location.

xl.’j

R {x,.,j +rand.(p,—1.x, ), F, <F;

L= 4)
x,;+rand.(x,,—p,), else,

X, A represents the position of the jth dimension of
the ith pelican after the first stage update; rand is a
random number within the range of [0,1]; I is a ran-
dom integer of 1 or 2; p, represents the position of
dimension j of the prey; F, represents the objective
function value of the prey.

In the POA algorithm, the new position of the pelican
is accepted on the premise that the objective function
value is improved at that position, which is called ef-
fective updating and cannot move to a non-optimal
region. Use mathematical Equation (5) to simulate
this process.

xh EM<E
X, = 5
X else

X iﬁ represents the new position of the ith pelican;
E.Pl isthe objective function value based on the updat-
ed new position of the ith pelican after the first stage.

3.3. Development Phase

During the developmental stage, as pelicans approach
the water surface, they extend their wings, lift the prey
upwards, and then deposit it into their throat pouch.
This surface-flying technique employed by pelicans
enables them to capture a greater number of fish
within their attack range. By modeling the behavioral
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process of pelicans, the POA algorithm can be guided
to converge to a more favorable position within the
hunting area, thereby enhancing the algorithm’s local
search and developmental capabilities. From a math-
ematical standpoint, the algorithm needs to explore
points in close proximity to the pelican’s position in
order to converge to an optimal position and achieve
a superior solution. The mathematical representa-
tion of the pelican’s developmental stage behavior is
depicted in Equation (6).

xP2 =x,,+R(A-%).2rand -1).x, , (6)

X; 3 represents the position of the jth dimension of
the ith pelican after the second stage update; rand is
a random number in the range of [0,1]; R is a random
integer of O or 2; tis the current iteration number; T is
the maximum number of iterations.

At this point, effective updates are still being em-
ployed to evaluate and decide on the acceptance or
rejection of new positions of pelicans, as illustrated in
Equation (7).

X:, EM<F
X, = 7
X, else

i

4. Improved Pelican Optimization
Algorithm

4.1. Cubic Chaotic Mapping

Chaos is a relatively common phenomenon in non-
linear systems. The values of the Cubic mapping se-
quence range between (0,1) , and the chaotic variables
generated when p=2.595 has better traversability.
Figure 2 shows the distribution of the Cubic mapping
sequence after 2000 iterations.

In this study, we adopted the Cubic chaotic mapping
toinitialize the pelican population in orderto enhance
population diversity and ensure an even distribution.
Traditional algorithms suffer from random distribu-
tion issues within the population. By using the Cubic
chaotic mapping to initialize the pelican population,
we can improve this problem and achieve a more
evenly distributed population, thereby enhancing the
initialization performance of the algorithm.
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Figure 2
Distribution of Cubic Mapping Sequence Values
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The Cubic chaotic mapping is a nonlinear dynamical
system with highly chaotic properties. By utilizing
the Cubic chaotic mapping to initialize the pelican
population, we can introduce more randomness and
diversity into the population. This is because the Cu-
bic chaotic mapping possesses a large iteration range
and complex nonlinear characteristics, capable of
generating highly random numerical sequences.

By applying the Cubic chaotic mapping to the ini-
tialization process of the pelican population, we can
ensure a more uniform distribution of individuals
within the search space. This helps to avoid the issue
of individuals clustering in specific areas within the
population, thereby improving the global search ca-
pability of the algorithm.

This paper presents the Cubic chaotic initialization
method for the pelican population, with the Equation
(8) illustrating the calculation of individuals’ posi-
tions within the population.

X, =pxX,(1-X}), ®

In the Equation: p is the control parameter; X, rep-
resents the position of the ith pelican.

4.2. Adaptive Feedback Control Factor

In the later stage of the MPO algorithm exploration
phase, after the pelicans determine the prey’s loca-
tion, they search towards the prey area. However, as
the pelicans get closer to the target, it may cause the
algorithm to fall into a local optimum, thus unable to
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find the global optimum. To improve this situation,
we propose an adaptive feedback adjustment factor
W to enhance the algorithm. In the first phase of the
POA algorithm, an adaptive inertia weight Equation
is introduced as shown in Equation (9).

Wmin - (Wmax - Wmin ) X fﬁ_fm!" H f < f;w
W = Javg=fmin g ©
/4 ,other

max

W is the adaptive inertia weight; w_ . and W . are
the maximum and minimum values, which are set to
0.9 and 0.4, respectively; f is the fitness value; f . is
the optimal fitness value; f, e is the average fitness
value.

By introducing the adaptive inertia weight formula,
we can dynamically adjust the inertia weight based
on the current iteration number. In the early stages
of the algorithm, the inertia weight is larger, which
can help the pelicans explore the search space better,
thus avoiding falling into a local optimum. As the iter-
ation number increases, the inertia weight gradually
decreases, making the individuals more inclined to-
wards the current optimal solution, thereby improv-
ing the algorithm’s convergence.

Introducing the adaptive inertia weight W into the
pelican position update Equation (4), the new posi-
tion update Equation is obtained as shown in Equa-
tion (10).

(10)

ij

N _{xu +rand xW.(p,—1.x, ), F, <F};

X, trand xW.(x, ;- p;), else,
In the Equation, all parameters have the same mean-
ings as above.

4.3. Levy Flight Strategy

The Levy flight strategy is a random walk strategy
obeying the Levy distribution, and its walking step
length can achieve a larger range when searching in
an unknown range area, thereby enhancing the global
search capability. In practical applications, the Man-
tegn®[9] algorithm is usually used to simulate Levy’s
flight, and the calculation method of the steplength s
is as shown in Equation (11).

