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Realistic scenarios produce labeled data and unlabeled data, however, there are significant challenges in label-
ing time series data. It is imperative to effectively integrate the relationship between labeled and unlabeled data 
within semi-supervised classification model. This paper presents a novel semi-supervised classification method, 
namely Data Augmentation-Fast Shapelet Semi-Supervised Classification, which employs a data augmentation 
module to enhance the diversity of data and improve the generalization ability of the model, as well as a feature 
fusion module to enhance the semi-supervised network. A conditional generative adversarial network is used to 
synthesize excellent labeled time series samples to enhance the homogeneous data in the sample space, the fast 
shapelets method is used to quickly extract the important shape feature vectors in the time series, self-supervised 
and supervised learning are combined to fully learn the unlabeled and labeled data of the time series dataset. The 
joint loss function combines the loss functions of the two networks to optimize multiple objectives. Reinforce-
ment learning is used to determine the weight coefficients of the joint loss function, at the same time, the reward 
function is modified to bias the supervisory loss, which improves the classification performance of the model 
under limited labeled data, and the model can also better achieve the semi-supervised classification task. The 
proposed method is validated on the UCR benchmark dataset, Electrocardiogram dataset, and Electroenceph-
alogram dataset, the results show that the semi-supervised classification method can perform a more accurate 
semi-supervised classification of the time series, with an accuracy better than the comparison methods. Mean-
while, we use the plant electrical signal dataset obtained from actual measurements for testing, the visualization 
analysis can clearly show the model role in the semi-supervised classification task, and the experimental results 
fully demonstrate the effectiveness and applicability of the proposed method.
KEYWORDS: Small sample time series, Data augmentation, Fast Shapelets, Self-supervised learning, Semi-su-
pervised classification.

1. Introduction
The reality is that time series data exists in sever-
al industries, such as in the medical industry with 
electrocardiographic (ECG) data [30] and electroen-
cephalogram (EEG) data [3]. In the agricultural and 
biological industries, plant electrical signals data are 
observed [20], and Internet of Things data are studied 
[32]. In the industrial sector, there are bearing signal 
data [26], as well as aerospace signal data [27]. Unau-
thorized broadcast data identification [48], radio data 
classification [46, 47] in the communications indus-
try. However, these time series data share common 
drawbacks: industry specificity limits the availability 
of large amounts of data; the process of collecting, or-
ganizing, and manually labeling large amounts of time 
series training data is time-consuming and costly, and 
thus the time series dataset consists of a large amount 
of unlabeled data with a small amount of labeled data. 
Classifiers constructed using a small amount of la-
beled data with a large amount of unlabeled data are 
called semi-supervised classification models, and 
using a small amount of labeled time series data for 
semi-supervised classification tasks is a great chal-
lenge in machine learning research [24].
In recent years, deep networks have achieved satis-
factory results in semi-supervised classification of 

time series data [44, 45]. In particular, deep networks 
have achieved satisfactory results in semi-super-
vised classification of time series data [36]. Howev-
er, semi-supervised classification models for time 
series also have two obvious shortcomings: first, it is 
well known that deep neural networks require a large 
amount of training data, but with the current small 
amount of time series data and the lack of labeled 
data, deep networks are prone to overfitting and poor 
robustness [21]. Spline interpolation and Piecewise 
Cubic Hermite Interpolating Polynomial interpola-
tion methods, Empirical Mode Decomposition are 
common time series data enhancement techniques [1, 
2]. Inadequately trained semi-supervised classifica-
tion models are unable to correctly represent the dis-
tribution of time series data, which leads to low clas-
sification accuracy of semi-supervised models [13]. 
Second, how semi-supervised classification models 
can effectively integrate labeled data with unlabeled 
data to improve model performance [5].
The semi-supervised classification task for small-sam-
ple time-series data mainly stems from the high cost 
of data acquisition in practical applications, the lack of 
data labels, the pursuit of model generalization ability, 
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as well as the specificity of time-series data. To solve the 
problems of semi-supervised classification models for 
time series data, this paper proposes a new semi-super-
vised time series classification method Data Augmen-
tation-Fast Shapelet Semi-Supervised Classification(-
DA-FSSSC), which firstly uses conditional generative 
adversarial networks to expand the number of labeled 
time series, then extracts the important shape features 
of the time series, finally assists the supervised learning 
task by self-supervised learning to improve the perfor-
mance of supervised learning. The main contributions 
of this study are summarized below:
1 Aiming at addressing the problem of unlabeled 

part of the data in small sample time series data, 
based on the idea of module integration, this paper 
can realize the semi-supervised classification of 
time series under the condition of small samples 
by combining the data augmentation module, the 
feature extraction fusion module, and the semi-su-
pervised classification module.

2 The feature extraction module can extract import-
ant shape features of the time series. The semi-su-
pervised classification module combines the self-su-
pervised learning network for unlabeled data with 
the supervised learning network for labeled data, 
and the reinforcement learning can effectively learn 
the hyper-parameters of the joint loss function, this 
process can effectively integrate the labeled data 
with the unlabeled data. A large amount of time 
series data after data enhancement can effectively 
train the semi-supervised deep neural network.

3 For the method we conducted a series of data ex-
periments, validated on the UCR benchmark data-
set, ECG dataset, and EEG dataset, and tested the 
statistical method for the experimental results on 
the UCR benchmark dataset, which proved that 
the classification performance of the new method 
proposed is superior to the comparative methods. 
Tests are carried out on real acquired plant elec-
trical signal datasets, and the method is visualized 
and analyzed to show the effectiveness of the mod-
el proposed in this paper in real-life datasets. 

2. Related Works
Currently, researchers have proposed some semi-su-
pervised classification models for time series data 
classification. The semi-supervised time series feature 

