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Due to the challenges posed by large-scale variability in crowd images and overlapping and occlusion of peo-
ple in high-density regions, traditional CNNs with fixed-size convolution kernels or transformers lacking 2D 
locality and channel adaptation need to struggle to cope with this challenge. While Transformers have a global 
receptive field for long sequence tasks, CNNs exhibit better generalization and 2D locality. In order to combine 
the advantages of both approaches, this paper proposes a dual-branch multi-scale attention network (DBM-
SA-Net). First of all, we propose a multi-scale channel attention convolution module to extract features at dif-
ferent scales while enhancing channel adaptation. Furtherly, local features are augmented using a feed-forward 
neural network that is more suitable for visual tasks. Then an efficient lightweight multi-scale regression head 
is employed to predict density maps. Finally, progressive cross-head supervision is introduced as a loss function 
to dynamically supervise instance labels noise and mitigate its effect. Extensive experiments are conducted on 
three crowd counting datasets (ShanghaiTech Part A, ShanghaiTech Part B, UCF-QNRF) to validate the effec-
tiveness of the proposed method and the results show that DBMSA-Net outperforms state-of-the-art methods.
KEYWORDS: Crowd counting, Multi-scale, Channel attention, Transformer, Computer vision.

1. Introduction
The task of crowd counting is a popular research prob-
lem in computer vision. It requires fast and accurate 
crowd count estimation of images collected in different 
scenes with different crowd levels, which is important 
for congestion, urban planning and traffic management.

Mainstream crowd counting methods [20, 28, 47] are 
mostly designed using CNN and then return to the 
density map to predict the number of people. Recent-
ly, Transformer [38] with global attention mechanism 
has achieved remarkable results in natural language 
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processing. After Dosovitskiy et al. [8] introduced the 
Transformer architecture into computer vision in the 
form of block partitioning, the Transformer shines in 
visual tasks and gradually surpasses traditional CNN 
models. Transformer began to be gradually applied to 
the study of crowd counting tasks [1,41] and achieved 
excellent performance.
With the development of vision transformer [9, 12, 
32], it has been shown that local inductive bias and 
global self-attention mechanisms are equally sig-
nificant for visual tasks. The information entering 
the visual task is two-dimensional, and transformer 
models using fixed-size attention fail to capture rich 
contextual information and multi-scale features. The 
importance of channel attention has been confirmed 
in previous studies [15], but the existing transformer 
[2, 21] does not pay sufficient attention to channel at-
tention. These limitations in the visual transformer 
are definitely not sufficient to handle large-scale vari-
ations in crowd images. To address the above issues, 
we propose a convolutional encoder to try to comple-
ment the limitations of the vision transformer.
In view of transformer limitations in multi-scale fea-
ture extraction, we first propose a multi-scale convo-
lutional channel attention module (MCAM). MCAM 
uses multi-scale convolutional branches to obtain 
multi-scale context information, and small-kernel 
strip convolution is used instead of traditional convo-
lution to enhance local sensitivity and reduce model 
complexity. Furthermore, MCAM uses a deep sepa-
rable convolution with an SE module as the channel 
attention branch to compensate for the adaptability 
of channel dimensions neglected by the transformer, 
and complements the mesh feature of the strip convo-
lution branch.
 To address the above issues, we introduce transformer 
and convolutional branches, which aim to fully exploit 
the contextual information and multi-scale features 
in the feature maps. The transformer branch uses a 
self-attention mechanism to enable the model to glob-
ally perceive critical objects and relations in the image. 
At the same time, the convolution branch uses multi-
scale convolution operation to enhance the perception 
ability of the model to objects of different scales.
First, we propose a multi-scale channel attention 
convolutional module (MCAM) to extract multi-scale 
features and enhance channel adaptability. The mod-

ule can adaptively adjust the receptive field at differ-
ent scales and supplement the rich channel informa-
tion with the channel attention mechanism. With this 
design, we are able to better deal with scale variations 
and occlusions in crowd images. To further improve 
the model performance, we also introduce a feed-for-
ward neural network specifically designed for vision 
tasks, which is used to enforce local feature represen-
tations. It is able to improve the modeling capability 
of high-density regions and enhance the expressive 
power of the model for crowd density estimation.
Second, we employ efficient lightweight multi-scale 
regression heads to predict the density maps of both 
branches, which are able to provide fine-grained in-
formation about the distribution and density of the 
crowd.  The regression head not only reduces the net-
work complexity and computational overhead while 
maintaining high prediction accuracy, but also helps 
to improve the modeling ability of the model for den-
sity maps.
Finally, due to the noise problems such as location 
deviation and missing labeled points often appear in 
the dataset, as shown in Figure 1, in the training pro-
cess, the progressive cross-head supervision [10] is 
introduced as the loss function to supervise each oth-
er through the ground truth density map. This mutual 
supervision mechanism enables the model to better 
learn accurate density map predictions, improves the 
performance and robustness of the whole network, and 
enhances the generalization capability of the network.
In summary, we use a crowd counting model with 
dual branches, called dual-branch multi-scale atten-
tion network (DBMSA-Net). The main contributions 
are further summarized as follows:
 _ We propose a multi-scale convolutional channel 

attention module (MCAM), using a feedforward 
neural network (FFN) layer that is more suitable 

Figure 1 
Noise annotations in the dataset. The red points are the 
labeled annotations in the dataset, the yellow points are 
the missing annotations, and the green points are the offset 
annotations
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for visual tasks and MCAM to form a convolutional 
encoder to extract channel attention and multi-
scale contextual features.

