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Human behavior recognition has become a popular research topic in the field of computer vision. With the 
introduction of deep learning and attention mechanisms, this field has been further promoted. However, issues 
such as dataset acquisition and preprocessing operations on multimodal datasets, modeling of long time infor-
mation in videos, and fusion of temporal and spatial information still exist. In this paper, we first outline some 
video action recognition datasets and related preprocessing techniques, including frame extraction, optical 
flow extraction, and skeletal feature acquisition. Then, the relevant models are classified and parsed according 
to their characteristics and the types of input data modalities. In addition, we evaluate the performance of the 
models on several benchmark datasets to gain a deeper understanding of the model development process. Fi-
nally, we summarized the current challenges faced in the field of video behavior recognition, including model 
timeliness, data set subjectivity and effective fusion of multi-modal features, and proposed possible future im-
provement directions in order to provide more ideas and methods for subsequent research. 
KEYWORDS: Human action recognition; Deep learning; Video; Dataset.

1. Introduction
In recent years, with the rapid updating of technological 
products such as smart phones and the wide dissemina-
tion of self-media, the number of videos on the Internet 
has shown massive growth. Video information gradu-
ally replaces pictures and text as the main information 
dissemination medium in people’s daily life. Due to the 
rich multimodal information contained in video data, 
such as RGB data streams, sound, etc., as well as the 

constant generation of new data, video behavior rec-
ognition has received more and more attention in the 
field of computer vision. This research direction has 
practical application value and significance, such as in 
the fields of unmanned driving, virtual reality, intelli-
gent medical care and intelligent security, which not 
only brings great value to human beings, but also greatly 
improves people’s quality of life and sense of well-being.
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Figure  1
Representative work in chronological video action recognition

Figure 2
Video Behavior Recognition Process
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In this paper, we first introduce the video behavior recog-
nition dataset, and then discuss and evaluate the model 
performance according to different model structures, 
from traditional manual feature extraction to the now 
widely used deep learning feature extraction methods. 
Finally, we summarize the existing models and look 
ahead to possible future work. The flow of video behav-
ior recognition is shown in Figure 2. 
Figure 2 
Video Behavior Recognition Process. 

 

 
The other chapters of this article are introduced as fol-
lows: First, in Section 2, we mainly analyze and summa-
rize the modalities of the data. Secondly, in Section 3, we 
mainly review the video action recognition methods 
based on deep learning in recent years and introduce 
some related work. Subsequently, in Section 4, we com-
pare mainstream methods on benchmark data sets, and 
display and analyze the experimental results. Then, in 
Section 5, we summarize and provide possible future re-
search directions as well as challenges. Finally, we con-
clude the entire article. 
 

 
2. Materials and Method 
Unlike image tasks, the underlying data for video 
action recognition comes from video data from 
various sources. As with image tasks, deep learn-
ing methods usually improve accuracy when the 
amount of training data increases. In the case of the 
video action recognition task, this means that we 
need a large dataset with annotations for more ef-
fective learning. 
In addition, different models also need a common 
dataset to measure their performance. For the 
video action recognition dataset, it mainly comes 
from the video data of various platforms on the 
web and the videos shot by relevant people, the for-
mer mainly obtains the relevant subtitles of the vid-
eos and matches them with the corresponding ac-
tions, and the latter mainly by manually annotating 
the relevant information of the actions. We briefly 
summarize the datasets related to video action 
recognition, as shown in Table 1. 
Nowadays, the source of data is no longer a prob-
lem, the data size is getting bigger and bigger, and 
the data modality is getting more and more com-
mon, such as video, RGB image, depth map, infra-
red map, optical flow, skeletal data, audio, and so 
on. Processing these data as well as training the 
model requires more human and material 
resources, and consumes greater resources. 
Therefore, how to preprocess the acquired data as 
well as extract the features of different modalities 
becomes an urgent problem. Video-based action 
recognition is to recognize human actions from 
action video sequences, and there are three ideas to 
solve this video-based action recognition problem: 
first, the method of directly extracting and clas-
sifying the spatio-temporal features of the 
sequences; second, the method of extracting the 
skeletal information (2D or 3D skeletal 
information) for training; and third, the method of 
using data fusion of multiple modalities to combine 
the features of data from different modalities for 
training. 
Video-based action recognition and image classifi-
cation are very similar in some aspects. Compared  
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The main goal of video behavior recognition is to es-
tablish a relational mapping between video informa-
tion and human actions through various methods, so 
that computers can automatically recognize human 
actions in videos and make the technology better 
serve human beings.
In the past decades, with the emergence of a large 
number of video action recognition methods and 
high-quality 
large-scale action recognition datasets, as well as 
the successful application of neural networks in the 
image domain (e.g., image classification, target de-
tection, segmentation) and the rapid development 
of attention mechanisms [81], there has been an in-
creasing amount of research on video action recogni-
tion, and the research on how to use deep learning for 
video action recognition has begun to receive atten-
tion . In Figure 1, we provide a chronological overview 
of some representative works in recent years.
The implementation of video action recognition usu-
ally requires three components: feature extraction, 
feature coding and feature classification. Feature ex-
traction is the extraction of the most useful features 
in the data by some specific methods, while feature 
coding is the numerical processing of the features (e.g., 
normalization or vectorization) so that different types 
of features can be compared in the same numerical 
space. Feature classification is to input the data after 
feature extraction and feature coding into the model 
and classify the data according to specific needs.
In this paper, we first introduce the video behavior 
recognition dataset, and then discuss and evaluate 
the model performance according to different mod-

el structures, from traditional manual feature ex-
traction to the now widely used deep learning feature 
extraction methods. Finally, we summarize the exist-
ing models and look ahead to possible future work. 
The flow of video behavior recognition is shown in 
Figure 2.
The other chapters of this article are introduced 
as follows: First, in Section 2, we mainly analyze 
and summarize the modalities of the data. Second-
ly, in Section 3, we mainly review the video action 
recognition methods based on deep learning in re-
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cent years and introduce some related work. Sub-
sequently, in Section 4, we compare mainstream 
methods on benchmark data sets, and display and 
analyze the experimental results. Then, in Section 
5, we summarize and provide possible future re-
search directions as well as challenges. Finally, we 
conclude the entire article.

2. Materials and Method
Unlike image tasks, the underlying data for video ac-
tion recognition comes from video data from various 
sources. As with image tasks, deep learning methods 
usually improve accuracy when the amount of train-
ing data increases. In the case of the video action 
recognition task, this means that we need a large 
dataset with annotations for more effective learning.
In addition, different models also need a common 
dataset to measure their performance. For the video 
action recognition dataset, it mainly comes from the 
video data of various platforms on the web and the vid-
eos shot by relevant people, the former mainly obtains 
the relevant subtitles of the videos and matches them 

with the corresponding actions, and the latter mainly 
by manually annotating the relevant information of the 
actions. We briefly summarize the datasets related to 
video action recognition, as shown in Table 1.
Nowadays, the source of data is no longer a problem, 
the data size is getting bigger and bigger, and the data 
modality is getting more and more common, such as 
video, RGB image, depth map, infrared map, optical 
flow, skeletal data, audio, and so on. Processing these 
data as well as training the model requires more hu-
man and material resources, and consumes greater 
resources. Therefore, how to preprocess the acquired 
data as well as extract the features of different mo-
dalities becomes an urgent problem. Video-based ac-
tion recognition is to recognize human actions from 
action video sequences, and there are three ideas to 
solve this video-based action recognition problem: 
first, the method of directly extracting and classifying 
the spatio-temporal features of the sequences; sec-
ond, the method of extracting the skeletal informa-
tion (2D or 3D skeletal information) for training; and 
third, the method of using data fusion of multiple mo-
dalities to combine the features of data from different 
modalities for training.