learning model proposed by Wang, et al. incorporates 
labeled and unlabeled time series data into an integrat-
ed model that efficiently learns through least square 
minimization, spectral analysis, scaled pseudo labels, 
and feature similarity regularization terms [35]. Jawed 
et al. provide a powerful alternative to supervised sig-
nals for feature learning by utilizing unlabeled training 
data through a prediction task, optimizing the multi-
tasking learning approach and model prediction as a 
secondary task along with the primary task of classifi-
cation, with a model that has better performance [14]. 
Xi et al. proposed that the past-anchor-future strategy 
can extract higher-quality semantic context from unla-
beled time series data, and that self-supervised tempo-
ral relation learning can effectively assist supervised 
models [38]. Rezaei et al. pre-trained the model on a 
large unlabeled dataset by inputting the time series 
features of the sampled packets, and then the learned 
weights were transferred to a small labeled dataset, 
which has the same accuracy as a fully supervised 
method with a large labeled dataset [31]. Goschen-
hofer et al. show significant performance gains in deep 
semi-supervised learning models by discussing the 
transferability of state-of-the-art deep semi-super-
vised models from image to time-series classification, 
combined with the use of appropriate model back-
bone architectures and customized data enhancement 
strategies [11]. Xi et al. used the lower bound of DTW, 
LB_Keogh to construct pairwise distance matrices 
and construct a graph neural network, which is a new 
graph construction module, and the experimental re-
sults showed that it accelerated the network training 
without decreasing the classification accuracy [39]. 
Fan et al. proposed a simple and effective semi-super-
vised time series classification architecture approach, 
for labeled time series, SemiTime performs supervised 
classification directly under the supervision of anno-
tated class labels; for unlabeled time series, segments 
of past-future pairs were sampled from the time se-
ries, SemiTime predicts the temporal relationships 
between these segments in a self-supervised manner, 
and experimental results showed that SemiTime out-
performs state-of-the-art techniques[9]. Wei et al. 
proposed a multi-task learning scheme for semi-su-
pervised time series classification (MTFC) with 
time-frequency mining. Unsupervised tasks are used 
to capture the time-frequency information of the time 
series, and the multi-task learning framework is used 
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to learn the common features of the labeled and unla-
beled data, and the model can effectively improve the 
performance of semi-supervised classification [36]. 
Eldele et al. proposed a novel framework for learning 
time series representations, which learns representa-
tions from unlabeled data through contrast learning, 
using their views to learn robust temporal relations in 
the proposed temporal contrast module through weak 
and strong augmentation specific to the time series, in 
addition to learning discriminative representations 
through the contextual contrast module, which has 
shown to be highly efficient in a few labeled data and in 
migration learning scenarios [8].
Meanwhile, semi-supervised classification of time se-
ries has been applied in practical time series classifi-
cation scenarios. Wu et al. proposed a semi-supervised 
fault diagnosis model with an unsupervised autoen-
coder modified using mean square error, employing 
labels of the data and utilizing a softmax classifier to 
directly diagnose the health condition based on the 
coded features of the autoencoder, which was validated 
on the electric motor bearings dataset and the indus-
trial hydraulic turbine dataset, and the results showed 
that the method obtains high diagnostic accuracy 
[37]. Liu et al. present a framework dedicated to clas-
sification (AMC) radio modulation, which achieves 
higher performance with less labeled data by careful-
ly utilizing unlabeled signal data and a self-supervised 
comparative learning pre-training step [22]. Han et 
al. proposed an end-to-end semi-supervised learning 
framework with two deep neural networks with differ-
ent backbones and achieved high classification accu-
racies in a motion picture EEG dataset using contrast 
learning and adversarial training strategies end-to-end 
semi-supervised learning framework [12]. Semi-su-
pervised learning allows labeled and unlabeled data to 
be used efficiently and improves the efficiency of data 
usage, but the algorithms tend to be more complex and 
require more tuning and optimization.
There is an even more extreme situation in the real 
scenario: time series datasets have a limited number 
of samples, so researchers have proposed some meth-
ods for semi-supervised classification methods under 
the condition of small sample time series data. There is 
less data available in bearing fault diagnosis, to address 
this challenge, Yongtao et al. carried out fault feature 
extraction through variational modal decomposition 
(VMD) and sample entropy, pre-trained the model 

using the feature matrix of unlabeled samples, and uti-
lized the feature matrix and labels of labeled samples 
to fine-tune the model, and finally achieved fast and ac-
curate bearing fault diagnosis [42]. Ma et al. proposed a 
Consistent Regularized Auto-Encoder (CRAE) frame-
work based on encoder-decoder networks, which 
firstly uses data augmentation strategies to process 
individual process samples into sample matrices, and 
extracts the local and global spatio-temporal features 
from the sample matrices by using local encoders and 
global encoders, and the introduced Consistent Reg-
ularization (CR) method pushes the decision bound-
aries to the low-density region, which makes the dis-
tinction between different categories more obvious 
and improves the accuracy of the model classification 
[25]. Lao et al. proposed a semi-supervised weighted 
prototype network (SSWPN), a dual-scale neural net-
work (DSNN) that enhances the ability to extract data 
features and express different scales, and used a new 
semi-supervised weighted prototype updating strat-
egy, and the experimental results showed significant 
advantages in real-world scenarios with scarce data 
[18]. Zhou et al. proposed the use of Deep Convolution-
al Generative Adversarial Networks (DCGAN), which 
overcome the limitations of training data and achieve 
highly accurate gear diagnosis in the presence of scarce 
labeled data [49].
Semi-supervised classification models for small-sam-
ple time-series data offer significant advantages in 
terms of improving data utilization and saving anno-
tation costs, but also face challenges in model design. 
In practical applications, careful consideration needs 
to be given to how to balance the advantages and dis-
advantages of the models, as well as how to design and 
adapt the models to semi-supervised classification 
tasks and data characteristics. Thus, we choose to 
generate additional labeled data, and further explore a 
semi-supervised classification model more suitable for 
small sample time series data by exploring the intrinsic 
connection between labeled and unlabeled data.

3. Methods
In this section, we elaborate on the semi-supervised 
time series classification method proposed. The 
semi-supervised classification method consists of 
three modules: data augmentation module, feature 
extraction fusion module, and semi-supervised clas-
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sification module, where the semi-supervised classi-
fication module consists of a self-supervised network 
suitable for unlabeled data and a supervised network 
suitable for labeled data. The data augmentation mod-
ule generates additional synthetic samples to augment 
the original time series data, followed by extracting 
the discriminant subsequence from the time series 
data, self-predictive regression utilizes the historical 
observations of the time series data to predict its fu-
ture values, the encoder processes the input sequenc-
es through a series of LSTM layers and ultimately 
outputs a compact representation representing the 
future values, and the classification task uses multi-
ple LSTM layers and convolutional layers at the same 
time to construct the feature vectors that ultimately 
classify the labeled data. The semi-supervised network 
is capable of extracting global and local features of the 
time series at multiple scales, thus this semi-super-
vised classification model can fully learn two different 
sets of data and improve the performance of the model. 
The time series data ( ){ } ( ){ }, ,
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is divided into two groups, one is labeled data LD  and 
the other is unlabeled data UD .The sample size of unla-
beled time series data is larger and the sample size of 
labeled data is smaller. These two parts of the dataset 
are trained using different networks, the loss networks 
of the two networks are combined and trained by min-
imizing the joint loss function to train the semi-super-
vised network to successfully classify the time series 
data. The overall architecture of the proposed method 
is displayed in Figure 1.

Figure 1 
Flowchart of semi-supervised classification method

3.1. Data Augmentation Module

Conditional generative adversarial networks 
(CGAN) add additional auxiliary training informa-
tion to generative adversarial networks [28]. To bet-
ter train the network, the conditional generative ad-
versarial network is used to generate multiple types 
of time series data LD  based on the labeled data LD  in 
the time series dataset S . We use the category labels 
of the data as additional information y  is combined 
with a random noise vector Z , which goes from the 
input layer to the generator and the discriminator. 
The generator extracts random vectors z  from a pri-
ori random distributions ( )p z  and splices the ran-
dom vectors with extra information y  to produce 
joint hidden representations, which are used by the 
generator to generate a variety of pseudo-time series 
data. The discriminator inputs are real-time series 
data x , or the generator generates fake time series 
data samples ( )G z y  with auxiliary information y . 
The discriminator can determine whether the time 
series data samples are real or generated based on 
the input time series data samples and label condi-
tion information. The expression for the objective 
function of the conditional generative adversarial 
network is:

  

the generator generates fake time series data 
samples  G z y  with auxiliary information y . The 
discriminator can determine whether the time series data 
samples are real or generated based on the input time 
series data samples and label condition information. The 
expression for the loss function of the conditional 
generative adversarial network is: 
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where G denotes the generative model and D  denotes 
the discriminative model,  zp z  denotes the prior input 
noise and y denotes class labels. Conditional generative 
adversarial networks make full use of the existing 
labeling information to learn and generate high-quality 
and diverse time series data more efficiently. Figure 2 
illustrates the basic structure of data enhancement using 
CGAN. 
Figure 2  