 _ We use a lightweight multi-scale regression head 
to further probe the global scale information of 
the population images and obtain more accurate 
regression density maps.

 _ We conduct extensive experiments on popular 
datasets such as ShanghaiTech Part A, Part B, and 
UCF-QNRF, and show that the proposed method 
makes progress in counting performance.

The rest of the sections are organized as follows. 
We first briefly introduce the work related to crowd 
counting in Section 2. DBMSA-Net is described in 
detail in Section 3, and experimental results are pre-
sented in Section 4. Finally, we give a conclusion in 
Section 5.

2. Related Work
2.1. Crowd Counting
Currently, methods for population counting can be 
classified into three main types: detection [22, 23], re-
gression [3], and density mapping [24, 25, 42]. Detec-
tion-based methods predict bounding boxes for each 
person in an image by constructing a detection model 
for counting. However, its performance is limited by 
the occlusion of congested regions and the need for 
additional annotations. Regression-based methods 
can directly predict the number of people based on 
point annotations, but the results are poorly inter-
preted and the information of the labeled graphs is 
not fully exploited. Density map-based methods can 
better balance the performance and annotation cost 
than the other two methods.
To tackle the issue of noise in counting models, nu-
merous studies have proposed the utilization of loss 
functions. For instance, Ma et al. [29] devised a loss 
function based on Bayesian theory for instance-level 
supervision, which directly employs point supervi-
sion to circumvent inaccurate generation of pseu-
do-maps. Cheng et al. [4] introduced the maximum 
excess pixel loss function, wherein optimization is 
performed using the region with the highest loss val-
ue. Other methods [26,30] use optimal transport for 
divergence measurements.

2.2. Attention
Attention mechanism is a mechanism analogous to 
human attention, which introduces a degree of atten-
tion or importance weight on specific information to 
a model to make it perform better on a particular task. 
Spatial attention focuses on the importance weights 
of the input feature maps in the spatial dimension, 
while channel attention focuses on the importance 
weights of the input feature maps in the channel di-
mension.
Transformer proposes a self-attention mechanism 
and is widely used in the computer vision commu-
nity. VIT [8] applies the transformer architecture to 
models for visual tasks and has shown excellent per-
formance on various visual tasks. DETR [2] further 
improves the efficiency of the vision transformer fo-
cused on object detection. Recently, these advances 
have promoted the effective application of transform-
er in various tasks such as semantic segmentation 
[45, 48] and object detection [21].
However, due to the shortcomings of both convo-
lution and self-attention, Guo et al. [13] proposed a 
large-kernel attention module that considers and 
combines the advantages of convolution and self-at-
tention, and further proves the importance of channel 
dimension in visual tasks.

2.3. Multi-scale
Crowd counting tasks often suffer from issues such as 
image scale variations and population density varia-
tions. These issues will have a greater impact on the 
performance of the model. Multi-scale network [37, 
39] is one of the main methods to solve such problems. 
The multi-scale module can help the model to better 
handle issues such as scale variation and population 
density variation, and improve the performance and 
generalization capabilities of the model.
Szegedy et al. [34] proposed the Inception module, 
which performs multi-scale feature extraction by 
combining convolution and pooling operations at 
different scales. The Inception module can process 
information between different scales, improving the 
ability to express features while reducing the amount 
of parameters and computations. Chen et al. [5] pro-
posed adaptive dilated convolution and pyramid 
pooling models to solve the scaling problem. Adaptive 
dilated convolutions can process the feature informa-
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tion of the target at different scales and keep the input 
and output sizes constant on the feature map. Pyra-
mid pooling models can extract features from regions 
of different sizes and merge features to improve fea-
ture expression.

3. Method
In this section, we will elaborate on the dual-branch 
multi-scale attention network (DBMSA-Net) in de-
tail, which is mainly composed of VGG-16, trans-
former encoder, convolution encoder and multi-scale 
regression head. The training part uses progressive 
cross-head supervision.