Table 1
List of popular datasets for video action recognition

Datasets Vintages Data modality Actions Samples Average time

HMDB51 [38] 2011 RGB 51 7K ~5s

UCF101 [67] 2012 RGB 101 13.3K ~6s

Sports1M [37] 2014 RGB 487 1.1M ~5.5m

ActivityNet [28] 2015 RGB 200 28K ~7m

YouTube8M [1] 2016 RGB 3862 8M 230s

Kinetics400 [35] 2017 RGB 400 306K 10s

Kinetics600 [7] 2018 RGB 600 482K 10s

Kinetics700 [8] 2019 RGB 700 650K 10s

AVA [24] 2017 RGB 80 385K 15m

AVA-kinetics [40] 2020 RGB 80 624K 15m

NTU RGB+D [63] 2016 RGB,S,D,IR 60 56K ~8s

NTU RGB+D 120 [47] 2019 RGB,S,D,IR 120 115K ~8s

Sth-Sth V1 [23] 2017 RGB 174 108K 5s

Sth-Sth V2 [23] 2017 RGB 174 220k 5s
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Video-based action recognition and image classifi-
cation are very similar in some aspects. Compared to 
image classification, video data introduces a tempo-
ral dimension. Relevant researchers usually further 
process the acquired video data by extracting con-
secutive video segments into frame-by-frame RGB 
images according to certain time intervals, and then 
the extracted video frames are used for target detec-
tion and classification at the image level according 
to the temporal order, but since a single data pattern 
does not recognize the corresponding actions well, 
in subsequent studies, the RGB images are mostly 
used in combination with other modalities.
Skeletal data describes the human body in graphi-
cal form. Specifically, it exists in the form of joints, 
and there is usually a limit on the number of joints 
to ensure that the required skeletal information can 
be comprehensively covered while reducing data 
redundancy. Compared to RGB video, the skeletal 
representation is more robust to changes in view-
point and appearance. In addition, the pelvic bone of 
the model is usually chosen as the root bone of the 
model, and the transformation matrix of each bone 
relative to the root bone is recursively derived based 
on the root bone. The feature dimensions obtained 
from human skeletal data are much lower compared 
to RGB image frames, and therefore more computa-
tionally efficient. 
The 3D skeletal data can more directly represent body 
part motion-related features such as joint angles and 
velocities, thus allowing for easier and more accurate 
action recognition. The current deep learning meth-
ods for human behavior recognition based on skeletal 
data can be broadly classified into three types accord-
ing to the expression of skeletal keypoints: LSTM-
based recurrent neural network, convolutional neu-
ral network (CNN)-based and graph neural network 
(GCN)-based.
Depth image data is essentially the effect of combin-
ing a normal RGB three-channel color image with a 
depth map. It contains image channels with infor-
mation about the distance to the surface of the ob-
ject in the viewpoint scene, the channels themselves 
are similar to grayscale images, and each pixel value 
is the actual distance to the object as measured by 
the sensor. Compared to RGB image data, depth im-

age data is more resistant to the effects of external 
factors unrelated to behavior, such as the lighting of 
the shooting environment and the texture of the ac-
tor’s clothing. In depth video images, the actor and 
the surrounding shooting scene are usually high-
ly recognizable, and the depth data obtained is less 
susceptible to interference from external factors, so 
subsequent related studies often use depth image 
data.
Optical flow feature is an important feature in hu-
man motion recognition. It is a trajectory feature 
produced by the movement of the foreground target 
itself in the scene, the shift of the camera’s shooting 
viewpoint, or the joint movement of the two that 
makes the pixel points in the video sequence change 
over time. The computational basis is based on the 
assumption that the luminance change of an image 
only originates from the movement of an object, and 
reflects the motion of a human body by utilizing the 
luminance change of pixel points on adjacent frames 
in the time domain. In order to track the position 
of the human body during motion, FlowNet2 pro-
posed by Nvidia, by changing the training strategy, 
introduces a branching network to deal specifically 
with small movements of the object, uses a stacked 
architecture to optimize the optical flow effect, and 
distorts the input image to achieve higher resolution 
optical flow results. PWC-Net proposed by Berlin 
et al. feeds each consecutive frame into the PWC-
Net to compute the optical flow features in PWC-
Net, which utilizes multi-scale features to replace 
the sub-network cascade, and its design follows 
the three principles of Pyramid Feature Extraction 
(Pyramid), Optical Flow Mapping (Warping), and 
Matching Relevance Cost Volume Measurement 
(Cost Volume), whereas, both Warping and Cost Vol-
ume do not contain any learning parameter, which 
can be used to optimize the optical flow results while 
ensure that the network is effective, greatly reducing 
the size of the network model.
The variety of data types and modalities also makes 
the selection of a particular modality or multiple mo-
dalities for the video behavior recognition problem a 
critical step for researchers to weigh. The character-
istics of different modalities and the applicable sce-
narios are described in Table 2.
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Table 2
Advantages and disadvantages of each mode and applicable scenarios

Modalities Vantages Disadvantages Applicable Scenarios

RGB Low cost, easy to collect; rich appearance 
information; wide range of applications

Very sensitive to changes in light, 
background and perspective

Less irrelevant content, 
single scene

Depth chart
Provides structural and shape 
information in three dimensions; robust 
to illumination

Lack of color and texture 
information; distance limitations 
exist; susceptibility to occlusions

Dim or bright, close up, 
unobstructed scenes

Audio 
frequency

Easily localize actions by combining 
video information in time series

Lack of self-appearance 
information

Suitable for multimodal 
learning, as a form of 
auxiliary information

Optical flow Provides more timing information, 
works well

High requirements for the move-
ment changes of the joints, more 
cumbersome acquisition meth-
ods, high computational costs

Behavioral scenes with 
large, unobstructed 
movements

Skeletal graph

Provides three-dimensional information 
about the human body’s posture; 
representation is simple and effective; 
insensitive to viewpoint and context

Lacks appearance and shape 
information; indicates sparse 
content; noisy information

Scenes that can effectively 
extract skeletal keypoints

3. Deep Learning Video Action 
Recognition
In recent years, with the tremendous progress of deep 
learning technology, various deep learning models 
have been proposed. Due to the powerful representa-
tion and superior performance of deep learning-based 
methods, the current mainstream research in this field 
focuses on designing different types of deep learning 
frameworks. Therefore, in this section, we review the 
deep learning-based approaches for video action rec-
ognition in recent years and preset some related works. 
In the following, they are broadly categorized accord-
ing to the different characteristics of the models. The 
advantages and disadvantages are shown in Table 3.

3.1. Handcrafted to 2D CNN Based
As early as before 2015, when convolutional neu-
ral networks have not been applied on a large scale, 
hand-crafted features represented by IDT [83], 
including spatio-temporal volume-based [5], spa-
tio-temporal points of interest (STIP)-based [39], 
and trajectory-based [88], have dominated the field of 

video behavior recognition because of their relatively 
high accuracy and good robustness. With the popu-
larity of deep convolutional neural networks in visual 
tasks, the problem of hand-crafted features has been 
gradually exposed, which not only requires high pro-
duction cost but is also difficult to be scaled up, there-
fore, it is a natural step to apply deep learning to video 
problems.
DeepVideo [37] is a pioneering work in applying deep 
learning to video, and its main research is how to mi-
grate CNNs from the field of image recognition to the 
field of video behavior recognition, the authors pro-
posed to use a 2D CNN model on each video frame 
individually, and tested several fusion methods (late 
fusion, early fusion, and slow fusion) to learn spa-
tio-temporal features for video action recognition. 
However, its migration learning performance on 
UCF101 [67] is about 20% lower than the hand-craft-
ed IDT features. Nevertheless, DeepVideo’s several 
fusion methods have contributed to the subsequent 
development in the video field. The advantages and 
disadvantages of the manual and deep learning meth-
ods are shown in Table 4.
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Table 3
Advantages and disadvantages of deep learning based correlation methods

Deep Learning Specific Methods Vantages Disadvantages

Introduction of CNN Replaced manual production and 
increased efficiency

Recognition accuracy is not high 
enough and is less effective

Two-stream convolutional networks Integration of temporal information 
mitigates the lack of dynamic features

Separation of temporal and 
spatial streams, computationally 
overloaded

Multi-stream CNN More comprehensive compensation for 
overall information

Complexity is greatly increased 
and the lift is not significant

CNN Series
3D CNN Ability to extract both temporal and 

spatial information
The amount of parameters is too 
large to optimize

Variants of 3D CNN Reduces the associated computational 
effort to some extent Not as effective for long videos

LSTM Series
Conventional LSTM Acquisition of movement information 

over longer time spans

Large number of participants, 
easy to lose information and 
difficult to optimize

Variants of LSTM Provides more comprehensive information 
on spatial and temporal representations

Reduced training difficulty com-
pared to conventional LSTMs

Introduction of the attention mechanism Easier access to appropriate spatio-
temporal information

Significantly improved accuracy 
without increasing the amount of 
computation

Introduction of Skeletal + Graph 
Convolution

Easier access to relevant campaign infor-
mation, greatly reducing redundancy

Skeletal joint points are difficult 
to obtain

3.2. Based on Dual/Multistream Networks 
and Their Variants
In order to solve the problem that the recognition 
performance of the RGB unimodal input model is 
limited by the lack of dynamic feature information, 
Simonyan et al. [66] proposed a dual-stream network 
with spatial and temporal streams, as shown in Fig-
ure 3, where the spatial stream utilizes the original 
video frames as the input to capture the visual ap-
pearance information, and the temporal stream takes 
a set of optical flow images as the input to capture the 

motion information between the video frames. The 
dual-stream CNN recognition model is trained sepa-
rately, and the prediction results of the two networks 
are finally fused. This method is also the first CNN-
based method to achieve similar performance to the 
previous best hand characterized IDT on UCF101 
and HMDB51. Many network structures have been 
subsequently explored on this basis. The advantage 
of the two-stream structure is its high accuracy, but 
it is slow. The model proposed by Wang et al. [88] 
feeds multi-scale video frames and optical streams 

Table 4
Comparison of the advantages and disadvantages of crafting and deep learning method

Feature Extraction Methods Vantages Disadvantages

handicraft Suitable for small datasets, relatively fast Requires some prior knowledge of design 
features

deep learning Suitable for large datasets, features learned 
through web learning