Basic structure of CGAN 
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where m  denotes the length of the time series, k  
denotes the length of the subsequence, 1q m k   . A 
shapelet is essentially a segment of a time series that 

maximizes the representation of a class as a 
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Shapelet Local Farthest Deviation Points (LFDPs) 
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adjacent LFDPs, we can obtain shapelet candidate 
features with high discriminative power [15]. 
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where n  denotes the number of shapelets. The 
transformed fused feature vectors are then learned 
using a semi-supervised classification model and 
the semi-supervised classification model classifies 
the feature vectors. 
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is used for training and the self-prediction 
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can help models learn rich hidden state 
representations from unlabeled but structured time 
series data [14]. Self-supervised networks are 
encoder architectures based on Long Short-Term 
Memory (LSTM) networks that are capable of 
learning effective feature representations from 
input time-series data. The encoder network 
consists of multiple LSTM layers, each of which 
is an LSTM module, and each LSTM module is 
set up with two LSTM layers to enhance the 
learning capability of the model. The hidden layer 
activation function and the output layer activation 
function are used to introduce nonlinear 
transformations between the hidden layers and at 
the final output, respectively, to increase the 
expressive power of the model. The loss function 
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where uD  denotes the number of unlabeled 
samples of the time series, iy  denotes the true 
value of the data series data, ˆiy  denotes the 
predicted value of the network. For labeled time 
series datasets i Lx D , a supervised learning 

(1)

where G denotes the generative model and D  de-
notes the discriminative model, ( )zp z  denotes the 
prior input noise and y  denotes class labels. Condi-
tional generative adversarial networks make full use 
of the existing labeling information to learn and gen-
erate high-quality and diverse time series data more 
efficiently. Figure 2 illustrates the basic structure of 
data enhancement using CGAN.

Figure 2 
Basic structure of CGAN
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where uD  denotes the number of unlabeled samples 
of the time series, iy  denotes the true value of the data 
series data, ˆiy  denotes the predicted value of the net-
work. For labeled time series datasets i Lx D∈ , a super-
vised learning approach is used for training to perform 
classification tasks on time series datasets. Supervised 
networks are classification networks that combine 
deep convolutional networks and self-attention mech-
anisms to capture both local features and long-range 
dependencies of time series data. The stacking of 
multiple convolutional layers enables the network to 
learn complex feature representations of time series, 
the self-attention mechanism to capture long-range 
dependencies of time series data. The global average 
pooling layer and the dropout layer reduce the number 
of parameters, thus reducing the risk of over-network 
fitting and improving the computational efficiency of 
the network. The computational efficiency of the mod-
el is optimized using the Dynamic Quantization meth-
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od, which accelerates computation and reduces energy 
consumption. The fully connected layer categorizes 
the data features. The loss function expression for su-
pervised network training is:
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follows: 
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balance between supervised and unsupervised loss 
and achieving the highest accuracy.  
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where λ  is a hyper-parameter. The correct λ  neither 
biases the supervised network weights nor ignores 
the learning task of the self-supervised network [16]. 
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on improvements in accuracy, thus encouraging ac-
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Step 3: Q-table state update. Using the learning rate 
and discount factor, the Q-value corresponding to the 
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consumption. The fully connected layer categorizes the 
data features. The loss function expression for 
supervised network training is: 

  
1

1 log ,
LD

i i
iL

s y p
D 

  L  (6) 

where LD  denotes the number of time series labeled 
samples, y  denotes the true label of the dataset, ip  
denotes the result of the probability value predicted by 
the classification model. 
Figure 3  

Architecture of Semi-supervised classification module  

 
Semi-supervised classification models include both 
self-supervised and supervised networks, the self-
supervised task is the auxiliary task and the supervised 
task is the main task, so the objective function is the 
weighted sum of the two loss functions. The self-
supervised task is the auxiliary task and the supervised 
task is divided into the main task. By optimizing the 
joint loss function, the method can effectively train all 
the task modules and improve the generalization ability 
of the semi-supervised classification model. The loss 
function expression for the semi-supervised 
classification module is: 

   ,1s ss   L L L  (7) 

where   is a hyper-parameter. The 
correct  neither biases the supervised network 
weights nor ignores the learning task of the self-
supervised network [16]. Reinforcement learning 
algorithms in which individual intelligentsia are 
used for parameter updating, dynamically 
updating the weights and significantly improving 
the algorithm convergence efficiency and 
performance [43]. We use reinforcement learning 
to dynamically adjust the weight coefficients   in 
the loss function [23]. The steps of weight 
updating based on reinforcement learning are as 
follows: 

Step 1: Agent Initialization. When an agent is 
initialized, a Q-table is created and a state matrix 

 1 2,s   and an action matrix 

 1 2,a     are constructed. 1  is the weight 
of the supervisory network, 2  is the  weight of 
the self-supervisory network, i  denotes 
the change in weight.The state matrix is the 
current weights of the self-supervised network 
and the supervised network, and the action matrix 
is the adjustment of the weights, which represents 
an increase of 0.1 or a decrease of 0.1 in the 
value.  

Step 2: Construct the reward function R , the loss 
function L  and the evaluation function Q . The 
reward function indicates that rewards are given 
based on improvements in accuracy, thus 
encouraging actions that will improve the 
performance of the model.  

Step 3: Q-table state update. Using the learning 
rate and discount factor, the Q-value 
corresponding to the current state and action is 
adjusted according to the update rules of the Q-
learning algorithm. The agent updates the Q-table 
based on the reward received and the maximum 
expected Q-value of the next state. The agent all 
updates its state based on the rewards it 
receives , with the aim of finding the optimal 
balance between supervised and unsupervised loss 
and achieving the highest accuracy.  

        , , max , , ,aQ s a Q s a l r Q s a Q s a               (8) 

where  ,Q s a  denotes the Q value of the action 
a  taken in the current state s , l  denotes the 
learning rate, r denotes the reward R obtained 
after the execution of the current action a ,   
denotes the discount factor, which is the degree of 
importance attached to the future reward, and 

 max ,a Q s a   denotes the maximum Q value of 
all the possible actions in the next state s , which 
denotes the maximum reward expected from the 
next state. 

(8)

where ( ),Q s a  denotes the Q  value of the action a  
taken in the current state s, l  denotes the learning 
rate, r  denotes the reward R  obtained after the exe-
cution of the current action a, γ  denotes the discount 
factor, which is the degree of importance attached 
to the future reward, and ( )max ,a Q s a′ ′ ′

 denotes the 
maximum Q  value of all the possible actions in the 
next state s′, which denotes the maximum reward ex-
pected from the next state.
Step 4: Loop training. Repeat steps 2 and 3 to calcu-
late the accuracy using the model performance on 
the validation set and update the α value via Agent 
accordingly. 
Step 5: Depending on the action chosen by the Agent 
and the reward received, the α value is updated to 
guide the training of the model in the next loop. 

Figure 3 
Architecture of Semi-supervised classification module
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Step 6: When both the model and the Agent reach a 
certain level of optimization, the performance of the 
model on the test set is used to evaluate the effective-
ness of the whole training process. The optimal α
value is obtained, and ultimately the optimal classifi-
cation accuracy is obtained. 
After data augmentation, 1000 samples are added to 
each category in the time series dataset. The feature 
vectors are obtained, and we perform semi-super-
vised classification on the time series dataset. During 
semi-supervised classification model training, the 
learning rate is set to 0.001, the batch size is set to 128, 
and the training period is set to 1000. Meanwhile, the 
model uses two optimizers, Adam and SGD, to take 
advantage of Adam fast convergence, and then takes 
advantage of SGD generalization performance by us-
ing the Adam optimizer in training and switching the 
optimizer to SGD when it reaches the specified num-
ber of training times. All methods in this manuscript 
were used on a Windows 10 PC with a 13th Gen In-
tel(R) Core(TM) i9-13900KF 3.00 GHz CPU, 64.00 GB 
of RAM, and an NVIDIA GeForce RTX 4090 GPU. The 

Python version uses Version 3.8.10, PyTorch version 
uses version 2.0.1.

