
Information Technology and Control 2024/1/53280

A Multi-level Surrogate-assisted
Algorithm for Expensive
Optimization Problems

ITC 1/53
Information Technology
and Control
Vol. 53 / No. 1 / 2024
pp.280-301
DOI 10.5755/j01.itc.53.1.35922

A Multi-level Surrogate-assisted Algorithm for ExpensiveOptimization Problems

Received 2024/01/02 Accepted after revision 2024/02/06

HOW TO CITE: Hu, L., Wu, X., Che, X. (2024). A Multi-level Surrogate-assisted Algorithm for
Expensive Optimization Problems. Information Technology and Control, 53(1), 280-301. https://doi.
org/10.5755/j01.itc.53.1.35922

Corresponding author: chexilong@jlu.edu.cn

Liang Hu
Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education,
Jilin University, Changchun, China:
College of Computer Science and Technology, Jilin University, Changchun, China; e-mail: hul@jlu.edu.cn

Xianwei Wu
College of Computer Science and Technology, Jilin University, Changchun, China; e-mail: xwwu18@mails.jlu.edu.cn

Xilong Che
Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education,
Jilin University, Changchun, China;
College of Computer Science and Technology, Jilin University, Changchun, China; e-mail: chexilong@jlu.edu.cn

With the development of computer science, more and more complex problems rely on the help of computers for
solving. When facing the parameter optimization problem of complex models, traditional intelligent optimi-
zation algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and
resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex
problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By con-
structing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding
local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differ-
ential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization.
Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance
weighting (IDW) are constructed for global and local level surrogate model, respectively. These methods lever-
age their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against
other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results
from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive

281Information Technology and Control 2024/1/53

optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in
the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM’s sim-
ulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments
demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
KEYWORDS: Surrogate-assisted optimization; Random Forest; Inverse distance weighting; Multi level opti-
mization.

1. Introduction
Parameter optimization issues are prevalent in the
fields of science and engineering, necessitating the
need for highly efficient computational algorithms to
address these challenges. In recent years, a variety of
intelligent optimization algorithms, such as differen-
tial evolution (DE) algorithm, genetic algorithm, par-
ticle swarm optimization (PSO) algorithm, have been
proposed and effectively employed in a multitude of
engineering optimization scenarios. Their effective-
ness can be partly attributed to the circumstance
that intelligent optimization methods do not require
objective functions to be analytical or differentiable,
while also possessing enhanced global search capa-
bilities. Nevertheless, the primary trait of these al-
gorithms is their tendency to demand a substantial
number of fitness evaluations in order to pinpoint a
solution that is close to optimal. Some optimization
problems may involve intensive computation and
costly simulation [16]. Applying these algorithms to
these problems with high computational costs pres-
ent a significant challenge.
To tackle this issue, surrogate model is proposed as an
alternative to the costly performance evaluations in
order to mitigate the computational expenses. Surro-
gate model is an effective tool for building a simplified
model of the actual complex system for rapid testing,
verification and optimization. Surrogate model uses
approximate methods to construct models instead
of complex models to simplify the optimization pro-
cess, so as to improve computational efficiency while
ensuring accuracy. Surrogate model predicts infor-
mation of unknown points through known sampling
points, which can actually be attributed to construct
an equation to instead of the large complex mod-
el involving costly simulation. It is an approximate
method based on experimental design technology.
Surrogate model establishes a mathematical model
between input parameter and output objective func-
tion values, predicts the output objective function

values under different input parameters. The surro-
gate model offers the advantage of significantly low-
ering the cost and complexity of analysis, enhancing
analysis efficiency and accuracy, and optimizing real
systems during the design stage to minimize the need
for trial and error.
Considering that the process of building surrogate
models simplifies the complex processes of actual
complex systems into mathematical models, it be-
comes challenging to fully simulate the overall be-
havior of real systems. This error increases with the
growing complexity of real systems. As various opti-
mization problems become increasingly complex, it
becomes challenging to ensure the accuracy of a sin-
gle-level surrogate model. Such models may struggle
to adequately represent intricate systems and meet
precision requirements for minimizing errors. More-
over, there is a tendency for it to become ensnared in
local optima, potentially failing to discover the genu-
ine global optimum throughout the optimization pro-
cess. Thus, improving the fitting accuracy of surrogate
models and evading local optima stands out as one of
the most crucial challenges confronted by optimiza-
tion algorithms based on surrogate model. In previ-
ous research, when dealing with such problems, more
emphasis was placed on using different algorithms in
various search stages, rather than constructing surro-
gate models at different levels. However, in practical
optimization problems, when the problem to be opti-
mized is complex, it is necessary to set up multi-lev-
el surrogate models. Constructing multiple levels of
surrogate models and conducting searches at various
stages can achieve a more optimal balance between
exploration and exploitation, thereby increasing the
likelihood of identifying potential optimal solutions.
In this paper, we propose a multi-level surrogate as-
sisted optimization (MLSAO) algorithm. We attempt
to build a global-level surrogate model by a machine

Information Technology and Control 2024/1/53282

learning method random forest, which can effec-
tively handle high-dimensional data and non-linear
relationships, and has good robustness and stability.
Then a differential evolution algorithm was applied
to obtain the optimal solution of the global surrogate
model and update the global surrogate model. To nav-
igate away from local optimal solution and explore the
global optimum, we establish a local surrogate mod-
el based on inverse distance weighting. This model
helps explore regions where optimal solutions may
be present. The local model is simpler and smaller
in scale than the global surrogate model. We select a
small portion of high-quality data to build this new
surrogate model, aiming to construct a surrogate
model with high-quality and avoid searching mean-
ingless parameter space. Considering the data scale
of the local surrogate model, we design a simplex
downhill method-oriented local model update strat-
egy. Compared with intelligent algorithms, the sim-
plex downhill method converges quickly and does not
require repetitive iterations. It is suitable for small-
scale optimization problems. We combine two level
surrogates with different update strategies to realize
an algorithm that can solve complex model optimi-
zation problems. To assess the effectiveness of the
proposed algorithm, experiments are conducted us-
ing diverse mathematical function benchmarks. The
results indicate that the proposed algorithm has more
advantages compared to previous algorithms. Finally,
we apply the proposed algorithm to a complex opti-
mization problem: the parameter tuning of the earth
system model, the precipitation simulation results of
CAM5 has been improved over several regions.
The contributions of this work can be summarized as
follows:
1 We propose the MLSAO algorithm, which utiliz-

es Random Forest to construct a global surrogate
model and inverse distance weighting (IDW) to
construct a local-level surrogate model. This ap-
proach enhances the search capabilities for target
problem and helps avoid falling into local optimal
solutions.

2 We integrate two powerful optimization algo-
rithms, differential Evolution (DE) and Simplex
Downhill, into MLSAO, applying them to different
search stages. This capitalizes on the strengths of
each method, striking a balance between explora-
tion and exploitation.

3 We conduct tests on multiple benchmark func-
tions with varying dimensions and apply MLSAO
to parameter tuning in CESM, demonstrating its
effectiveness.

The manuscript is structured as follows: In Section 2,
we introduce some related works about the proposed
algorithm. We provide an overview of the algorithms
incorporated in the proposed MLSAO in Section 3 and
elaborates on the details of the proposed algorithm in
Section 4. Experimental results are presented in Sec-
tion 5, and the study’s conclusions are summarized in
Section 6.

2. Related Works
In recent years, various methods have been employed
for constructing surrogate model, including poly-
nomial response surface (PRS) [15], support vector
regression (SVR) [50], Kriging [11], radial basis func-
tion (RBF) [46], artificial neural networks (ANN) [12,
10, 28], multivariate adaptive regression [49], and
random forests [2, 3], etc. Building upon this founda-
tion, numerous studies have explored the distinctions
between these models and the scenarios in which
they are best suited [1, 9, 14, 41], contributing to their
widespread application across various engineering
domains. For instance, paper [24] utilized a PRS mod-
el to assist in making parameter choices and to facil-
itate the comparison of sensitivity properties among
climate models. Xu et al. [44] introduced an optimi-
zation method for land model parameter tuning using
a RBF surrogate model. Müller et al. [23] used RBF
model for methane emission estimation. Yue et al.
[48] used RBF adaptive surrogate model optimization
to search for a combination of parameters relevant to
the geometry and elasticity of track structures. [32,
45] proved that SVR model can be used for parameter
calibrate of finite element and satellite systems. Chu
et al. [7] used Kriging model for resonance frequency
analysis of dental.
To address computationally expensive problems
more effectively, researchers have introduced surro-
gate-assisted optimization algorithms. Over the past
decades, the literature has documented various al-
gorithms that leverage surrogate models to enhance
optimization processes. For example, Yu et al. [47]
propose a surrogate-assisted hierarchical particle

283Information Technology and Control 2024/1/53

swarm optimization (SHPSO) algorithm, combine
RBF model with different PSO method. Liu et al. [21]
propose bagging-based surrogate-assisted evolu-
tionary algorithm (B-SAEA). This approach incor-
porates bagging to construct high-quality surrogate
model for each costly objective. Wang et al. [40] pro-
posed the Evolutionary Sampling Assisted Optimi-
zation (ESAO) method, leveraging two capabilities
to account for both global and local searches. Sun et
al. [36] proposed the Two-Layer Surrogate-Assisted
PSO (TLSAPSO) algorithm, utilizing both global and
several local surrogate models for fitness approxima-
tion. Li et al. [19] proposed a surrogate-assisted hy-
brid swarm optimization (SASHO). Two swarms are
respectively used in different optimization states.
Xin et al. [42] proposed a surrogate and autoencod-
er-assisted multitask particle swarm optimization
algorithm to solve multimodal optimization prob-
lems. A surrogate-assisted differential evolution
with knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted evo-
lutionary search proposed for expensive incremental
optimization problems.
In recent years, some parallel-based optimization
methods have been proposed to address parameter
optimization for complex problems. They aim to en-
hance optimization efficiency by leveraging addition-
al computational resources. For example: Parallel
BNN-GA [6] has been demonstrated to better address
large-scale data optimization problems. HAS-EA
[22] proposed a surrogate-assisted optimization al-
gorithm based on heterogeneous platforms. Xing et al
[43] proposed a parallel kinging surrogate model opti-
mization method and Improved the expect improve-
ment function,which improved global performance
and solution accuracy. However, these methods have
high requirements for computational resources.
When computational resources are limited or the tar-
get problem is difficult to parallelize, the optimization
efficiency still cannot be improved.
These algorithms combine surrogate model with
many kinds of optimization algorithms. Further en-
hance the advantages of surrogate models in solving
complex problems. However, some of these algo-
rithms involve different level surrogate model, they
do not consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background information
pertinent to this study.

3.1. Problem Definition
The optimization problem can be formulated as fol-
lows in equations (1-3):

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6)

(1)

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6)

(2)

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6)

(3)

where the x represents the vector of parameters need
to be adjusted. f(x) represents the objective function.
While dealing with complex optimization problem,
the objective function may not have a clear mathe-
matical expression or the expression may be difficult
to compute within a finite time. In the proposed al-
gorithm, the surrogate is considered as the objective
function to fit the parameters and corresponding val-
ues obtained by the complex model. The functions
u(x) and v(x) denote the inequality and equality con-
straints, respectively. They have different forms of ex-
pressions in different problems.

3.2. Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary algorithm
for global optimization, introduced in [33]. The algo-
rithm generates new individuals by differential muta-
tion of individuals in the population, and updates the
population through selection operation to systemati-
cally explore the search space for the global optimum.
The primary stages of the DE algorithm encompass
population initialization, differential mutation oper-
ation, selection operation, and termination condition.
The core of the DE algorithm lies in the differential mu-
tation operation, where new individuals are generated
through the linear transformation of individuals in the
population. The population is then updated through the
selection operation. The key steps of DE include:
Initialize optimization conditions: Initialization of
optimization conditions involves defining the control
parameters of the differential evolution algorithm
and the fitness function. These control parameters
consist of the population size NP, scaling factor F, nd
crossover probability CR. Subsequently, generate and

Information Technology and Control 2024/1/53284

assess the initial population. The initial population is
shown as follows in equations (4-5):

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6)

(4)

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6)

(5)

where Xt(0) denotes the t-th individual, while xL
{t, w}

and xU
{t, w} denote the lower and upper bounds of the

w-th dimension, respectively. The fitness function
value for each individual is calculated in the initial
population.
Mutation: Conduct mutation operations to acquire
the intermediate population.

states. Xin et al. [42] proposed a surrogate and
autoencoder-assisted multitask particle
swarm optimization algorithm to solve
multimodal optimization problems. A
surrogate-assisted differential evolution with
knowledge transfer (SADE-KT) [20] integrate
knowledge transfer and the surrogate-assisted
evolutionary search proposed for expensive
incremental optimization problems.

In recent years, some parallel-based
optimization methods have been proposed to
address parameter optimization for complex
problems. They aim to enhance optimization
efficiency by leveraging additional
computational resources. For example:
Parallel BNN-GA [6] has been demonstrated
to better address large-scale data optimization
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on
heterogeneous platforms. Xing et al [43]
proposed a parallel kinging surrogate model
optimization method and Improved the expect
improvement function,which improved global
performance and solution accuracy. However,
these methods have high requirements for
computational resources. When
computational resources are limited or the
target problem is difficult to parallelize, the
optimization efficiency still cannot be
improved.

These algorithms combine surrogate model
with many kinds of optimization algorithms.
Further enhance the advantages of surrogate
models in solving complex problems.
However, some of these algorithms involve
different level surrogate model, they do not
consider using different models at different
search stages.

3. Preliminaries
In this section, we provide background
information pertinent to this study.
3.1Problem Definition
The optimization problem can be formulated
as follows in equations (1-3):

min�∈�f(x)
(1)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠�(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1,2, … , 𝑛𝑛
(2)

𝑣𝑣�(𝑥𝑥) = 0, 𝑠𝑠 = 1,2, … , 𝑟𝑟, (3)

where the 𝑥𝑥 represents the vector of
parameters need to be adjusted. 𝑓𝑓(𝑥𝑥)

represents the objective function. While
dealing with complex optimization problem,
the objective function may not have a clear
mathematical expression or the expression
may be difficult to compute within a finite
time. In the proposed algorithm, the surrogate
is considered as the objective function to fit the
parameters and corresponding values
obtained by the complex model. The functions
𝑠𝑠(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) denote the inequality and
equality constraints, respectively. They have
different forms of expressions in different
problems.
3.2 Differential Evolution Algorithm
Differential evolution (DE) is an evolutionary
algorithm for global optimization, introduced
in [33]. The algorithm generates new
individuals by differential mutation of
individuals in the population, and updates the
population through selection operation to
systematically explore the search space for the
global optimum. The primary stages of the DE
algorithm encompass population initialization,
differential mutation operation, selection
operation, and termination condition. The core
of the DE algorithm lies in the differential
mutation operation, where new individuals
are generated through the linear
transformation of individuals in the
population. The population is then updated
through the selection operation. The key steps
of DE include:

Initialize optimization conditions:
Initialization of optimization conditions
involves defining the control parameters of the
differential evolution algorithm and the fitness
function. These control parameters consist of
the population size 𝑁𝑁𝑁𝑁, scaling factor 𝐹𝐹, and
crossover probability 𝐶𝐶𝐶𝐶 . Subsequently,
generate and assess the initial population. The
initial population is shown as follows in
equations (4-5):

 X�(0) ∣∣ x{�,�}
� (0) ≤ x{�,�} ≤ x{�,�}

� (0),   (4)

𝑠𝑠 ∈ [1, 𝑁𝑁𝑁𝑁]; 𝑤𝑤 ∈ [1, 𝐷𝐷𝑠𝑠𝐷𝐷𝑠𝑠𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛], (5)

where X�(0) denotes the 𝑠𝑠 -th individual,
while 𝑥𝑥{�,�}

� and 𝑥𝑥{�,�}
� denote the lower and

upper bounds of the 𝑤𝑤 -th dimension,
respectively. The fitness function value for
each individual is calculated in the initial
population.

