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With the development of computer science, more and more complex problems rely on the help of computers for 
solving. When facing the parameter optimization problem of complex models, traditional intelligent optimi-
zation algorithms often require multiple iterations on the target problem. It can bring unacceptable costs and 
resource costs in dealing with these complex problems. In order to solve the parameter optimization of complex 
problems, in this paper we propose a multi-level surrogate-assisted optimization algorithm (MLSAO). By con-
structing surrogate models at different levels, the algorithm effectively explores the parameter space, avoiding 
local optima and enhancing optimization efficiency. The method combines two optimization algorithms, differ-
ential evolution (DE) and Downhill simplex method. DE is focused on global level surrogate model optimization. 
Downhill simplex is concentrated on local level surrogate model update. Random forest and inverse distance 
weighting (IDW) are constructed for global and local level surrogate model, respectively. These methods lever-
age their respective advantages at different stages of the algorithm. The MLSAO algorithm is evaluated against 
other state-of-the-art approaches using benchmark functions of varying dimensions. Comprehensive results 
from the comparisons showcase the superior performance of the MLSAO algorithm in addressing expensive 
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optimization problems. Moreover, we implement the MLSAO algorithm for tuning precipitation parameters in 
the Community Earth System Model (CESM). The outcomes reveal its effective enhancement of CESM’s sim-
ulation accuracy for precipitation in the North Indian Ocean and the North Pacific region. These experiments 
demonstrate that MLSAO can better address parameter optimization problems under complex conditions.
KEYWORDS: Surrogate-assisted optimization; Random Forest; Inverse distance weighting; Multi level opti-
mization.

1. Introduction
Parameter optimization issues are prevalent in the 
fields of science and engineering, necessitating the 
need for highly efficient computational algorithms to 
address these challenges. In recent years, a variety of 
intelligent optimization algorithms, such as differen-
tial evolution (DE) algorithm, genetic algorithm, par-
ticle swarm optimization (PSO) algorithm, have been 
proposed and effectively employed in a multitude of 
engineering optimization scenarios.  Their effective-
ness can be partly attributed to the circumstance 
that intelligent optimization methods do not require 
objective functions to be analytical or differentiable, 
while also possessing enhanced global search capa-
bilities. Nevertheless, the primary trait of these al-
gorithms is their tendency to demand a substantial 
number of fitness evaluations in order to pinpoint a 
solution that is close to optimal. Some optimization 
problems may involve intensive computation and 
costly simulation [16]. Applying these algorithms to 
these problems with high computational costs pres-
ent a significant challenge.
To tackle this issue, surrogate model is proposed as an 
alternative to the costly performance evaluations in 
order to mitigate the computational expenses. Surro-
gate model is an effective tool for building a simplified 
model of the actual complex system for rapid testing, 
verification and optimization. Surrogate model uses 
approximate methods to construct models instead 
of complex models to simplify the optimization pro-
cess, so as to improve computational efficiency while 
ensuring accuracy. Surrogate model predicts infor-
mation of unknown points through known sampling 
points, which can actually be attributed to construct 
an equation to instead of the large complex mod-
el involving costly simulation. It is an approximate 
method based on experimental design technology. 
Surrogate model establishes a mathematical model 
between input parameter and output objective func-
tion values, predicts the output objective function 

values under different input parameters. The surro-
gate model offers the advantage of significantly low-
ering the cost and complexity of analysis, enhancing 
analysis efficiency and accuracy, and optimizing real 
systems during the design stage to minimize the need 
for trial and error.
Considering that the process of building surrogate 
models simplifies the complex processes of actual 
complex systems into mathematical models, it be-
comes challenging to fully simulate the overall be-
havior of real systems. This error increases with the 
growing complexity of real systems. As various opti-
mization problems become increasingly complex, it 
becomes challenging to ensure the accuracy of a sin-
gle-level surrogate model. Such models may struggle 
to adequately represent intricate systems and meet 
precision requirements for minimizing errors. More-
over, there is a tendency for it to become ensnared in 
local optima, potentially failing to discover the genu-
ine global optimum throughout the optimization pro-
cess. Thus, improving the fitting accuracy of surrogate 
models and evading local optima stands out as one of 
the most crucial challenges confronted by optimiza-
tion algorithms based on surrogate model. In previ-
ous research, when dealing with such problems, more 
emphasis was placed on using different algorithms in 
various search stages, rather than constructing surro-
gate models at different levels. However, in practical 
optimization problems, when the problem to be opti-
mized is complex, it is necessary to set up multi-lev-
el surrogate models. Constructing multiple levels of 
surrogate models and conducting searches at various 
stages can achieve a more optimal balance between 
exploration and exploitation, thereby increasing the 
likelihood of identifying potential optimal solutions.
In this paper, we propose a multi-level surrogate as-
sisted optimization (MLSAO) algorithm. We attempt 
to build a global-level surrogate model by a machine 
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learning method random forest, which can effec-
tively handle high-dimensional data and non-linear 
relationships, and has good robustness and stability. 
Then a differential evolution algorithm was applied 
to obtain the optimal solution of the global surrogate 
model and update the global surrogate model. To nav-
igate away from local optimal solution and explore the 
global optimum, we establish a local surrogate mod-
el based on inverse distance weighting. This model 
helps explore regions where optimal solutions may 
be present. The local model is simpler and smaller 
in scale than the global surrogate model. We select a 
small portion of high-quality data to build this new 
surrogate model, aiming to construct a surrogate 
model with high-quality and avoid searching mean-
ingless parameter space. Considering the data scale 
of the local surrogate model, we design a simplex 
downhill method-oriented local model update strat-
egy. Compared with intelligent algorithms, the sim-
plex downhill method converges quickly and does not 
require repetitive iterations. It is suitable for small-
scale optimization problems. We combine two level 
surrogates with different update strategies to realize 
an algorithm that can solve complex model optimi-
zation problems. To assess the effectiveness of the 
proposed algorithm, experiments are conducted us-
ing diverse mathematical function benchmarks. The 
results indicate that the proposed algorithm has more 
advantages compared to previous algorithms. Finally, 
we apply the proposed algorithm to a complex opti-
mization problem: the parameter tuning of the earth 
system model, the precipitation simulation results of 
CAM5 has been improved over several regions.
The contributions of this work can be summarized as 
follows:
1 We propose the MLSAO algorithm, which utiliz-

es Random Forest to construct a global surrogate 
model and inverse distance weighting (IDW) to 
construct a local-level surrogate model. This ap-
proach enhances the search capabilities for target 
problem and helps avoid falling into local optimal 
solutions.

2 We integrate two powerful optimization algo-
rithms, differential Evolution (DE) and Simplex 
Downhill, into MLSAO, applying them to different 
search stages. This capitalizes on the strengths of 
each method, striking a balance between explora-
tion and exploitation.

3 We conduct tests on multiple benchmark func-
tions with varying dimensions and apply MLSAO 
to parameter tuning in CESM, demonstrating its 
effectiveness.

The manuscript is structured as follows: In Section 2, 
we introduce some related works about the proposed 
algorithm. We provide an overview of the algorithms 
incorporated in the proposed MLSAO in Section 3 and 
elaborates on the details of the proposed algorithm in 
Section 4. Experimental results are presented in Sec-
tion 5, and the study’s conclusions are summarized in 
Section 6. 