Slower speeds, higher hardware 
requirements
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Figure 3
Structure of the two-stream network model

into a dual-stream CNN, which transforms the con-
volutional feature maps by spatio-temporal normal-
ization and channel normalization. In order to better 
fuse the optical flow with RGB images, Wan et al. [82] 
proposed a dual-stream convolutional network (LSF 
CNN) with long- and short-term spatiotemporal fea-
tures, which consists of a long-term spatiotemporal 
feature extraction network (LT-Net), which takes 
the stacked RGB images as inputs, and a short-term 
spatiotemporal feature extraction network (ST-Net), 
which takes optical flow as inputs and extracts the 
optical flow from the two neighboring frames are es-
timated. The dual-scale spatio-temporal features are 
then fused in a fully connected layer and fed into a lin-
ear support vector machine (SVM) to fully learn the 
deep features in both spatial and temporal domains.
After that, many papers on dual-stream networks 
have been released, and several other works [13, 22, 
91], extended the dual-stream model to extract long-
term video-level information for video behavior rec-
ognition. However, the dual-stream network uses a 
relatively shallow network, so many works naturally 
thought of using a deeper network to further improve 
the accuracy. Wang et al. [90] found that the effect of 
simply replacing the network with a deeper one is not 
very obvious, and the authors believed that the train-
ing dataset for action recognition is very small com-
pared with ImageNet, which is easy to overfitting on 
the training dataset. In order to solve this problem, 
they designed several improved experiments, such 
as: using smaller learning rate, using more data en-
hancement techniques, using higher Dropout, etc. to 
prevent the overfitting of the deep network. Based 
on this, a two-stream network is trained using the 

VGG16 model, and the performance of the model is 
greatly improved. Since then, research on deeper 
networks has gradually achieved better results, e.g., 
ResNet [27], Inception [71], and proved that deeper 
networks can usually achieve higher video action rec-
ognition accuracy [117].
Wang et al. [86] proposed a new deep architecture 
(SR-CNNS), which not only shares great modeling 
capability with the original dual-stream CNN, but 
also shows support for dual-stream semantic region 
CNN, and uses an end-to-end network Faster-RCNN 
[62] network instead of the standard spatial streams, 
which can then extract semantic information about 
objects, people and scenes. Meanwhile, Feichten-
hofer et al. [19] discussed the dual-stream network, 
mainly discussed and verified the fusion of the net-
work, and concluded that the optimal fusion posi-
tion is at the last convolutional layer, and used 3D 
pooling instead of 2D pooling after fusion to further 
improve the performance. The residual connection 
is also proposed to establish information connection 
between spatio-temporal convolutions to facilitate 
the information interaction and better learning of 
spatio-temporal features. Wang et al. [85] used a spa-
tio-temporal pyramid approach to fuse the spatial 
and temporal features in the pyramid structure so 
that they can reinforce each other. This model also 
adopts a hierarchical fusion strategy and uses a uni-
form spatio-temporal loss for overall training, which 
also achieves good results. Jain et al. [32] proposed a 
Hybrid Random Forest Bi-Convolutional Recurrent 
Neural Network (HRF Bi-CRNN), in which a model 
based on a Bi-Convolutional Recurrent Neural Net-
work (CRNN) is fused with Random Forest classifica-
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In order to solve the problem that the recognition 
performance of the RGB unimodal input model is 
limited by the lack of dynamic feature information, 
Simonyan et al. [66] proposed a dual-stream net-
work with spatial and temporal streams, as shown 
in Figure 3, where the spatial stream utilizes the 
original video frames as the input to capture the 
visual appearance information, and the temporal 
stream takes a set of optical flow images as the in-
put to capture the motion information between the 
video frames. The dual-stream CNN recognition 
model is trained separately, and the prediction re-
sults of the two networks are finally fused. This 
method is also the first CNN-based method to 
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hand characterized IDT on UCF101 and HMDB51. 
Many network structures have been subsequently 
explored on this basis. The advantage of the two-
stream structure is its high accuracy, but it is slow. 
The model proposed by Wang et al. [88] feeds 
multi-scale video frames and optical streams into a 
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tion for accurate HAR. In addition, a Bi-CRNN based 
autoencoder is used to learn the spatio-temporal data 
from motion and sensors, which is further utilized to 
integrate the Random Forest for human gestures and 
movements for final classification and detection.
Similarly, more and more attention has been paid to 
another problem of optical flows, i.e., they still cannot 
capture temporal information at a distance. To solve 
this problem, Wang et al. [91] constructed a Temporal 
Segment Network (TSN) based on the idea of remote 
temporal structure modeling for video-level action 
recognition, and its model structure is shown in Fig-
ure 4. Specifically, TSN first divides the whole video 
into several segments, which are uniformly distrib-
uted along the time dimension. Then TSN randomly 
selects a video frame in each segment according to 
a certain weight. However, unlike the original du-
al-stream network that uses ClarifaiNet [110] as the 
base model, this model adopts the BN-Inception [31] 
network to extract features along the temporal and 
spatial streams separately. TSN is able to model long 
time video because the model is based on the whole 
video, and this method also reduces the training cost 
of long video sequences, and many subsequent works 
have been improved on this basis. In addition, the Si-
amese network designed by Wang et al. [94] extends 
the two-stream network to a two-stream concatenat-
ed network by extracting features from the frames be-
fore the action occurs (prerequisite) and the frames 
after the action occurs (resultant), and modeling the 
action as a transformation on the high-level feature 
space. Considering that many frames in a video se-
quence may not work well for video behavior recogni-
tion, the method proposed by Kar et al. [36] learns to 

Figure 4
TSN model structure

  

dual-stream CNN, which transforms the convolutional 
feature maps by spatio-temporal normalization and chan-
nel normalization. In order to better fuse the optical flow 
with RGB images, Wan et al. [82] proposed a dual-
stream convolutional network (LSF CNN) with long- 
and short-term spatiotemporal features, which consists 
of a long-term spatiotemporal feature extraction network 
(LT-Net), which takes the stacked RGB images as in-
puts, and a short-term spatiotemporal feature extraction 
network (ST-Net), which takes optical flow as inputs and 
extracts the optical flow from the two neighboring 
frames are estimated. The dual-scale spatio-temporal 
features are then fused in a fully connected layer and fed 
into a linear support vector machine (SVM) to fully learn 
the deep features in both spatial and temporal domains. 
After that, many papers on dual-stream networks have 
been released, and several other works [13, 22, 91], ex-
tended the dual-stream model to extract long-term video-
level information for video behavior recognition. How-
ever, the dual-stream network uses a relatively shallow 
network, so many works naturally thought of using a 
deeper network to further improve the accuracy. Wang 
et al. [90] found that the effect of simply replacing the 
network with a deeper one is not very obvious, and the 
authors believed that the training dataset for action 
recognition is very small compared with ImageNet, 
which is easy to overfitting on the training dataset. In or-
der to solve this problem, they designed several im-
proved experiments, such as: using smaller learning rate, 
using more data enhancement techniques, using higher 
Dropout, etc. to prevent the overfitting of the deep net-
work. Based on this, a two-stream network is trained us-
ing the VGG16 model, and the performance of the model 
is greatly improved. Since then, research on deeper net-
works has gradually achieved better results, e.g., ResNet 
[27], Inception [71], and proved that deeper networks 
can usually achieve higher video action recognition ac-
curacy [117]. 
Wang et al. [86] proposed a new deep architecture (SR-
CNNS), which not only shares great modeling capability 
with the original dual-stream CNN, but also shows sup-
port for dual-stream semantic region CNN, and uses an 
end-to-end network Faster-RCNN [62] network instead 
of the standard spatial streams, which can then extract 
semantic information about objects, people and scenes. 
Meanwhile, Feichtenhofer et al. [19] discussed the dual-
stream network, mainly discussed and verified the fusion 
of the network, and concluded that the optimal fusion po-
sition is at the last convolutional layer, and used 3D pool-
ing instead of 2D pooling after fusion to further improve 
the performance. The residual connection is also pro-
posed to establish information connection between spa-
tio-temporal convolutions to facilitate the information 
interaction and better learning of spatio-temporal fea-
tures. Wang et al. [85] used a spatio-temporal pyramid 
approach to fuse the spatial and temporal features in the 
pyramid structure so that they can reinforce each other. 
This model also adopts a hierarchical fusion strategy and 
uses a uniform spatio-temporal loss for overall training, 
which also achieves good results. Jain et al. [32] pro-
posed a Hybrid Random Forest Bi-Convolutional Recur-
rent Neural Network (HRF Bi-CRNN), in which a model 
based on a Bi-Convolutional Recurrent Neural Network 
(CRNN) is fused with Random Forest classification for 
accurate HAR. In addition, a Bi-CRNN based 

autoencoder is used to learn the spatio-temporal 
data from motion and sensors, which is further 
utilized to integrate the Random Forest for human 
gestures and movements for final classification and 
detection. 
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Similarly, more and more attention has been paid 
to another problem of optical flows, i.e., they still 
cannot capture temporal information at a distance. 
To solve this problem, Wang et al. [91] constructed 
a Temporal Segment Network (TSN) based on the 
idea of remote temporal structure modeling for 
video-level action recognition, and its model struc-
ture is shown in Figure 4. Specifically, TSN first 
divides the whole video into several segments, 
which are uniformly distributed along the time di-
mension. Then TSN randomly selects a video 
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weight. However, unlike the original dual-stream 
network that uses ClarifaiNet [110] as the base 
model, this model adopts the BN-Inception [31] 
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training cost of long video sequences, and many 
subsequent works have been improved on this ba-
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a two-stream concatenated network by extracting 
features from the frames before the action occurs 
(prerequisite) and the frames after the action occurs 
(resultant), and modeling the action as a transfor-
mation on the high-level feature space. Consider-
ing that many frames in a video sequence may not 
work well for video behavior recognition, the 
method proposed by Kar et al. [36] learns to pool 
these frames with discriminative and informative 
properties while discarding most of the non-in-
formative frames in a single time-scan of the video, 
and then embeds the put method into deep learning 
to further improve the efficiency of the model. 
After the wide application of dual-stream net-
works, more and more researchers are trying to 
merge different types of data, or further extend the 
dual-stream networks into multistream networks, 
the core of which is multimodal applications. The 
most commonly used data types are RGB maps, 
depth maps, optical flow, skeletal keypoints, audio 