§=~r (11

ol
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Among them, y and v follow a normal distribution
and satisfy the following conditions:

2 2
,u~N(0,0'”), v~ N(0,0,),
T(1+4).sin(Z)
O-;z { (l+ﬂ)ﬂ2(/’l)}/ﬁ

I' represents the gamma function; £ isusually taken
within the range of [0, 2], and here it is taken as 1.5; o,
istakenas1.

Inthe second stage of the MPO algorithm, with the in-
crease of the number of iterations, the value of coeffi-
cient R.(1-%) decreases, which makes the territorial
radius of the pelican population smaller. This not only
improves the accuracy of the scanning area but also
reduces the scanning area. The population individu-
als continuously converge to better solutions, making
it easy to fall into local optima. In order to expand the
scanning area, the Lévy flight strategy is introduced
into the position update Equation, as shown in Equa-
tion (13).

12

xPZ =x,;+R(1-F).2rand —1).x, ,+0.2x Levy(x, ;, %, )s
13)

X,,, represents the current optimal position of the
pelican, and the meanings of other parameters are the
same as Equation (6).

Based on the position update Equation integrating
the Levy flight strategy, the individuals of the pelican
population can maintain excellent global search abili-
ty in the later stage of the algorithm. At the same time,
the slow convergence speed of the Levy flight strategy
is compensated by dynamically adjusting the step size
of the pelican’s position update.

4 .4. Gaussian Mutation Mechanism

As the number of iterations increases, the pelican
population continues to converge towards smaller
radius areas in the domain. The Lévy flight strategy
introduced in Section 2.3 helps the pelicans to some
extent to escape from local optima and improve glob-
al search capability. The step size of the Lévy flight
strategy is random, alternating between short-dis-
tance search and occasional longer-distance walks.
Therefore, when the generated step size is short, the
pelican population tends to concentrate on searching
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in short-distance areas, making it susceptible to blind-
ly following a certain local optimal value. If it is found
that an individual has fallen into a local optimum and
cannot escape to search for a better value in other do-
mains, a Gaussian mutation mechanism guided by the
optimal solution is introduced for disturbance. Gauss-
ian mutation is an optimization strategy that uses ran-
dom numbers following a normal distribution to act
on the original position vector to generate new posi-
tions, equivalent to performing domain search within
a small range. In the Gaussian mutation, the current
global optimal solution value is introduced to achieve
information sharing between the population individ-
uals and the current optimal solution, and to update
the pelican’s position through Gaussian mutation pro-
cessing as shown in Equation (14).

_(Xbest —Xi,j )
— 1 20'2
X . = e X. . (14)
L] \N27mo L]

O is the Gaussian mutation parameter, with a value
of0.1; Xpost is the current optimal position of albatross
(current global optimal solution).

4.5. MPOA Algorithm Description

MPOA algorithm idea: Based on the traditional POA
algorithm, the Cubic chaotic mapping is applied to
the population initialization to improve the diversity
of the population; in the later stage of the exploration
phase, an adaptive feedback regulation factor W isin-
troduced to regulate the problem of blindly following
the local development and falling into the problem of
local optimal solution in the later stage of the algo-
rithm; the Lévy flight strategy is introduced to update
the individual position calculation Equation of the
pelican in the later stage of the development, broad-
ening the search domain; using the Gaussian muta-
tion mechanism obeying the normal distribution to
achieve information sharing between the population
individuals and the optimal pelican position, and per-
turbing the update of the individual position vector.
The specific implementation steps of the algorithm
are as follows:

Step 1: Set the number of pelican population N, the
maximum iteration times 7', the Gaussian mutation
parameter o, the Lévy flight strategy parameter i3
and calculate the parameters W, and w

min”*
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Step 2: Use the Cubic Chaotic Mapping Strategy
Equation (8) to initialize the pelican population indi-
vidual positions, and calculate the pelican individual
objective function value according to Equation (3).

Step 3: Calculate the adaptive feedback control factor
W value according to Equation (9), and update the
pelican position according to Equation (10).

Step 4: Calculate the objective function value of the
pelican individual according to Equation (3). If the
new objective function value is better than the cur-
rent one, replace it and set the optimal objective func-
tion value as the current global optimal value X, .

Step 5: Update the position of the pelican individuals
according to the updated Equation (13) incorporating
the Levy flight strategy. Calculate the objective func-
tion value of the pelican individual based on Equation
(3). If the new objective function value is better than
the current one, replace it and set the optimal objective
function value as the current global optimal value Xposr

Step 6: Update the position of the pelican individuals
according to the update Equation (14) incorporating
the Gaussian mutation mechanism. Calculate the ob-
jective function value of the pelican individuals ac-
cording to Equation (3). If the new objective function
value is better than the current one, replace it, and set
the optimal objective function value as the current
global optimal value Xpost

Step 7: Check if the algorithm iteration has conclud-
ed. If the maximum number of iterations has been
reached, then return the global optimal solution Xpoitt
otherwise, proceed to step 3 and continue the itera-
tive process.