2. Related Works
In recent years, various methods have been employed 
for constructing surrogate model, including poly-
nomial response surface (PRS) [15], support vector 
regression (SVR) [50], Kriging [11], radial basis func-
tion (RBF) [46], artificial neural networks (ANN) [12, 
10, 28], multivariate adaptive regression [49], and 
random forests [2, 3], etc. Building upon this founda-
tion, numerous studies have explored the distinctions 
between these models and the scenarios in which 
they are best suited [1, 9, 14, 41], contributing to their 
widespread application across various engineering 
domains. For instance, paper [24] utilized a PRS mod-
el to assist in making parameter choices and to facil-
itate the comparison of sensitivity properties among 
climate models. Xu et al. [44] introduced an  optimi-
zation method for land model parameter tuning using 
a RBF surrogate model. Müller et al. [23] used RBF 
model for methane emission estimation. Yue et al. 
[48] used RBF adaptive surrogate model optimization 
to search for a combination of parameters relevant to 
the geometry and elasticity of track structures. [32, 
45] proved that SVR model can be used for parameter 
calibrate of finite element and satellite systems. Chu 
et al. [7] used Kriging model for resonance frequency 
analysis of dental. 
To address computationally expensive problems 
more effectively, researchers have introduced surro-
gate-assisted optimization algorithms. Over the past 
decades, the literature has documented various al-
gorithms that leverage surrogate models to enhance 
optimization processes. For example, Yu et al. [47] 
propose a surrogate-assisted hierarchical particle 
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swarm optimization (SHPSO) algorithm, combine 
RBF model with different PSO method. Liu et al. [21] 
propose bagging-based surrogate-assisted evolu-
tionary algorithm (B-SAEA). This approach incor-
porates bagging to construct high-quality surrogate 
model for each costly objective. Wang et al. [40] pro-
posed the Evolutionary Sampling Assisted Optimi-
zation (ESAO) method, leveraging two capabilities 
to account for both global and local searches. Sun et 
al. [36] proposed the Two-Layer Surrogate-Assisted 
PSO (TLSAPSO) algorithm, utilizing both global and 
several local surrogate models for fitness approxima-
tion. Li et al. [19] proposed a surrogate-assisted hy-
brid swarm optimization (SASHO). Two swarms are 
respectively used in different optimization states. 
Xin et al. [42] proposed a surrogate and autoencod-
er-assisted multitask particle swarm optimization 
algorithm to solve multimodal optimization prob-
lems.  A surrogate-assisted differential evolution 
with knowledge transfer (SADE-KT) [20] integrate 
knowledge transfer and the surrogate-assisted evo-
lutionary search proposed for expensive incremental 
optimization problems.
In recent years, some parallel-based optimization 
methods have been proposed to address parameter 
optimization for complex problems. They aim to en-
hance optimization efficiency by leveraging addition-
al computational resources. For example:  Parallel 
BNN-GA [6] has been demonstrated to better address 
large-scale data optimization problems. HAS-EA 
[22] proposed a surrogate-assisted optimization al-
gorithm based on heterogeneous platforms. Xing et al 
[43] proposed a parallel kinging surrogate model opti-
mization method and Improved the expect improve-
ment function,which improved global performance 
and solution accuracy. However, these methods have 
high requirements for computational resources. 
When computational resources are limited or the tar-
get problem is difficult to parallelize, the optimization 
efficiency still cannot be improved.
These algorithms combine surrogate model with 
many kinds of optimization algorithms. Further en-
hance the advantages of surrogate models in solving 
complex problems. However, some of these algo-
rithms involve different level surrogate model, they 
do not consider using different models at different 
search stages. 

3. Preliminaries
In this section, we provide background information 
pertinent to this study.

3.1. Problem Definition
The optimization problem can be formulated as fol-
lows in equations (1-3):
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u(x) and v(x) denote the inequality and equality con-
straints, respectively. They have different forms of ex-
pressions in different problems.
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The primary stages of the DE algorithm encompass 
population initialization, differential mutation oper-
ation, selection operation, and termination condition. 
The core of the DE algorithm lies in the differential mu-
tation operation, where new individuals are generated 
through the linear transformation of individuals in the 
population. The population is then updated through the 
selection operation. The key steps of DE include:
Initialize optimization conditions: Initialization of 
optimization conditions involves defining the control 
parameters of the differential evolution algorithm 
and the fitness function. These control parameters 
consist of the population size NP, scaling factor F, nd 
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Information Technology and Control 2024/1/53284

assess the initial population. The initial population is 
shown as follows in equations (4-5):

  

states. Xin et al. [42] proposed a surrogate and 
autoencoder-assisted multitask particle 
swarm optimization algorithm to solve 
multimodal optimization problems.  A 
surrogate-assisted differential evolution with 
knowledge transfer (SADE-KT) [20] integrate 
knowledge transfer and the surrogate-assisted 
evolutionary search proposed for expensive 
incremental optimization problems. 

In recent years, some parallel-based 
optimization methods have been proposed to 
address parameter optimization for complex 
problems. They aim to enhance optimization 
efficiency by leveraging additional 
computational resources. For example:  
Parallel BNN-GA [6] has been demonstrated 
to better address large-scale data optimization 
problems. HAS-EA [22] proposed a surrogate-
assisted optimization algorithm based on 
heterogeneous platforms. Xing et al [43] 
proposed a parallel kinging surrogate model 
optimization method and Improved the expect 
improvement function,which improved global 
performance and solution accuracy. However, 
these methods have high requirements for 
computational resources. When 
computational resources are limited or the 
target problem is difficult to parallelize, the 
optimization efficiency still cannot be 
improved. 

These algorithms combine surrogate model 
with many kinds of optimization algorithms. 
Further enhance the advantages of surrogate 
models in solving complex problems. 
However, some of these algorithms involve 
different level surrogate model, they do not 
consider using different models at different 
search stages.  
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Equation (6) describes the mutation operation where 
m1 m2, and m3are three random numbers in intervals 
[1, NP]. F is called the scaling factor, which is a fixed 
constant. n represents the n-th generation.
Crossover: crossover operations are shown in Equa-
tion (7).
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𝑉𝑉�,�(𝑔𝑔 + 1) 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1) < 𝐶𝐶𝐶𝐶

𝑥𝑥�,� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒    

(7) 

where 𝐶𝐶𝐶𝐶  is the crossover probability. New 
individuals are randomly generated by 
probability. 

Selection: Choose individuals from the initial 
population and the intermediate population to 
form a new generation population. 

𝑋𝑋�(𝑛𝑛 + 1) = 𝑈𝑈�(𝑛𝑛 + 1),                  (8) 

𝑖𝑖𝑖𝑖 𝑖𝑖�𝑈𝑈�(𝑛𝑛 + 1)� ≤ 𝑖𝑖�𝑋𝑋�(𝑛𝑛)�,             (9) 

𝑋𝑋�(𝑛𝑛 + 1) = 𝑋𝑋�(𝑛𝑛) 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.           (10) 

As shown in Equations (8)-(10), in DE, a greedy 
selection strategy is employed, where the 
superior individual is chosen as the new 
individual. 

DE algorithm has the advantages of simplicity, 
easy implementation, no need for gradient 
information, and global convergence. It has 
found extensive applications in function 
optimization, parameter estimation, machine 
learning, and various other domains. 
3.3 Nelder-Mead Algorithm 
The Nelder-Mead algorithm [25], also referred 
to as the downhill simplex method, is a widely 

utilized optimization algorithm designed to 
locate the minimum or maximum of a given 
objective function. It falls under the category of 
direct search algorithms, indicating that it does 
not necessitate knowledge of the gradient of 
the objective function. 

The term "simplex" denotes a geometric shape 
created by a set of 𝑛𝑛 + 1 points, ranging from 
𝑝𝑝�  to 𝑝𝑝� , in n-dimensional space. the shape 
satisfies  

𝑟𝑟𝑒𝑒𝑜𝑜 �𝑝𝑝� 𝑝𝑝�
1 1 ⋯ 𝑝𝑝�

1 � ≠ 0. 

It means that in one-dimensional space, two 
points cannot overlap, so the simplex is a line 
segment. In two-dimensional space, three 
points cannot be collinear, so the simplex is a 
triangle. In three-dimensional space, four 
points cannot be coplanar, so the simplex is a 
tetrahedron. This pattern continues for higher 
dimensions, where the n+1 points cannot lie in 
an n-dimensional plane, forming an n-
dimensional simplex. 

The algorithm operates by maintaining a 
simplex, which is a geometric shape consisting 
of n+1 vertices in n-dimensional space. At each 
iteration, the algorithm evaluates the objective 
function at each vertex of the simplex, and then 
performs a series of operations to transform the 
simplex. These operations include reflection, 
expansion, contraction, and shrinkage, which 
move the simplex towards the minimum or 
maximum of the objective function value. 