Mutation: Conduct mutation operations to
acquire the intermediate population.

𝑉𝑉�(𝑛𝑛 + 1) = 𝑋𝑋��(𝑛𝑛) + 𝐹𝐹�𝑋𝑋��(𝑛𝑛) − 𝑋𝑋��(𝑛𝑛)� (6) . (6)

Equation (6) describes the mutation operation where
m1 m2, and m3are three random numbers in intervals
[1, NP]. F is called the scaling factor, which is a fixed
constant. n represents the n-th generation.
Crossover: crossover operations are shown in Equa-
tion (7).

Equation (6) describes the mutation operation
where 𝑚𝑚1 𝑚𝑚2 , and 𝑚𝑚3 are three random
numbers in intervals [1, 𝑁𝑁𝑁𝑁]. 𝐹𝐹 is called the
scaling factor, which is a fixed constant. 𝑛𝑛
represents the 𝑛𝑛-th generation.

Crossover: crossover operations are shown in
Equation (7).

𝑈𝑈�,�(𝑔𝑔 + 1) = �
𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(7)

where 𝐶𝐶𝐶𝐶 is the crossover probability. New
individuals are randomly generated by
probability.

Selection: Choose individuals from the initial
population and the intermediate population to
form a new generation population.

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1), (8)

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�, (9)

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. (10)

As shown in Equations (8)-(10), in DE, a greedy
selection strategy is employed, where the
superior individual is chosen as the new
individual.

DE algorithm has the advantages of simplicity,
easy implementation, no need for gradient
information, and global convergence. It has
found extensive applications in function
optimization, parameter estimation, machine
learning, and various other domains.
3.3 Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred
to as the downhill simplex method, is a widely

utilized optimization algorithm designed to
locate the minimum or maximum of a given
objective function. It falls under the category of
direct search algorithms, indicating that it does
not necessitate knowledge of the gradient of
the objective function.

The term "simplex" denotes a geometric shape
created by a set of 𝑛𝑛 + 1 points, ranging from
𝑝𝑝� to 𝑝𝑝� , in n-dimensional space. the shape
satisfies

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0.

It means that in one-dimensional space, two
points cannot overlap, so the simplex is a line
segment. In two-dimensional space, three
points cannot be collinear, so the simplex is a
triangle. In three-dimensional space, four
points cannot be coplanar, so the simplex is a
tetrahedron. This pattern continues for higher
dimensions, where the n+1 points cannot lie in
an n-dimensional plane, forming an n-
dimensional simplex.

The algorithm operates by maintaining a
simplex, which is a geometric shape consisting
of n+1 vertices in n-dimensional space. At each
iteration, the algorithm evaluates the objective
function at each vertex of the simplex, and then
performs a series of operations to transform the
simplex. These operations include reflection,
expansion, contraction, and shrinkage, which
move the simplex towards the minimum or
maximum of the objective function value.

The process of Nelder-Mead algorithm is as
follows and flowchart is shown in Figure 1:

Figure 1

The flowchart of Nelder Mead Algorithm.

, (7)

where CR is the crossover probability. New individu-
als are randomly generated by probability.
Selection: Choose individuals from the initial popu-
lation and the intermediate population to form a new
generation population.

Equation (6) describes the mutation operation
where 𝑚𝑚1 𝑚𝑚2 , and 𝑚𝑚3 are three random
numbers in intervals [1, 𝑁𝑁𝑁𝑁]. 𝐹𝐹 is called the
scaling factor, which is a fixed constant. 𝑛𝑛
represents the 𝑛𝑛-th generation.

Crossover: crossover operations are shown in
Equation (7).

𝑈𝑈�,�(𝑔𝑔 + 1) = �
𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(7)

where 𝐶𝐶𝐶𝐶 is the crossover probability. New
individuals are randomly generated by
probability.

Selection: Choose individuals from the initial
population and the intermediate population to
form a new generation population.

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1), (8)

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�, (9)

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. (10)

As shown in Equations (8)-(10), in DE, a greedy
selection strategy is employed, where the
superior individual is chosen as the new
individual.

DE algorithm has the advantages of simplicity,
easy implementation, no need for gradient
information, and global convergence. It has
found extensive applications in function
optimization, parameter estimation, machine
learning, and various other domains.
3.3 Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred
to as the downhill simplex method, is a widely

utilized optimization algorithm designed to
locate the minimum or maximum of a given
objective function. It falls under the category of
direct search algorithms, indicating that it does
not necessitate knowledge of the gradient of
the objective function.

The term "simplex" denotes a geometric shape
created by a set of 𝑛𝑛 + 1 points, ranging from
𝑝𝑝� to 𝑝𝑝� , in n-dimensional space. the shape
satisfies

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0.

It means that in one-dimensional space, two
points cannot overlap, so the simplex is a line
segment. In two-dimensional space, three
points cannot be collinear, so the simplex is a
triangle. In three-dimensional space, four
points cannot be coplanar, so the simplex is a
tetrahedron. This pattern continues for higher
dimensions, where the n+1 points cannot lie in
an n-dimensional plane, forming an n-
dimensional simplex.

The algorithm operates by maintaining a
simplex, which is a geometric shape consisting
of n+1 vertices in n-dimensional space. At each
iteration, the algorithm evaluates the objective
function at each vertex of the simplex, and then
performs a series of operations to transform the
simplex. These operations include reflection,
expansion, contraction, and shrinkage, which
move the simplex towards the minimum or
maximum of the objective function value.

The process of Nelder-Mead algorithm is as
follows and flowchart is shown in Figure 1:

Figure 1

The flowchart of Nelder Mead Algorithm.

, (8)

Equation (6) describes the mutation operation
where 𝑚𝑚1 𝑚𝑚2 , and 𝑚𝑚3 are three random
numbers in intervals [1, 𝑁𝑁𝑁𝑁]. 𝐹𝐹 is called the
scaling factor, which is a fixed constant. 𝑛𝑛
represents the 𝑛𝑛-th generation.

Crossover: crossover operations are shown in
Equation (7).

𝑈𝑈�,�(𝑔𝑔 + 1) = �
𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(7)

where 𝐶𝐶𝐶𝐶 is the crossover probability. New
individuals are randomly generated by
probability.

Selection: Choose individuals from the initial
population and the intermediate population to
form a new generation population.

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1), (8)

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�, (9)

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. (10)

As shown in Equations (8)-(10), in DE, a greedy
selection strategy is employed, where the
superior individual is chosen as the new
individual.

DE algorithm has the advantages of simplicity,
easy implementation, no need for gradient
information, and global convergence. It has
found extensive applications in function
optimization, parameter estimation, machine
learning, and various other domains.
3.3 Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred
to as the downhill simplex method, is a widely

utilized optimization algorithm designed to
locate the minimum or maximum of a given
objective function. It falls under the category of
direct search algorithms, indicating that it does
not necessitate knowledge of the gradient of
the objective function.

The term "simplex" denotes a geometric shape
created by a set of 𝑛𝑛 + 1 points, ranging from
𝑝𝑝� to 𝑝𝑝� , in n-dimensional space. the shape
satisfies

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0.

It means that in one-dimensional space, two
points cannot overlap, so the simplex is a line
segment. In two-dimensional space, three
points cannot be collinear, so the simplex is a
triangle. In three-dimensional space, four
points cannot be coplanar, so the simplex is a
tetrahedron. This pattern continues for higher
dimensions, where the n+1 points cannot lie in
an n-dimensional plane, forming an n-
dimensional simplex.

The algorithm operates by maintaining a
simplex, which is a geometric shape consisting
of n+1 vertices in n-dimensional space. At each
iteration, the algorithm evaluates the objective
function at each vertex of the simplex, and then
performs a series of operations to transform the
simplex. These operations include reflection,
expansion, contraction, and shrinkage, which
move the simplex towards the minimum or
maximum of the objective function value.

The process of Nelder-Mead algorithm is as
follows and flowchart is shown in Figure 1:

Figure 1

The flowchart of Nelder Mead Algorithm.

, (9)

Equation (6) describes the mutation operation
where 𝑚𝑚1 𝑚𝑚2 , and 𝑚𝑚3 are three random
numbers in intervals [1, 𝑁𝑁𝑁𝑁]. 𝐹𝐹 is called the
scaling factor, which is a fixed constant. 𝑛𝑛
represents the 𝑛𝑛-th generation.

Crossover: crossover operations are shown in
Equation (7).

𝑈𝑈�,�(𝑔𝑔 + 1) = �
𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(7)

where 𝐶𝐶𝐶𝐶 is the crossover probability. New
individuals are randomly generated by
probability.

Selection: Choose individuals from the initial
population and the intermediate population to
form a new generation population.

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1), (8)

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�, (9)

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. (10)

As shown in Equations (8)-(10), in DE, a greedy
selection strategy is employed, where the
superior individual is chosen as the new
individual.

DE algorithm has the advantages of simplicity,
easy implementation, no need for gradient
information, and global convergence. It has
found extensive applications in function
optimization, parameter estimation, machine
learning, and various other domains.
3.3 Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred
to as the downhill simplex method, is a widely

utilized optimization algorithm designed to
locate the minimum or maximum of a given
objective function. It falls under the category of
direct search algorithms, indicating that it does
not necessitate knowledge of the gradient of
the objective function.

The term "simplex" denotes a geometric shape
created by a set of 𝑛𝑛 + 1 points, ranging from
𝑝𝑝� to 𝑝𝑝� , in n-dimensional space. the shape
satisfies

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0.

It means that in one-dimensional space, two
points cannot overlap, so the simplex is a line
segment. In two-dimensional space, three
points cannot be collinear, so the simplex is a
triangle. In three-dimensional space, four
points cannot be coplanar, so the simplex is a
tetrahedron. This pattern continues for higher
dimensions, where the n+1 points cannot lie in
an n-dimensional plane, forming an n-
dimensional simplex.

The algorithm operates by maintaining a
simplex, which is a geometric shape consisting
of n+1 vertices in n-dimensional space. At each
iteration, the algorithm evaluates the objective
function at each vertex of the simplex, and then
performs a series of operations to transform the
simplex. These operations include reflection,
expansion, contraction, and shrinkage, which
move the simplex towards the minimum or
maximum of the objective function value.

The process of Nelder-Mead algorithm is as
follows and flowchart is shown in Figure 1:

Figure 1

The flowchart of Nelder Mead Algorithm.

. (10)

As shown in Equations (8)-(10), in DE, a greedy selec-
tion strategy is employed, where the superior individ-
ual is chosen as the new individual.
DE algorithm has the advantages of simplicity, easy
implementation, no need for gradient information,
and global convergence. It has found extensive appli-
cations in function optimization, parameter estima-
tion, machine learning, and various other domains.

3.3. Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred to as
the downhill simplex method, is a widely utilized op-

timization algorithm designed to locate the minimum
or maximum of a given objective function. It falls un-
der the category of direct search algorithms, indicat-
ing that it does not necessitate knowledge of the gra-
dient of the objective function.
The term “simplex” denotes a geometric shape cre-
ated by a set of n + 1 points, ranging from p0 to pn, in
n-dimensional space. the shape satisfies

Equation (6) describes the mutation operation
where 𝑚𝑚1 𝑚𝑚2 , and 𝑚𝑚3 are three random
numbers in intervals [1, 𝑁𝑁𝑁𝑁]. 𝐹𝐹 is called the
scaling factor, which is a fixed constant. 𝑛𝑛
represents the 𝑛𝑛-th generation.

Crossover: crossover operations are shown in
Equation (7).

𝑈𝑈�,�(𝑔𝑔 + 1) = �
𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

(7)

where 𝐶𝐶𝐶𝐶 is the crossover probability. New
individuals are randomly generated by
probability.

Selection: Choose individuals from the initial
population and the intermediate population to
form a new generation population.

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1), (8)

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�, (9)

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒. (10)

As shown in Equations (8)-(10), in DE, a greedy
selection strategy is employed, where the
superior individual is chosen as the new
individual.

DE algorithm has the advantages of simplicity,
easy implementation, no need for gradient
information, and global convergence. It has
found extensive applications in function
optimization, parameter estimation, machine
learning, and various other domains.
3.3 Nelder-Mead Algorithm
The Nelder-Mead algorithm [25], also referred
to as the downhill simplex method, is a widely

utilized optimization algorithm designed to
locate the minimum or maximum of a given
objective function. It falls under the category of
direct search algorithms, indicating that it does
not necessitate knowledge of the gradient of
the objective function.

The term "simplex" denotes a geometric shape
created by a set of 𝑛𝑛 + 1 points, ranging from
𝑝𝑝� to 𝑝𝑝� , in n-dimensional space. the shape
satisfies

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0.

It means that in one-dimensional space, two
points cannot overlap, so the simplex is a line
segment. In two-dimensional space, three
points cannot be collinear, so the simplex is a
triangle. In three-dimensional space, four
points cannot be coplanar, so the simplex is a
tetrahedron. This pattern continues for higher
dimensions, where the n+1 points cannot lie in
an n-dimensional plane, forming an n-
dimensional simplex.

The algorithm operates by maintaining a
simplex, which is a geometric shape consisting
of n+1 vertices in n-dimensional space. At each
iteration, the algorithm evaluates the objective
function at each vertex of the simplex, and then
performs a series of operations to transform the
simplex. These operations include reflection,
expansion, contraction, and shrinkage, which
move the simplex towards the minimum or
maximum of the objective function value.

The process of Nelder-Mead algorithm is as
follows and flowchart is shown in Figure 1:

Figure 1

The flowchart of Nelder Mead Algorithm.

It means that in one-dimensional space, two points
cannot overlap, so the simplex is a line segment. In
two-dimensional space, three points cannot be collin-
ear, so the simplex is a triangle. In three-dimensional
space, four points cannot be coplanar, so the simplex
is a tetrahedron. This pattern continues for higher di-
mensions, where the n+1 points cannot lie in an n-di-
mensional plane, forming an n-dimensional simplex.
The algorithm operates by maintaining a simplex,
which is a geometric shape consisting of n+1 vertices
in n-dimensional space. At each iteration, the algo-
rithm evaluates the objective function at each vertex
of the simplex, and then performs a series of opera-
tions to transform the simplex. These operations in-
clude reflection, expansion, contraction, and shrink-
age, which move the simplex towards the minimum or
maximum of the objective function value.
The process of Nelder-Mead algorithm is as follows
and flowchart is shown in Figure 1.
1 Select initial point x0, generate the remaining n

points. Construct a simplex based on these points.
2 2. Sort the n+1 points according to their objective

function values: f(p0) ≤ f(p1) ≤ ... ≤ f(pn).
3 Remove the worst point pn and calculate the cen-

ter of gravity pg = ∑n – 1
i = 0

pi
n . Reflect the worst point

using a reflection coefficient ρ ≤ 0 and ρ is usually
set to 1.