3.1. Framework Method
Figure 2 shows an overview of DBMSA-Net. First, we 
use the VGG-16 [35] network as the backbone net-
work to extract the features of a population image I , 
and the extracted features are C W HFeature R × ×∈ , where 
C , H and W  are the number of channels, width and 
height, respectively. The feature maps TransD  are ConvD  
then passed into the transformer and convolutional 
branches for feature learning, respectively, and the 
multi-scale regression head is used to predict the 
density maps and for both branches. The training pro-
cess uses a progressive cross loss so that the ground-

Figure 2
The framework of the dual-branch multi-scale attention network (DBMSA-Net). Firstly, the crowd images are fed to 
VGG-16, then the output feature maps are passed to the transformer encoder and convolutional encoder, respectively, and 
finally the multi-scale regression head prediction density map is passed in. The progressive cross-head supervises the 
predicted density map during training. DConv denotes the void convolution and d denotes the void rate

truth density map GTD , TransD , ConvD  and are supervised 
against each other to constrain the training of the en-
tire network.

3.2. Transformer Encoder
The traditional transformer networks [8, 38] use a 
self-attention layer in the encoder, which gives it a 
global receptive field and the ability to obtain global 
relationships of current features. It is calculated as 
follows:

  

global receptive field and the ability to obtain global 
relationships of current features.  It is calculated as 
follows: 
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dimension  kd .  Q 、 K 、V  , which are derived 
from source features, stand for the query, key, and 
value vectors, respectively. 
Transformer leverages a self-attention mechanism to 
capture long-range dependencies in time or space, 
learn global contextual information, and flexibly pro-
cess different features, thus achieving superior per-
formance in crowd counting tasks. However, it suf-
fers from certain shortcomings in processing infor-
mation in densely populated areas, namely the lack of 
channel attention and 2D locality. In crowd counting 
tasks, due to the high crowd density, there are a large 
number of overlapping and occluded regions in the 
image, so it is particularly important to explicitly 
model the importance of each channel and process 
overlapping people. 
Therefore, we propose to adopt a dual-branch ap-
proach, add convolutional neural networks to process 
crowd images, and characterize and model each spa-
tial location in more detail, thereby improving the 
ability to express features. 
3.3 Convolutional Encoder 
For image-intensive scenarios such as high-density 
crowd counting, although the Transformer model has 
superior performance for processing sequence model-
ing tasks, it has certain limitations due to its weak 
ability to model local features in images. Therefore, 
in the task of high-density population images, intro-
ducing appropriate local models or modeling meth-
ods based on local features can further improve the 
prediction accuracy and efficiency of the models. In 
this paper, we design a convolutional encoder. The 
structure is shown in Figure 3 and it forms a dual-

branch structure with the transformer to compensate 
for the shortcomings of the transformer in local mod-
eling. 
 
Figure 3 
Schematic diagram of MCAM and convolutional encoder, 
where DWConv is the depth convolution and SE is the 
channel attention module. 

 

 
 
We first use a 1×1 depth convolution to combine lo-
cal characteristic information. It is then fed into a 
multiscale branch to capture multiple context infor-
mation, while a channel attention branch is added to 
extract channel features and supplement the grid in-
formation. Then use 1×1 convolution to model the 
relationship between multiple branches. Finally, the 
output is weighted with the input to obtain the final 
output result. 
Our multi-scale branch uses three convolutional ker-
nels of different sizes to extract image features indi-
vidually. This structure can effectively cope with 
multi-scale variations and capture head information 
of different sizes. We adopt a structure similar to Se-
gNext [14], so that the method of eliciting spatial at-
tention by multiplying elements can obtain more effi-

(1)

where 1 kd  is a scaling factor based on the vector 
dimension dk. Q, K, V, which are derived from source 
features, stand for the query, key, and value vectors, 
respectively.
Transformer leverages a self-attention mechanism 
to capture long-range dependencies in time or space, 
learn global contextual information, and flexibly pro-
cess different features, thus achieving superior per-
formance in crowd counting tasks. However, it suffers 
from certain shortcomings in processing information 
in densely populated areas, namely the lack of channel 
attention and 2D locality. In crowd counting tasks, due 
to the high crowd density, there are a large number of 
overlapping and occluded regions in the image, so it is 
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particularly important to explicitly model the impor-
tance of each channel and process overlapping people.
Therefore, we propose to adopt a dual-branch ap-
proach, add convolutional neural networks to pro-
cess crowd images, and characterize and model each 
spatial location in more detail, thereby improving the 
ability to express features.

3.3. Convolutional Encoder
For image-intensive scenarios such as high-density 
crowd counting, although the Transformer model has 
superior performance for processing sequence mod-
eling tasks, it has certain limitations due to its weak 
ability to model local features in images. Therefore, in 
the task of high-density population images, introduc-
ing appropriate local models or modeling methods 
based on local features can further improve the pre-
diction accuracy and efficiency of the models. In this 
paper, we design a convolutional encoder. The struc-
ture is shown in Figure 3 and it forms a dual-branch 
structure with the transformer to compensate for the 
shortcomings of the transformer in local modeling.