The process of Nelder-Mead algorithm is as 
follows and flowchart is shown in Figure 1:

 

Figure 1   

The flowchart of Nelder Mead Algorithm. 

, (7)

where CR is the crossover probability. New individu-
als are randomly generated by probability.
Selection: Choose individuals from the initial popu-
lation and the intermediate population to form a new 
generation population.
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As shown in Equations (8)-(10), in DE, a greedy 
selection strategy is employed, where the 
superior individual is chosen as the new 
individual. 

DE algorithm has the advantages of simplicity, 
easy implementation, no need for gradient 
information, and global convergence. It has 
found extensive applications in function 
optimization, parameter estimation, machine 
learning, and various other domains. 
3.3 Nelder-Mead Algorithm 
The Nelder-Mead algorithm [25], also referred 
to as the downhill simplex method, is a widely 

utilized optimization algorithm designed to 
locate the minimum or maximum of a given 
objective function. It falls under the category of 
direct search algorithms, indicating that it does 
not necessitate knowledge of the gradient of 
the objective function. 

The term "simplex" denotes a geometric shape 
created by a set of 𝑛𝑛 + 1 points, ranging from 
𝑝𝑝�  to 𝑝𝑝� , in n-dimensional space. the shape 
satisfies  
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It means that in one-dimensional space, two 
points cannot overlap, so the simplex is a line 
segment. In two-dimensional space, three 
points cannot be collinear, so the simplex is a 
triangle. In three-dimensional space, four 
points cannot be coplanar, so the simplex is a 
tetrahedron. This pattern continues for higher 
dimensions, where the n+1 points cannot lie in 
an n-dimensional plane, forming an n-
dimensional simplex. 

The algorithm operates by maintaining a 
simplex, which is a geometric shape consisting 
of n+1 vertices in n-dimensional space. At each 
iteration, the algorithm evaluates the objective 
function at each vertex of the simplex, and then 
performs a series of operations to transform the 
simplex. These operations include reflection, 
expansion, contraction, and shrinkage, which 
move the simplex towards the minimum or 
maximum of the objective function value. 

The process of Nelder-Mead algorithm is as 
follows and flowchart is shown in Figure 1:
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It means that in one-dimensional space, two points 
cannot overlap, so the simplex is a line segment. In 
two-dimensional space, three points cannot be collin-
ear, so the simplex is a triangle. In three-dimensional 
space, four points cannot be coplanar, so the simplex 
is a tetrahedron. This pattern continues for higher di-
mensions, where the n+1 points cannot lie in an n-di-
mensional plane, forming an n-dimensional simplex.
The algorithm operates by maintaining a simplex, 
which is a geometric shape consisting of n+1 vertices 
in n-dimensional space. At each iteration, the algo-
rithm evaluates the objective function at each vertex 
of the simplex, and then performs a series of opera-
tions to transform the simplex. These operations in-
clude reflection, expansion, contraction, and shrink-
age, which move the simplex towards the minimum or 
maximum of the objective function value.
The process of Nelder-Mead algorithm is as follows 
and flowchart is shown in Figure 1.
1 Select initial point x0, generate the remaining n 

points. Construct a simplex based on these points.
2 2. Sort the n+1 points according to their objective 

function values: f(p0) ≤ f(p1) ≤ ... ≤ f(pn).
3 Remove the worst point pn and calculate the cen-

ter of gravity  pg = ∑n – 1
i = 0

pi
n  . Reflect the worst point 

using a reflection coefficient ρ ≤ 0 and ρ is usually 
set to 1.

4 If f0 < fr < fn– 1, replace point pn with the reflected 
point  pr to construct a new simplex.

If fr < f0, it means the objective function value of the 
reflected point pr is smaller than all the points in the 
simplex. It is favorable for the function value to de-
crease in this direction. Extend in this direction pe = 
pg + 𝒳(pr = pg) with a extension coefficient 𝒳 > 1 and 
𝒳 can be set as 2. If  fe < fr, which represents the exten-
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Figure 1  
The flowchart of Nelder Mead Algorithm

sion is successful. Replace pl with pr, otherwise, and 
replace pn with pr.
If fr ≤ fn – 1, it means the reflected point is still the worst 
point. A contraction operation is needed: If fn > fr ≥ fn –1, 
obtain the contraction point pc = pg + γ(pr – pg) , where 
0 < γ < 1 is the contraction coefficient, which can be set 
as 0.5. This operation is called an outer contraction. If 
fr ≥ fn, replace the pr with pn, and update the value of pc 
based on pc = pg + γ(pn – pg). This operation is called an 
inner contraction. If fc ≤ fn, the contraction is consid-
ered successfully and replace pn with pc. Otherwise, 
the contraction is failed. A new simplex is construct-
ed: keep p0 and halve the distance between p0 and the 
other points, which is call a compression operation. 

4. The Multi-level Surrogate-assist 
Optimization Algorithm
In this section, the procedure of the proposed 
multi-level surrogate-assisted optimization algo-
rithm will be introduced in each subsection.

4.1. The Procedure of the Proposed Algorithm

Building upon the aforementioned methods, we inte-
grate them to formulate the multi-level surrogate-as-
sisted optimization algorithm. The primary proce-
dure is outlined in Figure 2.
In Figure 2, line 1-5 describes the process of sam-
pling. All the samples in the sampling set is generated 
by selected sampling method which is described in 
3.2.1. Each of these samples is subsequently forward-
ed to the real complex model, which, in this problem, 
symbolizes the optimization objective. The model is 
executed to compute the objective function value for 
each sample. The key-value pairs <parameters, ob-
jective function value> will be utilized for construct-
ing the global surrogate model in line 6. The random 
forest will fit the parameters and objective function 
values. Given any vector within the range of each pa-
rameter, random Forest can generate predictions for 
the current vector based on the fitting results. In line 
7-12, the constructed global surrogate model will up-
date by DE algorithm, during each iterative process, 
DE will explore the entire parameter space of the 
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Figure 2
The algorithm of the MLSAO

surrogate model to search for the optimal solution 
of the surrogate model, which is then determined by 
DE. A new key-value pair is added to the sampling set 
established in line 1-5, then we update the surrogate 
model after increase in sample size. In this proposed 
method, we construct the local-level surrogate model 
once the global-level surrogate model has converged. 
Different from the global model. The role of the local 
surrogate model is to identify potential optimal solu-
tions based on the outcomes of the global model. So 
that the sample size of the local model is much small-
er, we choose the optimal subset of samples according 
to their objective function values. The subset will up-
date during each iteration if generate better solution 
in line 14-18. At last, the optimal solution along with 
its corresponding objective function value is output 
as the final result, concluding the algorithm. The fol-
lowing of this section will provide detailed descrip-
tions of the critical parts in each step.

4.2. Sampling
At the beginning of the algorithm, we select the latin 
hypercube sampling (LHS) [30] method to generate 
samples. The sampling method plays a crucial role in 
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will fit the parameters and objective function 
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predictions for the current vector based on the 
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algorithm, during each iterative process, DE 
will explore the entire parameter space of the 
surrogate model to search for the optimal 
solution of the surrogate model, which is then 
determined by DE. A new key-value pair is 
added to the sampling set established in line 1-
5, then we update the surrogate model after 
increase in sample size. In this proposed 
method, we construct the local-level surrogate 
model once the global-level surrogate model 
has converged. Different from the global 
model. The role of the local surrogate model is 
to identify potential optimal solutions based on 
the outcomes of the global model. So that the 
sample size of the local model is much smaller, 
we choose the optimal subset of samples 
according to their objective function values. 
The subset will update during each iteration if 
generate better solution in line 14-18. At last, 

the optimal solution along with its 
corresponding objective function value is 
output as the final result, concluding the 
algorithm. The following of this section will 
provide detailed descriptions of the critical 
parts in each step. 