5. Experiment and Analysis
5.1. Experimental Environment

In order to verify the effectiveness and feasibility of
the proposed MPOA algorithm in the CEC2017 test
suite and mobile robot path planning, we conducted
simulation experiments using MATLAB R2021b. The
software and hardware environment for the experi-
ments are as follows:

Operating System: Windows 10 Professional 64-bit

Processor: 11th Gen Intel® Core™ i7-11700, with a
frequency of 2.50GHz

Memory: 32GB
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We will conduct the experiments in this environment
to evaluate the performance of the MPOA algorithm
in solving the CEC2017 test suite and mobile robot
path planning problems. Through these experiments,
we hope to validate the effectiveness and feasibility of
the MPOA algorithm and provide references for fur-
ther research and applications.

5.2. CEC2017 Comparative Experiment

CEC2017 is a testing suite used for evaluating and
comparing algorithm performance. It provides 29
multi-feature functions, including unimodal, bi-
modal, and multimodal functions, along with cor-
responding evaluation metrics. This testing suite
can be used for problems of different dimensions,
including 2, 10, 30, 50, and 100 dimensions. To verify
the acceptability of the improved algorithm MPOA’s
performance, we conducted experimental compar-
isons with traditional POA algorithm, Moth Flame
Optimization algorithm MFO, and Grey Wolf Op-
timization algorithm GWO. In this section, we se-
lected two sets of experiments for comparison, with
dimension D as 30 and dimension D as 50. We com-
pared the experimental data from five aspects: opti-
mal value, mean square value, mean value, median,
and worst value. The specific experimental data are
shown in Tables 1-2.

Through the data analysis of Tables 1-2, this paper
proposes that the MPOA algorithm demonstrates
competitive performance in solving CEC2017 bench-
mark functions with dimensions of 30 and 50. Partic-
ularly, it shows significant advantages in functions
F3, F10, F11, F13, F14, F15, and F18. These results
indicate that the MPOA algorithm possesses high
performance and adaptability in multi-dimensional
problems. These findings are of great significance for
further research and practical application of optimi-
zation algorithms in real-world problems.

5.3. Path Planning Simulation Experiment

In order to verify the effectiveness of the MPOA al-
gorithm in mobile robot path planning, Matlab 2021a
was used to simulate the program, and simulations
were conducted in two grid map environments, M1
and M2, and compared with the traditional POA al-
gorithm [15], traditional Sparrow Search Algorithm
(SSA), and traditional Gray Wolf Optimization Algo-
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Experimental Comparative Data for Dimension D=30
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F Metrics MFO GWO POA MPOA

min 1.7560E+09 44542E+08 1.1160E+10 1.5320E+08

std 7.8575E+09 1.3470E+09 4.5683E+09 2.0933E+09

F1 avg 1.0940E+10 2.5543E+09 17488E+10 1.5353E+09
median 9.7989E+09 24079E+09 1.7287E+10 8.5161E+08

worse 3.3101E+10 5.9399E+09 3.0084E+10 94718E+09

min 1.3244E+05 4.8276E+04 2.7936E+04 24066E+04

std 54257E+04 1.7350E+04 8.8355E+03 6.1303E+03

F3 avg 2.0122E+05 7.5784E+04 4.8026E+04 4.0269E+04
median 1.9614E+05 7.2861E+04 4.8848E+04 4.0862E+04

worse 3.9200E+05 1.1778E+05 64789E+04 4.9677E+04

min 54756E+02 5.2884E+02 7.2404E+02 54334E+02

std 1.0442E+03 1.0254E+02 1.6142E+03 1.5740E+02

F4 avg 1.3945E+03 6.6378E+02 2.7961E+03 64821E+02
median 9.8753E+02 6.2848E+02 24671E+03 6.0628E+02

worse 47418E+03 9.3495E+02 7.0207E+03 14283E+03

min 5.9865E+02 57585E+02 6.9587E+02 7.2533E+02

std 57977E+01 5.7952E+01 3.8575E+01 2.5319E+01

F5 avg 7.1049E+02 6.3553E+02 7.7944E+02 7.7516E+02
median 7.0103E+02 6.2240E+02 77990E+02 77613E+02

worse 8.4984E+02 8.1898E+02 8.5142E+02 8.0534E+02

min 6.2373E+02 6.0466E+02 64974E+02 64250E+02

std 8.1070E+00 7.6552E+00 5.6680E+00 5.6455E+00

F6 avg 6.3652E+02 6.1511E+02 6.6311E+02 6.5867E+02
median 6.3583E+02 6.1402E+02 6.6272E+02 6.5917E+02

worse 6.5822E+02 64214E+02 6.7279E+02 6.6730E+02

min 8.8931E+02 84573E+02 1.0939E+03 1.0120E+03

std 1.5723E+02 5.2188E+01 6.0082E+01 9.7418E+01

F7 avg 1.0989E+03 9.1976E+02 1.2835E+03 1.2279E+03
median 1.0380E+03 9.0906E+02 1.3021E+03 1.2672E+03

worse 14001E+03 1.0043E+03 1.3615E+03 1.3592E+03

min 9.3125E+02 8.5967E+02 9.56831E+02 94196E+02

std 3.8595E+01 2.2200E+01 2.2135E+01 1.8385E+01

F8 avg 1.0040E+03 9.0587E+02 1.0073E+03 9.8206E+02
median 1.0064E+03 9.0559E+02 1.0108E+03 9.8092E+02

worse 1.0915E+03 9.5311E+02 1.0418E+03 1.0188E+03

min 34690E+03 1.5890E+03 44531E+03 5.5195E+03

std 2.3967E+03 1.3192E+03 6.3650E+02 2.2766E+02

F9 avg 7.6607E+03 3.2220E+03 6.1285E+03 5.9036E+03
median 7.5305E+03 2.8978E+03 6.1794E+03 5.8511E+03