Figure 3
Schematic diagram of MCAM and convolutional encoder, 
where DWConv is the depth convolution and SE is the 
channel attention module

We first use a 1×1 depth convolution to combine local 
characteristic information. It is then fed into a multi-
scale branch to capture multiple context information, 
while a channel attention branch is added to extract 
channel features and supplement the grid informa-
tion. Then use 1×1 convolution to model the relation-
ship between multiple branches. Finally, the output 
is weighted with the input to obtain the final output 
result.

Our multi-scale branch uses three convolutional ker-
nels of different sizes to extract image features in-
dividually. This structure can effectively cope with 
multi-scale variations and capture head information 
of different sizes. We adopt a structure similar to 
SegNext [14], so that the method of eliciting spatial 
attention by multiplying elements can obtain more 
efficient spatial information encoding than ordinary 
convolution and self-attention mechanisms. But the 
difference is that instead of continuing with the large 
kernel convolution formalism, we use small kernel 
convolutions. First, a small convolutional kernel can 
reduce the number of parameters, reduce the com-
plexity of the model, make the model lighter, acceler-
ate the training and inference of the model, and can be 
applied even when computational resources are lim-
ited. Second, in cases where the transformer branch 
provides a global receptive field, small convolutional 
kernels can capture more detailed feature informa-
tion, thereby improving the sensitivity and modeling 
ability of neural networks to local images and better 
extracting feature information in dense population 
images. In the experiments presented later in this pa-
per, it is demonstrated that using small kernel convo-
lution in this model leads to better results than large 
kernel convolution. In later experiments, we demon-
strate that using small kernel convolution in this 
model leads to better results than large kernel convo-
lution.
In the crowd counting task, there are a large num-
ber of overlapping people and irregular shapes in the 
images, which makes it difficult to obtain accurate 
features using ordinary convolutions. Therefore, in 
some studies [16, 33], it is proposed to use strip con-
volution that emphasizes spatial positional relation-
ships for feature extraction, and at the same time, this 
method can further lighten the network structure. We 
replace the original 2D convolution with a strip con-
volution, and replace the original convolution kernel 
of k k×  with a pair of convolution kernels of 1k ×  and  
1 k× . On the basis of the above model, we have added 
a deeply separable convolution branch with a chan-
nel attention SE module [17]. Such a choice not only 
compensates for the lack of channel adaptation in the 
transformer branch, but also enables our model to 
better process channel features and enhance the ex-
pressive power. It can also help to extract basic grid 
information for the model reference during feature 
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extraction. MCAM can be expressed mathematically 
as follows:
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Feed-forward neural networks also play an important 
role in crowd counting models. They can adaptively 
learn the relationship between features, enhance fea-
tures, and effectively prevent overfitting.  However, 
the FFN structure in the NLP field lacks effective 
learning of two-dimensional local features, but this is 
essential for visual tasks [11,13]. To better meet the 
needs of crowd counting tasks, this paper uses an 
FFN structure that can better extract two-dimensional 
locality. The construction is shown in Figure 3. 
3.4 Multi-scale Regression Head 

In the population counting task, the regression head 
is considered as a crucial component. Its task is to 
predict the number of people in an image and output 
a predicted density map. We have extracted sufficient 
global and local context information in the previous 
stage, therefore we use a lightweight multi-scale re-
gression head to regress the predicted density map. 
As shown in Figure 2, we used three dilated convolu-
tions with different dilation rates and convolution nu-
clei [24]. For a dilated convolution with a convolu-
tion nucleus size of   k k×  and an expansion rate of 
r , the receptive field size of each pixel is 
( 1) 1k r− × + . Compared with traditional convolution 
methods, the use of dilated convolution can reduce 
the amount of parameters in the model, and make the 
model lighter while keeping the size of the receptive 
field unchanged.  In addition, dilated convolutions 
can also enlarge the effective receptive area without 
changing the size of the receptive field, which can 
better accommodate the needs of large-scale and 
high-resolution image tasks. 
There are heads of different scales in the images for 
the crowd counting task, so we chose a multi-scale 
form with different receptive fields. And since some 
dense regions have relatively small multi-scale, the 
multi-scale branch used in this paper tries to choose a 
small convolution kernel and dilation rate to avoid 
losing detailed information. We spliced the feature 
map output from each branch , (0,3)iB i∈  , and fi-
nally used two 1×1 convolutional layers to predict 
the regression of the density map. 
3.5 Progressive Cross-head Supervision 
Images collected in crowd counting tasks are typical-
ly annotated based on points. Since such manually 
labeled annotated points make up a relatively small 
fraction of the human head, there are spatial errors 
where the annotated points are not located at the ex-
act location. At the same time, the lack of point anno-
tations is also a non-negligible error when there is 
high density, occlusion, etc. 
During supervision, noisy images are often used as a 
reference for training, but sometimes the labels pre-
dicted by the trained model are more correct than the 
manually labeled ones. Considering this situation, we 
use a progressive cross-head supervision method 
mentioned in CHS-Net [10] as the loss function dur-
ing training. The construction is shown in Figure 4. 
In progressive cross-head supervision, each branch is 
supervised using the weights of the predicted density 
map and the ground truth density map of the other 
branch, and the weights of the complementary 
branches are gradually increased as the training pro-
gresses. Taking the volume integral branch as an ex-
ample here, the density map  ConvD  obtained after su-
pervision is defined as follows: 
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where α is the weight coefficient assigned to the 
complementary branch, GTD   is the ground truth den-
sity map, and  TransF  is the feature map output by the 