4.2 Sampling 
At the beginning of the algorithm, we select the 
latin hypercube sampling (LHS) [30] method to 
generate samples. The sampling method plays 
a crucial role in determining the quality of the 
sample set, and the excellence of the sample set 
directly influences the quality of the surrogate 
model. Various sampling methods may 
introduce distinct biases and variances in the 
sample set. Improper sampling methods may 
result in insufficient samples or excessive 
sample biases, thereby affecting the quality of 
the surrogate model. Hence, in the selection of 
a sampling method, factors such as sample 
distribution, sample size, and sample quality 
should be taken into account to ensure that the 
sampled data accurately reflect the 
characteristics of the original data. This, in 
turn, enhances the prediction accuracy of the 
surrogate model. Latin hypercube sampling 
(LHS) and Monte Carlo sampling [8] are 
suitable methods for building the surrogate 
model. They possess flexible sample sizes and 
excellent space-filling capabilities, efficiently 
covering the entire sample space with 
relatively few points [38]. LHS belongs to 
stratified sampling technique employed for 
random sample selection in multi-dimensional 
space. This method aims to better represent the 
population using fewer sampling points. It is 
an extension of the Latin square sampling 
technique and introduces the concept of 
hypercubes, which helps to distribute samples 
more evenly across the entire sample space. 

One-dimensional Latin hypercube sampling 
involves dividing the cumulative density 
function (CDF) into 𝑛𝑛  equal partitions and 
then selecting a random data point within each 
partition. Considering that each parameter 
follows a uniform distribution within its 
specified range, to obtain 𝑁𝑁  samples, the 
cumulative density function of the uniform 
distribution is utilized. Each parameter is 
divided into 𝑁𝑁   non-overlapping groups 
within its defined range, with each group 
having a probability of 1/N  to be selected. 
Within each group's interval, a parameter 
value is randomly chosen. Following these 
rules, M vectors are generated, each 

determining the quality of the sample set, and the ex-
cellence of the sample set directly influences the qual-
ity of the surrogate model. Various sampling methods 
may introduce distinct biases and variances in the 
sample set. Improper sampling methods may result 
in insufficient samples or excessive sample biases, 
thereby affecting the quality of the surrogate model. 
Hence, in the selection of a sampling method, factors 
such as sample distribution, sample size, and sample 
quality should be taken into account to ensure that the 
sampled data accurately reflect the characteristics of 
the original data. This, in turn, enhances the predic-
tion accuracy of the surrogate model. Latin hyper-
cube sampling (LHS) and Monte Carlo sampling [8] 
are suitable methods for building the surrogate mod-
el. They possess flexible sample sizes and excellent 
space-filling capabilities, efficiently covering the en-
tire sample space with relatively few points [38]. LHS 
belongs to stratified sampling technique employed for 
random sample selection in multi-dimensional space. 
This method aims to better represent the population 
using fewer sampling points. It is an extension of the 
Latin square sampling technique and introduces the 
concept of hypercubes, which helps to distribute sam-
ples more evenly across the entire sample space.
One-dimensional Latin hypercube sampling involves 
dividing the cumulative density function (CDF) into n 
equal partitions and then selecting a random data point 
within each partition. Considering that each parame-
ter follows a uniform distribution within its specified 
range, to obtain N samples, the cumulative density 
function of the uniform distribution is utilized. Each 
parameter is divided into N  non-overlapping groups 
within its defined range, with each group having a 
probability of 1/N to be selected. Within each group’s 
interval, a parameter value is randomly chosen. Fol-
lowing these rules, M vectors are generated, each rep-
resenting the sampling results for one parameter and 
containing N elements. The goal is to create an M * N 
matrix, where each row represents a sample point. By 
randomly selecting one element from each vector, a 
new M-dimensional vector is formed, resulting in a to-
tal of N  vectors. This ensures that the sampling points 
are evenly distributed across the solution space.

4.3. Global Surrogate Model Construction
In the proposed algorithm, the global surrogate model 
is constructed based on random forest method, ran-
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dom forest is a supervised ensemble learning method 
that belongs to the Bagging class and is implement-
ed based on decision trees. It improves prediction 
accuracy by combining multiple decision trees. It is 
the most commonly used ensemble learning model. 
Firstly, the data set is sampled using the Bootstrap 
algorithm, and each group of data subsets is select-
ed. Then, decision tree model parameters are set and 
trained on each data subset. Finally, these decision 
tree models are used to vote and obtain the results. 
The key to Random Forest is the decision tree struc-
ture, and the key to decision trees is the feature split-
ting method, i.e., how to determine the quality of the 
splitting features. Random Forest uses the out-of-bag 
error method, which does not use all samples when 
generating trees. Instead, a portion of the samples 
are reserved for validation. Approximately one-third 
of the samples in each decision tree are reserved for 
assessing the model’s performance and calculating its 
error, not used during the model training process. The 
generation rules of each tree are as follows:
Initially, the parameter values are confirmed, where 
N represents the number of training cases (samples), 
and M represents the number of features. The param-
eter m is crucial for determining the decision at a tree 
node, and it should be much smaller than M. Next, the 
training set is formed by repeatedly sampling with re-
placement from the N training cases (bootstrap sam-
pling). The unselected cases are then used for making 
predictions to evaluate their errors. For each node, 
m features are randomly chosen, and the decision at 
each node is based on these selected features. The 
best splitting method is determined based on these 
m features. Each tree is allowed to grow fully without 
pruning, although pruning may be considered after 
constructing a standard tree classifier.
In the proposed algorithm, the surrogate model plays 
a crucial role in establishing the mapping between pa-
rameters and the objective function. Instead of engag-
ing in the lengthy process of calculation and simula-
tion of the complex model, a mathematical statistical 
model is employed to efficiently generate the objective 
function values. Hence, during the surrogate model 
construction process, the essential key-value pairs 
<parameters, objective function value> are utilized as 
inputs and outputs for data fitting in the model. For 
a surrogate model constructed through random for-
est, given any set of parameter vectors that satisfy the 

parameter range constraints, the random forest sur-
rogate model can generate simulated target function 
values based on the training.

4.4. Update Global Surrogate Model
In general, solving such complex problems relies on 
optimization algorithms that directly iterate in the 
real model. When we optimize a statistical model 
with relatively high accuracy using such algorithms, 
the iterations are almost cost-free. Achieving optimi-
zation effects requires running only a small number 
of real models. This is the primary advantage of surro-
gate models. However, constructing a surrogate mod-
el involves a limited number of sample points, and the 
initial surrogate model may inevitably contain some 
errors. Therefore, it is essential to judiciously in-
crease the number of sampling points to continuously 
update the surrogate model, thereby reducing errors, 
improving simulation accuracy, and enhancing the 
representation of the real model. There are numerous 
methods for updating the surrogate model, including 
the minimum interpolating surface (MIS) [17], max-
imum expected improvement (MEI) [31], and candi-
date point approach (CAND) [29]. In this work, we 
are more concerned about the optimal values rather 
than the complete shape of the fitting surface. MIS 
is a method that does not concentrate on construct-
ing the entire surrogate but rather focuses on the 
region containing the optimum. Hence, our focus is 
on ensuring the accuracy of the surrogate model in 
the vicinity of the optimal point. Employing the MIS 
method, we utilize DE to discover the optimal value 
of the surrogate model. These optimal parameters are 
subsequently applied to the real model to iteratively 
acquire new key-value pairs, enrich the sampling set, 
and augment the number of points surrounding the 
optimal point. This iterative process enhances the 
modeling accuracy in the proximity of the optimum.

4.5. Local Surrogate Model Construction
In this section, we select inverse distance weighting 
(IDW) [4] model to construct local-level surrogate 
model. It assigns weights to known values based on the 
inverse of their distances to the target location, result-
ing in a weighted average calculation for the unknown 
value. IDW assumes that closer points have a greater 
influence on the estimation, while distant points have 
less influence. The IDW method is as follows:
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where 𝑝𝑝 denotes the prediction input point, 
and 𝑦𝑦 represents the prediction result of the 
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where 𝑞𝑞 is termed the power parameter, and 
it must be strictly greater than 1 to ensure the 
continuity of derivatives. 