4. Results 
4.1. UCR Time Series Benchmark Dataset
We conducted a validation process by selecting small 
datasets from the UCR benchmark dataset, UCR data-
set is a well-established dataset for time series analy-
sis. The training and testing of our method were per-
formed using the datasets specified in the UCR time 
series [6]. The primary criteria for the dataset were 
that the sample size was less than 1000, the dataset 
consisted of several different time series lengths, and 
contained both binary and multi-categorical datasets. 
Additionally, In order to ensure the reliability of the 
experimental results and the validity of the compar-
isons, we employed three different ratios of labeled 
dataset to unlabeled dataset, namely 1:9, 3:7, and 5:5. 
The basic information of the UCR time series is pre-
sented in Table 1, where instance represents the num-

Datasets Instance Length Class

Beef 30 470 5
BeetleFly 20 512 2
BirdChicken 20 512 2
CBF 900 30 3
ChlorineConcentration 40 166 3
Coffee 28 286 2
CricketX 390 300 12
CricketY 390 300 12
CricketZ 390 300 12
DistalPhalanxOutlineAgeGroup 400 80 3
DistalPhalanxOutlineCorrect 600 80 2
DistalPhalanxTW 400 80 6
ECG200 100 96 2
ECG5000 500 140 5
ECGFiveDays 23 136 2
FaceAll 560 131 14
FreezerRegularTrain 150 301 2
HouseTwenty 40 2000 2
InsectWingbeatSound 220 256 11
Meat 60 448 3

Datasets Instance Length Class

MedicalImages 381 99 10
MiddlePhalanxOutlineAgeGroup 600 80 3
MiddlePhalanxOutlineCorrect 400 80 3
MiddlePhalanxTW 399 80 6
MoteStrain 20 84 2
PhalangesOutlinesCorrect 600 291 2
ProximalPhalanxOutlineAgeGroup 400 80 3
ProximalPhalanxOutlineCorrect 600 80 2
ProximalPhalanxTW 400 80 6
ShapeletSim 20 500 2
SonyAIBORobotSurface1 20 70 2
SonyAIBORobotSurface2 27 65 2
Strawberry 613 235 2
SwedishLeaf 500 128 15
SyntheticControl 300 60 6
ToeSegmentation1 40 277 2
ToeSegmentation2 36 343 2
TwoLeadECG 23 82 2
UMD 36 150 3
Wine 57 234 2

Table1
Basic information of the UCR benchmark time series dataset
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ber of samples in the dataset, all the series data are of 
equal length, length represents the length of the data-
set, and class represents the category of the dataset.

4.1.1. Methods of Comparison
This paper compares several semi-supervised clas-
sification methods for time series. Label Propagation 
propagates the labels of labeled data to unlabeled data, 
thus realizing the classification of labeled data [33]. 
The self-training method utilizes the model to make 
predictions on unlabeled data and uses these self-gen-
erated predictions to augment the training of the mod-
el, for comparative use, KNN is used as the base clas-
sifier in this paper, and good classification accuracies 
are obtained through multiple iterations [4]. Pseudo 
Label helps the model to learn better from unlabeled 
information, and our semi-supervised classification 
model based on Pseudo Label implemented by the un-
derlying LSTM network [19]. Semi-supervised Time 
Series Classification (MTL) model utilizes features 
learned from self-supervised tasks with unlabeled 
data while drawing on established multi-task learning 
methods and model predictions as auxiliary tasks to 
be optimized along with the primary task of classifica-
tion [14]. A semi-supervised time series classification 
model for self-supervised learning (SSTSC), which 
uses self-supervised learning as a secondary task that 
is co-optimized with the primary Time Series Classi-
fication (TSC) task [38]. In this paper, these five meth-
ods are fully compared with the DA-FSSSC method to 
verify the validity of the present method.

4.1.2. Performance Evaluation
For the semi-supervised classification problem, this 
paper chooses the classical classification accuracy 
rate as the evaluation index. The accuracy rate refers 
to the percentage of the total samples that the model 
predicts correctly.

 

 

Datasets Instance Length Class 

ToeSegmentation1 40 277 2 

ToeSegmentation2 36 343 2 

TwoLeadECG 23 82 2 

UMD 36 150 3 

Wine 57 234 2 

4.1.1 Methods of Comparison 
This paper compares several semi-supervised 
classification methods for time series. Label 
Propagation propagates the labels of labeled data to 
unlabeled data, thus realizing the classification of 
labeled data [33]. The self-training method utilizes the 
model to make predictions on unlabeled data and uses 
these self-generated predictions to augment the training 
of the model, for comparative use, KNN is used as the 
base classifier in this paper, and good classification 
accuracies are obtained through multiple iterations [4]. 
Pseudo Label helps the model to learn better from 
unlabeled information, and our semi-supervised 
classification model based on Pseudo Label 
implemented by the underlying LSTM network [19]. 
Semi-supervised Time Series Classification (MTL) 
model utilizes features learned from self-supervised 
tasks with unlabeled data while drawing on established 
multi-task learning methods and model predictions as 
auxiliary tasks to be optimized along with the primary 
task of classification [14]. A semi-supervised time 
series classification model for self-supervised learning 
(SSTSC), which uses self-supervised learning as a 
secondary task that is co-optimized with the primary 
Time Series Classification (TSC) task [38]. In this 
paper, these five methods are fully compared with the 
DA-FSSSC method to verify the validity of the present 
method. 

4.1.2 Performance Evaluation 
For the semi-supervised classification problem, this 
paper chooses the classical classification accuracy rate 
as the evaluation index. The accuracy rate refers to the 
percentage of the total samples that the model predicts 
correctly. 

 ccuracy ,TP TNA
TP TN FP FN




  
 (9) 

where TP denotes the number of positive class samples 
that the model correctly predicts as positive, 
TN denotes the number of negative class samples that 
the model correctly predicts as negative, FP denotes the 
number of negative class samples that the model 
incorrectly predicts as positive, and FN denotes the 
number of positive class samples that the model 
incorrectly predicts as negative. 

4.1.3 Analysis of Results 

The DA-FSSSC method is implemented in Python 
using the Pytorch library. Before training, we 
normalize all datasets. Table 2 demonstrates the 
results of the classification comparison between 
the DA-FSSSC method and the comparison 
method. Classification accuracy is the average of 
the results from five runs of the model. The best 
results are shown in black and bold. 

Based on the determined small sample dataset, the 
comparison of methods is carried out, the results 
are shown in Table 2. Compared with the 
comparison methods, the proposed method in this 
paper obtains the highest accuracy on most of the 
datasets, which indicates that the semi-supervised 
classification method in this paper performs better, 
and the advantage outperforms the other methods. 
The label propagation method for semi-supervised 
classification of small-sample time-series data can 
effectively utilize the available labels and is highly 
scalable, but the method is difficult to capture 
long-term dependencies in time-series data. Self-
training algorithms can utilize unlabeled data to 
improve model performance in semi-supervised 
classification tasks using small samples of 
temporal data. However, the effectiveness of these 
algorithms is compromised by error propagation 
and the inherent complexity of temporal data. 
Pseudo-labeling techniques can be adapted to 
time-series features and are a simple and versatile 
semi-supervised technique. The effectiveness of 
the algorithm depends heavily on the quality of the 
initial model, and thus requires robust initial 
model training as well as strategies to limit the 
impact of erroneous pseudo-labeling. The MTL 
algorithm significantly outperforms state-of-the-
art baseline algorithms in a semi-supervised 
setting by means of a ConvNet model that jointly 
performs classification and auxiliary prediction, 
but the method requires careful tuning of the 
hyper-parameters, and in the future more methods 
incorporating consistency regularization will need 
to be explored to improve performance. SSTSC 
improves the performance of the classification 
task by exploiting the semantic context in 
unlabeled data. DA-FSSSC can effectively expand 
the dataset by generating additional training 
samples to improve the diversity of data and 
alleviate the overfitting problem caused by small-
sample data. Meaningful shape features extracted 
from time-series data can improve the accuracy 
and efficiency of classification, and thus the 
method can enable the model to maintain a high 
degree of flexibility and accuracy when dealing 
with complex time-series data. The comparison 
results can also show the advantage of the 
integrated model over a single semi-supervised 
model in that it can effectively utilize the 
advantages of each component to improve the 
classification performance. 