4 If f0 < fr < fn– 1, replace point pn with the reflected
point pr to construct a new simplex.

If fr < f0, it means the objective function value of the
reflected point pr is smaller than all the points in the
simplex. It is favorable for the function value to de-
crease in this direction. Extend in this direction pe =
pg + 𝒳(pr = pg) with a extension coefficient 𝒳 > 1 and
𝒳 can be set as 2. If fe < fr, which represents the exten-

285Information Technology and Control 2024/1/53

Figure 1
The flowchart of Nelder Mead Algorithm

sion is successful. Replace pl with pr, otherwise, and
replace pn with pr.
If fr ≤ fn – 1, it means the reflected point is still the worst
point. A contraction operation is needed: If fn > fr ≥ fn –1,
obtain the contraction point pc = pg + γ(pr – pg) , where
0 < γ < 1 is the contraction coefficient, which can be set
as 0.5. This operation is called an outer contraction. If
fr ≥ fn, replace the pr with pn, and update the value of pc
based on pc = pg + γ(pn – pg). This operation is called an
inner contraction. If fc ≤ fn, the contraction is consid-
ered successfully and replace pn with pc. Otherwise,
the contraction is failed. A new simplex is construct-
ed: keep p0 and halve the distance between p0 and the
other points, which is call a compression operation.

4. The Multi-level Surrogate-assist
Optimization Algorithm
In this section, the procedure of the proposed
multi-level surrogate-assisted optimization algo-
rithm will be introduced in each subsection.

4.1. The Procedure of the Proposed Algorithm

Building upon the aforementioned methods, we inte-
grate them to formulate the multi-level surrogate-as-
sisted optimization algorithm. The primary proce-
dure is outlined in Figure 2.
In Figure 2, line 1-5 describes the process of sam-
pling. All the samples in the sampling set is generated
by selected sampling method which is described in
3.2.1. Each of these samples is subsequently forward-
ed to the real complex model, which, in this problem,
symbolizes the optimization objective. The model is
executed to compute the objective function value for
each sample. The key-value pairs <parameters, ob-
jective function value> will be utilized for construct-
ing the global surrogate model in line 6. The random
forest will fit the parameters and objective function
values. Given any vector within the range of each pa-
rameter, random Forest can generate predictions for
the current vector based on the fitting results. In line
7-12, the constructed global surrogate model will up-
date by DE algorithm, during each iterative process,
DE will explore the entire parameter space of the

Information Technology and Control 2024/1/53286

Figure 2
The algorithm of the MLSAO

surrogate model to search for the optimal solution
of the surrogate model, which is then determined by
DE. A new key-value pair is added to the sampling set
established in line 1-5, then we update the surrogate
model after increase in sample size. In this proposed
method, we construct the local-level surrogate model
once the global-level surrogate model has converged.
Different from the global model. The role of the local
surrogate model is to identify potential optimal solu-
tions based on the outcomes of the global model. So
that the sample size of the local model is much small-
er, we choose the optimal subset of samples according
to their objective function values. The subset will up-
date during each iteration if generate better solution
in line 14-18. At last, the optimal solution along with
its corresponding objective function value is output
as the final result, concluding the algorithm. The fol-
lowing of this section will provide detailed descrip-
tions of the critical parts in each step.

4.2. Sampling
At the beginning of the algorithm, we select the latin
hypercube sampling (LHS) [30] method to generate
samples. The sampling method plays a crucial role in

In Figure 2, line 1-5 describes the process of
sampling. All the samples in the sampling set
is generated by selected sampling method
which is described in 3.2.1. Each of these
samples is subsequently forwarded to the real
complex model, which, in this problem,
symbolizes the optimization objective. The
model is executed to compute the objective
function value for each sample. The key-value
pairs <parameters, objective function value>
will be utilized for constructing the global
surrogate model in line 6. The random forest
will fit the parameters and objective function
values. Given any vector within the range of
each parameter, random Forest can generate
predictions for the current vector based on the
fitting results. In line 7-12, the constructed
global surrogate model will update by DE
algorithm, during each iterative process, DE
will explore the entire parameter space of the
surrogate model to search for the optimal
solution of the surrogate model, which is then
determined by DE. A new key-value pair is
added to the sampling set established in line 1-
5, then we update the surrogate model after
increase in sample size. In this proposed
method, we construct the local-level surrogate
model once the global-level surrogate model
has converged. Different from the global
model. The role of the local surrogate model is
to identify potential optimal solutions based on
the outcomes of the global model. So that the
sample size of the local model is much smaller,
we choose the optimal subset of samples
according to their objective function values.
The subset will update during each iteration if
generate better solution in line 14-18. At last,

the optimal solution along with its
corresponding objective function value is
output as the final result, concluding the
algorithm. The following of this section will
provide detailed descriptions of the critical
parts in each step.

4.2 Sampling
At the beginning of the algorithm, we select the
latin hypercube sampling (LHS) [30] method to
generate samples. The sampling method plays
a crucial role in determining the quality of the
sample set, and the excellence of the sample set
directly influences the quality of the surrogate
model. Various sampling methods may
introduce distinct biases and variances in the
sample set. Improper sampling methods may
result in insufficient samples or excessive
sample biases, thereby affecting the quality of
the surrogate model. Hence, in the selection of
a sampling method, factors such as sample
distribution, sample size, and sample quality
should be taken into account to ensure that the
sampled data accurately reflect the
characteristics of the original data. This, in
turn, enhances the prediction accuracy of the
surrogate model. Latin hypercube sampling
(LHS) and Monte Carlo sampling [8] are
suitable methods for building the surrogate
model. They possess flexible sample sizes and
excellent space-filling capabilities, efficiently
covering the entire sample space with
relatively few points [38]. LHS belongs to
stratified sampling technique employed for
random sample selection in multi-dimensional
space. This method aims to better represent the
population using fewer sampling points. It is
an extension of the Latin square sampling
technique and introduces the concept of
hypercubes, which helps to distribute samples
more evenly across the entire sample space.

One-dimensional Latin hypercube sampling
involves dividing the cumulative density
function (CDF) into 𝑛𝑛 equal partitions and
then selecting a random data point within each
partition. Considering that each parameter
follows a uniform distribution within its
specified range, to obtain 𝑁𝑁 samples, the
cumulative density function of the uniform
distribution is utilized. Each parameter is
divided into 𝑁𝑁 non-overlapping groups
within its defined range, with each group
having a probability of 1/N to be selected.
Within each group's interval, a parameter
value is randomly chosen. Following these
rules, M vectors are generated, each

determining the quality of the sample set, and the ex-
cellence of the sample set directly influences the qual-
ity of the surrogate model. Various sampling methods
may introduce distinct biases and variances in the
sample set. Improper sampling methods may result
in insufficient samples or excessive sample biases,
thereby affecting the quality of the surrogate model.
Hence, in the selection of a sampling method, factors
such as sample distribution, sample size, and sample
quality should be taken into account to ensure that the
sampled data accurately reflect the characteristics of
the original data. This, in turn, enhances the predic-
tion accuracy of the surrogate model. Latin hyper-
cube sampling (LHS) and Monte Carlo sampling [8]
are suitable methods for building the surrogate mod-
el. They possess flexible sample sizes and excellent
space-filling capabilities, efficiently covering the en-
tire sample space with relatively few points [38]. LHS
belongs to stratified sampling technique employed for
random sample selection in multi-dimensional space.
This method aims to better represent the population
using fewer sampling points. It is an extension of the
Latin square sampling technique and introduces the
concept of hypercubes, which helps to distribute sam-
ples more evenly across the entire sample space.
One-dimensional Latin hypercube sampling involves
dividing the cumulative density function (CDF) into n
equal partitions and then selecting a random data point
within each partition. Considering that each parame-
ter follows a uniform distribution within its specified
range, to obtain N samples, the cumulative density
function of the uniform distribution is utilized. Each
parameter is divided into N non-overlapping groups
within its defined range, with each group having a
probability of 1/N to be selected. Within each group’s
interval, a parameter value is randomly chosen. Fol-
lowing these rules, M vectors are generated, each rep-
resenting the sampling results for one parameter and
containing N elements. The goal is to create an M * N
matrix, where each row represents a sample point. By
randomly selecting one element from each vector, a
new M-dimensional vector is formed, resulting in a to-
tal of N vectors. This ensures that the sampling points
are evenly distributed across the solution space.

4.3. Global Surrogate Model Construction
In the proposed algorithm, the global surrogate model
is constructed based on random forest method, ran-

287Information Technology and Control 2024/1/53

dom forest is a supervised ensemble learning method
that belongs to the Bagging class and is implement-
ed based on decision trees. It improves prediction
accuracy by combining multiple decision trees. It is
the most commonly used ensemble learning model.
Firstly, the data set is sampled using the Bootstrap
algorithm, and each group of data subsets is select-
ed. Then, decision tree model parameters are set and
trained on each data subset. Finally, these decision
tree models are used to vote and obtain the results.
The key to Random Forest is the decision tree struc-
ture, and the key to decision trees is the feature split-
ting method, i.e., how to determine the quality of the
splitting features. Random Forest uses the out-of-bag
error method, which does not use all samples when
generating trees. Instead, a portion of the samples
are reserved for validation. Approximately one-third
of the samples in each decision tree are reserved for
assessing the model’s performance and calculating its
error, not used during the model training process. The
generation rules of each tree are as follows:
Initially, the parameter values are confirmed, where
N represents the number of training cases (samples),
and M represents the number of features. The param-
eter m is crucial for determining the decision at a tree
node, and it should be much smaller than M. Next, the
training set is formed by repeatedly sampling with re-
placement from the N training cases (bootstrap sam-
pling). The unselected cases are then used for making
predictions to evaluate their errors. For each node,
m features are randomly chosen, and the decision at
each node is based on these selected features. The
best splitting method is determined based on these
m features. Each tree is allowed to grow fully without
pruning, although pruning may be considered after
constructing a standard tree classifier.
In the proposed algorithm, the surrogate model plays
a crucial role in establishing the mapping between pa-
rameters and the objective function. Instead of engag-
ing in the lengthy process of calculation and simula-
tion of the complex model, a mathematical statistical
model is employed to efficiently generate the objective
function values. Hence, during the surrogate model
construction process, the essential key-value pairs
<parameters, objective function value> are utilized as
inputs and outputs for data fitting in the model. For
a surrogate model constructed through random for-
est, given any set of parameter vectors that satisfy the

parameter range constraints, the random forest sur-
rogate model can generate simulated target function
values based on the training.

4.4. Update Global Surrogate Model
In general, solving such complex problems relies on
optimization algorithms that directly iterate in the
real model. When we optimize a statistical model
with relatively high accuracy using such algorithms,
the iterations are almost cost-free. Achieving optimi-
zation effects requires running only a small number
of real models. This is the primary advantage of surro-
gate models. However, constructing a surrogate mod-
el involves a limited number of sample points, and the
initial surrogate model may inevitably contain some
errors. Therefore, it is essential to judiciously in-
crease the number of sampling points to continuously
update the surrogate model, thereby reducing errors,
improving simulation accuracy, and enhancing the
representation of the real model. There are numerous
methods for updating the surrogate model, including
the minimum interpolating surface (MIS) [17], max-
imum expected improvement (MEI) [31], and candi-
date point approach (CAND) [29]. In this work, we
are more concerned about the optimal values rather
than the complete shape of the fitting surface. MIS
is a method that does not concentrate on construct-
ing the entire surrogate but rather focuses on the
region containing the optimum. Hence, our focus is
on ensuring the accuracy of the surrogate model in
the vicinity of the optimal point. Employing the MIS
method, we utilize DE to discover the optimal value
of the surrogate model. These optimal parameters are
subsequently applied to the real model to iteratively
acquire new key-value pairs, enrich the sampling set,
and augment the number of points surrounding the
optimal point. This iterative process enhances the
modeling accuracy in the proximity of the optimum.

4.5. Local Surrogate Model Construction
In this section, we select inverse distance weighting
(IDW) [4] model to construct local-level surrogate
model. It assigns weights to known values based on the
inverse of their distances to the target location, result-
ing in a weighted average calculation for the unknown
value. IDW assumes that closer points have a greater
influence on the estimation, while distant points have
less influence. The IDW method is as follows:

Information Technology and Control 2024/1/53288

iteratively acquire new key-value pairs, enrich
the sampling set, and augment the number of
points surrounding the optimal point. This
iterative process enhances the modeling
accuracy in the proximity of the optimum.

4.5 Local Surrogate Model Construction
In this section, we select inverse distance
weighting (IDW) [4] model to construct local-
level surrogate model. It assigns weights to
known values based on the inverse of their
distances to the target location, resulting in a
weighted average calculation for the unknown
value. IDW assumes that closer points have a
greater influence on the estimation, while
distant points have less influence. The IDW
method is as follows:

𝑦𝑦 = �
∑ �(�,���)

∑ �(�,���)�
���

�
��� 𝑦𝑦𝑦𝑦� 𝑖𝑖𝑖𝑖 𝑝𝑝 ≠ 𝑝𝑝𝑦𝑦�

𝑦𝑦𝑦𝑦� 𝑖𝑖𝑖𝑖 𝑝𝑝 = 𝑥𝑥�

, (11)

where 𝑝𝑝 denotes the prediction input point,
and 𝑦𝑦 represents the prediction result of the
point 𝑝𝑝. 𝐷𝐷𝑦𝑦� belongs to the training set 𝑇𝑇 =
{𝑦𝑦𝑦𝑦�, 𝑦𝑦𝑦𝑦�, … , 𝑦𝑦𝑦𝑦�}, and 𝑦𝑦𝑦𝑦� is the output value
for the 𝑗𝑗 -th training point. The weighting
function 𝑑𝑑 is defined as:

𝑑𝑑(𝑝𝑝�, 𝑝𝑝�) = |𝑝𝑝�, 𝑝𝑝�|�
��,

where 𝑞𝑞 is termed the power parameter, and
it must be strictly greater than 1 to ensure the
continuity of derivatives.

The local surrogate model is constructed to
leverage the insights from the global surrogate
model and explore potential improvements.
Therefore, to enhance the accuracy of the
surrogate model, careful consideration is given
to both the quantity and quality of the selected
points for constructing the model. For
relatively small surrogate models, IDW has
higher modeling performance. When
constructing the model, we choose the top 𝑥𝑥
fitness function-ranked points in the set to
build the surrogate model and manually
remove those poor quality solutions. This
ensures the quality of the samples and allows
the surrogate model to maintain a high level of
simulation performance, enhancing its
modeling ability in the region where the
optimal solution may appear.

4.6 Get Final Optimal
Unlike the updating strategy of the global
model, we want to quickly traverse the local
surrogate model and find the possible optimal
solution. Therefore, algorithms with simple

processes, such as Nelder Mead Algorithm, are
more suitable to use. Compared with
algorithms such as DE, it can explore the
optimal value of the current target function
with fewer iterations. Similar to the updating
of the global model, each iteration generates a
new key-value pair. When a new point is
added, we will re-queue and continue to select
the top n points, rather than using a sampling
set with an increasing number of points. This is
crucial because a high-quality initial set for the
surrogate model is essential to efficiently
identify optimal solutions that might be
challenging for the global model to uncover.
When this step is completed, the algorithm also
ends, and the obtained optimal solution is
output.