The local surrogate model is constructed to 
leverage the insights from the global surrogate 
model and explore potential improvements. 
Therefore, to enhance the accuracy of the 
surrogate model, careful consideration is given 
to both the quantity and quality of the selected 
points for constructing the model. For 
relatively small surrogate models, IDW has 
higher modeling performance. When 
constructing the model, we choose the top 𝑥𝑥 
fitness function-ranked points in the set to 
build the surrogate model and manually 
remove those poor quality solutions. This 
ensures the quality of the samples and allows 
the surrogate model to maintain a high level of 
simulation performance, enhancing its 
modeling ability in the region where the 
optimal solution may appear. 

4.6 Get Final Optimal 
Unlike the updating strategy of the global 
model, we want to quickly traverse the local 
surrogate model and find the possible optimal 
solution. Therefore, algorithms with simple 

processes, such as Nelder Mead Algorithm, are 
more suitable to use. Compared with 
algorithms such as DE, it can explore the 
optimal value of the current target function 
with fewer iterations. Similar to the updating 
of the global model, each iteration generates a 
new key-value pair. When a new point is 
added, we will re-queue and continue to select 
the top n points, rather than using a sampling 
set with an increasing number of points. This is 
crucial because a high-quality initial set for the 
surrogate model is essential to efficiently 
identify optimal solutions that might be 
challenging for the global model to uncover. 
When this step is completed, the algorithm also 
ends, and the obtained optimal solution is 
output.  
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effectiveness of the proposed algorithm in 
addressing the optimization of complex model 
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the insights from the global surrogate model and ex-
plore potential improvements. Therefore, to enhance 
the accuracy of the surrogate model, careful consid-
eration is given to both the quantity and quality of the 
selected points for constructing the model. For rela-
tively small surrogate models, IDW has higher mod-
eling performance. When constructing the model, we 
choose the top x fitness function-ranked points in the 
set to build the surrogate model and manually remove 
those poor quality solutions. This ensures the quali-
ty of the samples and allows the surrogate model to 
maintain a high level of simulation performance, en-
hancing its modeling ability in the region where the 
optimal solution may appear.

4.6. Get Final Optimal
Unlike the updating strategy of the global model, we 
want to quickly traverse the local surrogate model 
and find the possible optimal solution. Therefore, al-
gorithms with simple processes, such as Nelder Mead 
Algorithm, are more suitable to use. Compared with 
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5. Experiments Results
In this section, we aim to demonstrate the effective-
ness of the proposed algorithm in addressing the 
optimization of complex model parameters. At first, 
some mathematical benchmark functions optimiza-
tion experiments are conducted. Subsequently, a pre-
cipitation parameter tuning experiment with CESM 
confirmed the capability of the proposed algorithm 
in addressing intricate practical parameter optimiza-
tion challenges. These experiments are supported by 
[5, 27, 37].

Table 1
Benchmark function description in this experiment

Function 
number Function name Global 

optimum

F1 Ellipsoid 0

F2 Rosenbrock 0

F3 Ackley 0

F4 Griewank 0

F5 Shifted Rotated Rastrigin (F10 
in [34]) -330

F6 Rotated Hybrid composition 
function (F19 in [34]) 10

5.1. Mathematical Function Benchmark 
Optimization Experiments
Benchmark functions with diverse characteristics are 
employed to assess the effectiveness of the MLSAO 
algorithm. We include GA [13], RBF-PSO, SA-COSO 
[35], and SAHO [26] algorithms, along with six prob-
lems of varying dimensions, to evaluate the perfor-
mance of the MLSAO algorithm. These benchmark 
functions are detailed in Table 1. Each function un-
dergoes optimization thirty times, and the mean value 
and standard deviation are calculated. All compared 
algorithms are implemented in Python.

5.1.1. Experimental Results on 30d Benchmark 
Problems
Table 2 and Figure 3 describe the performance of five 
algorithms on 30-dimensional problems. In the graphs, 
the horizontal axis represents the complexity of the 
problem, which in this experiment is the number of 
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Figure 3
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 30D functions

 
 

 
Table 2 

Statistical comparisons of results on 30-
dimensional benchmark problems. 

Function 
No 

Algorithm Mean Std 

F1 GA 4.4869E+02  1.1733E+02 

 RBF-PSO 4.6740E+01 8.3591E+00 

 SA-COSO 4.3620E+00 2.9579E+00 

 SAHO 1.3392E-01 1.5735E-01 

 MLSAO 3.1476E-01 2.2098E-01 

F2 GA 8.4663E+02 1.7412E+02 

 RBF-PSO 1.4769E+02 5.3282E+01 

 SA-COSO 5.9851E+01   2.4556E+01 

 SAHO 5.9070E+01  3.0016E+01 

 MLSAO 2.8445E+01  4.7331E-01 

F3 GA 1.6114E+01  1.1471E+00 

 RBF-PSO 9.0326E+00  1.0429E+00 

 SA-COSO 5.0152E+00  1.2214E+00 

 SAHO 1.9901E+00    6.6895E-01 

 MLSAO 1.4361E+00 6.3830E-01 

F4 GA 1.0908E+02   3.0358E+01 
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Table 2
Statistical comparisons of results on 30-dimensional 
benchmark problems

Function 
No Algorithm Mean Std

F1 GA 4.4869E+02 1.1733E+02

RBF-PSO 4.6740E+01 8.3591E+00

SA-COSO 4.3620E+00 2.9579E+00

SAHO 1.3392E-01 1.5735E-01

MLSAO 3.1476E-01 2.2098E-01

F2 GA 8.4663E+02 1.7412E+02

RBF-PSO 1.4769E+02 5.3282E+01

SA-COSO 5.9851E+01  2.4556E+01

SAHO 5.9070E+01 3.0016E+01

MLSAO 2.8445E+01 4.7331E-01

F3 GA 1.6114E+01 1.1471E+00

RBF-PSO 9.0326E+00 1.0429E+00

SA-COSO 5.0152E+00 1.2214E+00

SAHO 1.9901E+00   6.6895E-01

MLSAO 1.4361E+00 6.3830E-01

F4 GA 1.0908E+02  3.0358E+01

RBF-PSO 1.3664E+01  5.2129E+00

SA-COSO 8.8940E-01   1.1844E-01

SAHO 1.2759E-01 6.5921E-01

MLSAO 8.2555E-01  8.9065E-02

F5 GA 1.8780E+02  4.0290E+01

RBF-PSO -3.5296E+01  3.7411E+01

SA-COSO -5.7357E+01   1.7545E+01

SAHO -2.1792E+02 3.7846E+01

MLSAO -2.3456E+02  2.2514E+01

F6 GA 1.0605E+03   5.1189E+01

RBF-PSO 9.8923E+02 1.2191E+01

SA-COSO 9.7358E+02   2.4022E+01

SAHO 9.8201E+02  3.9012E+01

MLSAO 9.4091E+02  1.1976E+01

executions of benchmark test functions. It can be ob-
served that in most test cases, MLSAO outperforms the 
other four methods. Among the six functions, MLSAO 
achieves the best average performance in four of them. 
For function F1, both SA-COSO and SAHO, as well 
as MLSAO, can find solutions close to the optimum. 
SAHO performs the best, with MLSAO slightly behind 
but significantly outperforming the other three control 
functions. The optimization results for F2 show that 
MLSAO performs significantly better than the oth-
er four algorithms, approaching the optimal solution 
and having the lowest standard deviation, indicating 
greater stability during optimization. Regarding the 
Ackley function, MLSAO and SAHO continue to per-
form the best and significantly outperform GA, RBF-
PSO, and SA-COSO. Unlike the results for F1, MLSAO 
performs slightly better than SAHO in comparison to 
the control functions. The optimization results for F4 
differ somewhat from the trends observed in the first 
three functions. SAHO performs the best, while ML-
SAO and SA-COSO achieve optimization results of a 
similar magnitude. This suggests that MLSAO still has 
room for improvement in this type of problem. For the 
more complex functions F5 and F6, MLSAO demon-
strates superior performance and better exploration 
capabilities to varying degrees. Similar to F3, the opti-
mization results for F5 show MLSAO slightly outper-
forming SAHO, with both significantly outperforming 
the other three algorithms. However, for the even more 
complex F6, MLSAO exhibits a significantly superior 
ability compared to the other algorithms. In summary, 
in the context of 30-dimensional problems, MLSAO 
demonstrates a significant advantage. Furthermore, 
GA, which does not utilize surrogate models, lags far 
behind the other algorithms, confirming the effective-
ness of surrogate model-based approaches for solving 
complex problems.