(2)

 
 

 

cient spatial information encoding than ordinary con-
volution and self-attention mechanisms. But the dif-
ference is that instead of continuing with the large 
kernel convolution formalism, we use small kernel 
convolutions. First, a small convolutional kernel can 
reduce the number of parameters, reduce the com-
plexity of the model, make the model lighter, accel-
erate the training and inference of the model, and can 
be applied even when computational resources are 
limited. Second, in cases where the transformer 
branch provides a global receptive field, small con-
volutional kernels can capture more detailed feature 
information, thereby improving the sensitivity and 
modeling ability of neural networks to local images 
and better extracting feature information in dense 
population images. In the experiments presented later 
in this paper, it is demonstrated that using small ker-
nel convolution in this model leads to better results 
than large kernel convolution. In later experiments, 
we demonstrate that using small kernel convolution 
in this model leads to better results than large kernel 
convolution. 
In the crowd counting task, there are a large number 
of overlapping people and irregular shapes in the im-
ages, which makes it difficult to obtain accurate fea-
tures using ordinary convolutions. Therefore, in some 
studies [16, 33], it is proposed to use strip convolu-
tion that emphasizes spatial positional relationships 
for feature extraction, and at the same time, this 
method can further lighten the network structure. We 
replace the original 2D convolution with a strip con-
volution, and replace the original convolution kernel 
of  k k×  with a pair of convolution kernels of 1k ×   
and  1 k× . 
On the basis of the above model, we have added a 
deeply separable convolution branch with a channel 
attention SE module [17]. Such a choice not only 
compensates for the lack of channel adaptation in the 
transformer branch, but also enables our model to 
better process channel features and enhance the ex-
pressive power. It can also help to extract basic grid 
information for the model reference during feature 
extraction. MCAM can be expressed mathematically 
as follows: 

( )1 1F DWConv Feature×= ，                  (2) 

1 1
2

0

( ( )

( ( )))

SE

i
i

Attention Conv F DWConv F

Scale DWConv F

×

=

= + +

∑ ，
  (3) 

.Output Attention Feature= ⊗      (4) 

Feed-forward neural networks also play an important 
role in crowd counting models. They can adaptively 
learn the relationship between features, enhance fea-
tures, and effectively prevent overfitting.  However, 
the FFN structure in the NLP field lacks effective 
learning of two-dimensional local features, but this is 
essential for visual tasks [11,13]. To better meet the 
needs of crowd counting tasks, this paper uses an 
FFN structure that can better extract two-dimensional 
locality. The construction is shown in Figure 3. 
3.4 Multi-scale Regression Head 

In the population counting task, the regression head 
is considered as a crucial component. Its task is to 
predict the number of people in an image and output 
a predicted density map. We have extracted sufficient 
global and local context information in the previous 
stage, therefore we use a lightweight multi-scale re-
gression head to regress the predicted density map. 
As shown in Figure 2, we used three dilated convolu-
tions with different dilation rates and convolution nu-
clei [24]. For a dilated convolution with a convolu-
tion nucleus size of   k k×  and an expansion rate of 
r , the receptive field size of each pixel is 
( 1) 1k r− × + . Compared with traditional convolution 
methods, the use of dilated convolution can reduce 
the amount of parameters in the model, and make the 
model lighter while keeping the size of the receptive 
field unchanged.  In addition, dilated convolutions 
can also enlarge the effective receptive area without 
changing the size of the receptive field, which can 
better accommodate the needs of large-scale and 
high-resolution image tasks. 
There are heads of different scales in the images for 
the crowd counting task, so we chose a multi-scale 
form with different receptive fields. And since some 
dense regions have relatively small multi-scale, the 
multi-scale branch used in this paper tries to choose a 
small convolution kernel and dilation rate to avoid 
losing detailed information. We spliced the feature 
map output from each branch , (0,3)iB i∈  , and fi-
nally used two 1×1 convolutional layers to predict 
the regression of the density map. 
3.5 Progressive Cross-head Supervision 
Images collected in crowd counting tasks are typical-
ly annotated based on points. Since such manually 
labeled annotated points make up a relatively small 
fraction of the human head, there are spatial errors 
where the annotated points are not located at the ex-
act location. At the same time, the lack of point anno-
tations is also a non-negligible error when there is 
high density, occlusion, etc. 
During supervision, noisy images are often used as a 
reference for training, but sometimes the labels pre-
dicted by the trained model are more correct than the 
manually labeled ones. Considering this situation, we 
use a progressive cross-head supervision method 
mentioned in CHS-Net [10] as the loss function dur-
ing training. The construction is shown in Figure 4. 
In progressive cross-head supervision, each branch is 
supervised using the weights of the predicted density 
map and the ground truth density map of the other 
branch, and the weights of the complementary 
branches are gradually increased as the training pro-
gresses. Taking the volume integral branch as an ex-
ample here, the density map  ConvD  obtained after su-
pervision is defined as follows: 