pool these frames with discriminative and informa-
tive properties while discarding most of the non-in-
formative frames in a single time-scan of the video, 
and then embeds the put method into deep learning to 
further improve the efficiency of the model.
After the wide application of dual-stream networks, 
more and more researchers are trying to merge dif-
ferent types of data, or further extend the dual-stream 
networks into multistream networks, the core of 
which is multimodal applications. The most com-
monly used data types are RGB maps, depth maps, 
optical flow, skeletal keypoints, audio and so on. 
Object information data is another important data 
source, because most human behaviors involve hu-
man-object interactions, such as playing basketball, 
swimming, riding a bicycle, and so on. Wu et al. [99] 
proposed a new object- and scene-based semantic fu-
sion network. The network uses a three-layer neural 
network that combines low-level CNN features con-
taining frame-based features, object features from a 
large-scale CNN object detector, and scene features 
from a CNN scene detector, and discovers semantic 
information between video classes and objects and 
scenes by fusing the information from the network 
checking and backpropagation.
Audio data usually appears together with video data, 
which is complementary to visual information. Wu et 
al. [100] introduced a multistream framework to ful-
ly utilize the rich multimodal information in video. 
The model first trains three convolutional neural net-
works to model spatial, short-term motion and audio, 
and then employs a long-short-term memory network 
to explore the dynamic information over long periods 
of time. The optimal fusion weights are adaptively 
determined during the fusion process to generate 
the final scores for each class, which outperforms the 
state-of-the-art models at that time. Later, Xiao et al. 
[103] designed AVSlowFast based on SlowFast [17], 
and its model structure is shown in Figure 5. Similar 
to the native SlowFast, it not only has slow and fast 
visual pathways, but also has faster audio pathways 
which are deeply fused with it to unify the representa-
tions, so that the audio contributes to the hierarchical 
audio-visual concept.
Wang et al. [87] proposed a three-stream convolu-
tional network for motion feature extraction. The 
model consists of RGB data frames, optical streams 
and globally stacked motion difference images 
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(MSDI) to generate the corresponding spatial, local 
temporal and global temporal streams, respectively. 
In addition, the model also combines the advantages 
of Gaussian Mixture Model (GMM) and VLAD to en-
code the data according to the overall profile distribu-
tion and the corresponding differences with respect 
to the clustering centers, and a soft vector called Soft-
VLAD is developed to further represent the extracted 
features. Bilen et al. [4] proposed a 
four-stream network structure, which uses a dynam-
ic image method based on RGB images and optical 
streams, i.e., the temporal data such as RGB images 
and optical streams are encoded using “sorting pools”, 
and then the resulting RGB dynamic image network 
and dynamic optical stream network are combined 
with the original RGB network and optical stream 
network to form a four-stream network. After that, 
the resulting RGB dynamic image network and dy-
namic optical flow network are combined with the 
original RGB network and optical flow network to 
form a four-stream network structure, which is final-
ly fused to further predict the class of actions.
The dual/multistream 2D CNN architecture learns 
different types of information (e.g., spatial and tem-
poral) from the input video through separate net-
works, and then fuses them to obtain the final result, 
which enables traditional 2D CNNs to process vid-
eo data efficiently and achieve high video behavior 
recognition accuracy. However, multiple streams of 
inputs means that the number of parameters to be 
trained for the deep model will be larger, and how and 
where to fuse the different data types is also a key is-
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spatial, short-term motion and audio, and then employs 
a long-short-term memory network to explore the dy-
namic information over long periods of time. The opti-
mal fusion weights are adaptively determined during the 
fusion process to generate the final scores for each class, 
which outperforms the state-of-the-art models at that 
time. Later, Xiao et al. [103] designed AVSlowFast 
based on SlowFast [17], and its model structure is shown 
in Figure 5. Similar to the native SlowFast, it not only 
has slow and fast visual pathways, but also has faster au-
dio pathways which are deeply fused with it to unify the 
representations, so that the audio contributes to the hier-
archical audio-visual concept. 
Wang et al. [87] proposed a three-stream convolutional 
network for motion feature extraction. The model con-
sists of RGB data frames, optical streams and globally 
stacked motion difference images (MSDI) to generate 
the corresponding spatial, local temporal and global tem-
poral streams, respectively. In addition, the model also 
combines the advantages of Gaussian Mixture Model 
(GMM) and VLAD to encode the data according to the 
overall profile distribution and the corresponding differ-
ences with respect to the clustering centers, and a soft 
vector called Soft-VLAD is developed to further repre-
sent the extracted features. Bilen et al. [4] proposed a  

four-stream network structure, which uses a dy-
namic image method based on RGB images and 
optical streams, i.e., the temporal data such as RGB 
images and optical streams are encoded using 
"sorting pools", and then the resulting RGB dy-
namic image network and dynamic optical stream 
network are combined with the original RGB net-
work and optical stream network to form a four-
stream network. After that, the resulting RGB dy-
namic image network and dynamic optical flow 
network are combined with the original RGB net-
work and optical flow network to form a four-
stream network structure, which is finally fused to 
further predict the class of actions. 
The dual/multistream 2D CNN architecture learns 
different types of information (e.g., spatial and 
temporal) from the input video through separate 
networks, and then fuses them to obtain the final 
result, which enables traditional 2D CNNs to pro-
cess video data efficiently and achieve high video 
behavior recognition accuracy. However, multiple 
streams of inputs means that the number of param-
eters to be trained for the deep model will be larger, 
and how and where to fuse the different data types 
is also a key issue, which requires higher design 
requirements for the feature fusion module. At the 
same time, this type of architecture is still not pow-
erful enough for long-term dependency modeling, 
i.e., it has limitations in effectively modeling 
video-level temporal information, which can be 
compensated by time-series modeling networks 
(e.g., LSTM). 
3.3. Based on CNN and LSTM 
For problems such as long time span action infor-
mation in video cannot be effectively extracted, re-
searchers believe that video is a time sequence in 
nature, and have explored recurrent neural net-
works (RNN) for temporal modeling in video as 
well as contextual inference networks, which ef-
fectively extracts the global contextual 
information,  

sue, which requires higher design requirements for 
the feature fusion module. At the same time, this type 
of architecture is still not powerful enough for long-
term dependency modeling, i.e., it has limitations in 
effectively modeling video-level temporal informa-
tion, which can be compensated by time-series mod-
eling networks (e.g., LSTM).

3.3. Based on CNN and LSTM
For problems such as long time span action infor-
mation in video cannot be effectively extracted, re-
searchers believe that video is a time sequence in 
nature, and have explored recurrent neural networks 
(RNN) for temporal modeling in video as well as con-
textual inference networks, which effectively extracts 
the global contextual information, 
especially using the Long Short-Term Memory Net-
work (LSTM), whose model structure is shown in 
Figure 6.

Figure 6
LSTM-based Behavior Recognition Model

  

Figure 7 
LRCN model structure. 

 

 
Figure 6 
LSTM-based Behavior Recognition Model. 

 

 
especially using the Long Short-Term Memory Network 
(LSTM), whose model structure is shown in Figure 6. 
The LRCN proposed by Donahue et al. [14] in 2015 is 
considered to be a pioneer in the field, and its model 
structure is shown in Figure 7. Compared with the previ-
ous models, the circular convolution models have double 
depth because they can combine learning at the spatial 
and temporal levels, respectively, use the feature maps 
of the CNNs as inputs to the deep LSTM network, and 
aggregate the frame-level CNN features into the video-
level prediction. This model has obvious advantages 
when the target concept is complex or the training data 
is limited, and can model complex temporal information 
dynamically, but it is still a bit inferior to the hot dual-
stream network at that time. Since then, however, many 
variations on the CNN-LSTM framework have emerged. 
Ullah et al. [79] proposed an action recognition method 
using CNN and Deep Bidirectional LSTM (DB-LSTM) 
networks to process video data. Specifically, the model, 
in order to reduce redundancy and complexity, extracts 
deep features from every six frames of the video by in-
troducing a data augmentation module that weights dif-
ferent categories of actions, and then learns the sequen-
tial information between the frame features using the 
DB-LSTM network. Meanwhile, the model also adopts 
a bidirectional LSTM structure, which can better capture 
the long-term dependencies in the video sequences, and 
thus improve the performance of the model. Gammulle 
et al. [21] focused their attention on learning salient spa-
tial features through CNNs and then mapping their tem-
poral relationships with the help of a Long Short-Term 
Memory (LSTM) network, which better integrates spa-
tial features from CNNs and temporal features from 
LSTM models. Srivastava et al. [68] used an encoder 