5.1.2. Experimental Results on 50d Benchmark 
Problems
Compared to the results on 30-dimensional bench-
mark functions, MLSAO performs even better on 
50-dimensional benchmark functions. This is evident 
in the results presented in Figure 4 and Table 3, where 
MLSAO consistently outperforms the other four al-
gorithms, demonstrating superior optimization per-
formance. In all optimization results, MLSAO outper-
forms the other four control algorithms significantly. 
For function F1, MLSAO’s average fitness value is ap-
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Table 3 

Statistical comparisons of results on 50-
dimensional benchmark problems. 

Function 
No 

Algorithm Mean Std 

F1 GA 2.2363E+03 4.3286E+02 

 RBF-PSO 5.2168E+02 1.2364E+02 

 SA-COSO 2.0327E+02 8.1653E+02 

 SAHO 5.3468E+01 2.7324E+01 

 MLSAO 4.3287E+00 2.6413e+00 

F2 GA 2.1705E+03 7.1463E+02 

 RBF_PSO 6.3548E+02 1.8932E+02 

 SA-COSO 2.8811E+02 8.1744E+01 

 SAHO 1.9358E+02 4.5258E+01 

 MLSAO 5.0308E+01 4.0024E+00 

F3 GA 1.5372E+01 3.6429E-01 

 RBF-PSO 1.3290E+01 8.4063E-01 

 SA-COSO 1.2346E+01 1.3853E+00 

 SAHO 8.6818E+00 1.9303E+00 

 MLSAO 2.1369E+00 9.6370E-01 

F4 GA 4.0389E+02 4.4932E+01 

 RBF-PSO 9.2733E+01 2.0329E+01 

 SA-COSO 3.3176E+01 1.4464E+01 

 SAHO 5.8982E+00 1.0977E+00 

 MLSAO 9.4104E-01 7.8356E-02 

F5 GA 4.2994E+02 6.4873E+01 

 RBF_PSO 2.7548E+02 5.7724E+01 
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Figure 4
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 50D functions
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Table 3
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No Algorithm Mean Std

F1

GA 2.2363E+03 4.3286E+02

RBF-PSO 5.2168E+02 1.2364E+02

SA-COSO 2.0327E+02 8.1653E+02
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F5

GA 4.2994E+02 6.4873E+01

RBF_PSO 2.7548E+02 5.7724E+01

SA-COSO 3.1036E+02 5.2617E+01
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MLSAO 1.2672E+02 2.8506E+02

F6

GA 1.1894E+03 4.5169E+01

RBF_PSO 1.0067E+03 3.1456E+01

SA-COSO 1.0818E+03 4.7503E+01

SAHO 9.9971E+02 2.4517E+01

MLSAO 9.2985E+02 1.4371E+01

proximately 10% better than the second-best-perform-
ing algorithm, surpassing SA-COSO and SAHO by an 
order of magnitude, while both SA-COSO and SAHO 
outperform RBF-PSO by approximately 10%, and GA, 
the worst-performing algorithm, lags behind MLSAO 
by nearly three orders of magnitude. The optimization 
results for the Rosenbrock function reveal that ML-
SAO achieves the second-best average optimization 
results, which are approximately one-fourth of the 
SAHO algorithm’s results, and MLSAO exhibits lower 
standard deviation. Similar patterns are observed in 
the optimization results for the F3 function. MLSAO’s 
average optimization results are roughly one-fourth of 
the second-best algorithm’s results, and MLSAO has 
a lower and more stable standard deviation. Among 
the other four algorithms, SAHO and SA-COSO per-
form similarly, while GA and RBF-PSO have similar 
results. MLSAO and SA-COSO perform the best on 
the F4 function, with SA-COSO’s average results be-
ing approximately 5.65 times that of MLSAO. MLSAO 
significantly outperforms the other four algorithms in 
this test. For the two more complex functions, in F5, 
MLSAO’s average optimization results are improved 
by 32.7% compared to the second-best algorithm, and 
in F6, this improvement is 6.75%. MLSAO also demon-
strates better stability with lower standard deviations 
in both cases. In summary, MLSAO exhibits excellent 
optimization performance on 50-dimensional bench-
mark functions, consistently achieving the best op-
timization performance to varying degrees in each 
function. This advantage is particularly pronounced in 
most functions. Therefore, we consider MLSAO to be 
better suited for optimizing problems of mid-dimen-
sion complexity problems.

5.1.3. Experimental Results on 100d Benchmark 
Problems
We attempted to challenge more complex application 
scenarios by testing various algorithms’ performance 
in solving high-dimensional problems using 100-di-
mensional benchmark functions. Table 4 displays 
the average best fitness function values obtained by 
the five algorithms after 30 independent runs, high-
lighting the best average values for each test function. 
MLSAO achieved the best fitness function values in 
F2, F3, and F5, while SA-COSO performed the best 
in F1 and F6, and SAHO performed better in F4. Fig-
ure 5 shows the fitness changes of each algorithm on 
different test functions. Combined with the table, 
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Figure 5
Convergence curves of GA, RBF-PSO, SA-COSO, SAHO, and MLSAO on 100D functions
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SA-COSO performed the best in the optimization 
experiment for F1, but MLSAO and SAHO were not 
far behind, with all three almost on the same level. 
MLSAO demonstrated a significant advantage in the 
100-dimensional F2 function test, with an average 
optimization result far higher than the other four 
functions and the smallest standard deviation. The 
optimization results for the F3 function also favored 
MLSAO, where the average result for the second-best 
SAHO was approximately 2.5 times that of the best 
result. The results for the other four algorithms were 
relatively similar. The best optimization result for 
the 100-dimensional Griewank function belonged to 
SAHO. The difference between these two algorithms 
and the other three was particularly pronounced. In 
the experiment for F5, MLSAO performed the best, 
followed by SHAO, with both achieving average re-
sults below 1000, while the results for the other three 
algorithms were all above 1000. The experimental re-
sults for the F6 function showed that the average re-
sults for all five algorithms were generally within the 
same range. However, SA-COSO performed the best, 
while MLSAO ranked only third, with its performance 
being less satisfactory. Overall, MLSAO achieved al-
most the best fitness function values or equivalent 
levels in most functions. Even in cases where MLSAO 
did not achieve the optimal solution, it still managed 
to come very close to an approximate optimal result 
to a large extent. However, in F6, the surrogate mod-
el may have difficulty providing useful information, 
leading to the algorithm being trapped in a local opti-
mum and unable to discover the true global optimum. 
Overall, MLSAO still performed well on most 100-di-
mensional problems, demonstrating its ability to han-
dle high-dimensional complex problems and proving 
its suitability for high-dimensional scenario.

5.1.3. Experimental Results on 200d Benchmark 
Problems
To further assess the capability of MLSAO in address-
ing high-dimensional and complex problems, we con-
ducted tests with several benchmark functions se-
lected from Table 1, using a parameter dimension 
of 200. We compared MLSAO with SAHSO[19]and 
GL-SADE [39], and the results are shown in Table 5. 
Despite suboptimal performance in F1, the outcomes 
for F2 and F4 indicate that MLSAO remains the al-
gorithm with the strongest optimization capability. 