5. Experiments Results
In this section, we aim to demonstrate the
effectiveness of the proposed algorithm in
addressing the optimization of complex model
parameters. At first, some mathematical
benchmark functions optimization
experiments are conducted. Subsequently, a
precipitation parameter tuning experiment
with CESM confirmed the capability of the
proposed algorithm in addressing intricate
practical parameter optimization challenges.
These experiments are supported by [5, 27, 37].

Table 1

Benchmark function description in this experiment.

Function
number

Function name Global
optimum

F1 Ellipsoid 0

F2 Rosenbrock 0

F3 Ackley 0

F4 Griewank 0

F5 Shifted Rotated
Rastrigin (F10 in

[34])

-330

F6 Rotated Hybrid
composition

function (F19 in
[34])

10

5.1 Mathematical Function Benchmark
Optimization Experiments

, (11)

where p denotes the prediction input point, and y rep-
resents the prediction result of the point p. Dtj belongs
to the training set T = {yt1, yt2, ..., ytn} , and ytj is the out-
put value for the j-th training point. The weighting
function d is defined as:

iteratively acquire new key-value pairs, enrich
the sampling set, and augment the number of
points surrounding the optimal point. This
iterative process enhances the modeling
accuracy in the proximity of the optimum.

4.5 Local Surrogate Model Construction
In this section, we select inverse distance
weighting (IDW) [4] model to construct local-
level surrogate model. It assigns weights to
known values based on the inverse of their
distances to the target location, resulting in a
weighted average calculation for the unknown
value. IDW assumes that closer points have a
greater influence on the estimation, while
distant points have less influence. The IDW
method is as follows:

𝑦𝑦 = �
∑ �(�,���)

∑ �(�,���)�
���

�
��� 𝑦𝑦𝑦𝑦� 𝑖𝑖𝑖𝑖 𝑝𝑝 ≠ 𝑝𝑝𝑦𝑦�

𝑦𝑦𝑦𝑦� 𝑖𝑖𝑖𝑖 𝑝𝑝 = 𝑥𝑥�

, (11)

where 𝑝𝑝 denotes the prediction input point,
and 𝑦𝑦 represents the prediction result of the
point 𝑝𝑝. 𝐷𝐷𝑦𝑦� belongs to the training set 𝑇𝑇 =
{𝑦𝑦𝑦𝑦�, 𝑦𝑦𝑦𝑦�, … , 𝑦𝑦𝑦𝑦�}, and 𝑦𝑦𝑦𝑦� is the output value
for the 𝑗𝑗 -th training point. The weighting
function 𝑑𝑑 is defined as:

𝑑𝑑(𝑝𝑝�, 𝑝𝑝�) = |𝑝𝑝�, 𝑝𝑝�|�
��,

where 𝑞𝑞 is termed the power parameter, and
it must be strictly greater than 1 to ensure the
continuity of derivatives.

The local surrogate model is constructed to
leverage the insights from the global surrogate
model and explore potential improvements.
Therefore, to enhance the accuracy of the
surrogate model, careful consideration is given
to both the quantity and quality of the selected
points for constructing the model. For
relatively small surrogate models, IDW has
higher modeling performance. When
constructing the model, we choose the top 𝑥𝑥
fitness function-ranked points in the set to
build the surrogate model and manually
remove those poor quality solutions. This
ensures the quality of the samples and allows
the surrogate model to maintain a high level of
simulation performance, enhancing its
modeling ability in the region where the
optimal solution may appear.

4.6 Get Final Optimal
Unlike the updating strategy of the global
model, we want to quickly traverse the local
surrogate model and find the possible optimal
solution. Therefore, algorithms with simple

processes, such as Nelder Mead Algorithm, are
more suitable to use. Compared with
algorithms such as DE, it can explore the
optimal value of the current target function
with fewer iterations. Similar to the updating
of the global model, each iteration generates a
new key-value pair. When a new point is
added, we will re-queue and continue to select
the top n points, rather than using a sampling
set with an increasing number of points. This is
crucial because a high-quality initial set for the
surrogate model is essential to efficiently
identify optimal solutions that might be
challenging for the global model to uncover.
When this step is completed, the algorithm also
ends, and the obtained optimal solution is
output.

5. Experiments Results
In this section, we aim to demonstrate the
effectiveness of the proposed algorithm in
addressing the optimization of complex model
parameters. At first, some mathematical
benchmark functions optimization
experiments are conducted. Subsequently, a
precipitation parameter tuning experiment
with CESM confirmed the capability of the
proposed algorithm in addressing intricate
practical parameter optimization challenges.
These experiments are supported by [5, 27, 37].

Table 1

Benchmark function description in this experiment.

Function
number

Function name Global
optimum

F1 Ellipsoid 0

F2 Rosenbrock 0

F3 Ackley 0

F4 Griewank 0

F5 Shifted Rotated
Rastrigin (F10 in

[34])

-330

F6 Rotated Hybrid
composition

function (F19 in
[34])

10

5.1 Mathematical Function Benchmark
Optimization Experiments

,

where q is termed the power parameter, and it must
be strictly greater than 1 to ensure the continuity of
derivatives.
The local surrogate model is constructed to leverage
the insights from the global surrogate model and ex-
plore potential improvements. Therefore, to enhance
the accuracy of the surrogate model, careful consid-
eration is given to both the quantity and quality of the
selected points for constructing the model. For rela-
tively small surrogate models, IDW has higher mod-
eling performance. When constructing the model, we
choose the top x fitness function-ranked points in the
set to build the surrogate model and manually remove
those poor quality solutions. This ensures the quali-
ty of the samples and allows the surrogate model to
maintain a high level of simulation performance, en-
hancing its modeling ability in the region where the
optimal solution may appear.

4.6. Get Final Optimal
Unlike the updating strategy of the global model, we
want to quickly traverse the local surrogate model
and find the possible optimal solution. Therefore, al-
gorithms with simple processes, such as Nelder Mead
Algorithm, are more suitable to use. Compared with
algorithms such as DE, it can explore the optimal
value of the current target function with fewer iter-
ations. Similar to the updating of the global model,
each iteration generates a new key-value pair. When
a new point is added, we will re-queue and continue
to select the top n points, rather than using a sampling
set with an increasing number of points. This is cru-
cial because a high-quality initial set for the surrogate
model is essential to efficiently identify optimal solu-
tions that might be challenging for the global model to
uncover. When this step is completed, the algorithm
also ends, and the obtained optimal solution is output.

5. Experiments Results
In this section, we aim to demonstrate the effective-
ness of the proposed algorithm in addressing the
optimization of complex model parameters. At first,
some mathematical benchmark functions optimiza-
tion experiments are conducted. Subsequently, a pre-
cipitation parameter tuning experiment with CESM
confirmed the capability of the proposed algorithm
in addressing intricate practical parameter optimiza-
tion challenges. These experiments are supported by
[5, 27, 37].

Table 1
Benchmark function description in this experiment

Function
number Function name Global

optimum

F1 Ellipsoid 0

F2 Rosenbrock 0

F3 Ackley 0

F4 Griewank 0

F5 Shifted Rotated Rastrigin (F10
in [34]) -330

F6 Rotated Hybrid composition
function (F19 in [34]) 10

5.1. Mathematical Function Benchmark
Optimization Experiments
Benchmark functions with diverse characteristics are
employed to assess the effectiveness of the MLSAO
algorithm. We include GA [13], RBF-PSO, SA-COSO
[35], and SAHO [26] algorithms, along with six prob-
lems of varying dimensions, to evaluate the perfor-
mance of the MLSAO algorithm. These benchmark
functions are detailed in Table 1. Each function un-
dergoes optimization thirty times, and the mean value
and standard deviation are calculated. All compared
algorithms are implemented in Python.

5.1.1. Experimental Results on 30d Benchmark
Problems
Table 2 and Figure 3 describe the performance of five
algorithms on 30-dimensional problems. In the graphs,
the horizontal axis represents the complexity of the
problem, which in this experiment is the number of

289Information Technology and Control 2024/1/53

Figure 3
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 30D functions

Table 2

Statistical comparisons of results on 30-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

 RBF-PSO 4.6740E+01 8.3591E+00

 SA-COSO 4.3620E+00 2.9579E+00

 SAHO 1.3392E-01 1.5735E-01

 MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

 RBF-PSO 1.4769E+02 5.3282E+01

 SA-COSO 5.9851E+01 2.4556E+01

 SAHO 5.9070E+01 3.0016E+01

 MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

 RBF-PSO 9.0326E+00 1.0429E+00

 SA-COSO 5.0152E+00 1.2214E+00

 SAHO 1.9901E+00 6.6895E-01

 MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

Table 2

Statistical comparisons of results on 30-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

 RBF-PSO 4.6740E+01 8.3591E+00

 SA-COSO 4.3620E+00 2.9579E+00

 SAHO 1.3392E-01 1.5735E-01

 MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

 RBF-PSO 1.4769E+02 5.3282E+01

 SA-COSO 5.9851E+01 2.4556E+01

 SAHO 5.9070E+01 3.0016E+01

 MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

 RBF-PSO 9.0326E+00 1.0429E+00

 SA-COSO 5.0152E+00 1.2214E+00

 SAHO 1.9901E+00 6.6895E-01

 MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

Table 2

Statistical comparisons of results on 30-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

 RBF-PSO 4.6740E+01 8.3591E+00

 SA-COSO 4.3620E+00 2.9579E+00

 SAHO 1.3392E-01 1.5735E-01

 MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

 RBF-PSO 1.4769E+02 5.3282E+01

 SA-COSO 5.9851E+01 2.4556E+01

 SAHO 5.9070E+01 3.0016E+01

 MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

 RBF-PSO 9.0326E+00 1.0429E+00

 SA-COSO 5.0152E+00 1.2214E+00

 SAHO 1.9901E+00 6.6895E-01

 MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

(a) 30D function1

(c) 30D function3

(e) 30D function5

(b) 30D function2

(d) 30D function4

(f) 30D function6

Table 2

Statistical comparisons of results on 30-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

 RBF-PSO 4.6740E+01 8.3591E+00

 SA-COSO 4.3620E+00 2.9579E+00

 SAHO 1.3392E-01 1.5735E-01

 MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

 RBF-PSO 1.4769E+02 5.3282E+01

 SA-COSO 5.9851E+01 2.4556E+01

 SAHO 5.9070E+01 3.0016E+01

 MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

 RBF-PSO 9.0326E+00 1.0429E+00

 SA-COSO 5.0152E+00 1.2214E+00

 SAHO 1.9901E+00 6.6895E-01

 MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

Table 2

Statistical comparisons of results on 30-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

 RBF-PSO 4.6740E+01 8.3591E+00

 SA-COSO 4.3620E+00 2.9579E+00

 SAHO 1.3392E-01 1.5735E-01

 MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

 RBF-PSO 1.4769E+02 5.3282E+01

 SA-COSO 5.9851E+01 2.4556E+01

 SAHO 5.9070E+01 3.0016E+01

 MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

 RBF-PSO 9.0326E+00 1.0429E+00

 SA-COSO 5.0152E+00 1.2214E+00

 SAHO 1.9901E+00 6.6895E-01

 MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

Information Technology and Control 2024/1/53290

Table 2
Statistical comparisons of results on 30-dimensional
benchmark problems

Function
No Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

RBF-PSO 4.6740E+01 8.3591E+00

SA-COSO 4.3620E+00 2.9579E+00

SAHO 1.3392E-01 1.5735E-01

MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

RBF-PSO 1.4769E+02 5.3282E+01

SA-COSO 5.9851E+01 2.4556E+01

SAHO 5.9070E+01 3.0016E+01

MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

RBF-PSO 9.0326E+00 1.0429E+00

SA-COSO 5.0152E+00 1.2214E+00

SAHO 1.9901E+00 6.6895E-01

MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02 3.0358E+01

RBF-PSO 1.3664E+01 5.2129E+00

SA-COSO 8.8940E-01 1.1844E-01

SAHO 1.2759E-01 6.5921E-01

MLSAO 8.2555E-01 8.9065E-02

F5 GA 1.8780E+02 4.0290E+01

RBF-PSO -3.5296E+01 3.7411E+01

SA-COSO -5.7357E+01 1.7545E+01

SAHO -2.1792E+02 3.7846E+01

MLSAO -2.3456E+02 2.2514E+01

F6 GA 1.0605E+03 5.1189E+01

RBF-PSO 9.8923E+02 1.2191E+01

SA-COSO 9.7358E+02 2.4022E+01

SAHO 9.8201E+02 3.9012E+01

MLSAO 9.4091E+02 1.1976E+01

executions of benchmark test functions. It can be ob-
served that in most test cases, MLSAO outperforms the
other four methods. Among the six functions, MLSAO
achieves the best average performance in four of them.
For function F1, both SA-COSO and SAHO, as well
as MLSAO, can find solutions close to the optimum.
SAHO performs the best, with MLSAO slightly behind
but significantly outperforming the other three control
functions. The optimization results for F2 show that
MLSAO performs significantly better than the oth-
er four algorithms, approaching the optimal solution
and having the lowest standard deviation, indicating
greater stability during optimization. Regarding the
Ackley function, MLSAO and SAHO continue to per-
form the best and significantly outperform GA, RBF-
PSO, and SA-COSO. Unlike the results for F1, MLSAO
performs slightly better than SAHO in comparison to
the control functions. The optimization results for F4
differ somewhat from the trends observed in the first
three functions. SAHO performs the best, while ML-
SAO and SA-COSO achieve optimization results of a
similar magnitude. This suggests that MLSAO still has
room for improvement in this type of problem. For the
more complex functions F5 and F6, MLSAO demon-
strates superior performance and better exploration
capabilities to varying degrees. Similar to F3, the opti-
mization results for F5 show MLSAO slightly outper-
forming SAHO, with both significantly outperforming
the other three algorithms. However, for the even more
complex F6, MLSAO exhibits a significantly superior
ability compared to the other algorithms. In summary,
in the context of 30-dimensional problems, MLSAO
demonstrates a significant advantage. Furthermore,
GA, which does not utilize surrogate models, lags far
behind the other algorithms, confirming the effective-
ness of surrogate model-based approaches for solving
complex problems.