worse 1.2604E+04 77224E+03 7.5284E+03 6.5714E+03

min 44357E+03 3.9848E+03 44575E+03 4.9916E+03

std 8.9990E+02 1.7875E+03 4.6762E+02 3.8522E+02

F10 avg 5.6193E+03 5.6983E+03 54683E+03 5.5060E+03
median 54621E+03 5.1215E+03 54870E+03 54146E+03

worse 7.8650E+03 9.7767E+03 6.2369E+03 6.6801E+03




Information Technology and Control

2024/2/53

F Metrics MFO GWO POA MPOA
min 1.3470E+03 1.3879E+03 1.3935E+03 1.2622E+03
std 5.9146E+03 14661E+03 7.1075E+02 3.8761E+02
F11 avg 6.1782E+03 2.8744E+03 2.2187E+03 14431E+03
median 3.9158E+03 2.3997E+03 2.0097E+03 1.3744E+03
worse 3.0571E+04 7.6574E+03 4.8237E+03 34720E+03
min 1.9572E+06 3.5371E+06 7.9285E+07 9.8764E+06
std 2.0369E+08 1.1931E+08 1.5729E+09 6.7209E+08
F12 avg 1.3572E+08 1.1902E+08 1.5419E+09 2.3710E+08
median 2.3357E+07 6.8571E+07 9.3520E+08 4.7187E+07
worse 6.3892E+08 4.2281E+08 5.8658E+09 3.2754E+09
min 1.5573E+04 1.1457E+05 1.3024E+05 6.2978E+04
std 3.0722E+08 1.9183E+07 7.2336E+08 1.2295E+06
F13 avg 9.1156E+07 9.3256E+06 1.6815E+08 4.6887E+05
median 3.6001E+05 3.8924E+05 1.2549E+06 1.6624E+05
worse 1.3577E+09 64117E+07 3.9765E+09 6.7475E+06
min 2.1277E+04 7.8602E+03 2.0694E+03 1.9479E+03
std 2.0595E+06 8.5452E+05 5.9730E+04 2.7704E+04
F14 avg 1.1818E+06 7.1266E+05 4.3936E+04 2.7173E+04
median 4.7305E+05 2.8271E+05 9.0742E+03 1.7064E+04
worse 1.0503E+07 2.9621E+06 1.9245E+05 9.1712E+04
min 2.8186E+03 1.8364E+04 1.2287E+04 1.0567E+04
std 5.1537E+04 3.2484E+06 6.2290E+04 1.8046E+04
F15 avg 5.3092E+04 1.6589E+06 5.9741E+04 3.0710E+04
median 3.9117E+04 1.2021E+05 4.2305E+04 2.2445E+04
worse 2.1979E+05 1.1473E+07 3.1176E+05 7.9524E+04
min 2.2734E+03 2.2052E+03 2.6484E+03 2.6259E+03
std 34425E+02 4.1159E+02 3.7007E+02 2.7453E+02
F16 avg 3.0289E+03 2.7277E+03 3.2541E+03 3.0722E+03
median 3.0289E+03 2.5943E+03 3.1916E+03 3.0796E+03
worse 3.5968E+03 3.6483E+03 4.1431E+03 3.5946E+03
min 1.9316E+03 1.8391E+03 1.8343E+03 1.8274E+03
std 3.5786E+02 1.6858E+02 1.9900E+02 17830E+02
F17 avg 2.5256E+03 2.1257E+03 2.2884E+03 2.1679E+03
median 2.5226E+03 2.1326E+03 2.3086E+03 2.1665E+03
worse 3.2872E+03 24824E+03 27518E+03 2.5712E+03
min 1.7614E+05 6.3944E+04 3.2999E+04 1.9368E+04
std 7.5124E+06 5.6556E+06 9.8713E+05 2.6044E+05
F18 avg 6.0094E+06 3.9586E+06 47103E+05 2.6315E+05
median 2.9738E+06 1.8134E+06 1.8078E+05 1.5457E+05
worse 2.7219E+07 2.8099E+07 5.5206E+06 11602E+06
min 5.5405E+03 2.3144E+04 8.5120E+04 1.6934E+04
std 3.6680E+07 6.8542E+05 3.56842E+06 4.1573E+05
F19 avg 1.1925E+07 6.8487E+05 2.3634E+06 4.4139E+05
median 1.1552E+05 5.0358E+05 1.5870E+06 3.1093E+05
worse 1.7905E+08 3.3649E+06 2.0015E+07 1.7516E+06
min 2.1832E+03 2.2249E+03 2.3376E+03 24693E+03
std 2.7130E+02 1.9500E+02 1.0740E+02 1.9273E+02
F20 avg 2.7128E+03 2.5419E+03 2.5190E+03 2.8693E+03
median 2.7231E+03 2.5278E+03 2.5181E+03 2.8875E+03
worse 3.2404E+03 2.8670E+03 2.7251E+03 3.3419E+03
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F Metrics MFO GWO POA MPOA
min 24293E+03 2.3700E+03 24563E+03 2.2650E+03
std 4.3067E+01 2.8701E+01 5.1156E+01 77490E+01

F21 avg 24945E+03 2.4158E+03 2.5771E+03 24996E+03
median 24932E+03 24052E+03 2.5711E+03 2.5113E+03
worse 2.5635E+03 2.5044E+03 2.6997E+03 2.6269E+03

min 2.6398E+03 24583E+03 3.3054E+03 2.4465E+03
std 14103E+03 2.0306E+03 1.5503E+03 2.1100E+03