Table 4
Statistical comparisons of results on 100-dimensional 
benchmark problems

Function 
No Algorithm Mean Std

F1  GA 1.2766E+04 1.5483E+03

RBF_PSO 8.2347E+03 9.0105E+02

SA-COSO 1.3224E+03 3.0408E+02

SHAO 1.3861E+03 1.4210E+02

MLSAO 1.3724E+03 2.3379E+01

F2 GA 1.0426E+04 1.0697E+03

RBF_PSO 4.1645E+03 5.9803E+02

SA-COSO 4.0199E+02 1.8129E+02

SAHO 5.7284E+02 4.3681E+01

MLSAO 1.7192E+02 2.7322E+01

F3  GA 1.9894E+01  4.2056E-01

RBF_PSO 1.9021E+01 4.3126E-01

SA-COSO 1.2127E+01 8.9256E-01

SAHO 1.5396E+01   4.8945E-01

MLSAO 6.1134E+00 6.0183E-01

F4 GA 1.1684E+03 1.0013E+02

RBF_PSO 6.1963E+02 5.7765E+01

SA-COSO 6.1253E+01  2.0021E+01

SAHO 9.3503E-01 1.0853E-01

MLSAO 1.9258E+00 2.0905E-01

F5 GA 2.1895E+03  2.5614E+02

RBF_PSO 1.5842E+03 2.1104E+02

SA-COSO 1.2561E+03 1.1033E+02

SAHO 9.7908E+02 7.9437E+01

MLSAO 8.1588E+02 8.9033E+01

F6 GA 1.5017E+03   3.1302E+01

RBF_PSO 1.4035E+03 4.7821E+01

SA-COSO 1.2677E+03  2.5304E+01

SAHO 1.3793E+03  1.1042E+02

MLSAO 1.3998E+03  3.9211E+01
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Table 5
Statistical comparisons of results on 200-dimensional 
benchmark problems

Function 
No Algorithm Mean Std

F1  SAHSO 8.5726E+02 9..8398E+01

GL-SADE 5.1297E+02 8.9146E+01

MLSAO 2.7524E+03 1.8329E+02

F2 SAHSO 9.1682E+02 1.7957E+02

GL-SADE 7.3085E+02 5.9803E+01

MLSAO 4.3583E+02 5.6634E+01

F3  SAHSO 7.5684E+00  7.3696E-01

GL-SADE 2.0751E+01 3.0311E-01

MLSAO 8.7712E+00 8.9768E-01

F4 SAHSO 2.7841E+00 3.4071E-01

GL-SADE 3.9983E+00 5.0702E-01

MLSAO 2.6304E+00 3.0015E-01

In comparison with SAHSO, F3 shows only a slight 
disadvantage than SAHSO. Overall, compared to A 
and B, MLSAO still achieves relatively better optimi-
zation results in the majority of the experimental op-
timization functions. These results demonstrate that 
MLSAO still possesses sufficient optimization prow-
ess when dealing with high-dimensional and complex 
computational problems.

5.2. CESM Parameter Tuning Experiments 
The Community Earth System Model (CESM) [18] 
is a fully coupled global climate model that offers ad-
vanced computer simulations of Earth’s historical, 
current, and future climate conditions. The commu-
nity atmosphere model (CAM) is the atmosphere 
component of the community earth system model. It 
simulates various chemical reactions and energy ex-
change in the atmosphere. CESM simulation experi-
ence is a high-performance computing program that 
requires a significant amount of time and computa-
tional cost. A complete simulation process of CESM 
usually takes more than ten hours or even several 
days.
The precipitation process in CAM is complicated and 
precipitation-related processes is related to many 

parameterization schemes, include cumulus convec-
tion processes, large-scale circulation, microphysi-
cal processes, boundary layer processes, etc. These 
schemes contain some adjustable parameters, which 
can be tuned to change the simulation result of CAM. 
The computational and time cost generated by tradi-
tional algorithms are unacceptable during the opti-
mization process. Therefore, we applied the proposed 
algorithm to address the CESM parameter tuning 
problem. The results demonstrate that the proposed 
algorithm effectively enhanced the precipitation sim-
ulation results of the Community Atmosphere Model 
(CAM) in several regions with a relatively small num-
ber of iterations.
In this work, we use the proposed MLSAO algorithm 
to optimize the precipitation related parameters of 
CAM, so as to make the optimization results of the 
CAM model more close to the observation data. This 
algorithm can greatly reduce the optimization time 
by building a surrogate model to replace the compli-
cated CAM model running process. Therefore, we 
must account for the disparities between the model 
simulation results and the observational data in the 
objective function. To guide the algorithm towards 
optimizing by minimizing these disparities, we have 
chosen the root-mean-square error (RMSE) as the 
objective function. The RMSE is calculated as fol-
lows:
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In this work, we use the proposed MLSAO 
algorithm to optimize the precipitation related 
parameters of CAM, so as to make the 
optimization results of the CAM model more 
close to the observation data. This algorithm 
can greatly reduce the optimization time by 
building a surrogate model to replace the 
complicated CAM model running process. 
Therefore, we must account for the disparities 
between the model simulation results and the 
observational data in the objective function. To 
guide the algorithm towards optimizing by 
minimizing these disparities, we have chosen 
the root-mean-square error (RMSE) as the 
objective function. The RMSE is calculated as 
follows: 

RMSE = �
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where 𝑁𝑁  is the total number of the grid 
points of simulation region,𝑚𝑚𝑚𝑚𝑚𝑚� and 𝑚𝑚𝑜𝑜𝑜𝑜� 
are the model simulated and observation 
data values at grid point 𝑖𝑖. A smaller RMSE 
indicates a  smaller error between model 
simulation and observational data. The 
optimization goal is to minimize the RMSE 
for each region. The parameters are shown 
in Table 6, and the selected regions are 
presented in Table 7. These parameters are 
chosenfrom the Zhang-McFarlane 
parameterization scheme [51]. 
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means the convective available potential 
energy. 
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The optimization results are shown in Figure 6, 
the numerical results indicate that the RMSE of 
selected regions has decreased compared to the 
default experiment, indicating that the 
optimized experimental results are closer to the 
observed data. The RMSE for the two regions has 
decreased by 29.77% and 12.63%, respectively. 
To demonstrate that the decrease of RMSE has 
indeed improved the accuracy of precipitation 
simulation, we draw precipitation distribution 
plots for each region, detailing the changes in 
precipitation over these regions caused by 
optimized parameters obtained from the 
proposed algorithm. The results for the North 
Indian Ocean, and the North Pacific are shown 
in Figures 6-7, respectively. We will now 
introduce the changes in precipitation compared 
to the default parameters. 

 

Table 7 

Regions selected in this study and their range. 
Name Gegion 

,

where N is the total number of the grid points of sim-
ulation region, modi and obsi are the model simulated 
and observation data values at grid point i. A small-
er RMSE indicates a  smaller error between model 
simulation and observational data. The optimization 
goal is to minimize the RMSE for each region. The 
parameters are shown in Table 6, and the selected re-
gions are presented in Table 7. These parameters are 
chosenfrom the Zhang-McFarlane parameterization 
scheme [51].
The optimization results are shown in Figure 6, the 
numerical results indicate that the RMSE of selected 
regions has decreased compared to the default exper-
iment, indicating that the optimized experimental re-
sults are closer to the observed data. The RMSE for 
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the two regions has decreased by 29.77% and 12.63%, 
respectively. To demonstrate that the decrease of 
RMSE has indeed improved the accuracy of precipi-
tation simulation, we draw precipitation distribution 
plots for each region, detailing the changes in precip-
itation over these regions caused by optimized pa-
rameters obtained from the proposed algorithm. The 
results for the North Indian Ocean, and the North 
Pacific are shown in Figures 6-7, respectively. We will 
now introduce the changes in precipitation compared 
to the default parameters.