(9)

where TP denotes the number of positive class sam-
ples that the model correctly predicts as positive, TN
denotes the number of negative class samples that 
the model correctly predicts as negative, FP denotes 
the number of negative class samples that the model 
incorrectly predicts as positive, and FN denotes the 
number of positive class samples that the model in-
correctly predicts as negative.

4.1.3. Analysis of Results
The DA-FSSSC method is implemented in Python us-
ing the Pytorch library. Before training, we normalize 
all datasets. Table 2 demonstrates the results of the 
classification comparison between the DA-FSSSC 
method and the comparison method. Classification 
accuracy is the average of the results from five runs 
of the model. The best results are shown in black and 
bold.
Based on the determined small sample dataset, the 
comparison of methods is carried out, the results 
are shown in Table 2. Compared with the compari-
son methods, the proposed method in this paper ob-
tains the highest accuracy on most of the datasets, 
which indicates that the semi-supervised classifica-
tion method in this paper performs better, and the 
advantage outperforms the other methods. The label 
propagation method for semi-supervised classifica-
tion of small-sample time-series data can effectively 
utilize the available labels and is highly scalable, but 
the method is difficult to capture long-term depen-
dencies in time-series data. Self-training algorithms 
can utilize unlabeled data to improve model perfor-
mance in semi-supervised classification tasks using 
small samples of temporal data. However, the effec-
tiveness of these algorithms is compromised by error 
propagation and the inherent complexity of temporal 
data. Pseudo-labeling techniques can be adapted to 
time-series features and are a simple and versatile 
semi-supervised technique. The effectiveness of the 
algorithm depends heavily on the quality of the initial 
model, and thus requires robust initial model training 
as well as strategies to limit the impact of erroneous 
pseudo-labeling. The MTL algorithm significantly 
outperforms state-of-the-art baseline algorithms in a 
semi-supervised setting by means of a ConvNet mod-
el that jointly performs classification and auxiliary 
prediction, but the method requires careful tuning of 
the hyper-parameters, and in the future more meth-
ods incorporating consistency regularization will 
need to be explored to improve performance. SSTSC 
improves the performance of the classification task 
by exploiting the semantic context in unlabeled data. 
DA-FSSSC can effectively expand the dataset by gen-
erating additional training samples to improve the 
diversity of data and alleviate the overfitting problem 
caused by small-sample data. Meaningful shape fea-
tures extracted from time-series data can improve 
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Table2
Performance comparison in UCR benchmark time series dataset

Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

Be
ef

Label Propagation 0.300 0.400 0.667

Self-Training 0.267 0.300 0.433

Pseudo Label 0.300 0.333 0.363

MTL 0.500 0.750 0.830

SSTSC 0.500 0.550 0.640

DA-FSSSC 0.600 0.780 0.860

Be
et

le
Fl

y

Label Propagation 0.600 0.610 0.650

Self-Training 0.500 0.550 0.700

Pseudo Label 0.400 0.500 0.530

MTL 0.625 0.775 0.875

SSTSC 0.500 0.675 0.750

DA-FSSSC 0.650 0.780 0.880

Bi
rd

C
hi

ck
en

Label Propagation 0.500 0.510 0.520

Self-Training 0.400 0.420 0.510

Pseudo Label 0.500 0.510 0.525

MTL 0.750 0.805 0.875

SSTSC 0.500 0.750 0.875

DA-FSSSC 0.650 0.755 0.800

C
BF

Label Propagation 0.449 0.592 0.599

Self-Training 0.331 0.683 0.817

Pseudo Label 0.395 0.575 0.618

MTL 0.962 0.978 0.995

SSTSC 0.899 0.925 0.998

DA-FSSSC 0.893 0.894 0.976

C
hl

or
in

eC
on

ce
nt

ra
tio

n

Label Propagation 0.435 0.465 0.512

Self-Training 0.462 0.496 0.514

Pseudo Label 0.532 0.532 0.543

MTL 0.597 0.702 0.816

SSTSC 0.527 0.779 0.854

DA-FSSSC 0.616 0.806 0.897

Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

C
off

ee

Label Propagation 0.914 0.934 0.964

Self-Training 0.893 0.929 0.929

Pseudo Label 0.464 0.464 0.535

MTL 0.833 0.917 0.927

SSTSC 0.700 0.979 0.996

DA-FSSSC 0.793 0.864 0.944

C
ri

ck
et

X

Label Propagation 0.277 0.377 0.436

Self-Training 0.231 0.323 0.408

Pseudo Label 0.220 0.310 0.433

MTL 0.663 0.718 0.776

SSTSC 0.513 0.653 0.674

DA-FSSSC 0.795 0.828 0.899

C
ri

ck
et

Y

Label Propagation 0.341 0.449 0.503

Self-Training 0.395 0.415 0.474

Pseudo Label 0.297 0.315 0.405

MTL 0.677 0.737 0.756

SSTSC 0.449 0.551 0.696

DA-FSSSC 0.815 0.895 0.941

C
ri

ck
et

Z

Label Propagation 0.226 0.362 0.423

Self-Training 0.233 0.362 0.464

Pseudo Label 0.205 0.366 0.451

MTL 0.577 0.737 0.756

SSTSC 0.474 0.570 0.609

DA-FSSSC 0.774 0.897 0.907

D
is

ta
lP

ha
la

nx
O

ut
lin

eA
ge

G
ro

up Label Propagation 0.691 0.683 0.705

Self-Training 0.669 0.676 0.676

Pseudo Label 0.467 0.683 0.683

MTL 0.641 0.759 0.806

SSTSC 0.775 0.794 0.803

DA-FSSSC 0.777 0.791 0.884
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Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