( ) (1 ) ,Conv Trans GTD F X Dα α= + −                       (5) 

where α is the weight coefficient assigned to the 
complementary branch, GTD   is the ground truth den-
sity map, and  TransF  is the feature map output by the 

(3)

 
 

 

cient spatial information encoding than ordinary con-
volution and self-attention mechanisms. But the dif-
ference is that instead of continuing with the large 
kernel convolution formalism, we use small kernel 
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reduce the number of parameters, reduce the com-
plexity of the model, make the model lighter, accel-
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be applied even when computational resources are 
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in this paper, it is demonstrated that using small ker-
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convolution. 
In the crowd counting task, there are a large number 
of overlapping people and irregular shapes in the im-
ages, which makes it difficult to obtain accurate fea-
tures using ordinary convolutions. Therefore, in some 
studies [16, 33], it is proposed to use strip convolu-
tion that emphasizes spatial positional relationships 
for feature extraction, and at the same time, this 
method can further lighten the network structure. We 
replace the original 2D convolution with a strip con-
volution, and replace the original convolution kernel 
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and  1 k× . 
On the basis of the above model, we have added a 
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attention SE module [17]. Such a choice not only 
compensates for the lack of channel adaptation in the 
transformer branch, but also enables our model to 
better process channel features and enhance the ex-
pressive power. It can also help to extract basic grid 
information for the model reference during feature 
extraction. MCAM can be expressed mathematically 
as follows: 
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Feed-forward neural networks also play an important 
role in crowd counting models. They can adaptively 
learn the relationship between features, enhance fea-
tures, and effectively prevent overfitting.  However, 
the FFN structure in the NLP field lacks effective 
learning of two-dimensional local features, but this is 
essential for visual tasks [11,13]. To better meet the 
needs of crowd counting tasks, this paper uses an 
FFN structure that can better extract two-dimensional 
locality. The construction is shown in Figure 3. 
3.4 Multi-scale Regression Head 
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model lighter while keeping the size of the receptive 
field unchanged.  In addition, dilated convolutions 
can also enlarge the effective receptive area without 
changing the size of the receptive field, which can 
better accommodate the needs of large-scale and 
high-resolution image tasks. 
There are heads of different scales in the images for 
the crowd counting task, so we chose a multi-scale 
form with different receptive fields. And since some 
dense regions have relatively small multi-scale, the 
multi-scale branch used in this paper tries to choose a 
small convolution kernel and dilation rate to avoid 
losing detailed information. We spliced the feature 
map output from each branch , (0,3)iB i∈  , and fi-
nally used two 1×1 convolutional layers to predict 
the regression of the density map. 
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where α is the weight coefficient assigned to the com-
plementary branch, GTD  is the ground truth density 
map, and TransF  is the feature map output by the trans-
former encoder. To deal with the noise of the ground 
truth density map, mask ConvM  is used to supervise 
the density map ConvD . The formulation is stated as 
follows:
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threshold value after the error ε is arranged in de-
scending order, and  [0,1]δ ∈ . It follows that the fi-
nal expression of the density map generated by the 
supervised volume integral branch is given by: 
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The density map  TransD  obtained by the supervised 
Transformer branch is similar to the one obtained by 
the convolutional branch, that is, the predicted densi-
ty map  ( )ConvF X  of the convolutional branch and 
the ground truth density map  GTD  are used to super-
vise it. Thus, the overall optimized loss function of 
the model is formulated as follows.: 
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Since the density map predicted by the model in the 
early stage is not reliable and the accuracy is low, a 
progressive supervision method is introduced, where 
the noise ratio  iδ  and the coefficient iα   are gradu-
ally increased to the maximum as the training round 
i  . It is formulated as follows: 
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4. Experiments 
4.1 Implement Details 
Network Structure: VVG-16 [35] is used as the 
backbone network for feature extraction, and its pre-
trained weights on ImageNet are used. We refer to 
the encoder part in [8], as the structure of our trans-
former branch, and use our proposed convolutional 