5.1.2. Experimental Results on 50d Benchmark
Problems
Compared to the results on 30-dimensional bench-
mark functions, MLSAO performs even better on
50-dimensional benchmark functions. This is evident
in the results presented in Figure 4 and Table 3, where
MLSAO consistently outperforms the other four al-
gorithms, demonstrating superior optimization per-
formance. In all optimization results, MLSAO outper-
forms the other four control algorithms significantly.
For function F1, MLSAO’s average fitness value is ap-

291Information Technology and Control 2024/1/53

Table 3

Statistical comparisons of results on 50-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 2.2363E+03 4.3286E+02

 RBF-PSO 5.2168E+02 1.2364E+02

 SA-COSO 2.0327E+02 8.1653E+02

 SAHO 5.3468E+01 2.7324E+01

 MLSAO 4.3287E+00 2.6413e+00

F2 GA 2.1705E+03 7.1463E+02

 RBF_PSO 6.3548E+02 1.8932E+02

 SA-COSO 2.8811E+02 8.1744E+01

 SAHO 1.9358E+02 4.5258E+01

 MLSAO 5.0308E+01 4.0024E+00

F3 GA 1.5372E+01 3.6429E-01

 RBF-PSO 1.3290E+01 8.4063E-01

 SA-COSO 1.2346E+01 1.3853E+00

 SAHO 8.6818E+00 1.9303E+00

 MLSAO 2.1369E+00 9.6370E-01

F4 GA 4.0389E+02 4.4932E+01

 RBF-PSO 9.2733E+01 2.0329E+01

 SA-COSO 3.3176E+01 1.4464E+01

 SAHO 5.8982E+00 1.0977E+00

 MLSAO 9.4104E-01 7.8356E-02

F5 GA 4.2994E+02 6.4873E+01

 RBF_PSO 2.7548E+02 5.7724E+01

Table 3

Statistical comparisons of results on 50-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 2.2363E+03 4.3286E+02

 RBF-PSO 5.2168E+02 1.2364E+02

 SA-COSO 2.0327E+02 8.1653E+02

 SAHO 5.3468E+01 2.7324E+01

 MLSAO 4.3287E+00 2.6413e+00

F2 GA 2.1705E+03 7.1463E+02

 RBF_PSO 6.3548E+02 1.8932E+02

 SA-COSO 2.8811E+02 8.1744E+01

 SAHO 1.9358E+02 4.5258E+01

 MLSAO 5.0308E+01 4.0024E+00

F3 GA 1.5372E+01 3.6429E-01

 RBF-PSO 1.3290E+01 8.4063E-01

 SA-COSO 1.2346E+01 1.3853E+00

 SAHO 8.6818E+00 1.9303E+00

 MLSAO 2.1369E+00 9.6370E-01

F4 GA 4.0389E+02 4.4932E+01

 RBF-PSO 9.2733E+01 2.0329E+01

 SA-COSO 3.3176E+01 1.4464E+01

 SAHO 5.8982E+00 1.0977E+00

 MLSAO 9.4104E-01 7.8356E-02

F5 GA 4.2994E+02 6.4873E+01

 RBF_PSO 2.7548E+02 5.7724E+01

Table 3

Statistical comparisons of results on 50-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 2.2363E+03 4.3286E+02

 RBF-PSO 5.2168E+02 1.2364E+02

 SA-COSO 2.0327E+02 8.1653E+02

 SAHO 5.3468E+01 2.7324E+01

 MLSAO 4.3287E+00 2.6413e+00

F2 GA 2.1705E+03 7.1463E+02

 RBF_PSO 6.3548E+02 1.8932E+02

 SA-COSO 2.8811E+02 8.1744E+01

 SAHO 1.9358E+02 4.5258E+01

 MLSAO 5.0308E+01 4.0024E+00

F3 GA 1.5372E+01 3.6429E-01

 RBF-PSO 1.3290E+01 8.4063E-01

 SA-COSO 1.2346E+01 1.3853E+00

 SAHO 8.6818E+00 1.9303E+00

 MLSAO 2.1369E+00 9.6370E-01

F4 GA 4.0389E+02 4.4932E+01

 RBF-PSO 9.2733E+01 2.0329E+01

 SA-COSO 3.3176E+01 1.4464E+01

 SAHO 5.8982E+00 1.0977E+00

 MLSAO 9.4104E-01 7.8356E-02

F5 GA 4.2994E+02 6.4873E+01

 RBF_PSO 2.7548E+02 5.7724E+01

(a) 50D function1 (b) 50D function2

(c) 50D function3 (d) 50D function4

(e) 50D function5 (f) 50D function6

Figure 4
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 50D functions

Table 3

Statistical comparisons of results on 50-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 2.2363E+03 4.3286E+02

 RBF-PSO 5.2168E+02 1.2364E+02

 SA-COSO 2.0327E+02 8.1653E+02

 SAHO 5.3468E+01 2.7324E+01

 MLSAO 4.3287E+00 2.6413e+00

F2 GA 2.1705E+03 7.1463E+02

 RBF_PSO 6.3548E+02 1.8932E+02

 SA-COSO 2.8811E+02 8.1744E+01

 SAHO 1.9358E+02 4.5258E+01

 MLSAO 5.0308E+01 4.0024E+00

F3 GA 1.5372E+01 3.6429E-01

 RBF-PSO 1.3290E+01 8.4063E-01

 SA-COSO 1.2346E+01 1.3853E+00

 SAHO 8.6818E+00 1.9303E+00

 MLSAO 2.1369E+00 9.6370E-01

F4 GA 4.0389E+02 4.4932E+01

 RBF-PSO 9.2733E+01 2.0329E+01

 SA-COSO 3.3176E+01 1.4464E+01

 SAHO 5.8982E+00 1.0977E+00

 MLSAO 9.4104E-01 7.8356E-02

F5 GA 4.2994E+02 6.4873E+01

 RBF_PSO 2.7548E+02 5.7724E+01

Table 3

Statistical comparisons of results on 50-
dimensional benchmark problems.

Function
No

Algorithm Mean Std

F1 GA 2.2363E+03 4.3286E+02

 RBF-PSO 5.2168E+02 1.2364E+02

 SA-COSO 2.0327E+02 8.1653E+02

 SAHO 5.3468E+01 2.7324E+01

 MLSAO 4.3287E+00 2.6413e+00

F2 GA 2.1705E+03 7.1463E+02

 RBF_PSO 6.3548E+02 1.8932E+02

 SA-COSO 2.8811E+02 8.1744E+01

 SAHO 1.9358E+02 4.5258E+01

 MLSAO 5.0308E+01 4.0024E+00

F3 GA 1.5372E+01 3.6429E-01

 RBF-PSO 1.3290E+01 8.4063E-01

 SA-COSO 1.2346E+01 1.3853E+00

 SAHO 8.6818E+00 1.9303E+00

 MLSAO 2.1369E+00 9.6370E-01

F4 GA 4.0389E+02 4.4932E+01

 RBF-PSO 9.2733E+01 2.0329E+01

 SA-COSO 3.3176E+01 1.4464E+01

 SAHO 5.8982E+00 1.0977E+00

 MLSAO 9.4104E-01 7.8356E-02

F5 GA 4.2994E+02 6.4873E+01

 RBF_PSO 2.7548E+02 5.7724E+01

Information Technology and Control 2024/1/53292

Table 3
Statistical comparisons of results on 50-dimensional
benchmark problems

Function
No Algorithm Mean Std

F1

GA 2.2363E+03 4.3286E+02

RBF-PSO 5.2168E+02 1.2364E+02

SA-COSO 2.0327E+02 8.1653E+02

SAHO 5.3468E+01 2.7324E+01

MLSAO 4.3287E+00 2.6413e+00

F2

GA 2.1705E+03 7.1463E+02

RBF_PSO 6.3548E+02 1.8932E+02

SA-COSO 2.8811E+02 8.1744E+01

SAHO 1.9358E+02 4.5258E+01

MLSAO 5.0308E+01 4.0024E+00

F3

GA 1.5372E+01 3.6429E-01

RBF-PSO 1.3290E+01 8.4063E-01

SA-COSO 1.2346E+01 1.3853E+00

SAHO 8.6818E+00 1.9303E+00

MLSAO 2.1369E+00 9.6370E-01

F4

GA 4.0389E+02 4.4932E+01

RBF-PSO 9.2733E+01 2.0329E+01

SA-COSO 3.3176E+01 1.4464E+01

SAHO 5.8982E+00 1.0977E+00

MLSAO 9.4104E-01 7.8356E-02

F5

GA 4.2994E+02 6.4873E+01

RBF_PSO 2.7548E+02 5.7724E+01

SA-COSO 3.1036E+02 5.2617E+01

SAHO 1.8805E+02 2.9981E+01

MLSAO 1.2672E+02 2.8506E+02

F6

GA 1.1894E+03 4.5169E+01

RBF_PSO 1.0067E+03 3.1456E+01

SA-COSO 1.0818E+03 4.7503E+01

SAHO 9.9971E+02 2.4517E+01

MLSAO 9.2985E+02 1.4371E+01

proximately 10% better than the second-best-perform-
ing algorithm, surpassing SA-COSO and SAHO by an
order of magnitude, while both SA-COSO and SAHO
outperform RBF-PSO by approximately 10%, and GA,
the worst-performing algorithm, lags behind MLSAO
by nearly three orders of magnitude. The optimization
results for the Rosenbrock function reveal that ML-
SAO achieves the second-best average optimization
results, which are approximately one-fourth of the
SAHO algorithm’s results, and MLSAO exhibits lower
standard deviation. Similar patterns are observed in
the optimization results for the F3 function. MLSAO’s
average optimization results are roughly one-fourth of
the second-best algorithm’s results, and MLSAO has
a lower and more stable standard deviation. Among
the other four algorithms, SAHO and SA-COSO per-
form similarly, while GA and RBF-PSO have similar
results. MLSAO and SA-COSO perform the best on
the F4 function, with SA-COSO’s average results be-
ing approximately 5.65 times that of MLSAO. MLSAO
significantly outperforms the other four algorithms in
this test. For the two more complex functions, in F5,
MLSAO’s average optimization results are improved
by 32.7% compared to the second-best algorithm, and
in F6, this improvement is 6.75%. MLSAO also demon-
strates better stability with lower standard deviations
in both cases. In summary, MLSAO exhibits excellent
optimization performance on 50-dimensional bench-
mark functions, consistently achieving the best op-
timization performance to varying degrees in each
function. This advantage is particularly pronounced in
most functions. Therefore, we consider MLSAO to be
better suited for optimizing problems of mid-dimen-
sion complexity problems.

5.1.3. Experimental Results on 100d Benchmark
Problems
We attempted to challenge more complex application
scenarios by testing various algorithms’ performance
in solving high-dimensional problems using 100-di-
mensional benchmark functions. Table 4 displays
the average best fitness function values obtained by
the five algorithms after 30 independent runs, high-
lighting the best average values for each test function.
MLSAO achieved the best fitness function values in
F2, F3, and F5, while SA-COSO performed the best
in F1 and F6, and SAHO performed better in F4. Fig-
ure 5 shows the fitness changes of each algorithm on
different test functions. Combined with the table,

293Information Technology and Control 2024/1/53

Figure 5
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 100D functions

 SA-COSO 3.1036E+02 5.2617E+01

 SAHO 1.8805E+02 2.9981E+01

 MLSAO 1.2672E+02 2.8506E+02

F6 GA 1.1894E+03 4.5169E+01

 RBF_PSO 1.0067E+03 3.1456E+01

 SA-COSO 1.0818E+03 4.7503E+01

 SAHO 9.9971E+02 2.4517E+01

 MLSAO 9.2985E+02 1.4371E+01

5.1.3 Experimental Results on 100d
Benchmark Problems
We attempted to challenge more complex
application scenarios by testing various
algorithms' performance in solving high-
dimensional problems using 100-dimensional
benchmark functions. Table 4 displays the
average best fitness function values obtained
by the five algorithms after 30 independent
runs, highlighting the best average values for
each test function. MLSAO achieved the best
fitness function values in F2, F3, and F5, while
SA-COSO performed the best in F1 and F6, and
SAHO performed better in F4. Figure 5 shows
the fitness changes of each algorithm on
different test functions. Combined with the
table, SA-COSO performed the best in the
optimization experiment for F1, but MLSAO
and SAHO were not far behind, with all three
almost on the same level. MLSAO
demonstrated a significant advantage in the
100-dimensional F2 function test, with an
average optimization result far higher than the
other four functions and the smallest standard
deviation. The optimization results for the F3
function also favored MLSAO, where the
average result for the second-best SAHO was
approximately 2.5 times that of the best result.
The results for the other four algorithms were
relatively similar. The best optimization result
for the 100-dimensional Griewank function
belonged to SAHO. The difference between
these two algorithms and the other three was
particularly pronounced. In the experiment for
F5, MLSAO performed the best, followed by
SHAO, with both achieving average results
below 1000, while the results for the other three
algorithms were all above 1000. The
experimental results for the F6 function
showed that the average results for all five
algorithms were generally within the same
range. However, SA-COSO performed the

best, while MLSAO ranked only third, with its
performance being less satisfactory. Overall,
MLSAO achieved almost the best fitness
function values or equivalent levels in most
functions. Even in cases where MLSAO did not
achieve the optimal solution, it still managed
to come very close to an approximate optimal
result to a large extent. However, in F6, the
surrogate model may have difficulty providing
useful information, leading to the algorithm
being trapped in a local optimum and unable
to discover the true global optimum. Overall,
MLSAO still performed well on most 100-
dimensional problems, demonstrating its
ability to handle high-dimensional complex
problems and proving its suitability for high-
dimensional scenario.

Figure 5

Convergence curves of GA, RBF-PSO, SA-COSO,
SAHO, and MLSAO on 100D functions.

5.1.3 Experimental Results on 200d
Benchmark Problems
To further assess the capability of MLSAO in
addressing high-dimensional and complex
problems, we conducted tests with several
benchmark functions selected from Table 1,
using a parameter dimension of 200. We
compared MLSAO with SAHSO[19]and GL-

 SA-COSO 3.1036E+02 5.2617E+01

 SAHO 1.8805E+02 2.9981E+01

 MLSAO 1.2672E+02 2.8506E+02

F6 GA 1.1894E+03 4.5169E+01

 RBF_PSO 1.0067E+03 3.1456E+01

 SA-COSO 1.0818E+03 4.7503E+01

 SAHO 9.9971E+02 2.4517E+01

 MLSAO 9.2985E+02 1.4371E+01

5.1.3 Experimental Results on 100d
Benchmark Problems
We attempted to challenge more complex
application scenarios by testing various
algorithms' performance in solving high-
dimensional problems using 100-dimensional
benchmark functions. Table 4 displays the
average best fitness function values obtained
by the five algorithms after 30 independent
runs, highlighting the best average values for
each test function. MLSAO achieved the best
fitness function values in F2, F3, and F5, while
SA-COSO performed the best in F1 and F6, and
SAHO performed better in F4. Figure 5 shows
the fitness changes of each algorithm on
different test functions. Combined with the
table, SA-COSO performed the best in the
optimization experiment for F1, but MLSAO
and SAHO were not far behind, with all three
almost on the same level. MLSAO
demonstrated a significant advantage in the
100-dimensional F2 function test, with an
average optimization result far higher than the
other four functions and the smallest standard
deviation. The optimization results for the F3
function also favored MLSAO, where the
average result for the second-best SAHO was
approximately 2.5 times that of the best result.
The results for the other four algorithms were
relatively similar. The best optimization result
for the 100-dimensional Griewank function
belonged to SAHO. The difference between
these two algorithms and the other three was
particularly pronounced. In the experiment for
F5, MLSAO performed the best, followed by
SHAO, with both achieving average results
below 1000, while the results for the other three
algorithms were all above 1000. The
experimental results for the F6 function
showed that the average results for all five
algorithms were generally within the same
range. However, SA-COSO performed the

best, while MLSAO ranked only third, with its
performance being less satisfactory. Overall,
MLSAO achieved almost the best fitness
function values or equivalent levels in most
functions. Even in cases where MLSAO did not
achieve the optimal solution, it still managed
to come very close to an approximate optimal
result to a large extent. However, in F6, the
surrogate model may have difficulty providing
useful information, leading to the algorithm
being trapped in a local optimum and unable
to discover the true global optimum. Overall,
MLSAO still performed well on most 100-
dimensional problems, demonstrating its
ability to handle high-dimensional complex
problems and proving its suitability for high-
dimensional scenario.

Figure 5

Convergence curves of GA, RBF-PSO, SA-COSO,
SAHO, and MLSAO on 100D functions.