D
is

ta
lP

ha
la

nx
O

ut
lin

eC
or

re
ct Label Propagation 0.656 0.710 0.717

Self-Training 0.714 0.743 0.746

Pseudo Label 0.583 0.681 0.731

MTL 0.739 0.773 0.807

SSTSC 0.672 0.724 0.770

DA-FSSSC 0.623 0.656 0.736

D
is

ta
lP

ha
la

nx
TW

Label Propagation 0.439 0.612 0.619

Self-Training 0.612 0.619 0.633

Pseudo Label 0.302 0.582 0.676

MTL 0.806 0.815 0.825

SSTSC 0.651 0.717 0.764

DA-FSSSC 0.842 0.921 0.906

EC
G

20
0

Label Propagation 0.630 0.636 0.655

Self-Training 0.630 0.647 0.666

Pseudo Label 0.640 0.654 0.670

MTL 0.800 0.900 0.910

SSTSC 0.789 0.795 0.821

DA-FSSSC 0.730 0.850 0.960

EC
G

50
00

Label Propagation 0.927 0.936 0.938

Self-Training 0.925 0.926 0.926

Pseudo Label 0.886 0.923 0.927

MTL 0.940 0.953 0.955

SSTSC 0.964 0.975 0.993

DA-FSSSC 0.844 0.869 0.965

EC
G

Fi
ve

D
ay

s

Label Propagation 0.481 0.561 0.534

Self-Training 0.482 0.498 0.642

Pseudo Label 0.497 0.499 0.502

MTL 0.955 0.966 0.994

SSTSC 0.820 0.900 0.995

DA-FSSSC 0.859 0.882 0.949

Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

Fa
ce

A
ll

Label Propagation 0.432 0.567 0.612

Self-Training 0.326 0.581 0.653

Pseudo Label 0.437 0.528 0.740

MTL 0.740 0.771 0.787

SSTSC 0.751 0.799 0.865

DA-FSSSC 0.778 0.800 0.898

Fr
ee

ze
rR

eg
ul

ar
Tr

ai
n

Label Propagation 0.573 0.724 0.767

Self-Training 0.589 0.709 0.755

Pseudo Label 0.502 0.757 0.758

MTL 0.785 0.890 0.893

SSTSC 0.861 0.906 0.928

DA-FSSSC 0.845 0.889 0.936

H
ou

se
Tw

en
ty

Label Propagation 0.420 0.555 0.639

Self-Training 0.361 0.672 0.706

Pseudo Label 0.420 0.420 0.579

MTL 0.706 0.738 0.769

SSTSC 0.767 0.808 0.936

DA-FSSSC 0.743 0.846 0.884

In
se

ct
W

in
gb

ea
tS

ou
nd

Label Propagation 0.318 0.495 0.583

Self-Training 0.304 0.422 0.557

Pseudo Label 0.290 0.290 0.324

MTL 0.398 0.459 0.536

SSTSC 0.438 0.527 0.575

DA-FSSSC 0.715 0.741 0.881

M
ea

t

Label Propagation 0.633 0.717 0.827

Self-Training 0.633 0.663 0.850

Pseudo Label 0.333 0.343 0.533

MTL 0.567 0.792 0.833

SSTSC 0.625 0.647 0.700

DA-FSSSC 0.667 0.851 0.913
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Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

M
ed

ic
al

Im
ag

es

Label Propagation 0.489 0.572 0.604

Self-Training 0.478 0.617 0.661

Pseudo Label 0.496 0.582 0.623

MTL 0.699 0.738 0.803

SSTSC 0.550 0.580 0.630

DA-FSSSC 0.799 0.842 0.896

M
id

dl
eP

ha
la

nx
O

ut
lin

eA
ge

G
ro

up Label Propagation 0.571 0.597 0.623

Self-Training 0.487 0.591 0.591

Pseudo Label 0.388 0.616 0.616

MTL 0.685 0.694 0.766

SSTSC 0.645 0.709 0.736

DA-FSSSC 0.695 0.779 0.818

M
id

dl
eP

ha
la

nx
O

ut
lin

eC
or

re
ct Label Propagation 0.677 0.746 0.766

Self-Training 0.674 0.732 0.749

Pseudo Label 0.570 0.575 0.580

MTL 0.771 0.782 0.810

SSTSC 0.746 0.768 0.808

DA-FSSSC 0.767 0.802 0.881

M
id

dl
eP

ha
la

nx
T

W

Label Propagation 0.439 0.612 0.619

Self-Training 0.552 0.604 0.604

Pseudo Label 0.272 0.272 0.558

MTL 0.604 0.622 0.649

SSTSC 0.509 0.659 0.792

DA-FSSSC 0.794 0.868 0.909

M
ot

eS
tr

ai
n

Label Propagation 0.831 0.836 0.852

Self-Training 0.539 0.827 0.828

Pseudo Label 0.554 0.559 0.585

MTL 0.833 0.946 0.970

SSTSC 0.894 0.971 0.987

DA-FSSSC 0.798 0.804 0.886

Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

Ph
al

an
ge

sO
ut

lin
es

C
or

re
ct

Label Propagation 0.643 0.731 0.740

Self-Training 0.785 0.800 0.810

Pseudo Label 0.613 0.624 0.630

MTL 0.778 0.820 0.835

SSTSC 0.764 0.787 0.826

DA-FSSSC 0.797 0.838 0.922

Pr
ox

im
alP

ha
lan

xO
ut

lin
eA

ge
Gr

ou
p Label Propagation 0.776 0.844 0.878

Self-Training 0.785 0.800 0.800

Pseudo Label 0.487 0.487 0.853

MTL 0.768 0.778 0.876

SSTSC 0.800 0.849 0.884

DA-FSSSC 0.820 0.853 0.886

Pr
ox

im
al

Ph
al

an
xO

ut
lin

eC
or

re
ct Label Propagation 0.725 0.808 0.825

Self-Training 0.722 0.804 0.832

Pseudo Label 0.683 0.683 0.683

MTL 0.821 0.872 0.919

SSTSC 0.849 0.893 0.946

DA-FSSSC 0.832 0.881 0.895

Pr
ox

im
al

Ph
al

an
xT

W

Label Propagation 0.732 0.766 0.771

Self-Training 0.566 0.717 0.727

Pseudo Label 0.351 0.351 0.682

MTL 0.716 0.777 0.793

SSTSC 0.765 0.782 0.798

DA-FSSSC 0.824 0.905 0.922

Sh
ap

el
et

Si
m

Label Propagation 0.478 0.500 0.513

Self-Training 0.467 0.478 0.500

Pseudo Label 0.500 0.510 0.516

MTL 0.600 0.825 0.925

SSTSC 0.725 0.802 0.950

DA-FSSSC 0.683 0.733 0.844
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Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