F22 avg 6.4934E+03 54138E+03 6.0834E+03 6.5699E+03
median 6.8891E+03 5.9035E+03 6.2535E+03 7.5720E+03
worse 8.8902E+03 1.0215E+04 8.2037E+03 84143E+03

min 2.7554E+03 2.7360E+03 2.9475E+03 2.7829E+03
std 4.1231E+01 4.9803E+01 7.2962E+01 7.0405E+01

F23 avg 2.8359E+03 2.8010E+03 3.0550E+03 2.8707E+03
median 2.8311E+03 2.7895E+03 3.0547E+03 2.8645E+03
worse 2.9233E+03 2.9934E+03 3.2292E+03 3.0965E+03

min 2.9007E+03 2.9054E+03 3.0733E+03 2.8869E+03
std 3.3477E+01 57654E+01 7.8054E+01 5.2922E+01

F24 avg 2.9850E+03 2.9740E+03 3.2321E+03 3.0211E+03
median 2.9877E+03 2.9536E+03 3.2421E+03 3.0287E+03
worse 3.0630E+03 3.1349E+03 34379E+03 3.0964E+03

min 2.9336E+03 2.9263E+03 3.0610E+03 2.9401E+03
std 3.7767E+02 6.9652E+01 24166E+02 3.9461E+01

F25 avg 3.3813E+03 3.0254E+03 3.3449E+03 3.0182E+03
median 3.2600E+03 3.0142E+03 3.2780E+03 3.0204E+03
worse 44852E+03 3.2844E+03 4.1235E+03 3.0873E+03

min 3.8938E+03 4.2237E+03 4.0726E+03 34249E+03
std 64277E+02 44006E+02 1.3633E+03 1.8152E+03

F26 avg 5.8484E+03 5.0238E+03 74506E+03 5.7696E+03
median 5.8255E+03 4.8937E+03 7.6673E+03 6.0688E+03
worse 7.9196E+03 6.2523E+03 9.2217E+03 8.4634E+03

min 3.2094E+03 3.2314E+03 3.3012E+03 3.2302E+03
std 2.3145E+01 2.5058E+01 7.9952E+01 2.9408E+01

Fa27 avg 3.2480E+03 3.2749E+03 34086E+03 3.2701E+03
median 3.2449E+03 3.2723E+03 3.3865E+03 3.2634E+03
worse 3.3141E+03 3.3370E+03 3.6204E+03 3.3392E+03

min 3.3677E+03 3.3714E+03 34931E+03 3.3623E+03
std 8.4850E+02 1.5852E+02 6.2741E+02 5.1939E+01

F28 avg 4.3913E+03 3.5465E+03 4.3227E+03 34433E+03
median 4.1340E+03 34928E+03 4.2845E+03 34317E+03
worse 6.2811E+03 3.9155E+03 6.1631E+03 3.5793E+03

min 3.7485E+03 3.6799E+03 3.8150E+03 3.7805E+03
std 3.6448E+02 1.9709E+02 4.3219E+02 3.1846E+02

F29 avg 4.2009E+03 4.0150E+03 47444F+03 4.2426E+03
median 4.1239E+03 3.9881E+03 4.6889E+03 4.2453E+03
worse 5.0875E+03 44674E+03 6.3031E+03 5.1866E+03

min 1.6999E+04 1.8601E+06 2.1171E+06 3.8008E+05
std 14751E+06 1.2102E+07 8.8374E+06 3.5472E+06