Table 6
Parameters description of Zhang-McFarlane parameterization scheme. CAPE means the convective available potential 
energy

Parameter name Meaning Range Default value

zmconv_dmpdz Parcel fractional mass entrainment rate –2.0 × 10–3 ~ –0.2 × 10–3 –1.0 × 10–3 

zmconv_c0_ocn Deep convection precipitation efficiency over ocean 1.0 × 10–3 ~ 0.1 0.045

zmconv_tau Time scale for consumption rate deep CAPE 1800~28800 3600

Table 7
Regions selected in this study and their range

Name Gegion

North Pacific  
Ocean  15°-40°N, 150°-210°E

North India 0°-20°N, 50°-90°E

Figure 6 
RMSE of default experience and optimization results over 
each region
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The improvement in the North Indian Ocean 
region is quite evident, as shown in the Figure 7. 
In the default experiment, it is noticeable that the 
precipitation in the ocean areas on both sides of 
the Indian Peninsula is considerably higher than 
the observed data, resulting in a significant 
positive error. In contrast, in the optimized 
experiment, these errors have been significantly 
reduced. This difference is especially prominent 
on the western side of the peninsula, where 
precipitation values now align more closely with 
those observed. The positive error areas on 
eastern side of the peninsula have also been 
significantly reduced, with some remain ing 
errors near the island of SriLanka. Furthermore, 
near the Arabian Peninsula, the results of the 
optimized experiment are also superior to the 
default experiment. The optimized parameters 
have reduced precipitation in this region, even 
eliminating the positive errors that were present 
in the default experiment. In the southeastern 
marine area, unlike the improvement seen in 
other regions, the optimized experiment has 
increased precipitation in this area, bringing the 
results closer to the observed data. In summary, 
in the North Indian Ocean region, the default 
experiment had significant positive errors. Our 

improvements have effectively reduced most of 
these positive errors without introducing new 
errors. 

Figure 7 

The precipitation distribution of the North India 
optimization result. The left column displays the 
default experiment, observation data, and the 
difference between the default experiment and the 
observation data from top to bottom. The right 
column exhibits the optimal experiment, 
observation data, and the difference between the 
optimal experiment and the observation data from 
top to bottom. 

 

Figure 8 illustrates the optimization results for 
the North Pacific region. Similar to the North 
Indian Ocean region, the default experiment 
still exhibits a significant amount of positive 
errors. Our optimization results aim to reduce 
these positive errors in the North Pacific 
region. As shown in the figure, our 
optimization results have substantially 
reduced precipitation in these ocean areas, 
primarily in the central region of the selected 
area. Precipitation in this central area has been 
significantly reduced and is now very close to 
the results from observed data. The results for 
the eastern and western sides of the region 
have also seen considerable improvements. 
Additionally, in the southeastern areas around 
the islands, precipitation has noticeably 
decreased. Furthermore, in the northwestern 
region, the default experiment underestimated 
precipitation, while the optimized experiment 
increased precipitation in this area, eliminating 
negative errors. It is evident that the optimized 

The improvement in the North Indian Ocean region 
is quite evident, as shown in the Figure 7. In the de-
fault experiment, it is noticeable that the precipita-
tion in the ocean areas on both sides of the Indian 
Peninsula is considerably higher than the observed 
data, resulting in a significant positive error. In con-
trast, in the optimized experiment, these errors have 
been significantly reduced. This difference is espe-
cially prominent on the western side of the peninsu-
la, where precipitation values now align more close-
ly with those observed. The positive error areas on 
eastern side of the peninsula have also been signifi-
cantly reduced, with some remain ing errors near the 
island of SriLanka. Furthermore, near the Arabian 
Peninsula, the results of the optimized experiment 
are also superior to the default experiment. The 
optimized parameters have reduced precipitation 
in this region, even eliminating the positive errors 
that were present in the default experiment. In the 
southeastern marine area, unlike the improvement 
seen in other regions, the optimized experiment has 
increased precipitation in this area, bringing the re-
sults closer to the observed data. In summary, in the 
North Indian Ocean region, the default experiment 
had significant positive errors. Our improvements 
have effectively reduced most of these positive er-
rors without introducing new errors.
Figure 8 illustrates the optimization results for the 
North Pacific region. Similar to the North Indian 
Ocean region, the default experiment still exhibits 
a significant amount of positive errors. Our optimi-
zation results aim to reduce these positive errors in 
the North Pacific region. As shown in the figure, our 
optimization results have substantially reduced pre-
cipitation in these ocean areas, primarily in the cen-
tral region of the selected area. Precipitation in this 
central area has been significantly reduced and is now 
very close to the results from observed data. The re-
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Figure 7
The precipitation distribution of the North India optimization result. The left column displays the default experiment, 
observation data, and the difference between the default experiment and the observation data from top to bottom. The 
right column exhibits the optimal experiment, observation data, and the difference between the optimal experiment and 
the observation data from top to bottom
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Figure 8 illustrates the optimization results for 
the North Pacific region. Similar to the North 
Indian Ocean region, the default experiment 
still exhibits a significant amount of positive 
errors. Our optimization results aim to reduce 
these positive errors in the North Pacific 
region. As shown in the figure, our 
optimization results have substantially 
reduced precipitation in these ocean areas, 
primarily in the central region of the selected 
area. Precipitation in this central area has been 
significantly reduced and is now very close to 
the results from observed data. The results for 
the eastern and western sides of the region 
have also seen considerable improvements. 
Additionally, in the southeastern areas around 
the islands, precipitation has noticeably 
decreased. Furthermore, in the northwestern 
region, the default experiment underestimated 
precipitation, while the optimized experiment 
increased precipitation in this area, eliminating 
negative errors. It is evident that the optimized 

sults for the eastern and western sides of the region 
have also seen considerable improvements. Addition-
ally, in the southeastern areas around the islands, pre-
cipitation has noticeably decreased. Furthermore, in 
the northwestern region, the default experiment un-

derestimated precipitation, while the optimized ex-
periment increased precipitation in this area, elimi-
nating negative errors. It is evident that the optimized 
parameters can enhance the capabilities of CAM in 
the North Pacific region.
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Figure 8
The precipitation distribution of the North Pacific optimization result. The left column displays the default experiment, 
observation data, and the difference between the default experiment and the observation data from top to bottom. The 
right column exhibits the optimal experiment, observation data, and the difference between the optimal experiment and 
the observation data from top to bottom

  

parameters can enhance the capabilities of 
CAM in the North Pacific region. 
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The precipitation distribution of the North Pacific 
optimization result. The left column displays the 
default experiment, observation data, and the 
difference between the default experiment and the 
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6. Conclusions 
In this work, we propose a multi-level 
surrogate-assisted optimization algorithm 
MLSAO, primarily designed to address the 
parameter optimization challenges associated 
with complex models. MLSAO introduces a 
multi-level search mechanism that enhances its 
exploration capability of the parameter space, 
thereby mitigating the risk of falling into local 
optima to some extent. The proposed MLSAO 
integrates random forest and DE to construct 
and update the global level surrogate model, 
respectively. For local level, we select IDW to 
build the surrogate model and simplex 
downhill method to update this surrogate 
model. Whether it is the optimization tests on 
benchmarks or the practical application of 
CESM parameter tuning, MLSAO has 
demonstrated excellent optimization 
capabilities. 

In future work, we aim to broaden the 
application scope of MLSAO, enhance its 
capability to tackle multi-objective 
optimization, and facilitate its utilization in a 

wider range of domains to address real-world 
optimization challenges. Additionally, as data 
scales continue to increase, we aim to improve 
its optimization efficiency. Moreover, we are 
considering the introduction of parallel and 
multi-threading techniques to enhance the 
efficiency and utilization of computational 
resources for MLSAO. 
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6. Conclusions
In this work, we propose a multi-level surrogate-as-
sisted optimization algorithm MLSAO, primari-
ly designed to address the parameter optimization 
challenges associated with complex models. MLSAO 

introduces a multi-level search mechanism that en-
hances its exploration capability of the parameter 
space, thereby mitigating the risk of falling into local 
optima to some extent. The proposed MLSAO inte-
grates random forest and DE to construct and update 
the global level surrogate model, respectively. For lo-
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cal level, we select IDW to build the surrogate model 
and simplex downhill method to update this surro-
gate model. Whether it is the optimization tests on 
benchmarks or the practical application of CESM pa-
rameter tuning, MLSAO has demonstrated excellent 
optimization capabilities.
In future work, we aim to broaden the application 
scope of MLSAO, enhance its capability to tackle 
multi-objective optimization, and facilitate its uti-
lization in a wider range of domains to address re-
al-world optimization challenges. Additionally, as 
data scales continue to increase, we aim to improve 
its optimization efficiency. Moreover, we are consid-

ering the introduction of parallel and multi-threading 
techniques to enhance the efficiency and utilization 
of computational resources for MLSAO.
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