5.1.3 Experimental Results on 200d
Benchmark Problems
To further assess the capability of MLSAO in
addressing high-dimensional and complex
problems, we conducted tests with several
benchmark functions selected from Table 1,
using a parameter dimension of 200. We
compared MLSAO with SAHSO[19]and GL-

 SA-COSO 3.1036E+02 5.2617E+01

 SAHO 1.8805E+02 2.9981E+01

 MLSAO 1.2672E+02 2.8506E+02

F6 GA 1.1894E+03 4.5169E+01

 RBF_PSO 1.0067E+03 3.1456E+01

 SA-COSO 1.0818E+03 4.7503E+01

 SAHO 9.9971E+02 2.4517E+01

 MLSAO 9.2985E+02 1.4371E+01

5.1.3 Experimental Results on 100d
Benchmark Problems
We attempted to challenge more complex
application scenarios by testing various
algorithms' performance in solving high-
dimensional problems using 100-dimensional
benchmark functions. Table 4 displays the
average best fitness function values obtained
by the five algorithms after 30 independent
runs, highlighting the best average values for
each test function. MLSAO achieved the best
fitness function values in F2, F3, and F5, while
SA-COSO performed the best in F1 and F6, and
SAHO performed better in F4. Figure 5 shows
the fitness changes of each algorithm on
different test functions. Combined with the
table, SA-COSO performed the best in the
optimization experiment for F1, but MLSAO
and SAHO were not far behind, with all three
almost on the same level. MLSAO
demonstrated a significant advantage in the
100-dimensional F2 function test, with an
average optimization result far higher than the
other four functions and the smallest standard
deviation. The optimization results for the F3
function also favored MLSAO, where the
average result for the second-best SAHO was
approximately 2.5 times that of the best result.
The results for the other four algorithms were
relatively similar. The best optimization result
for the 100-dimensional Griewank function
belonged to SAHO. The difference between
these two algorithms and the other three was
particularly pronounced. In the experiment for
F5, MLSAO performed the best, followed by
SHAO, with both achieving average results
below 1000, while the results for the other three
algorithms were all above 1000. The
experimental results for the F6 function
showed that the average results for all five
algorithms were generally within the same
range. However, SA-COSO performed the

best, while MLSAO ranked only third, with its
performance being less satisfactory. Overall,
MLSAO achieved almost the best fitness
function values or equivalent levels in most
functions. Even in cases where MLSAO did not
achieve the optimal solution, it still managed
to come very close to an approximate optimal
result to a large extent. However, in F6, the
surrogate model may have difficulty providing
useful information, leading to the algorithm
being trapped in a local optimum and unable
to discover the true global optimum. Overall,
MLSAO still performed well on most 100-
dimensional problems, demonstrating its
ability to handle high-dimensional complex
problems and proving its suitability for high-
dimensional scenario.

Figure 5

Convergence curves of GA, RBF-PSO, SA-COSO,
SAHO, and MLSAO on 100D functions.

5.1.3 Experimental Results on 200d
Benchmark Problems
To further assess the capability of MLSAO in
addressing high-dimensional and complex
problems, we conducted tests with several
benchmark functions selected from Table 1,
using a parameter dimension of 200. We
compared MLSAO with SAHSO[19]and GL-

 SA-COSO 3.1036E+02 5.2617E+01

 SAHO 1.8805E+02 2.9981E+01

 MLSAO 1.2672E+02 2.8506E+02

F6 GA 1.1894E+03 4.5169E+01

 RBF_PSO 1.0067E+03 3.1456E+01

 SA-COSO 1.0818E+03 4.7503E+01

 SAHO 9.9971E+02 2.4517E+01

 MLSAO 9.2985E+02 1.4371E+01

5.1.3 Experimental Results on 100d
Benchmark Problems
We attempted to challenge more complex
application scenarios by testing various
algorithms' performance in solving high-
dimensional problems using 100-dimensional
benchmark functions. Table 4 displays the
average best fitness function values obtained
by the five algorithms after 30 independent
runs, highlighting the best average values for
each test function. MLSAO achieved the best
fitness function values in F2, F3, and F5, while
SA-COSO performed the best in F1 and F6, and
SAHO performed better in F4. Figure 5 shows
the fitness changes of each algorithm on
different test functions. Combined with the
table, SA-COSO performed the best in the
optimization experiment for F1, but MLSAO
and SAHO were not far behind, with all three
almost on the same level. MLSAO
demonstrated a significant advantage in the
100-dimensional F2 function test, with an
average optimization result far higher than the
other four functions and the smallest standard
deviation. The optimization results for the F3
function also favored MLSAO, where the
average result for the second-best SAHO was
approximately 2.5 times that of the best result.
The results for the other four algorithms were
relatively similar. The best optimization result
for the 100-dimensional Griewank function
belonged to SAHO. The difference between
these two algorithms and the other three was
particularly pronounced. In the experiment for
F5, MLSAO performed the best, followed by
SHAO, with both achieving average results
below 1000, while the results for the other three
algorithms were all above 1000. The
experimental results for the F6 function
showed that the average results for all five
algorithms were generally within the same
range. However, SA-COSO performed the

best, while MLSAO ranked only third, with its
performance being less satisfactory. Overall,
MLSAO achieved almost the best fitness
function values or equivalent levels in most
functions. Even in cases where MLSAO did not
achieve the optimal solution, it still managed
to come very close to an approximate optimal
result to a large extent. However, in F6, the
surrogate model may have difficulty providing
useful information, leading to the algorithm
being trapped in a local optimum and unable
to discover the true global optimum. Overall,
MLSAO still performed well on most 100-
dimensional problems, demonstrating its
ability to handle high-dimensional complex
problems and proving its suitability for high-
dimensional scenario.

Figure 5

Convergence curves of GA, RBF-PSO, SA-COSO,
SAHO, and MLSAO on 100D functions.

5.1.3 Experimental Results on 200d
Benchmark Problems
To further assess the capability of MLSAO in
addressing high-dimensional and complex
problems, we conducted tests with several
benchmark functions selected from Table 1,
using a parameter dimension of 200. We
compared MLSAO with SAHSO[19]and GL-

 SA-COSO 3.1036E+02 5.2617E+01

 SAHO 1.8805E+02 2.9981E+01

 MLSAO 1.2672E+02 2.8506E+02

F6 GA 1.1894E+03 4.5169E+01

 RBF_PSO 1.0067E+03 3.1456E+01

 SA-COSO 1.0818E+03 4.7503E+01

 SAHO 9.9971E+02 2.4517E+01

 MLSAO 9.2985E+02 1.4371E+01

5.1.3 Experimental Results on 100d
Benchmark Problems
We attempted to challenge more complex
application scenarios by testing various
algorithms' performance in solving high-
dimensional problems using 100-dimensional
benchmark functions. Table 4 displays the
average best fitness function values obtained
by the five algorithms after 30 independent
runs, highlighting the best average values for
each test function. MLSAO achieved the best
fitness function values in F2, F3, and F5, while
SA-COSO performed the best in F1 and F6, and
SAHO performed better in F4. Figure 5 shows
the fitness changes of each algorithm on
different test functions. Combined with the
table, SA-COSO performed the best in the
optimization experiment for F1, but MLSAO
and SAHO were not far behind, with all three
almost on the same level. MLSAO
demonstrated a significant advantage in the
100-dimensional F2 function test, with an
average optimization result far higher than the
other four functions and the smallest standard
deviation. The optimization results for the F3
function also favored MLSAO, where the
average result for the second-best SAHO was
approximately 2.5 times that of the best result.
The results for the other four algorithms were
relatively similar. The best optimization result
for the 100-dimensional Griewank function
belonged to SAHO. The difference between
these two algorithms and the other three was
particularly pronounced. In the experiment for
F5, MLSAO performed the best, followed by
SHAO, with both achieving average results
below 1000, while the results for the other three
algorithms were all above 1000. The
experimental results for the F6 function
showed that the average results for all five
algorithms were generally within the same
range. However, SA-COSO performed the

best, while MLSAO ranked only third, with its
performance being less satisfactory. Overall,
MLSAO achieved almost the best fitness
function values or equivalent levels in most
functions. Even in cases where MLSAO did not
achieve the optimal solution, it still managed
to come very close to an approximate optimal
result to a large extent. However, in F6, the
surrogate model may have difficulty providing
useful information, leading to the algorithm
being trapped in a local optimum and unable
to discover the true global optimum. Overall,
MLSAO still performed well on most 100-
dimensional problems, demonstrating its
ability to handle high-dimensional complex
problems and proving its suitability for high-
dimensional scenario.

Figure 5

Convergence curves of GA, RBF-PSO, SA-COSO,
SAHO, and MLSAO on 100D functions.

5.1.3 Experimental Results on 200d
Benchmark Problems
To further assess the capability of MLSAO in
addressing high-dimensional and complex
problems, we conducted tests with several
benchmark functions selected from Table 1,
using a parameter dimension of 200. We
compared MLSAO with SAHSO[19]and GL-

(a) 100D function1 (b) 100D function2

(c) 100D function3 (d) 100D function4

(e) 100D function5 (f) 100D function6

Information Technology and Control 2024/1/53294

SA-COSO performed the best in the optimization
experiment for F1, but MLSAO and SAHO were not
far behind, with all three almost on the same level.
MLSAO demonstrated a significant advantage in the
100-dimensional F2 function test, with an average
optimization result far higher than the other four
functions and the smallest standard deviation. The
optimization results for the F3 function also favored
MLSAO, where the average result for the second-best
SAHO was approximately 2.5 times that of the best
result. The results for the other four algorithms were
relatively similar. The best optimization result for
the 100-dimensional Griewank function belonged to
SAHO. The difference between these two algorithms
and the other three was particularly pronounced. In
the experiment for F5, MLSAO performed the best,
followed by SHAO, with both achieving average re-
sults below 1000, while the results for the other three
algorithms were all above 1000. The experimental re-
sults for the F6 function showed that the average re-
sults for all five algorithms were generally within the
same range. However, SA-COSO performed the best,
while MLSAO ranked only third, with its performance
being less satisfactory. Overall, MLSAO achieved al-
most the best fitness function values or equivalent
levels in most functions. Even in cases where MLSAO
did not achieve the optimal solution, it still managed
to come very close to an approximate optimal result
to a large extent. However, in F6, the surrogate mod-
el may have difficulty providing useful information,
leading to the algorithm being trapped in a local opti-
mum and unable to discover the true global optimum.
Overall, MLSAO still performed well on most 100-di-
mensional problems, demonstrating its ability to han-
dle high-dimensional complex problems and proving
its suitability for high-dimensional scenario.

5.1.3. Experimental Results on 200d Benchmark
Problems
To further assess the capability of MLSAO in address-
ing high-dimensional and complex problems, we con-
ducted tests with several benchmark functions se-
lected from Table 1, using a parameter dimension
of 200. We compared MLSAO with SAHSO[19]and
GL-SADE [39], and the results are shown in Table 5.
Despite suboptimal performance in F1, the outcomes
for F2 and F4 indicate that MLSAO remains the al-
gorithm with the strongest optimization capability.

Table 4
Statistical comparisons of results on 100-dimensional
benchmark problems

Function
No Algorithm Mean Std

F1 GA 1.2766E+04 1.5483E+03

RBF_PSO 8.2347E+03 9.0105E+02

SA-COSO 1.3224E+03 3.0408E+02

SHAO 1.3861E+03 1.4210E+02

MLSAO 1.3724E+03 2.3379E+01

F2 GA 1.0426E+04 1.0697E+03

RBF_PSO 4.1645E+03 5.9803E+02

SA-COSO 4.0199E+02 1.8129E+02

SAHO 5.7284E+02 4.3681E+01

MLSAO 1.7192E+02 2.7322E+01

F3 GA 1.9894E+01 4.2056E-01

RBF_PSO 1.9021E+01 4.3126E-01

SA-COSO 1.2127E+01 8.9256E-01

SAHO 1.5396E+01 4.8945E-01

MLSAO 6.1134E+00 6.0183E-01

F4 GA 1.1684E+03 1.0013E+02

RBF_PSO 6.1963E+02 5.7765E+01

SA-COSO 6.1253E+01 2.0021E+01

SAHO 9.3503E-01 1.0853E-01

MLSAO 1.9258E+00 2.0905E-01

F5 GA 2.1895E+03 2.5614E+02

RBF_PSO 1.5842E+03 2.1104E+02

SA-COSO 1.2561E+03 1.1033E+02

SAHO 9.7908E+02 7.9437E+01

MLSAO 8.1588E+02 8.9033E+01

F6 GA 1.5017E+03 3.1302E+01

RBF_PSO 1.4035E+03 4.7821E+01

SA-COSO 1.2677E+03 2.5304E+01

SAHO 1.3793E+03 1.1042E+02

MLSAO 1.3998E+03 3.9211E+01

295Information Technology and Control 2024/1/53

Table 5
Statistical comparisons of results on 200-dimensional
benchmark problems

Function
No Algorithm Mean Std

F1 SAHSO 8.5726E+02 9..8398E+01

GL-SADE 5.1297E+02 8.9146E+01

MLSAO 2.7524E+03 1.8329E+02

F2 SAHSO 9.1682E+02 1.7957E+02

GL-SADE 7.3085E+02 5.9803E+01

MLSAO 4.3583E+02 5.6634E+01

F3 SAHSO 7.5684E+00 7.3696E-01

GL-SADE 2.0751E+01 3.0311E-01

MLSAO 8.7712E+00 8.9768E-01

F4 SAHSO 2.7841E+00 3.4071E-01

GL-SADE 3.9983E+00 5.0702E-01

MLSAO 2.6304E+00 3.0015E-01

In comparison with SAHSO, F3 shows only a slight
disadvantage than SAHSO. Overall, compared to A
and B, MLSAO still achieves relatively better optimi-
zation results in the majority of the experimental op-
timization functions. These results demonstrate that
MLSAO still possesses sufficient optimization prow-
ess when dealing with high-dimensional and complex
computational problems.

5.2. CESM Parameter Tuning Experiments
The Community Earth System Model (CESM) [18]
is a fully coupled global climate model that offers ad-
vanced computer simulations of Earth’s historical,
current, and future climate conditions. The commu-
nity atmosphere model (CAM) is the atmosphere
component of the community earth system model. It
simulates various chemical reactions and energy ex-
change in the atmosphere. CESM simulation experi-
ence is a high-performance computing program that
requires a significant amount of time and computa-
tional cost. A complete simulation process of CESM
usually takes more than ten hours or even several
days.
The precipitation process in CAM is complicated and
precipitation-related processes is related to many

parameterization schemes, include cumulus convec-
tion processes, large-scale circulation, microphysi-
cal processes, boundary layer processes, etc. These
schemes contain some adjustable parameters, which
can be tuned to change the simulation result of CAM.
The computational and time cost generated by tradi-
tional algorithms are unacceptable during the opti-
mization process. Therefore, we applied the proposed
algorithm to address the CESM parameter tuning
problem. The results demonstrate that the proposed
algorithm effectively enhanced the precipitation sim-
ulation results of the Community Atmosphere Model
(CAM) in several regions with a relatively small num-
ber of iterations.
In this work, we use the proposed MLSAO algorithm
to optimize the precipitation related parameters of
CAM, so as to make the optimization results of the
CAM model more close to the observation data. This
algorithm can greatly reduce the optimization time
by building a surrogate model to replace the compli-
cated CAM model running process. Therefore, we
must account for the disparities between the model
simulation results and the observational data in the
objective function. To guide the algorithm towards
optimizing by minimizing these disparities, we have
chosen the root-mean-square error (RMSE) as the
objective function. The RMSE is calculated as fol-
lows:

processes, large-scale circulation,
microphysical processes, boundary layer
processes, etc. These schemes contain some
adjustable parameters, which can be tuned to
change the simulation result of CAM. The
computational and time cost generated by
traditional algorithms are unacceptable during
the optimization process. Therefore, we
applied the proposed algorithm to address the
CESM parameter tuning problem. The results
demonstrate that the proposed algorithm
effectively enhanced the precipitation
simulation results of the Community
Atmosphere Model (CAM) in several regions
with a relatively small number of iterations.