F30 avg 1.0034E+06 14539E+07 1.1364E+07 5.6332E+06
median 2.9816E+05 9.9051E+06 8.1183E+06 5.0668E+06
worse 5.6395E+06 4.1396E+07 4.3863E+07 1.6210E+07
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Table 2
Experimental Comparative Data for Dimension D=50
F Metrics MFO GWO POA MPOA
min 14290E+10 4.0800E+09 34628E+10 3.0588E+09
std 1.6337E+10 4.5068E+09 9.4800E+09 3.6856E+09
F1 avg 3.5817E+10 1.1525E+10 54322E+10 8.0595E+09
median 3.3137E+10 11543E+10 5.2173E+10 74397E+09
worse 8.2591E+10 2.2011E+10 7.2626E+10 1.8590E+10
min 2.9859E+05 14263E+05 84292E+04 1.0835E+05
std 8.0072E+04 4.2716E+04 2.3001E+04 1.2175E+04
F3 avg 44314E+05 2.2355E+05 1.3362E+05 1.3580E+05
median 44543E+05 2.1938E+05 1.3279E+05 1.3594E+05
worse 5.8704E+05 3.1228E+05 2.0155E+05 1.5866E+05
min 1.2026E+03 8.1375E+02 54961E+03 8.8140E+02
std 2.5451E+03 6.6452E+02 2.1501E+03 57993E+02
F4 avg 4.9416E+03 17692E+03 8.9501E+03 1.6469E+03
median 44068E+03 16189E+03 8.9781E+03 1.5048E+03
worse 1.2640E+04 34934E+03 1.3596E+04 34294E+03
min 8.5008E+02 7.0694E+02 87615E+02 8.8969E+02
std 7.6296E+01 3.5391E+01 4.0571E+01 2.0518E+01
F5 avg 1.0094E+03 7.8700E+02 94918E+02 9.2284E+02
median 1.0175E+03 7.8135E+02 94853E+02 9.2613E+02
worse 1.1529E+03 8.5034E+02 1.0204E+03 9.56292E+02
min 6.3690E+02 6.1907E+02 6.6087E+02 6.5742E+02
std 1.1599E+01 4.8933E+00 5.5844E+00 4.1767E+00
F6 avg 6.6543E+02 6.2850E+02 6.7274E+02 6.6870E+02
median 6.6671E+02 6.3012E+02 6.7443E+02 6.6833E+02
worse 6.8663E+02 6.3597E+02 6.8402E+02 6.7594E+02
min 14384E+03 1.0473E+03 1.6411E+03 14991E+03
std 3.3627E+02 7.3142E+01 7.8132E+01 8.3242E+01
F7 avg 2.0236E+03 1.1926E+03 1.8038E+03 1.7435E+03
median 2.0092E+03 1.1742E+03 1.8090E+03 1.7737E+03
worse 2.6319E+03 1.3544E+03 1.9493E+03 1.8343E+03
min 1.1979E+03 9.8314E+02 1.2179E+03 1.1747E+03
std 6.8202E+01 5.9055E+01 3.3269E+01 1.8995E+01
F8 avg 1.3216E+03 1.0834E+03 1.2773E+03 1.2130E+03
median 1.3189E+03 10755E+03 1.2711E+03 1.2138E+03
worse 14846E+03 1.3199E+03 1.3425E+03 1.2523E+03
min 1.3464E+04 5.1102E+03 1.3854E+04 14550E+04
std 3.8215E+03 4.9555E+03 2.3594E+03 2.6011E+03
F9 avg 2.2025E+04 1.2651E+04 1.9470E+04 1.9076E+04
median 2.2656E+04 1.2386E+04 19313E+04 1.8887E+04
worse 3.0890E+04 24863E+04 24915E+04 24566E+04
min 7.1384E+03 7.1237E+03 8.0821E+03 8.6223E+03
std 9.7700E+02 2.1899E+03 7.1657E+02 11042E+03
F10 avg 8.9592E+03 9.0480E+03 97342E+03 1.0550E+04
median 8.9726E+03 8.2642E+03 9.6665E+03 1.0542E+04
worse 1.1065E+04 1.5443E+04 1.1080E+04 1.2892E+04
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F Metrics MFO GWO POA MPOA
min 3.3326E+03 4.3429E+03 3.2924E+03 1.9104E+03
std 14128E+04 3.3617E+03 2.5328E+03 9.1565E+02
F11 avg 2.1464E+04 97222E+03 8.5252E+03 3.6262E+03
median 1.6684E+04 9.1446E+03 8.8377E+03 3.7486E+03
worse 6.5226E+04 1.7329E+04 1.3542E+04 5.0296E+03
min 3.9083E+08 2.0616E+08 5.3903E+09 6.1706E+07
std 5.2212E+09 2.2097E+09 1.0565E+10 2.5808E+09
F12 avg 5.7228E+09 2.3735E+09 2.0084E+10 1.5484E+09
median 3.3998E+09 1.6041E+09 1.8894E+10 5.1878E+08
worse 1.9446E+10 8.7327E+09 3.9790E+10 1.1336E+10
min 1.0537E+05 5.2284E+06 2.0219E+08 5.5974E+06
std 1.6020E+09 3.1267E+08 3.5388E+09 1.5791E+09
F13 avg 1.0196E+09 2.8543E+08 3.3077E+09 4.0686E+08
median 2.2556E+07 2.2475E+08 1.5416E+09 97627E+07
worse 6.2608E+09 1.5350E+09 1.1548E+10 8.7425E+09
min 9.5380E+04 9.2459E+04 8.2062E+04 6.0104E+04
std 2.6797E+06 2.3335E+06 5.3369E+05 3.3825E+05
F14 avg 2.2419E+06 2.3778E+06 7.0915E+05 5.2050E+05
median 1.6124E+06 1.5645E+06 6.0468E+05 4.5859E+05
worse 14158E+07 8.3721E+06 2.1907E+06 1.1712E+06
min 9.8104E+03 1.0658E+05 4.0817E+05 3.5652E+04
std 6.0057E+08 7.9762E+07 34831E+08 56777E+06
F15 avg 1.5842E+08 3.6683E+07 24723E+08 1.5784E+06
median 1.1720E+05 1.7525E+07 6.0390E+07 3.1627E+05
worse 2.8503E+09 4.3711E+08 1.2107E+09 3.1441E+07
min 3.5025E+03 2.7586E+03 3.5692E+03 2.8834E+03
std 5.5253E+02 6.2238E+02 6.7805E+02 34024E+02
F16 avg 44595E+03 3.6591E+03 4.6357E+03 3.5615E+03
median 44432E+03 34520E+03 4.6963E+03 3.5668E+03
worse 54713E+03 5.2201E+03 5.8728E+03 44363E+03
min 3.3453E+03 2.7641E+03 2.5968E+03 2.5189E+03
std 5.2125E+02 3.3114E+02 47194E+02 3.1654E+02
F17 avg 4.1427E+03 3.1787E+03 3.7079E+03 3.2871E+03
median 4.1841E+03 3.1320E+03 3.6935E+03 3.1801E+03
worse 54792E+03 4.1524E+03 4.5039E+03 4.0008E+03
min 7.9204E+05 14299E+06 1.0242E+06 6.5958E+05
std 1.9280E+07 1.6911E+07 7.5481E+06 44026E+06
F18 avg 1.3093E+07 1.6866E+07 6.8556E+06 2.8380E+06
median 6.9459E+06 1.0063E+07 4.5713E+06 1.6771E+06
worse 1.0298E+08 6.3072E+07 3.7837E+07 2.5217E+07
min 1.8058E+04 1.0616E+05 3.5094E+05 4.9628E+04
std 47356E+07 2.9381E+07 3.3146E+08 1.1290E+06
F19 avg 1.3992E+07 1.3887E+07 1.6453E+08 1.1048E+06
median 6.7022E+05 2.6476E+06 1.5620E+07 6.6174E+05
worse 1.9658E+08 1.3930E+08 1.3501E+09 54038E+06
min 3.0367E+03 2.6532E+03 2.8345E+03 3.1234E+03
std 3.1336E+02 4.3140E+02 1.8097E+02 2.2984E+02
F20 avg 3.5971E+03 3.3207E+03 3.1733E+03 3.6965E+03
median 3.5972E+03 3.2321E+03 3.1530E+03 3.7305E+03
worse 4.3498E+03 4.1547E+03 3.5812E+03 4.0162E+03
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F Metrics MFO GWO POA MPOA