So
ny

A
IB

O
R

ob
ot

Su
rf

ac
e1

Label Propagation 0.424 0.433 0.433

Self-Training 0.429 0.639 0.684

Pseudo Label 0.428 0.429 0.440

MTL 0.792 0.784 0.799

SSTSC 0.868 0.884 0.900

DA-FSSSC 0.886 0.895 0.905

So
ny

A
IB

O
R

ob
ot

Su
rf

ac
e2

Label Propagation 0.611 0.612 0.711

Self-Training 0.683 0.778 0.817

Pseudo Label 0.617 0.617 0.639

MTL 0.706 0.794 0.853

SSTSC 0.849 0.874 0.969

DA-FSSSC 0.752 0.839 0.879

St
ra

w
be

rr
y

Label Propagation 0.819 0.889 0.895

Self-Training 0.870 0.892 0.903

Pseudo Label 0.552 0.640 0.643

MTL 0.904 0.934 0.959

SSTSC 0.863 0.954 0.974

DA-FSSSC 0.876 0.896 0.922

Sw
ed

is
hL

ea
f

Label Propagation 0.504 0.608 0.650

Self-Training 0.470 0.634 0.698

Pseudo Label 0.136 0.552 0.764

MTL 0.836 0.933 0.978

SSTSC 0.644 0.769 0.862

DA-FSSSC 0.923 0.963 0.997

Sy
nt

he
tic

C
on

tr
ol

Label Propagation 0.630 0.807 0.830

Self-Training 0.630 0.773 0.873

Pseudo Label 0.640 0.983 0.983

MTL 0.942 0.953 0.983

SSTSC 0.948 0.961 0.977

DA-FSSSC 0.949 0.967 0.998

Dataset Methods

Unlabeled 
ratio

Unlabeled 
ratio

Unlabeled 
ratio

90% 70% 50%

To
eS

eg
m

en
ta

tio
n1

Label Propagation 0.500 0.513 0.548

Self-Training 0.522 0.566 0.605

Pseudo Label 0.473 0.568 0.573

MTL 0.696 0.844 0.881

SSTSC 0.794 0.862 0.880

DA-FSSSC 0.713 0.865 0.905

To
eS

eg
m

en
ta

tio
n2

Label Propagation 0.384 0.600 0.615

Self-Training 0.792 0.815 0.869

Pseudo Label 0.385 0.434 0.554

MTL 0.600 0.794 0.853

SSTSC 0.706 0.758 0.837

DA-FSSSC 0.685 0.769 0.877

Tw
oL

ea
dE

C
G

Label Propagation 0.531 0.571 0.575

Self-Training 0.500 0.539 0.605

Pseudo Label 0.499 0.509 0.556

MTL 0.781 0.874 0.883

SSTSC 0.787 0.830 0.887

DA-FSSSC 0.766 0.876 0.943

U
M

D

Label Propagation 0.493 0.514 0.556

Self-Training 0.312 0.493 0.646

Pseudo Label 0.330 0.340 0.500

MTL 0.806 0.817 0.844

SSTSC 0.810 0.820 0.855

DA-FSSSC 0.826 0.833 0.871

W
in

e

Label Propagation 0.481 0.648 0.759

Self-Training 0.500 0.530 0.704

Pseudo Label 0.500 0.511 0.600

MTL 0.518 0.652 0.696

SSTSC 0.523 0.538 0.574

DA-FSSSC 0.689 0.744 0.826
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the accuracy and efficiency of classification, and thus 
the method can enable the model to maintain a high 
degree of flexibility and accuracy when dealing with 
complex time-series data. The comparison results 
can also show the advantage of the integrated model 
over a single semi-supervised model in that it can ef-
fectively utilize the advantages of each component to 
improve the classification performance.

4.1.4. Statistical Analysis
The Friedman Test and post-hoc Nemenyi Test can 
benchmark algorithms based on their rankings on dif-
ferent datasets, comparing the performance of mul-
tiple algorithms on multiple datasets [7]. The algo-
rithms were first ranked and the average ranking was 
calculated, then Friedman test was utilized to deter-
mine if there was a significant difference in the rank-
ings of the algorithms. If the Friedman test shows that 
there was a significant difference, pairwise differenc-
es between the algorithms were further investigated 
using the post-hoc test, which yields a Critical Dif-
ference (CD) value. Figure 4 illustrates the results of 
statistical tests for different proportions of unlabeled 
datasets, where the more rightward the position of 
the model on the axes, the higher the classification ac-
curacy of the model.
Figure 4 illustrates the results of the statistical analy-
sis, where we rejected the original hypothesis because 
the p value was much smaller than the significance 
level, indicating that at least two of the five models 
were statistically significantly different. The results 
in Figure 4 are all calculated at a significance level of 
0.05. According to Figure 4, it can be clearly seen that 
the semi-supervised classification method proposed 
in this paper performs the best among the six methods 
when the unlabeled percentage of the dataset is 90%, 
70%, and 50. The integrated methods MTL, SSTSC, 
and DA-FSSSC are located on the right hand side of 
the graphical axes, so it can be demonstrated that the 
integrated methods outperform the single methods in 
semi-supervised classification of small sample data-
sets of time series.

4.2. ECG Dataset
Semi-supervised classification of ECG data has a 
very important role in the medical industry as clas-
sification models can identify previously undetected 
arrhythmia patterns or subtle changes [17]. Semi-su-

Figure 4 
Results of statistical analysis, (a) Rate of unlabeled dataset 
is 90%, (b) Rate of unlabeled dataset is 70%, (c) Rate of 
unlabeled dataset is 50%

(a)

(c)

(b)

pervised learning can reduce the need for expert la-
beling of ECG datasets, thereby reducing the costs 
associated with data collection and labeling. In this 
paper, we choose 1000 samples for the training set 
and 200 samples for the test set of ECG data. The 
goal of semi-supervised classification methods is to 
be able to recognize different types of ECG data. The 
ECG dataset is shown in Figure 5.
We test the ECG dataset using five comparative meth-
ods and the method proposed in this paper and sim-
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Figure 5 
Display of ECG data samples

ulate three different unlabeled datasets of 90%, 70%, 
and 50%. The accuracy test results of the method are 
shown in Table 3.
According to the comparison results in Table 3, when 
the percentage of unlabeled datasets is higher than 
90%, the accuracy of the semi-supervised classifi-
cation method proposed in this paper is higher than 
0.800 and higher than all the compared methods. 
When the percentage of unlabeled dataset is 50%, the 
classification accuracy of the proposed method in this 
paper is higher than 0.900. When the percentage of 
unlabeled datasets is 70%, the classification accura-
cy of the proposed method in this paper is 0.855, and 
the accuracies of label propagation, self-training, and 
SSTSC are higher than 0.800. When the percentage of 
unlabeled dataset is 50%, the classification accuracy 
of the proposed method in this paper is higher than 
0.900. Semi-supervised learning reduces the need for 
large amounts of labeled data, which reduces the cost 

Table3
Classification results in ECG dataset

Unlabeled ratio Label Propagation Self-Training Pseudo Label MTL SSTSC DA-FSSSC

90% 0.790 0.790 0.670 0.755 0.800 0.805

70% 0.800 0.820 0.775 0.797 0.845 0.855

50% 0.890 0.867 0.800 0. 880 0.899 0.905

and time of data preparation, and achieving higher 
accuracy on semi-supervised classification tasks for 
ECG data is important for early diagnosis and treat-
ment of cardiac diseases.

4.3. EEG Dataset
In reality, it is relatively easy to obtain unlabeled 
EEG data, but obtaining expert manually labeled 
data is very difficult and expensive. Unlabeled EEG 
data may be overlooked or underutilized in many 
studies, and semi-supervised learning makes these 
data a valuable resource to help improve their utili-
zation [40]. The dataset used in this paper is exem-
plary segmented EEG time series recordings of ten 
epilepsy patients collected from the Neurology and 
Sleep Center, Hauz Khas, New Delhi [34]. We ran-
domly assigned 80% of the data in each class to the 
training set and the remaining 20% to the test set. 
The goal of the semi-supervised classification meth-



485Information Technology and Control 2024/2/53

(a)

(c)

(b)

Figure 6 
Presentation of a sample of EEG data, (a) preictal, (b) interictal, (c) ictal

od is to be able to recognize the seizure phases of ep-
ilepsy, which are preictal, interictal, and ictal. The 
EEG dataset is shown in Figure 6.
We test the EEG dataset using five comparative meth-
ods and the method proposed in this paper and sim-

ulate three different unlabeled percentages of 90%, 
70%, and 50%. The accuracy test results of the meth-
ods are shown in Table 4.
According to the comparison results in Table 4, when 
the percentage of unlabeled dataset is higher than 

Table4
Classification results in EEG dataset

Unlabeled ratio Label Propagation Self-Training Pseudo Label MTL SSTSC DA-FSSSC

90% 0.533 0.435 0.533 0.600 0.700 0.715

70% 0.567 0.555 0.639 0.852 0.875 0.867

50% 0.633 0.607 0.673 0.903 0.910 0.913
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90%, the accuracy of the semi-supervised classifi-
cation method proposed in this paper is higher than 
0.700, with an accuracy of 0.715. When the percentage 
of unlabeled dataset is 70%, the classification accura-
cy of SSTSC is highest, and the semi-supervised clas-
sification method proposed in this paper ranks sec-
ond. When the percentage of unlabeled dataset is 50%, 
the classification accuracy of the proposed method is 
higher than 0.900. Also, the classification accuracy of 
MTL and SSTSC is higher than 0.900, indicating that 
the classification accuracy of the integrated model is 
higher than that of the single model. Semi-supervised 
classification of EEG epilepsy data improves the effi-
ciency and accuracy of epilepsy monitoring and diag-
nosis, reduces healthcare costs, and is important for 
early identification of epilepsy patients and predic-
tion of seizures.