encoder to form a dual branch structure with it, and 
finally pass in the multi-scale regression head to pre-
dict the density map. 
Training Details: We chose the same data prepro-
cessing method as BL [29]. Each training image is 
randomly scaled, cropped, and horizontally flipped 
to enhance the data, and then a 512×512-sized image 
block is cropped. Using Adam's algorithm with a 
learning rate of 10-5 for parameter optimization and 
a cosine learning rate dispatcher for hyperparameters 
supervised by progressive crossheads, the hyperpa-
rameters are consistent with CHS-Net. 
4.2 Datasets and Evaluation Metrics 
The evaluation experiments were performed on three 
population counting datasets: ShanghaiTech Part A 
[47], ShanghaiTech Part B [47], and UCF-QNRF 
[19]. These data are described as follows: 
ShanghaiTech Part A [47] dataset contains 482 ran-
domly captured images of people from the Internet, 
including multiple scenes and different density lev-
els, with a total of 244, 167 tokens, of which 300 im-
ages are used for training and the remaining 182 im-
ages are used as a test set. 
ShanghaiTech Part B [47] dataset, compared to Part 
A, has a relatively small population density and con-
tains 85,998 labeled points, 400 training images, and 
316 test images. The images were taken on the 
streets of Shanghai. 
UCF-QNRF [19] dataset contains 1535 high-
resolution images with an average resolution of ap-
proximately 2013 x 2902, of which 1201 training 
and 334 test sets contain 1,251, 642 annotated points. 
It is very diverse in terms of adaptability, image res-
olution, crowd density, and scenarios where crowds 
are present.  
Evaluation Metrics: We evaluate the count level of 
the model using two commonly used metrics, MAE 
and MSE. In particular, MAE is a better measure of 
the accuracy of the model count and MSE is a better 
measure of the robustness of the model. The lower 
the value of both, the better the model performance 
[47]. MAE and MSE are defined as follows: 
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4.3 Comparison with Existing Methods 
DBMSA-Net is evaluated on the above three da-
tasets, and eleven recent methods are listed for com-
parison. The results are shown in Table 1. DBMSA-
Net shows superior counting performance on differ-
ent datasets. Our method achieves 58.8 MAE on the 
SHA dataset and 6.8 and 11.3 MAE and MSE on the 
SHB dataset. Compared to other approaches, the 
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expression of the density map generated by the super-
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4.3. Comparison with Existing Methods
DBMSA-Net is evaluated on the above three datasets, 
and eleven recent methods are listed for comparison. 
The results are shown in Table 1. DBMSA-Net shows 
superior counting performance on different datasets. 
Our method achieves 58.8 MAE on the SHA dataset 
and 6.8 and 11.3 MAE and MSE on the SHB dataset. 
Compared to other approaches, the model in this pa-
per achieves better accuracy and robustness. A visu-
alization of the model is shown in Figure 5.

4.4. Ablation Studies
Ablation experiment on the model: The results from 
Table 2 demonstrate that employing a dual-branch 
structure yields superior outcomes compared to uti-
lizing a single branch alone. Furthermore, when em-
ploying progressive cross loss for supervision, the 
Mean Absolute Error (MAE) attains optimal perfor-
mance. The efficacy of this model can be further sub-
stantiated through result evaluation.
We perform ablation experiments on different 
branches of the convolutional encoder in ShanghaiT-
ech Part A, and the results are shown in Table 3. The 
contribution of the strip convolution and the deep 
separable convolution with attention module in this 

Table 1
Comparison of results on ShanghaiTech Part A, ShanghaiTech Part B and UCF-QNRF datasets. The best performer is 
indicated in bold, and the next best is indicated with a dash. The CHS-Net* results are obtained using the same conditions 
as DBMSA-Net

Dataset
Method Venue

SHT_Part A SHT_Part B UCF_QNRF

MAE MSE MAE MSE MAE MSE

CSRNet [24] CVPR 18 68.2 115.0 10.6 16.0 - -

CAN [27] CVPR 19 62.3 100.0 7.8 12.2 107.0 183.0

BL [29] ICCV 19 62.8 101.8 7.7 12.7 88.7 154.8

DSSINet [25] ICCV 19 60.6 96.0 6.9 10.3 99.1 159.2

LSC-CNN [36] TPAMI 20 66.4 117.0 8.1 12.7 120.5 218.2

NoisyCC [43] NIPS 21 61.9 99.6 7.4 11.3 85.8 150.6

GL [44] CVPR 21 61.3 95.4 7.3 11.7 84.3 147.5

MCC [50] ICASSP 22 71.4 110.4 9.6 15.0 - -

GauNet(CSRNet) [7] CVPR 22 61.2 97.8 7.6 12.7 84.2 152.4

CHS-Net [10] ICASSP 23 59.2 97.8 7.1 12.1 83.4 144.9

CHS-Net* ICASSP 23 61.9 104.0 7.6 11.7 85.8 147.9

DBMSA-Net 58.8 102.6 6.8 11.3 85.2 144.1

Figure 5
The visualization showcases ShanghaiTech Part A dataset, 
where the first row displays the input image, the second 
row presents the ground truth density map, followed by the 
third row illustrating the predicted density map of CHS-
Net, and finally, in the fourth row lies our model’s pre-
density map. Warmer colors indicate higher crowd density
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Table 2
Ablation experiments of the model