LSTM to map the input video into a fixed-length 
representation, which is then decoded by a decoder 
LSTM to perform the tasks of video reconstruction 
and prediction in an unsupervised manner. The Li-
teEval model designed by Wu et al. [101] utilizes 
a lightweight CNN along with the co-operation of 
a coarse LSTM and a fine LSTM to dynamically 
decide whether or not to compute more robust fea-
tures for the incoming video frames at a finer scale 
for efficient behavior recognition. Some other 
works [26, 114], employ a bidirectional LSTM, 
which consists of two independent LSTMs for 
learning forward and backward temporal infor-
mation for video action recognition. 
Li et al. [45] proposed a model consisting of a 
multi-stream 2D network for learning spatial and 
temporal representations. The model enhances ac-
tion recognition by learning a hierarchical multi-
granular deep spatio-temporal video 
representation. Specifically, it models each 
granularity as a single stream via a 2D CNN (for 
both frame and motion streams). In addition, the 
model uses a Long Short-Term Memory Network 
(LSTM) on the frame and motion streams to record 
long-term temporal dynamics. With a softmax 
layer on top of each stream, classification scores 
can be predicted from all streams and then learned 
in an end-to-end manner based on a novel fusion 
scheme with multi-granularity score distribution. 
Liu et al. [48] proposed a global context-aware at-
tention model (GCA-LSTM) based on gradient-tai-
lored adaptive long-term memory network, which 
can selectively focus on the information joints in 
the action sequence with the help of global context 
information and adjust their attention weights ac-
cordingly, which effectively mitigates the prob-
lems of gradient vanishing and gradient exploding, 
and thus improves the model's robustness and gen-
eralization ability. In order to realize a reliable at-
tentional representation of the action sequences, a 
cyclic attention mechanism is proposed for the 
GCA-LSTM network, in which the attentional per-
formance is iteratively improved to further en-
hance the performance of the network. Yu et al. 
[109] proposed a pseudo-recursive residual neural 

The LRCN proposed by Donahue et al. [14] in 2015 is 
considered to be a pioneer in the field, and its model 
structure is shown in Figure 7. Compared with the 
previous models, the circular convolution models 
have double depth because they can combine learning 
at the spatial and temporal levels, respectively, use the 
feature maps of the CNNs as inputs to the deep LSTM 
network, and aggregate the frame-level CNN features 
into the video-level prediction. This model has obvi-
ous advantages when the target concept is complex 
or the training data is limited, and can model complex 
temporal information dynamically, but it is still a bit 
inferior to the hot dual-stream network at that time. 
Since then, however, many variations on the CNN-
LSTM framework have emerged.
Ullah et al. [79] proposed an action recognition meth-
od using CNN and Deep Bidirectional LSTM (DB-
LSTM) networks to process video data. Specifically, 
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Figure 7
LRCN model structure

the model, in order to reduce redundancy and com-
plexity, extracts deep features from every six frames of 
the video by introducing a data augmentation module 
that weights different categories of actions, and then 
learns the sequential information between the frame 
features using the DB-LSTM network. Meanwhile, 
the model also adopts a bidirectional LSTM structure, 
which can better capture the long-term dependencies 
in the video sequences, and thus improve the perfor-
mance of the model. Gammulle et al. [21] focused their 
attention on learning salient spatial features through 
CNNs and then mapping their temporal relationships 
with the help of a Long Short-Term Memory (LSTM) 
network, which better integrates spatial features from 
CNNs and temporal features from LSTM models. Sri-
vastava et al. [68] used an encoder LSTM to map the 
input video into a fixed-length representation, which 
is then decoded by a decoder LSTM to perform the 
tasks of video reconstruction and prediction in an un-
supervised manner. The LiteEval model designed by 
Wu et al. [101] utilizes a lightweight CNN along with 
the co-operation of a coarse LSTM and a fine LSTM to 
dynamically decide whether or not to compute more 
robust features for the incoming video frames at a fin-
er scale for efficient behavior recognition. Some other 
works [26, 114], employ a bidirectional LSTM, which 
consists of two independent LSTMs for learning for-
ward and backward temporal information for video 
action recognition.
Li et al. [45] proposed a model consisting of a multi-
stream 2D network for learning spatial and temporal 
representations. The model enhances action recog-
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DB-LSTM network. Meanwhile, the model also adopts 
a bidirectional LSTM structure, which can better capture 
the long-term dependencies in the video sequences, and 
thus improve the performance of the model. Gammulle 
et al. [21] focused their attention on learning salient spa-
tial features through CNNs and then mapping their tem-
poral relationships with the help of a Long Short-Term 
Memory (LSTM) network, which better integrates spa-
tial features from CNNs and temporal features from 
LSTM models. Srivastava et al. [68] used an encoder 

LSTM to map the input video into a fixed-length 
representation, which is then decoded by a decoder 
LSTM to perform the tasks of video reconstruction 
and prediction in an unsupervised manner. The Li-
teEval model designed by Wu et al. [101] utilizes 
a lightweight CNN along with the co-operation of 
a coarse LSTM and a fine LSTM to dynamically 
decide whether or not to compute more robust fea-
tures for the incoming video frames at a finer scale 
for efficient behavior recognition. Some other 
works [26, 114], employ a bidirectional LSTM, 
which consists of two independent LSTMs for 
learning forward and backward temporal infor-
mation for video action recognition. 
Li et al. [45] proposed a model consisting of a 
multi-stream 2D network for learning spatial and 
temporal representations. The model enhances ac-
tion recognition by learning a hierarchical multi-
granular deep spatio-temporal video 
representation. Specifically, it models each 
granularity as a single stream via a 2D CNN (for 
both frame and motion streams). In addition, the 
model uses a Long Short-Term Memory Network 
(LSTM) on the frame and motion streams to record 
long-term temporal dynamics. With a softmax 
layer on top of each stream, classification scores 
can be predicted from all streams and then learned 
in an end-to-end manner based on a novel fusion 
scheme with multi-granularity score distribution. 
Liu et al. [48] proposed a global context-aware at-
tention model (GCA-LSTM) based on gradient-tai-
lored adaptive long-term memory network, which 
can selectively focus on the information joints in 
the action sequence with the help of global context 
information and adjust their attention weights ac-
cordingly, which effectively mitigates the prob-
lems of gradient vanishing and gradient exploding, 
and thus improves the model's robustness and gen-
eralization ability. In order to realize a reliable at-
tentional representation of the action sequences, a 
cyclic attention mechanism is proposed for the 
GCA-LSTM network, in which the attentional per-
formance is iteratively improved to further en-
hance the performance of the network. Yu et al. 
[109] proposed a pseudo-recursive residual neural 

nition by learning a hierarchical multi-granular deep 
spatio-temporal video representation. Specifically, it 
models each granularity as a single stream via a 2D 
CNN (for both frame and motion streams). In ad-
dition, the model uses a Long Short-Term Memory 
Network (LSTM) on the frame and motion streams to 
record long-term temporal dynamics. With a softmax 
layer on top of each stream, classification scores can 
be predicted from all streams and then learned in an 
end-to-end manner based on a novel fusion scheme 
with multi-granularity score distribution.
Liu et al. [48] proposed a global context-aware atten-
tion model (GCA-LSTM) based on gradient-tailored 
adaptive long-term memory network, which can se-
lectively focus on the information joints in the action 
sequence with the help of global context informa-
tion and adjust their attention weights accordingly, 
which effectively mitigates the problems of gradient 
vanishing and gradient exploding, and thus improves 
the model’s robustness and generalization ability. In 
order to realize a reliable attentional representation 
of the action sequences, a cyclic attention mechanism 
is proposed for the GCA-LSTM network, in which 
the attentional performance is iteratively improved 
to further enhance the performance of the network. 
Yu et al. [109] proposed a pseudo-recursive residual 
neural network (P-R RNN), which utilizes a cyclic 
recursive architecture to correlate the features of the 
previous and current frames through a P-R unit, with 
different connections between the units to form each 
neural network. A two-stream CNNS model (Goo-
gLeNet) is used to extract local temporal and spatial 
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features, respectively. Then, the local spatial and 
temporal features are integrated into the global long-
term temporal features using P-R RNN. Finally, the 
Softmax layer fuses the outputs of the dual-stream 
P-RRNN, which also shows an excellent result, and 
its model structure is shown in Figure 12.
Wang et al. [92] proposed a lightweight action recogni-
tion architecture composed of CNN, LSTM, attention 
model and joint optimization, which only uses RGB 
images as input data, and firstly uses CNN convolu-
tional layer and fully connected layer to extract local 
spatial features and semantic features to separate the 
object from the background. Accordingly, for tempo-
ral feature extraction, two LSTM networks named 
ConvLSTM and FC-LSTM are constructed after the 
CNN convolutional layer and the fully connected lay-
er, respectively, to model the temporal information in 
different visual perception layers, and at the same time, 
two different attentional models are designed to learn 
the temporal focus of the actions, and finally, a joint 
optimization module is adopted to train a more robust 
LSTM network. The network is trained to be more ro-
bust through a joint optimization module. VideoLSTM 
proposed by Li et al. [46] combines convolutional and 
motion-based attention into a soft-attention LSTM to 
localize actions through action category labeling and 
temporal attention smoothing operations to better 
capture spatial and motion information.
The action recognition algorithm combining CNN 
and LSTM networks can effectively utilize the advan-
tages of the two models for extracting image features 
and processing time-series data, and the combination 
of the two can analyze the action information more 
comprehensively, deal with the differences between 
different people and changes in the speed of action, 
and have a better generalization ability. At the same 
time, the introduction of LSTM can capture the long-
term dependencies in the 
time series, which is conducive to more accurately 
recognize complex action sequences. However, there 
are some drawbacks of this type of model, for exam-
ple, the algorithm is better for recognizing some basic 
actions such as walking and running, but less accurate 
for recognizing some subtle differences in actions. In 
addition, it requires a large amount of data to train the 
model, and the training time is long, and since LSTM 
can only handle fixed-length sequences, there may be 
some recognition errors.