In this work, we use the proposed MLSAO
algorithm to optimize the precipitation related
parameters of CAM, so as to make the
optimization results of the CAM model more
close to the observation data. This algorithm
can greatly reduce the optimization time by
building a surrogate model to replace the
complicated CAM model running process.
Therefore, we must account for the disparities
between the model simulation results and the
observational data in the objective function. To
guide the algorithm towards optimizing by
minimizing these disparities, we have chosen
the root-mean-square error (RMSE) as the
objective function. The RMSE is calculated as
follows:

RMSE = �
1
N
�(mod� − obs�)�
�

���

,  

where 𝑁𝑁 is the total number of the grid
points of simulation region,𝑚𝑚𝑚𝑚𝑚𝑚� and 𝑚𝑚𝑜𝑜𝑜𝑜�
are the model simulated and observation
data values at grid point 𝑖𝑖. A smaller RMSE
indicates a smaller error between model
simulation and observational data. The
optimization goal is to minimize the RMSE
for each region. The parameters are shown
in Table 6, and the selected regions are
presented in Table 7. These parameters are
chosenfrom the Zhang-McFarlane
parameterization scheme [51].

Table 6

Parameters description of Zhang-
McFarlane parameterization scheme. CAPE
means the convective available potential
energy.

Parameter
name

Meaning Range Defa
ult

value
zmconv_dm

pdz
Parcel

fractional
mass

entrainme
nt rate

−2.0
× 10��~
− 0.2
× 10��

−1.0
× 10��

zmconv_c0_
ocn

Deep
convectio

n
precipitati

on
efficiency

over
ocean

1.0
× 10��~0.

0.045

zmconv_tau Time
scale for

consumpt
ion rate

deep
CAPE

1800~28
800

3600

The optimization results are shown in Figure 6,
the numerical results indicate that the RMSE of
selected regions has decreased compared to the
default experiment, indicating that the
optimized experimental results are closer to the
observed data. The RMSE for the two regions has
decreased by 29.77% and 12.63%, respectively.
To demonstrate that the decrease of RMSE has
indeed improved the accuracy of precipitation
simulation, we draw precipitation distribution
plots for each region, detailing the changes in
precipitation over these regions caused by
optimized parameters obtained from the
proposed algorithm. The results for the North
Indian Ocean, and the North Pacific are shown
in Figures 6-7, respectively. We will now
introduce the changes in precipitation compared
to the default parameters.

Table 7

Regions selected in this study and their range.
Name Gegion

,

where N is the total number of the grid points of sim-
ulation region, modi and obsi are the model simulated
and observation data values at grid point i. A small-
er RMSE indicates a smaller error between model
simulation and observational data. The optimization
goal is to minimize the RMSE for each region. The
parameters are shown in Table 6, and the selected re-
gions are presented in Table 7. These parameters are
chosenfrom the Zhang-McFarlane parameterization
scheme [51].
The optimization results are shown in Figure 6, the
numerical results indicate that the RMSE of selected
regions has decreased compared to the default exper-
iment, indicating that the optimized experimental re-
sults are closer to the observed data. The RMSE for

Information Technology and Control 2024/1/53296

the two regions has decreased by 29.77% and 12.63%,
respectively. To demonstrate that the decrease of
RMSE has indeed improved the accuracy of precipi-
tation simulation, we draw precipitation distribution
plots for each region, detailing the changes in precip-
itation over these regions caused by optimized pa-
rameters obtained from the proposed algorithm. The
results for the North Indian Ocean, and the North
Pacific are shown in Figures 6-7, respectively. We will
now introduce the changes in precipitation compared
to the default parameters.

Table 6
Parameters description of Zhang-McFarlane parameterization scheme. CAPE means the convective available potential
energy

Parameter name Meaning Range Default value

zmconv_dmpdz Parcel fractional mass entrainment rate –2.0 × 10–3 ~ –0.2 × 10–3 –1.0 × 10–3

zmconv_c0_ocn Deep convection precipitation efficiency over ocean 1.0 × 10–3 ~ 0.1 0.045

zmconv_tau Time scale for consumption rate deep CAPE 1800~28800 3600

Table 7
Regions selected in this study and their range

Name Gegion

North Pacific
Ocean 15°-40°N, 150°-210°E

North India 0°-20°N, 50°-90°E

Figure 6
RMSE of default experience and optimization results over
each region

North Pacific
Ocean

15°-40°N, 150°-210°E

North India 0°-20°N, 50°-90°E

Figure 6

RMSE of default experience and optimization
results over each region .

The improvement in the North Indian Ocean
region is quite evident, as shown in the Figure 7.
In the default experiment, it is noticeable that the
precipitation in the ocean areas on both sides of
the Indian Peninsula is considerably higher than
the observed data, resulting in a significant
positive error. In contrast, in the optimized
experiment, these errors have been significantly
reduced. This difference is especially prominent
on the western side of the peninsula, where
precipitation values now align more closely with
those observed. The positive error areas on
eastern side of the peninsula have also been
significantly reduced, with some remain ing
errors near the island of SriLanka. Furthermore,
near the Arabian Peninsula, the results of the
optimized experiment are also superior to the
default experiment. The optimized parameters
have reduced precipitation in this region, even
eliminating the positive errors that were present
in the default experiment. In the southeastern
marine area, unlike the improvement seen in
other regions, the optimized experiment has
increased precipitation in this area, bringing the
results closer to the observed data. In summary,
in the North Indian Ocean region, the default
experiment had significant positive errors. Our

improvements have effectively reduced most of
these positive errors without introducing new
errors.

Figure 7

The precipitation distribution of the North India
optimization result. The left column displays the
default experiment, observation data, and the
difference between the default experiment and the
observation data from top to bottom. The right
column exhibits the optimal experiment,
observation data, and the difference between the
optimal experiment and the observation data from
top to bottom.

Figure 8 illustrates the optimization results for
the North Pacific region. Similar to the North
Indian Ocean region, the default experiment
still exhibits a significant amount of positive
errors. Our optimization results aim to reduce
these positive errors in the North Pacific
region. As shown in the figure, our
optimization results have substantially
reduced precipitation in these ocean areas,
primarily in the central region of the selected
area. Precipitation in this central area has been
significantly reduced and is now very close to
the results from observed data. The results for
the eastern and western sides of the region
have also seen considerable improvements.
Additionally, in the southeastern areas around
the islands, precipitation has noticeably
decreased. Furthermore, in the northwestern
region, the default experiment underestimated
precipitation, while the optimized experiment
increased precipitation in this area, eliminating
negative errors. It is evident that the optimized

The improvement in the North Indian Ocean region
is quite evident, as shown in the Figure 7. In the de-
fault experiment, it is noticeable that the precipita-
tion in the ocean areas on both sides of the Indian
Peninsula is considerably higher than the observed
data, resulting in a significant positive error. In con-
trast, in the optimized experiment, these errors have
been significantly reduced. This difference is espe-
cially prominent on the western side of the peninsu-
la, where precipitation values now align more close-
ly with those observed. The positive error areas on
eastern side of the peninsula have also been signifi-
cantly reduced, with some remain ing errors near the
island of SriLanka. Furthermore, near the Arabian
Peninsula, the results of the optimized experiment
are also superior to the default experiment. The
optimized parameters have reduced precipitation
in this region, even eliminating the positive errors
that were present in the default experiment. In the
southeastern marine area, unlike the improvement
seen in other regions, the optimized experiment has
increased precipitation in this area, bringing the re-
sults closer to the observed data. In summary, in the
North Indian Ocean region, the default experiment
had significant positive errors. Our improvements
have effectively reduced most of these positive er-
rors without introducing new errors.
Figure 8 illustrates the optimization results for the
North Pacific region. Similar to the North Indian
Ocean region, the default experiment still exhibits
a significant amount of positive errors. Our optimi-
zation results aim to reduce these positive errors in
the North Pacific region. As shown in the figure, our
optimization results have substantially reduced pre-
cipitation in these ocean areas, primarily in the cen-
tral region of the selected area. Precipitation in this
central area has been significantly reduced and is now
very close to the results from observed data. The re-

297Information Technology and Control 2024/1/53

Figure 7
The precipitation distribution of the North India optimization result. The left column displays the default experiment,
observation data, and the difference between the default experiment and the observation data from top to bottom. The
right column exhibits the optimal experiment, observation data, and the difference between the optimal experiment and
the observation data from top to bottom

North Pacific
Ocean

15°-40°N, 150°-210°E

North India 0°-20°N, 50°-90°E

Figure 6

RMSE of default experience and optimization
results over each region .

The improvement in the North Indian Ocean
region is quite evident, as shown in the Figure 7.
In the default experiment, it is noticeable that the
precipitation in the ocean areas on both sides of
the Indian Peninsula is considerably higher than
the observed data, resulting in a significant
positive error. In contrast, in the optimized
experiment, these errors have been significantly
reduced. This difference is especially prominent
on the western side of the peninsula, where
precipitation values now align more closely with
those observed. The positive error areas on
eastern side of the peninsula have also been
significantly reduced, with some remain ing
errors near the island of SriLanka. Furthermore,
near the Arabian Peninsula, the results of the
optimized experiment are also superior to the
default experiment. The optimized parameters
have reduced precipitation in this region, even
eliminating the positive errors that were present
in the default experiment. In the southeastern
marine area, unlike the improvement seen in
other regions, the optimized experiment has
increased precipitation in this area, bringing the
results closer to the observed data. In summary,
in the North Indian Ocean region, the default
experiment had significant positive errors. Our

improvements have effectively reduced most of
these positive errors without introducing new
errors.

Figure 7

The precipitation distribution of the North India
optimization result. The left column displays the
default experiment, observation data, and the
difference between the default experiment and the
observation data from top to bottom. The right
column exhibits the optimal experiment,
observation data, and the difference between the
optimal experiment and the observation data from
top to bottom.

Figure 8 illustrates the optimization results for
the North Pacific region. Similar to the North
Indian Ocean region, the default experiment
still exhibits a significant amount of positive
errors. Our optimization results aim to reduce
these positive errors in the North Pacific
region. As shown in the figure, our
optimization results have substantially
reduced precipitation in these ocean areas,
primarily in the central region of the selected
area. Precipitation in this central area has been
significantly reduced and is now very close to
the results from observed data. The results for
the eastern and western sides of the region
have also seen considerable improvements.
Additionally, in the southeastern areas around
the islands, precipitation has noticeably
decreased. Furthermore, in the northwestern
region, the default experiment underestimated
precipitation, while the optimized experiment
increased precipitation in this area, eliminating
negative errors. It is evident that the optimized

sults for the eastern and western sides of the region
have also seen considerable improvements. Addition-
ally, in the southeastern areas around the islands, pre-
cipitation has noticeably decreased. Furthermore, in
the northwestern region, the default experiment un-

derestimated precipitation, while the optimized ex-
periment increased precipitation in this area, elimi-
nating negative errors. It is evident that the optimized
parameters can enhance the capabilities of CAM in
the North Pacific region.

Information Technology and Control 2024/1/53298

Figure 8
The precipitation distribution of the North Pacific optimization result. The left column displays the default experiment,
observation data, and the difference between the default experiment and the observation data from top to bottom. The
right column exhibits the optimal experiment, observation data, and the difference between the optimal experiment and
the observation data from top to bottom

parameters can enhance the capabilities of
CAM in the North Pacific region.

Figure 8

The precipitation distribution of the North Pacific
optimization result. The left column displays the
default experiment, observation data, and the
difference between the default experiment and the
observation data from top to bottom. The right
column exhibits the optimal experiment,
observation data, and the difference between the
optimal experiment and the observation data from
top to bottom.

6. Conclusions
In this work, we propose a multi-level
surrogate-assisted optimization algorithm
MLSAO, primarily designed to address the
parameter optimization challenges associated
with complex models. MLSAO introduces a
multi-level search mechanism that enhances its
exploration capability of the parameter space,
thereby mitigating the risk of falling into local
optima to some extent. The proposed MLSAO
integrates random forest and DE to construct
and update the global level surrogate model,
respectively. For local level, we select IDW to
build the surrogate model and simplex
downhill method to update this surrogate
model. Whether it is the optimization tests on
benchmarks or the practical application of
CESM parameter tuning, MLSAO has
demonstrated excellent optimization
capabilities.

In future work, we aim to broaden the
application scope of MLSAO, enhance its
capability to tackle multi-objective
optimization, and facilitate its utilization in a

wider range of domains to address real-world
optimization challenges. Additionally, as data
scales continue to increase, we aim to improve
its optimization efficiency. Moreover, we are
considering the introduction of parallel and
multi-threading techniques to enhance the
efficiency and utilization of computational
resources for MLSAO.

Competing Interests

The authors have no relevant financial or non-
financial interests to disclose.

Funding

This work is funded by: National Key R&D
Plan of China under Grant No.
2017YFA0604500, and by Key scientific and
technological R&D Plan of Jilin Province of
China under Grant No. 20180201103GX.

References

1. Alizadeh, R., Allen, J. K., Mistree, F. Managing
Computational Complexity Using Surrogate
Models: A Critical Review. Research in
Engineering Design, 2020, 31, 275–298.

2. Anderson, G. J., Lucas, D. D. Machine Learning
Predictions of a Multiresolution Climate Model
Ensemble. Geophysical Research Letters, 2018,
45, 4273–4280.

3. Aria, M., Cuccurullo, C., Gnasso, A. A
Comparison Among Interpretative Proposals
for Random Forests. Machine Learning with
Applications, 2021, 6, 100094.
https://doi.org/10.1016/j.mlwa.2021.100094

4. Bemporad, A. Active Learning for Regression
by Inverse Distance Weighting. Information
Sciences, 2023, 626, 275–292.
https://doi.org/10.1016/j.ins.2023.01.028

5. Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage,
R., Morlier, J., Martins, J. R. R. A. A Python
Surrogate Modeling Framework with
Derivatives. Advances in Engineering Software,
2019, p. 102662.
https://doi.org/https://doi.org/10.1016/j.adveng
soft.2019.03.005.

6. Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys,
J., Mezmaz, M., Melab, N., Tuyttens, D. Parallel
Surrogate-assisted Optimization: Batched
Bayesian Neural Network-assisted GA versus
q-EGO. Swarm and Evolutionary
Computation, 2020, 57, 100717.