min 2.6137E+03 2.5002E+03 2.7468E+03 2.6461E+03

std 8.2179E+01 4.3581E+01 7.3378E+01 6.8697E+01

F21 avg 2.7694E+03 2.5719E+03 2.8877E+03 2.7732E+03
median 2.7690E+03 2.5679E+03 2.8763E+03 2.7617E+03

worse 2.9436E+03 2.6599E+03 3.0389E+03 2.9737E+03

min 9.3004E+03 8.6960E+03 9.7977E+03 1.1557E+04

std 9.7078E+02 2.2100E+03 84355E+02 5.2564E+02

F22 avg 1.1141E+04 1.0823E+04 1.1912E+04 1.2695E+04
median 1.1032E+04 1.0272E+04 11972E+04 1.2836E+04

worse 1.3224E+04 1.7411E+04 1.3432E+04 1.3603E+04

min 3.0324E+03 2.9325E+03 34153E+03 3.1030E+03

std 7.7316E+01 8.2419E+01 1.6732E+02 6.1492E+01

F23 avg 3.2033E+03 3.0816E+03 3.6836E+03 3.2137E+03
median 3.1924E+03 3.0780E+03 3.6897E+03 3.2136E+03

worse 3.3972E+03 3.3410E+03 4.0233E+03 3.3870E+03

min 3.1369E+03 3.1015E+03 34554E+03 3.2449E+03

std 5.5067E+01 9.8117E+01 14576E+02 9.0179E+01

F24 avg 3.2596E+03 3.2316E+03 3.8110E+03 3.3786E+03
median 3.2663E+03 3.2043E+03 3.8314E+03 3.3533E+03

worse 3.3736E+03 3.5364E+03 4.0167E+03 3.6082E+03

min 3.5481E+03 3.2040E+03 4.9419E+03 3.5512E+03

std 2.7879E+03 6.0030E+02 1.5027E+03 34745E+02

F25 avg 6.3201E+03 3.9922E+03 7.2773E+03 4.0372E+03
median 5.2588E+03 3.7916E+03 7.0025E+03 4.0342E+03

worse 14253E+04 54570E+03 1.0681E+04 4.9947E+03

min 7.2262E+03 5.6350E+03 9.5006E+03 74236E+03

std 6.9455E+02 7.3001E+02 1.3385E+03 1.3951E+03

F26 avg 8.7629E+03 7.0355E+03 1.3285E+04 1.0339E+04
median 8.8864E+03 7.1199E+03 1.3484E+04 1.0219E+04

worse 9.9569E+03 8.8258E+03 1.5714E+04 1.3131E+04

min 34475E+03 34988E+03 3.7528E+03 34403E+03

std 1.0736E+02 14518E+02 2.9622E+02 1.7144E+02

F27 avg 3.6494E+03 3.7587E+03 4.2899E+03 3.6949E+03
median 3.6418E+03 37218E+03 4.2508E+03 3.6707E+03

worse 3.9222E+03 4,0924E+03 4.8582E+03 4.1918E+03

min 5.3453E+03 3.8223E+03 6.0391E+03 4.0347E+03

std 9.1052E+02 6.0678E+02 7.3120E+02 2.2286E+02

F28 avg 8.2755E+03 4.8205E+03 7.1097E+03 44929E+03
median 8.5233E+03 47335E+03 7.0666E+03 44842E+03

worse 9.6339E+03 6.5296E+03 9.0748E+03 4.9638E+03

min 4.2564E+03 4.3101E+03 5.5523E+03 4.5912E+03

std 6.9230E+02 47607E+02 9.5542E+02 5.8591E+02

F29 avg 54157E+03 5.0888E+03 74758E+03 5.5518E+03
median 5.3203E+03 5.1369E+03 74031E+03 5.3896E+03

worse 76277E+03 6.2149E+03 9.5163E+03 6.9618E+03

min 3.2461E+06 9.5712E+07 1.2069E+08 6.1319E+07

std 1.0682E+08 54832E+07 57650E+08 1.7736E+07

F30 avg 5.5534E+07 1.9728E+08 3.9531E+08 84684E+07
median 1.5206E+07 1.8565E+08 2.5389E+08 8.2339E+07

worse 4.3562E+08 3.5260E+08 3.2967E+09 1.2472E+08
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rithm (GWO). M1is arelatively simple environment
model of 2020, and M2 is a more complex environ-
ment model of 4040. Both models have the robot
path planning starting from the bottom left corner
node and ending at the top right corner node. The
population size for both is set to 30, and the maxi-
mum number of iterations is set to 200. Under the
M1 environment, the convergence curve of various
algorithms is shown in Figure 3, and the simulation
results of a specific path planning experiment for
various algorithms are shown in Figure 4. The simu-
lation experiment results indicate that the improved
MPOA algorithm outperforms other algorithms in
terms of convergence speed and path length in rela-
tively simple map environments.