3.4. CNN-based and Attention Mechanisms
Recently, with the excellent results of the attention 
mechanism in 2D detection tasks, many researchers 
have begun to try to introduce the attention mecha-
nism into the video domain as well. Wang et al. [95] 
proposed Non-local considering that both convolu-
tional and cyclic operations deal with one localized 
block at a time, and using the non-local operation as a 
generalized family of building blocks used to capture 
long term dependencies. Its non-local operation com-
putes the response at a location as a weighted sum 
of features at all locations. Jiang et al. [34] proposed 
the STM module, which consists of a channel-based 
spatio-temporal module (CSTM) for presenting spa-
tio-temporal features and a channel-based motion 
module (CMM) for efficiently encoding motion fea-
tures. The model structure is shown in Figure 8, in 
which STM blocks are used to replace the original 
residual blocks in the ResNet architecture to form a 
simple and efficient STM network by introducing a 
very limited additional computational cost.
In order to help the model allocate more attention-
al resources to the target region during the feature 
learning process, and thus suppress redundant infor-
mation. Cai et al. [6] proposed a three-dimensional 
residual attention network (3DRAN) based on CBAM 
[97], a convolutional attention module proposed by 
Woo et al. The module sequentially infers the atten-
tion map along two independent dimensions, channel 
and space, and multiplies the attention map by the in-
put feature map to reweight key features. In addition, 
this module is a lightweight and generalized module 
that can be seamlessly integrated into any CNN ar-
chitecture. On the other hand, 3DRAN builds on its 
foundation by extending the 2D residual attention 
structure to 3D space, which consists of an attention 
mechanism and a 3D ResNets architecture, capable of 
capturing spatio-temporal information in an end-to-
end manner.
Li et al. [42] argued that temporal modeling is the key to 
action recognition in video, based on which they pro-
posed a Temporal Excitation and Aggregation (TEA) 
module, which consists of a Motion Excitation (ME) 
module and a Multi-Temporal Aggregation (MTA) 
module, the former mainly calculates the temporal 
difference between feature level and spatio-temporal 
features to motivate the motion-sensitive channels 
of the features. The latter mainly deforms the local 



Information Technology and Control 2024/2/53630

convolution into a set of sub-convolution to form a hi-
erarchical residual structure, which effectively sim-
ulates the long-range temporal relations on long-dis-
tance frames. Moreover, the two components of the 
TEA module are complementary in temporal model-
ing, and their effectiveness and efficiency are compet-
itive with the best previous approaches. Unlike TEA’s 
attention mechanism in the temporal dimension only, 
Liu et al. [49] constructed a two-stream residual spa-
tio-temporal attention network (R-STAN) based on 
temporal and spatial attention mechanisms as well as 
residual networks, in which each tributary stream is 
constructed by stacking residual spatio-temporal at-
tention blocks (R-STABs), which enables R-STAN to 
have the ability to generate attention-aware features 
along both temporal and spatial dimensions. The 
R-STAN has the ability to generate attention-aware 
features along both temporal and spatial dimensions, 
and combines the characteristics of residual learning 
to construct a very deep network to learn the spa-
tio-temporal information in the video, which induc-
es the attention-aware features from the R-STAB to 
change adaptively, in order to reduce the redundant 
information.
Liu et al. [50] proposed a TEINet network with a 
Motion Enhancement Module (MEM) and a Tem-
poral Interaction Module (TIM) at its core, where 
the former is used to enhance motion-related fea-
tures while suppressing irrelevant information (e.g., 

background), and the latter supplements the tempo-
ral context information in the form of channels. By 
decoupling the modeling of channel correlation and 
temporal interactions to learn temporal features, the 
temporal structure can be captured flexibly and effi-
ciently for model inference.
In order to capture complex action variations, Li et 
al.   [43] first proposed a spatio-temporal deform-
able convolution module (STDA) with an attention 
mechanism. The module can utilize both long-range 
temporal dependencies across multiple frames and 
long-range spatial dependencies within each frame, 
thus enabling the extraction of discriminative global 
information at both the inter-frame and frame levels. 
Unlike traditional convolutional localization in the 
local regularity sense field, it can further capture tem-
poral and spatial irregularities by learning different 
convolutional filter offsets with attentional informa-
tion to significantly improve the overall recognition 
performance.
Zhu et al. [118] proposed a novel spatio-temporal 
mesh transformer (STMT) to directly model mesh 
sequences. The model uses a hierarchical convert-
er with intra-frame offset attention and inter-frame 
self-attention. The attention mechanism allows the 
model to engage freely between any two vertex patch-
es to learn non-local relationships in the spatio-tem-
poral domain. Masked vertex modeling and future 
frame prediction serve as two self-supervised tasks to 
fully activate bidirectional and autoregressive atten-
tion in the layered converter. The proposed method 
achieves state-of-the-art performance compared to 
skeleton-based models in common MoCap bench-
mark tests.

3.5. Based on 3D CNN and Its Variants
3.5.1. The Emergence of 3D CNNs
Although the above methods have achieved good re-
sults, but the core is still operating on a two-dimen-
sional basis, the recognition of video actions has an 
additional temporal dimension, and thus the use of 3D 
CNN for video action recognition has gradually be-
come a new research hotspot. The general approach 
of this algorithm is to stack a series of video frames 
in the temporal dimension to form a cube structure 
as the input to the model, and then learn the temporal 
and spatial features of the video information adap-
tively through a convolutional neural network under 
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network (P-R RNN), which utilizes a cyclic recursive ar-
chitecture to correlate the features of the previous and 
current frames through a P-R unit, with different connec-
tions between the units to form each neural network. A 
two-stream CNNS model (GoogLeNet) is used to extract 
local temporal and spatial features, respectively. Then, 
the local spatial and temporal features are integrated into 
the global long-term temporal features using P-R RNN. 
Finally, the Softmax layer fuses the outputs of the dual-
stream P-RRNN, which also shows an excellent result, 
and its model structure is shown in Figure 12. 
Wang et al. [92] proposed a lightweight action recogni-
tion architecture composed of CNN, LSTM, attention 
model and joint optimization, which only uses RGB im-
ages as input data, and firstly uses CNN convolutional 
layer and fully connected layer to extract local spatial 
features and semantic features to separate the object from 
the background. Accordingly, for temporal feature ex-
traction, two LSTM networks named ConvLSTM and 
FC-LSTM are constructed after the CNN convolutional 
layer and the fully connected layer, respectively, to 
model the temporal information in different visual per-
ception layers, and at the same time, two different atten-
tional models are designed to learn the temporal focus of 
the actions, and finally, a joint optimization module is 
adopted to train a more robust LSTM network. The net-
work is trained to be more robust through a joint optimi-
zation module. VideoLSTM proposed by Li et al. [46] 
combines convolutional and motion-based attention into 
a soft-attention LSTM to localize actions through action 
category labeling and temporal attention smoothing op-
erations to better capture spatial and motion information. 
The action recognition algorithm combining CNN and 
LSTM networks can effectively utilize the advantages of 
the two models for extracting image features and pro-
cessing time-series data, and the combination of the two 
can analyze the action information more comprehen-
sively, deal with the differences between different people 
and changes in the speed of action, and have a better gen-
eralization ability. At the same time, the introduction of 
LSTM can capture the long-term dependencies in the  