6. Conclusions
In this work, we propose a multi-level surrogate-as-
sisted optimization algorithm MLSAO, primari-
ly designed to address the parameter optimization
challenges associated with complex models. MLSAO

introduces a multi-level search mechanism that en-
hances its exploration capability of the parameter
space, thereby mitigating the risk of falling into local
optima to some extent. The proposed MLSAO inte-
grates random forest and DE to construct and update
the global level surrogate model, respectively. For lo-

299Information Technology and Control 2024/1/53

cal level, we select IDW to build the surrogate model
and simplex downhill method to update this surro-
gate model. Whether it is the optimization tests on
benchmarks or the practical application of CESM pa-
rameter tuning, MLSAO has demonstrated excellent
optimization capabilities.
In future work, we aim to broaden the application
scope of MLSAO, enhance its capability to tackle
multi-objective optimization, and facilitate its uti-
lization in a wider range of domains to address re-
al-world optimization challenges. Additionally, as
data scales continue to increase, we aim to improve
its optimization efficiency. Moreover, we are consid-

ering the introduction of parallel and multi-threading
techniques to enhance the efficiency and utilization
of computational resources for MLSAO.

Competing Interests
The authors have no relevant financial or non-finan-
cial interests to disclose.

Funding
This work is funded by: National Key R&D Plan of
China under Grant No. 2017YFA0604500, and by Key
scientific and technological R&D Plan of Jilin Prov-
ince of China under Grant No. 20180201103GX.

References
1. Alizadeh, R., Allen, J. K., Mistree, F. Managing Compu-

tational Complexity Using Surrogate Models: A Critical
Review. Research in Engineering Design, 2020, 31, 275-
298. https://doi.org/10.1007/s00163-020-00336-7

2. Anderson, G. J., Lucas, D. D. Machine Learning Predic-
tions of a Multiresolution Climate Model Ensemble.
Geophysical Research Letters, 2018, 45, 4273-4280.
https://doi.org/10.1029/2018GL077049

3. Aria, M., Cuccurullo, C., Gnasso, A. A Comparison
Among Interpretative Proposals for Random Forests.
Machine Learning with Applications, 2021, 6, 100094.
https://doi.org/10.1016/j.mlwa.2021.100094

4. Bemporad, A. Active Learning for Regression by Inver-
se Distance Weighting. Information Sciences, 2023,
626, 275-292. https://doi.org/10.1016/j.ins.2023.01.028

5. Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Mor-
lier, J., Martins, J. R. R. A. A Python Surrogate Modeling
Framework with Derivatives. Advances in Engineering
Software, 2019, p. 102662. https://doi.org/10.1016/j.
advengsoft.2019.03.005

6. Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J.,
Mezmaz, M., Melab, N., Tuyttens, D. Parallel Surroga-
te-assisted Optimization: Batched Bayesian Neural
Network-assisted GA versus q-EGO. Swarm and Evo-
lutionary Computation, 2020, 57, 100717.https://doi.
org/10.1016/j.swevo.2020.100717

7. Chu, L., Shi, J., Souza de Cursi, E. Kriging Surrogate
Model for Resonance Frequency Analysis of Dental Im-
plants by a Latin Hypercube-Based Finite Element Me-
thod. Applied Bionics and Biomechanics, 2019, 2019.
https://doi.org/10.1155/2019/3768695

8. Dalgaty, T., Castellani, N., Turck, C., Harabi, K.-E., Qu-
erlioz, D., Vianello, E. In Situ Learning Using Intrinsic
Memristor Variability via Markov Chain Monte Car-
lo Sampling. Nature Electronics, 2021, 4(2), 151-161.
https://doi.org/10.1038/s41928-020-00523-3

9. Diaz-Manriquez, A., Toscano, G., Coello Coello, C. A.
Comparison of Metamodeling Techniques in Evolutio-
nary Algorithms. Soft Computing, 2017, 21, 5647-5663.
https://doi.org/10.1007/s00500-016-2140-z

10. Fan, F. L., Xiong, J. J., Li, M. Z., Wamh, G. On Interpretability
of Artificial Neural Networks: A Survey. IEEE Transacti-
ons on Radiation and Plasma Medical Sciences, 2021, 5(6):
741-760. https://doi.org/10.1109/TRPMS.2021.3066428

11. Fuhg, J. N., Fau, A., Nackenhorst, U. State-of-the-Art
and Comparative Review of Adaptive Sampling Me-
thods for Kriging. Archives of Computational Me-
thods in Engineering, 2021, 28: 2689-2747. https://doi.
org/10.1007/s11831-020-09474-6

12. Golzari, A., Haghighat Sefat, M., Jamshidi, S. Develop-
ment of an Adaptive Surrogate Model for Production
Optimization. Journal of Petroleum Science and Engi-
neering, 2015, 133, 677-688. https://doi.org/10.1016/j.
petrol.2015.07.012

13. Holland, J. H. Genetic Algorithms. Scientific American,
1992, 267, 66-73. https://doi.org/10.1038/scientificame-
rican0792-66

14. Hwang, J. T. A Fast-Prediction Surrogate Model for
Large Datasets. Aerospace Science and Technology,
2018. https://doi.org/10.1016/j.ast.2017.12.030

15. Jiang, K., Wang, J., Chen, Z., Zhou, Q., Jiang, S.-H. Influ-
ence of Coupling Factors on Structural Reliability Ba-

Information Technology and Control 2024/1/53300

sed on Polynomial Response Surface Optimization Mo-
del. Advances in Mechanical Engineering, 2023, 15(8).
https://doi.org/10.1177/16878132231184145

16. Jie, H., Wu, Y., Zhao, J., Ding, J., Liangliang. An Effici-
ent Multi-Objective PSO Algorithm Assisted by Kriging
Metamodel for Expensive Black-Box Problems. Journal
of Global Optimization, 2017, 67, 399-423. https://doi.
org/10.1007/s10898-016-0428-2

17. Jones, D. R. A Taxonomy of Global Optimization Me-
thods Based on Response Surfaces. Journal of Glo-
bal Optimization, 2001, 21, 345-383. https://doi.or-
g/10.1023/A:1012771025575

18. Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C.,
Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu,
G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-
F. ., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E.,
Neale, R., Oleson, K., Polvani, L. The Community Ear-
th System Model (CESM) Large Ensemble Project: A
Community Resource for Studying Climate Change in
the Presence of Internal Climate Variability. Bulletin of
the American Meteorological Society, 2015, 96(8), 1333-
1349. https://doi.org/10.1175/BAMS-D-13-00255.1

19. Li, F., Li, Y., Cai, X. Gao, L. A Surrogate-Assisted Hybrid
Swarm Optimization Algorithm for High-Dimensional
Computationally Expensive Problems. Swarm and Evo-
lutionary Computation, 2022, 72, 101096. https://doi.
org/10.1016/j.swevo.2022.101096

20. Liu, Y., Liu, J., Ding, J., Yang, S., Jin, Y. A Surrogate-As-
sisted Differential Evolution with Knowledge Transfer
for Expensive Incremental Optimization Problems.
IEEE Transactions on Evolutionary Computation,
2023, 1-1. https://doi.org/10.1109/TEVC.2023.3291697

21. Liu, Y., Liu, J., Tan, S., Yang, Y., Li, F. A Bagging-Based
Surrogate-Assisted Evolutionary Algorithm for Expen-
sive Multi-Objective Optimization. Neural Computing
and Applications, 2022, 34, 12097-12118. https://doi.
org/10.1007/s00521-022-07097-5

22. Li, Y., Zhong, J. HAS-EA: A Fast Parallel Surrogate-As-
sisted Evolutionary Algorithm. Memetic Computing,
2022. https://doi.org/10.1007/s12293-022-00376-7

23. Müller, J., Paudel, R., Shoemaker, C. A., Woodbury, J.,
Wang, Y. Mahowald, N. M. CH4 Parameter Estimation
in CLM4.5bgc Using Surrogate Global Optimization.
Geoscientific Model Development, 2015, 8(10), 3285-
3310. https://doi.org/10.5194/gmd-8-3285-2015

24. Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C.,
Meyerson, J. E. Considerations for Parameter Optimi-
zation and Sensitivity in Climate Models. Proceedings

of the National Academy of Sciences, 2010, 107, 21349-
21354. https://doi.org/10.1073/pnas.1015473107

25. Nelder, J. A., Mead, R. A Simplex Method for Function
Minimization. The Computer Journal, 1965, 7, 308-313.
https://doi.org/10.1093/comjnl/7.4.308

26. Pan, J. S., Liu, N., Chu, S. C., Lai, T. An Efficient Sur-
rogate-Assisted Hybrid Optimization Algorithm for
Expensive Optimization Problems. Information Sci-
ences, 2021, 561, 304-325. https://doi.org/10.1016/j.
ins.2020.11.056

27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Louppe, G.,
Prettenhofer, P., Weiss, R., Weiss, R. J., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E. Scikit-Learn: Machine Learning
in Python. J. Mach. Learn. Res, 2011. https://doi.
org/10.5555/1953048.2078195.

28. Rasamoelina, A. D., Adjailia, F., Sincak, P. A Review of
Activation Function for Artificial Neural Network.
2020 IEEE 18th World Symposium on Applied Machi-
ne Intelligence and Informatics (SAMI), 2020. https://
doi.org/10.1109/SAMI48414.2020.9108717

29. Regis, R. G., Shoemaker, C. A. A Stochastic Radial Basis
Function Method for the Global Optimization of Expen-
sive Functions. INFORMS Journal on Computing, 2007,
19, 497-509. https://doi.org/10.1287/ijoc.1060.0182

30. Saurette, Daniel D., Asim Biswas, Adam W. Gillespie.
Determining Minimum Sample Size for the Conditio-
ned Latin Hypercube Sampling Algorithm. Pedosphere,
2022. https://doi.org/10.1016/j.pedsph.2022.09.001

31. Schonlau, M., Welch, W. J., Jones, D. R. Global Versus
Local Search in Constrained Optimization of Computer
Models. Lecture Notes-Monograph Series, 1998, pp. 11-
25. https://doi.org/10.1214/lnms/1215456182

32. Shi, R., Liu, L., Long, T., Wu, Y., Wang, G. G. Multidisci-
plinary Modeling and Surrogate Assisted Optimizati-
on for Satellite Constellation Systems. Structural and
Multidisciplinary Optimization, 2018, 58, 2173-2188.
https://doi.org/10.1007/s00158-018-2032-1

33. Storn, R., Price, K. Differential Evolution-A Simple and
Efficient Heuristic for Global Optimization over Conti-
nuous Spaces. Journal of Global Optimization, 1997, 11,
341. https://doi.org/10.1023/A:1008202821328

34. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen,
Y. P., Auger, A., Tiwari, S. Problem Definitions and Eva-
luation Criteria for the CEC 2005 Special Session on
Real-Parameter Optimization. KanGAL Report, 2005,
2005005.

301Information Technology and Control 2024/1/53

35. Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J. Surrogate-As-
sisted Cooperative Swarm Optimization of High-Di-
mensional Expensive Problems. IEEE Transactions on
Evolutionary Computation, 2017, 21, 644-660. https://
doi.org/10.1109/TEVC.2017.2675628

36. Sun, C., Jin, Y., Zeng, J., Yu, Y. A Two-Layer Surro-
gate-Assisted Particle Swarm Optimization Algori-
thm. Soft Computing, 2015, 19, 1461-1475. https://doi.
org/10.1007/s00500-014-1283-z

37. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R.
J., Jones, E., Kern, R., Larson, E., Carey, C. J.SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 2020, 17(3), 261-272. https://
doi.org/10.1038/s41592-019-0686-2

38. Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., Miao, C. An
Evaluation of Adaptive Surrogate Modeling Based Opti-
mization with Two Benchmark Problems. Environmen-
tal Modelling & Software, 2014, 60, 167-179. https://doi.
org/10.1016/j.envsoft.2014.05.026

39. Wang, W., Liu, H. L., Tan, K. C. A Surrogate-Assisted Di-
fferential Evolution Algorithm for High-Dimensional
Expensive Optimization Problems. IEEE Transactions
on Cybernetics, 2023, 53(4), 2685-2697. https://doi.
org/10.1109/TCYB.2022.3175533

40. Wang, X., Wang, G. G., Song, B., Wang, P., Wang, Y. A No-
vel Evolutionary Sampling Assisted Optimization Me-
thod for Highdimensional Expensive Problems. IEEE
Transactions on Evolutionary Computation, 2019, 23,
815-827. https://doi.org/10.1109/TEVC.2019.2890818

41. Williams, B., Cremaschi, S. Selection of Surrogate
Modeling Techniques for Surface Approximation and
Surrogate-Based Optimization. Chemical Engineering
Research and Design, 2021, 170, 76-89. https://doi.or-
g/10.1016/j.cherd.2021.03.028

42. Ji, X., Zhang, Y., He, C., Cheng, J., Gong, D., Gao, X., Guo,
Y. Surrogate and Autoencoder-Assisted Multitask
Particle Swarm Optimization for High-Dimensional
Expensive Multimodal Problems. IEEE Transactions
on Evolutionary Computation, 2023, 1-1. https://doi.
org/10.1109/TEVC.2023.3287213

43. Xing, J., Luo, Y., Gao, Z. A Global Optimization Strate-
gy Based on the Kriging Surrogate Model and Parallel
Computing. Structural and Multidisciplinary Optimi-
zation, 2020, 62(1), 405-417. https://doi.org/10.1007/
s00158-020-02495-6

44. Xu, H., Zhang, T., Luo, Y., Huang, X., Xue, W. Parameter
Calibration in Global Soil Carbon Models Using Surro-
gate-Based Optimization. Geoscientific Model Deve-
lopment, 2018, 11, 3027-3044. https://doi.org/10.5194/
gmd-11-3027-2018

45. Yan, C., Yin, Z., Shen, X., Mi, D., Guo, F., Long, D. Surro-
gate-Based Optimization with Improved Support Vector
Regression for Non-Circular Vent Hole on Aero-Engine
Turbine Disk. Aerospace Science and Technology, 2020,
96, 105332. https://doi.org/10.1016/j.ast.2019.105332

46. You, X., Li, W., Chai, Y. A Truly Meshfree Method for
Solving Acoustic Problems Using Local Weak Form
and Radial Basis Functions. Applied Mathematics
and Computation, 2020, 365, 124694. https://doi.or-
g/10.1016/j.amc.2019.124694

47. Yu, H., Tan, Y., Zeng, J., Sun, C., Jin, Y. Surrogate-As-
sisted Hierarchical Particle Swarm Optimization. In-
formation Sciences, 2018, 454-455, 59-72. https://doi.
org/10.1016/j.ins.2018.04.062

48. Shang, Y., Nogal, M., Teixeira, R., Wolfert, A. R. (Rogier)
M. Optimal Design of Rail Level Crossings and Associ-
ated Transition Zones Using Adaptive Surrogate-As-
sisted Optimization. Engineering Structures, 2023, 282,
115740. https://doi.org/10.1016/j.engstruct.2023.115740

49. Zhang, C., Di, Z., Duan, Q., Xie, Z., Gong, W. Improved
Land Evapotranspiration Simulation of the Commu-
nity Land Model Using a Surrogate-Based Automatic
Parameter Optimization Method. Water, 2020, 12, 943.
https://doi.org/10.3390/w12040943

50. Zhang, F., Lauren, J. O‘Donnell. Support Vector Regres-
sion. Machine Learning. Academic Press, 2020: 123-140.
https://doi.org/10.1016/B978-0-12-815739-8.00007-9

51. Zhang, G. J., McFarlane, N. A. Sensitivity of Climate
Simulations to the Parameterization of Cumulus Con-
vection in the Canadian Climate Centre General Cir-
culation Model. Atmosphere-Ocean, 1995, 33, 407-446.
https://doi.org/10.1080/07055900.1995.9649539

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