4.4. Plant Electrical Signal Datasets
When plants encounter stimuli, they rapidly send 
electrical signals to different parts of the plant and 
even to the whole plant, plant electrical signals are a 

Figure 7 
Sample display of plant electrical dataset

record of electrical activity in plant cells and tissues 
[20]. Plant electrical signals can more quickly reflect 
external stimuli received by the plant. In the absence 
of labels or with only a small amount of labeled data, 
semi-supervised learning helps to identify and inter-
pret patterns of plant electrical signals, enabling fast-
er understanding and prediction of plant responses to 
environmental changes. In this paper, we utilize plant 
electrical signal data obtained from actual laboratory 
measurements, selected from 300 ml of NaCl con-
centration stimulation, to identify the salt tolerance 
of wheat [41]. The goal of the semi-supervised clas-
sification method is to be able to correctly identify 
the signaling dynamics of wheat leaves DeKang961 
(salt-tolerant) and Langdon (salt-sensitive) under 
continuous stress of NaCl concentration. The Plant 
electrical signals dataset is shown in Figure 7.
We test the Plant electrical signal dataset using five 
comparative methods and the method proposed in 
this paper and simulated three different unlabeled ra-
tios of 90%, 70%, and 50%. The accuracy test results 
of the methods are shown in Table 5.

Table5
Classification results in plant electrical signal dataset

Unlabeled ratio Label Propagation Self-Training Pseudo Label MTL SSTSC DA-FSSSC

90% 0.721 0.808 0.621 0.600 0.710 0.784

70% 0.774 0.854 0.684 0.852 0.787 0.888

50% 0.885 0.907 0.733 0.903 0.835 0.910
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According to the comparison results in Table 5, the 
Self-Training model has the highest classification 
accuracy when the proportion of unlabeled dataset is 
higher than 90%, which indicates that Self-training is 
able to maximize the use of these limited labeled data 
to bootstrap the learning of unlabeled data, adapts to 
the new plant electrical signal data distribution in 
each iteration, and improves the adaptability of the 
model by continuously updating itself. The accuracy 
of the DA-FSSSC method ranked second among all 
methods. When the proportion of unlabeled data is 
50% and 70%, the DA-FSSSC method utilizes both 
labeled data and a large amount of unlabeled data, 
combined with data augmentation, a small amount of 
labeled data can also generate more training samples, 
which can be used for training together with unla-
beled data to improve the efficiency and effectiveness 
of model learning, and the model achieves satisfac-
tory performance with limited plant electrical signal 
data. The classification accuracy of the semi-super-
vised classification method proposed in this paper is 
higher than the other compared models at both 70% 
and 50% of unlabeled datasets. Successful semi-su-
pervised classification of plant electrical signal data 
allows depth study of different adaptive and response 
mechanisms of plants to salt stress, helps to reveal the 
physiological, genetic and molecular mechanisms of 
plants, contributes to the selection of varieties with 
strong salt tolerance, and provides an important basis 
for plant genetic improvement and breeding.

4.4.1. Visual Analysis of Results
t-SNE is a nonlinear dimensionality reduction tech-
nique that preserves the local structure in the data 
so that similar data points remain close in the lower 
dimensional space[10].To better explain and visu-
alize the semi-supervised classification strategy of 
our model for the plant electrical dataset, we used a 
dimensionality reduction technique to map the plant 
electrical data from a high-dimensional space to a 
two-dimensional space, to better understand the clas-
sification process of the semi-supervised classifica-
tion module by drawing decision boundaries. Figure 
8 illustrates the categorical t-SNE decision boundary 
plots for plant electrical signal data for different pro-
portions of unlabeled data.
The analysis presented in Figure 8 demonstrates that 
our model effectively captures significant features 
in unlabeled data, and both self-supervised learning 

Figure 8 
Visualization of t-SNE and decision boundaries for the 
plant electric dataset (a) Rate of unlabeled dataset is 90%, 
(b) Rate of unlabeled dataset is 70%, (c) Rate of unlabeled 
dataset is 50%

(a)

(b)

(c)
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and supervised learning techniques contribute to im-
proved classification of plant electrical signal time 
series data. In general, the more labeled data there 
is, the better the model performs because the labeled 
data provides the model with more information about 
the true class labels, which helps the model learn de-
cision boundaries and representations more accu-
rately. When the proportion of unlabeled data is 50%, 
DA-FSSSC has more labeled examples to learn from 
and more information to train on, with higher classifi-
cation accuracy.Although some plant electrical signal 
data could not be classified successfully for the time 
being, our model achieved good classification perfor-
mance in most cases.

4.4.2. Ablation Study
To demonstrate that each module in the semi-super-
vised classification model utilizes the strengths of the 
module, we conducted an ablation study of semi-su-
pervised classification methods. Ablation studies 
were performed on the plant electrical signal dataset. 
The basic model is the semi-supervised classification 
method SSC, the second method is the semi-super-
vised classification method DA-SSC with the addi-
tion of a data enhancement module, the third model 
is the semi-supervised classification method FSSSC 
with the addition of a feature extraction and fusion 
module, and the fourth method is the semi-supervised 
classification model DA-FSSSC with the addition of 
a data enhancement module and a feature extraction 
and fusion module. Figure 9 illustrates the results of 

the ablation study. As can be seen from Figure 9, with 
different proportions of unlabeled data, the classi-
fication accuracy of the DA-SSC method is higher 
than that of the SSC model, which indicates that the 
semi-supervised classification network is sufficiently 
trained after adding time series data, and the accura-
cy of classification is improved, although the network 
training sacrifices sometimes. CGAN generates data 
to enhance model robustness and prevent overfitting, 
and is an effective strategy to improve model quality 
in the presence of insufficient data. The classification 
accuracies of the FSSSC method are higher than that 
of the SSC method, which indicates that the feature 
extraction module can effectively learn the potential 
information of time series data and improve classifi-
cation accuracy. The results of the ablation study ef-
fectively demonstrate that each module of DA-FSSSC 
contributes to the semi-supervised classification task 
under small sample conditions.

5. Results and Future Work
This study introduces a novel semi-supervised classi-
fication approach that involves augmenting the labeled 
samples through data generation, extracting the shape 
features of the time series, and employing a combina-
tion of self-supervised learning and supervised learn-
ing strategies for semi-supervised classification. The 
performance of the proposed model is initially assessed 
using the UCR dataset. The classification accuracy of 
the method was better than the comparison method at 
90%, 70%, and 50% of unlabeled samples. Meanwhile, 
to verify the applicability of the method, we select ECG, 
EEG, and plant electrical signal datasets to test again, 
visualization analysis and ablation studies are car-
ried out on the measured plant electrical signal data-
sets, and the results show that the method proposed 
in this paper achieves a better classification effect in 
real scenarios as well. CGAN can effectively augment 
the dataset by generating additional training samples 
to improve the diversity of the data,the fast shape-
let algorithm is able to efficiently extract meaningful 
shapes from time-series data to improve the accuracy 
and efficiency of classification,The semi-supervised 
classification method enables the model to maintain a 
high level of flexibility and accuracy when dealing with 
time-series data with complex patterns and dynamic 
changes. Therefore, the method in this paper provides 

Figure 9 
Results of ablation studies
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a powerful and flexible solution for dealing with the 
problem of classifying complex time-series data with 
small samples. The next step is to combine the im-
proved feature learning and label learning methods to 
further improve the accuracy of the model classifica-
tion with very few labeled time series samples through 
innovative methods and sufficient computational re-
sources. In addition, it is important to consider how to 
improve the model when dealing with large datasets.
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