time series, which is conducive to more accurately 
recognize complex action sequences. However, 
there are some drawbacks of this type of model, for 
example, the algorithm is better for recognizing 
some basic actions such as walking and running, 
but less accurate for recognizing some subtle dif-
ferences in actions. In addition, it requires a large 
amount of data to train the model, and the training 
time is long, and since LSTM can only handle 
fixed-length sequences, there may be some 
recognition errors. 
3.4. CNN-based and Attention Mechanisms 
Recently, with the excellent results of the attention 
mechanism in 2D detection tasks, many research-
ers have begun to try to introduce the attention 
mechanism into the video domain as well. Wang et 
al. [95] proposed Non-local considering that both 
convolutional and cyclic operations deal with one 
localized block at a time, and using the non-local 
operation as a generalized family of building 
blocks used to capture long term dependencies. Its 
non-local operation computes the response at a lo-
cation as a weighted sum of features at all 
locations. Jiang et al. [34] proposed the STM 
module, which consists of a channel-based spatio-
temporal module (CSTM) for presenting spatio-
temporal features and a channel-based motion 
module (CMM) for efficiently encoding motion 
features. The model structure is shown in Figure 8, 
in which STM blocks are used to replace the 
original residual blocks in the ResNet architecture 
to form a simple and efficient STM network by 
introducing a very limited additional 
computational cost. 
In order to help the model allocate more attentional 
resources to the target region during the feature 
learning process, and thus suppress redundant in-
formation. Cai et al. [6] proposed a three-dimen-
sional residual attention network (3DRAN) based 
on CBAM [97], a convolutional attention module 
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the supervision of a given action category label. This 
method avoids the operation of extracting temporal 
and spatial features separately in the dual-stream 
model, and it does not need to design a spatio-tempo-
ral feature fusion module, and captures different vid-
eo features directly from the video data at the same 
time, so that it is easier and more convenient to ac-
quire the corresponding feature information, and the 
efficiency of the model is improved.
Ji et al. [33] were the first to use 3D CNN method for 
action recognition, which is the general approach 
mentioned above, but due to the shallow depth of the 
model, it is not sufficient to show its potential. Tran 
et al. [74] improved on this foundation and proposed 
C3D based on VGG16, which uses 3D convolution on 
adjacent frames to model spatio-temporal features in 
a unified way. The performance of the modified model 
on standard benchmarks is not satisfactory, but the 
model has a strong generalization ability, and it is gen-
erally used as a general-purpose feature extractor for 
a wide range of video tasks, and the structure of the 
network is shown in Figure 9.
The ensuing problem is that the large number of 3D 
convolutional operations generates a large number of 
parameters, increasing the computational effort and 
making the network difficult to optimize. In order 
to solve this problem and further improve the per-
formance of video behavior recognition, some other 
works [9, 17, 115, 116] investigated 3D CNN models 
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makes it possible to extract both temporal and spatial in-
formation simultaneously. Meanwhile, for the model 

weights, the model inflates the pre-trained 2D 
model weights from ImageNet to the cor-
responding weights in the 3D model, so that the 3D 
CNN does not have to train a new network from 
scratch. 
To address the input problem of fixed-size video 
frames in video recognition, Yang et al. [106] pro-
posed a 3D-dense connected convolutional net-
work (3D-DenseNet-SPP) based on spatial pyra-
mid pooling (Figure 11), which adopts a migration 
learning approach, and is pre-trained on a large-
scale dataset, Kinetics400, then fine-tuned with a 
small dataset, thus reducing the training difficulty 
of the model. This model uses a migration learning 
approach, and after pre-training on a large-scale 
dataset, Kinetics400, the model is fine-tuned with 
a small dataset to reduce the difficulty of training. 
Meanwhile, Huang et al. [30] argued that pre-train-
ing an effective 3D ConvNet on large-scale 

with dual- or multi-stream design. For example, Car-
reira et al. [9] proposed an I3D model based on 2D 
CNNs, whose model structure is shown in Figure 10. 
The model takes a video clip as input, extracts a vid-
eo into a series of video frames, and expands the 2D 
CNN into a 3D CNN, which makes it possible to ex-
tract both temporal and spatial information simulta-
neously. Meanwhile, for the model weights, the model 
inflates the pre-trained 2D model weights from Ima-
geNet to the corresponding weights in the 3D model, 
so that the 3D CNN does not have to train a new net-
work from scratch.
To address the input problem of fixed-size video 
frames in video recognition, Yang et al. [106] pro-
posed a 3D-dense connected convolutional network 

Figure 10
I3D Model Structure

 

 

based on 2D CNNs, whose model structure is shown in 
Figure 10. The model takes a video clip as input, extracts 

a video into a series of video frames, and expands 
the 2D CNN into a 3D CNN, which  

Figure 9 
C3D Model Structure. 

 

 
Figure 10 
I3D Model Structure. 

 

 
Figure 11 
Network Architecture with Pyramid Structure Pooling 
Layers. 
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formation simultaneously. Meanwhile, for the model 

weights, the model inflates the pre-trained 2D 
model weights from ImageNet to the cor-
responding weights in the 3D model, so that the 3D 
CNN does not have to train a new network from 
scratch. 
To address the input problem of fixed-size video 
frames in video recognition, Yang et al. [106] pro-
posed a 3D-dense connected convolutional net-
work (3D-DenseNet-SPP) based on spatial pyra-
mid pooling (Figure 11), which adopts a migration 
learning approach, and is pre-trained on a large-
scale dataset, Kinetics400, then fine-tuned with a 
small dataset, thus reducing the training difficulty 
of the model. This model uses a migration learning 
approach, and after pre-training on a large-scale 
dataset, Kinetics400, the model is fine-tuned with 
a small dataset to reduce the difficulty of training. 
Meanwhile, Huang et al. [30] argued that pre-train-
ing an effective 3D ConvNet on large-scale 
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Figure 12
3D STC-ResNet model structure

(3D-DenseNet-SPP) based on spatial pyramid pool-
ing (Figure 11), which adopts a migration learning ap-
proach, and is pre-trained on a large-scale dataset, Ki-
netics400, then fine-tuned with a small dataset, thus 
reducing the training difficulty of the model. This 
model uses a migration learning approach, and after 
pre-training on a large-scale dataset, Kinetics400, 
the model is fine-tuned with a small dataset to reduce 
the difficulty of training. Meanwhile, Huang et al. [30] 
argued that pre-training an effective 3D ConvNet on 
large-scale datasets usually requires an expensive 
pre-training process, in order to avoid this situation, 
they designed a 2D inflated convolution operation 
and a parallel 3D ConvNet architecture to direct the 
pretraining parameters of the 2D convolutional net-
work to the 3D convolution. In addition, the model is 
further enhanced by cumulative gradient descent and 
video sequence decomposition.
While traditional studies have only explored relative-
ly shallow 3D architectures, Hara et al. [25], in order 
to determine whether current video datasets can sup-
port the training of ultra-deep convolutional neural 
networks (CNNs) with spatio-temporal 3D kernels, 
the model is directly based on 2D ResNet, which is 
modeled after I3D by replacing all the 2D convo-
lutional kernels and pooling kernels with 3D ones. 
Meanwhile, inspired by the fact that 2D CNNs greatly 
contribute to generalized feature representation af-
ter pre-training on the ImageNet dataset, the authors 
propose for the first time a variety of 3D CNNs mod-
eled on the Kinetics dataset (ResNet, ResNext-101) 
starting from zero and ranging from relatively shal-
low to very deep, demonstrating that deep 3D CNNs 
in combination with the Kinetics dataset together 
will trace the successful history of 2D CNNs and Ima-
geNet, and will further stimulate the advancement of 
computer vision.
Inspired by SENet [29], STCNet [11] constructed a 
new block for modeling the correlation between 3D 

CNN channels based on temporal and spatial ele-
ments, which can be added as residual units to differ-
ent parts of 3D CNNs, and embedded this block into 
ResNet and ResNext architectures, which resulted in 
a significant performance improvement, and its mod-
el is shown in Figure 11. The model is shown in Figure 
12. The work also transfers the knowledge from the 
pre-trained 2D CNNs to the randomly initialized 3D 
CNNs for stable weight initialization, which is later 
fine-tuned on the target dataset, greatly reducing the 
training cost.

3.5.2. Variants of 3D CNN
3D convolution-based methods are very effective for 
modeling discriminative features in both spatial and 
temporal dimensions for video behavior recognition. 
However, many 3D CNN-based frameworks contain a 
large number of parameters, increasing the computa-
tional effort. To reduce the complexity of 3D convolu-
tional network training.
Therefore, some studies [61, 70, 77] aim to decom-
pose 3D convolution. Qiu et al. [61] proposed a pseu-
do-3D network model: P3D (Pseudo-3D Re-sidual 
Networks), which simulates 3D convolution by means 
of 2+1, i.e., a combination of traditional 2D convolu-
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process, in order to avoid this situation, they designed a 
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network to the 3D convolution. In addition, the model is 
further enhanced by cumulative gradient descent and 
video sequence decomposition. 
While traditional studies have only explored relatively 
shallow 3D architectures, Hara et al. [25], in order to de-
termine whether current video datasets can support the 
training of ultra-deep convolutional neural networks 
(CNNs) with spatio-temporal 3D kernels, the model is 
directly based on 2D ResNet, which is modeled after I3D 
by replacing all the 2D convolutional kernels and pool-
ing kernels with 3D ones. Meanwhile, inspired by the 
fact that 2D CNNs greatly contribute to generalized fea-
ture representation after pre-training on the ImageNet 
dataset, the authors propose for the first time a variety of 
3D CNNs modeled on the Kinetics dataset (ResNet, Res-
Next-101) starting from zero and ranging from relatively 
shallow to very deep, demonstrating that deep 3D CNNs 
in combination with the Kinetics dataset together will 
trace the successful history of 2D CNNs and ImageNet, 
and will further stimulate the advancement of computer 
vision. 
Inspired by SENet [29], STCNet [11] constructed a new 
block for modeling the correlation between 3D CNN 
channels based on temporal and spatial elements, which 
can be added as residual units to different parts of 3D 
CNNs, and embedded this block into ResNet and Res-
Next architectures, which resulted in a significant perfor-
mance improvement, and its model is shown in Figure 
11. The model is shown in Figure 12. The work also 
transfers the knowledge from the pre-trained 2D CNNs 
to the randomly initialized 3D CNNs for stable weight 
initialization, which is later fine-tuned on the target 
dataset, greatly reducing the training cost. 
3.5.2. Variants of 3D CNN 
3D convolution-based methods are very effective for 
modeling discriminative features in both spatial and tem-
poral dimensions for video behavior recognition. How-
ever, many 3D CNN-based frameworks contain a large 
number of parameters, increasing the computational ef-
fort. To reduce the complexity of 3D convolutional net-
work training. 
Therefore, some studies [61, 70, 77] aim to decompose 
3D convolution. Qiu et al. [61] proposed a pseudo-3D 
network model: P3D (Pseudo-3D Re-sidual Networks), 
which simulates 3D convolution by means of 2+1, i.e., a 
combination of traditional 2D convolution and 1D con-
volution. Similarly, Tran et al. [77] proposed a method 
called R(2+1)D to decompose 3D convolution. The core 