Progressive Cross 
Loss MAE MSE

Conv. × 62.8 104.7

Tran. × 63.1 105.6

DBMSA-Net × 59.6 106.1

DBMSA-Net √ 58.8 102.6

model were tested and the MAE was reduced by 4.6% 
and 5.9%, respectively. Subsequently, ablation exper-
iments were further designed to demonstrate that 
convolution kernels of different sizes in the multi-
scale branch are effective for extracting multiple pop-
ulations in this model. We replace the original atten-
tion branch in the model with ordinary deep separable 
convolution and SE channel attention module, which 
has degraded the performance to varying degrees. It 
can be seen that the addition of mesh features and 
channel attention are important for the performance 
improvement of the model. 

Table 3
Ablation experiments on ShanghaiTech Part A. In Table, 
Sk and Dk denote the strip convolution branch or hollow 
convolution with convolution kernel k, respectively, and SE-
DWC is the deep separable convolution with SE module

S3 S5 S7 SE-DWC MAE MSE

√ √ √ 62.5 107.1

D3 D5 D7 √ 61.6 104.5

√ √ √ 61.2 110.7

√ √ √ 60.8 108.2

√ √ √ 59.6 106.0

√ √ √ DWC 61.9 112.7

√ √ √ SE 61.4 107.3

√ √ √ √ 58.8 102.6

We performed a visual analysis of the proposed densi-
ty map prediction using a lightweight multi-scale re-
gression head, which is visualized in Figure 6. As can 
be seen from the visual result plots, after adding the 
multi-scale regression head, the quality of the model 
for generating density maps is further improved and 
the detailed information of image features can be bet-

Figure 6
Visualization of whether to use a lightweight multi-scale 
regression head. The left plot shows the original image and 
the ground truth density map. The first behavior on the right 
uses the visualization of a tradition-al regression head, and 
the second behavior uses the visualization of a lightweight 
multi-scale regression head. The square boxes mark the 
regions where the points of the original image have noise

ter presented. Meanwhile, the visualization results 
demonstrate the effectiveness of progressive cross-
head supervision for instance noise region supervision.
Comparison of training costs: Table 4 shows the per-
formance comparison of the models using the big 
kernel convolution and the conventional dilated con-
volution. Here are all calculated based on the input 
512×512 image. As can be observed from the data in 
Table, better accuracy can be achieved with the use of 
small-kernel strip convolutions in population count-
ing. The MAE is reduced by 2.5 per cent compared to 
the use of large kernel-strip convolution, by 4.6 per 
cent compared to the use of ordinary dilated convolu-
tion, and the use of small-kernel strip convolution re-
duces the number of model parameters. It can be seen 
that this can make the model lighter, better meet the 

Table 4
Comparison of MAE, MSE and model parameter quantity

MAE MSE Params (M)

D3 + D5 + D7 61.6 104.5 143.9

S7 + S11 + S21 60.3 104.7 57.1

Ours 58.8 102.6 56.9
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requirements of re source constraints, and improve 
the usability of the algorithm.
Effect of θ : We compare the MAE and MSE comput-
ed at different thresholds θ  on the ShanghaiTech Part 
A dataset and the results are shown in Figure 7, where 

max1θ δ= − . We take 1θ = , the case where no marked 
points are considered as noise, as the baseline. We ob-
serve that when 0.8 0.9θ≤≤ , the performance of the 
model gradually decreases as θ  decreases, which may 
be due to the treatment of too many labeled points as 
noise, resulting in insufficient available training data. 
When the choice of θ  is too large, the performance of 
the model is also degraded due to the increased noise in 
the selected training data. According to the experimen-
tal observation, the model performance reaches its best 
when 0.9θ = , that is, the labeled data with the largest 
deviation from the prediction of 10 percent is consid-
ered to be masked by the noisy data, thereby reducing 
the effect of human noise on the model performance.

5. Conclusion
In this study, we successfully combined the du-
al-branch structure of Transformer and convolution 
to enhance the performance of the population count-
ing model. By incorporating a multi-scale channel 
attention module, we addressed the limitations of 
the Transformer structure regarding 2D locality and 
channel adaptation. Furthermore, we adopted a light-
weight multi-scale regression approach to improve 
feature capture and regression accuracy. In order to 
mitigate the impact of label noise on model training, 
we designed progressive cross-head supervision as a 
loss function to supervise the generated density map 
and the ground truth density map. The experimental 
results on all three datasets illustrate the excellent 
performance of DBMSA-Net.
Our work investigates the feasibility of combining 
transformer and convolution as two distinct struc-
tures according to their own strengths and weakness-
es in visual tasks. Our findings provide meaningful 
suggestions and insights in this research direction.
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