Figure 4

Route simulation results in M1 map environment
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Figure 3
Convergence Curve Graph of Path in M1 Map Environment
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In the M2 environment, the convergence curves of
various algorithm paths are shown in Figure 5, and
the results of a single path planning simulation ex-
periment for various algorithms are shown in Figure
6. The simulation experiment results show that the
improved MPOA algorithm, in a relatively complex
map environment, although converges slower than
the SSA algorithm, it converges at 13 iterations,
which is still relatively fast, and it has a better ad-
vantage in terms of path length.

To verify the stability of the algorithm, the algorithm
was run 20 times in two different map environments,
and the average path length, variance, and average
path shortening rate were obtained as shown in Table
3. In the M1 map environment, the improved MPOA

Figure 6
Route simulation results in M2 map environment
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Figure 5
Convergence Curve Graph of Path in M2 Map Environment
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Table 3

Performance Comparison of 4 Algorithms Running 20 Times
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Environment M1
algorithm MPOA POA GWO SSA
mean 2910594 31.897415 31.39047 33643415
std 1014380 1570274 2.865174 1775402
Mgfoﬁtgei;aggfalggth / 008751414 010079715 016101263
Environment M2
algorithm MPOA POA GWO SSA
mean 67.06096 105.846095 115.235485 76.5132
std 6580373 8766548 10.233988 2.8421E-14
Mi?oﬁtii‘ii“‘ggf;{?h / 036642953 041805286 012353737

algorithm had an average path length of 29.10594 and
a variance of 1.014380736, which was better than the
other three algorithms. In the M2 map environment,
the variance of the improved MPOA algorithm was
6.580373756, which was worse than the result of
the SSA algorithm, but the average path length was
67.06096, which was better than the other three al-
gorithms. This indicates that the proposed MPOA
algorithm is feasible for mobile robot path planning
in both simple and complex map environments, and
it has good advantages in terms of convergence speed
and shortest path.

6. Conclusions and Future Work

The POA algorithm is a heuristic optimization algo-
rithm based on the behavior of pelicans, used to solve
optimization problems. This algorithm simulates the
foraging strategy of pelicans by iteratively searching
the solution space to find the optimal solution. It fea-
tures diversity, adaptability, and parallelism, and has
been widely applied in fields such as function optimi-
zation, machine learning, and image processing. How-
ever, when the POA algorithm is applied to complex
problems such as mobile robot path planning, it often
suffers from issues of being trapped in local optima
and premature convergence due to its population ran-
domness and insufficient global exploration capabil-
ity. To address these problems, this paper proposes a
multi-strategy improved MPOA algorithm. The MPOA

algorithm improves the random generation of the peli-
can population by using the Cubic chaotic map for ini-
tialization, enhancing the population’s diversity. Addi-
tionally, an adaptive feedback regulation factor W is
introduced to ensure that the updates of pelican posi-
tions occur within a certain range, solving the problem
of blindly followinglocal development in the later stage
of the exploration phase. In the development stage of
the algorithm, Levy flight strategy is first employed to
update the positions of individual pelicans to maintain
global optimization capability. Then, in the later stage
of pelican position update, the Gaussian mutation
mechanism is introduced to address the slow conver-
gence issue in the Levy flight strategy.

To validate the performance of the improved algo-
rithm, two different experiments are conducted in
this paper. In the first experiment, the performance
of the MPOA algorithm is compared with traditional
POA algorithm, Moth Flame Optimization algorithm
(MFO),and Grey Wolf Optimization algorithm (GWO)
using 30-dimensional and 50-dimensional CEC 2017
benchmark functions. The results demonstrate the
feasibility and advantages of the MPOA algorithm in
solving various types of real optimization problems.
In the second experiment, the proposed MPOA al-
gorithm is simulated for mobile robot path planning
in map environments of two different scales, 2020
and 4040, and compared with traditional POA algo-
rithm, traditional Sparrow Search Algorithm (SSA),
and traditional GWO algorithm. After 20 statistical
data iterations, the results show that the MPOA algo-
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rithm exhibits superior path planning performance
and algorithm stability in this experiment. In con-
clusion, the proposed MPOA algorithm addresses the
drawbacks of the traditional POA algorithm in terms
of slow convergence speed, low optimization accura-
cy, and poor robustness in engineering applications
by improving the population initialization, position
update strategy, and introducing Gaussian mutation
mechanism. The experimental results demonstrate
the feasibility and advantages of the MPOA algorithm
in solving various types of real optimization problems
and mobile robot path planning.

MPOA algorithm is an emerging optimization algo-
rithm that improves upon the POA algorithm. The
MPOA algorithm has the potential for broader appli-
cation and development in the future. Researchers
can continue to improve the algorithm’s performance
and efficiency to further enhance its applicability
in practical problems. One method to improve the
performance of the MPOA algorithm is optimizing
parameter selection. By selecting parameters rea-
sonably, the algorithm can better adapt to different
types of problems. Researchers can determine the
optimal parameter settings through experimentation
and analysis to improve the algorithm’s convergence
speed and ability to solve complex problems. Another
method to improve the MPOA algorithm is enhanc-
ing the neighborhood search strategy. Neighborhood
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