idea of these two methods is to decompose a 3D 
convolution kernel into two independent 
operations along the temporal and spatial 
dimensions, i.e., a 3 × 3 × 3 convolution kernel is 
decomposed into a two-dimensional spatial 
convolution kernel (1 × 3 × 3) and a one-di-
mensional temporal convolution kernel (3 × 1 × 1), 
and its equivalent substitution is shown in Figure 
13: this method greatly reduces the complexity of 
the model, and further enhances the efficiency of 
the model. Sun et al. [70] proposed a factorized 
spatio-temporal convolutional network (FstCN), 
which decomposes the original 3D convolutional 
kernel learning into a sequential process of learn-
ing a 2D spatial kernel in the lower layer (spatial 
convolutional layer), and then learning a 1D tem-
poral kernel in the upper layer (temporal convolu-
tional layer).  
Figure 13 
Equivalent transformations for 3D convolution. 

 

 
Another approach to reduce model complexity is to 
mix 2D convolution and 3D convolution. Zhou et 
al. [115] proposed a hybrid convolutional model, 
MicT, which integrates 2D CNN and 3D CNN 
modules to generate deeper and more informative 
feature maps while reducing the training complex-
ity of each round of spatio-temporal fusion. They 
also proposed a new end-to-end 3D network 
MiCT-Net based on MiCT to better explore the 
spatio-temporal information in human behavior. 
Meanwhile, Xie et al. [104] also proposed a new 
model S3D based on I3D, which makes a series of 
attempts based on I2D and I3D, e.g., Bottom-
Heavy-I3D and Top-Heavy-I3D, where the former 
one uses 3D time-domain convolution at the lower 
level of the network and 2D convolution at the 
higher level, and the latter one is just the opposite. 
In the former case, 3D time-domain convolution is 
used at the lower level of the network, while 2D 
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makes it possible to extract both temporal and spatial in-
formation simultaneously. Meanwhile, for the model 

weights, the model inflates the pre-trained 2D 
model weights from ImageNet to the cor-
responding weights in the 3D model, so that the 3D 
CNN does not have to train a new network from 
scratch. 
To address the input problem of fixed-size video 
frames in video recognition, Yang et al. [106] pro-
posed a 3D-dense connected convolutional net-
work (3D-DenseNet-SPP) based on spatial pyra-
mid pooling (Figure 11), which adopts a migration 
learning approach, and is pre-trained on a large-
scale dataset, Kinetics400, then fine-tuned with a 
small dataset, thus reducing the training difficulty 
of the model. This model uses a migration learning 
approach, and after pre-training on a large-scale 
dataset, Kinetics400, the model is fine-tuned with 
a small dataset to reduce the difficulty of training. 
Meanwhile, Huang et al. [30] argued that pre-train-
ing an effective 3D ConvNet on large-scale 
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tion and 1D convolution. Similarly, Tran et al. [77] 
proposed a method called R(2+1)D to decompose 3D 
convolution. The core idea of these two methods is to 
decompose a 3D convolution kernel into two indepen-
dent operations along the temporal and spatial dimen-
sions, i.e., a 3 × 3 × 3 convolution kernel is decomposed 
into a two-dimensional spatial convolution kernel (1 
× 3 × 3) and a one-dimensional temporal convolution 
kernel (3 × 1 × 1), and its equivalent substitution is 
shown in Figure 13: this method greatly reduces the 
complexity of the model, and further enhances the ef-
ficiency of the model. Sun et al. [70] proposed a factor-
ized spatio-temporal convolutional network (FstCN), 
which decomposes the original 3D convolutional ker-
nel learning into a sequential process of learning a 2D 
spatial kernel in the lower layer (spatial convolutional 
layer), and then learning a 1D temporal kernel in the 
upper layer (temporal convolutional layer). 

is used at the higher level. Experimental results show 
that the latter model is faster and more accurate.
The CSN proposed by Tran et al. [76] based on the 
idea of group convolution is also a good variant of 
3D CNN, which decomposes 3D convolution by sep-
arating channel interaction and spatio-temporal in-
teraction, which improves the recognition accuracy 
and reduces the computational cost. Secondly, 3D 
channel-separated convolution also provides a form 
of regularization, which has lower training accura-
cy but higher testing accuracy than conventional 3D 
convolution. Li et al. [41] proposed a new collabora-
tive spatio-temporal network (CoST) based on C2D 
and C3D, which retains the advantages of the origi-
nal C2D to learn spatal and temporal features inde-
pendently and the C3D to jointly learn unconstrained 
parameters, and collaboratively encodes spatial-tem-
poral features by sharing constraints and applying 
weights to the learnable parameters. By sharing the 
convolutional kernels of different views, the spatial 
and temporal features are learned collaboratively so 
as to benefit from each other, and the performance of 
the model is greatly improved by weighted summa-
tion of the complementary features. Luo et al. [53] 
proposed a new decomposition method to decompose 
the feature channel into spatial and temporal groups 
in parallel, called spatio-temporal aggregation (GST). 
This decomposition is similar to the two-stream net-
work, which uses one path to model spatial informa-
tion and the other to model temporal information, so 
that the two groups focus on the static and dynamic 
cues, respectively, and then spatial-temporal features 
are spliced together. At the same time, this decompo-
sition not only results in fewer parameters, but also in 
higher parameter efficiency, which enables quantita-
tive analysis of the contributions of spatial and tem-
poral features in different layers.
SlowFast, as an efficient network with fast and slow 
paths, is modeled as shown in Figure 14, which uses 
two-stream convolution as inputs; the slow path runs 
at a low frame rate to capture detailed semantic in-
formation, i.e., the spatial information, while the fast 
path runs at a high temporal resolution to capture the 
fast-changing motion, i.e., the spatial information.
In order to merge the temporal and spatial semantic 
information of the different paths, the fast and slow 
paths are also unilaterally connected in a lateral di-
rection to merge the features of the fast path into the 

Figure 13
Equivalent transformations for 3D convolution
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directly based on 2D ResNet, which is modeled after I3D 
by replacing all the 2D convolutional kernels and pool-
ing kernels with 3D ones. Meanwhile, inspired by the 
fact that 2D CNNs greatly contribute to generalized fea-
ture representation after pre-training on the ImageNet 
dataset, the authors propose for the first time a variety of 
3D CNNs modeled on the Kinetics dataset (ResNet, Res-
Next-101) starting from zero and ranging from relatively 
shallow to very deep, demonstrating that deep 3D CNNs 
in combination with the Kinetics dataset together will 
trace the successful history of 2D CNNs and ImageNet, 
and will further stimulate the advancement of computer 
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Inspired by SENet [29], STCNet [11] constructed a new 
block for modeling the correlation between 3D CNN 
channels based on temporal and spatial elements, which 
can be added as residual units to different parts of 3D 
CNNs, and embedded this block into ResNet and Res-
Next architectures, which resulted in a significant perfor-
mance improvement, and its model is shown in Figure 
11. The model is shown in Figure 12. The work also 
transfers the knowledge from the pre-trained 2D CNNs 
to the randomly initialized 3D CNNs for stable weight 
initialization, which is later fine-tuned on the target 
dataset, greatly reducing the training cost. 
3.5.2. Variants of 3D CNN 
3D convolution-based methods are very effective for 
modeling discriminative features in both spatial and tem-
poral dimensions for video behavior recognition. How-
ever, many 3D CNN-based frameworks contain a large 
number of parameters, increasing the computational ef-
fort. To reduce the complexity of 3D convolutional net-
work training. 
Therefore, some studies [61, 70, 77] aim to decompose 
3D convolution. Qiu et al. [61] proposed a pseudo-3D 
network model: P3D (Pseudo-3D Re-sidual Networks), 
which simulates 3D convolution by means of 2+1, i.e., a 
combination of traditional 2D convolution and 1D con-
volution. Similarly, Tran et al. [77] proposed a method 
called R(2+1)D to decompose 3D convolution. The core 

idea of these two methods is to decompose a 3D 
convolution kernel into two independent 
operations along the temporal and spatial 
dimensions, i.e., a 3 × 3 × 3 convolution kernel is 
decomposed into a two-dimensional spatial 
convolution kernel (1 × 3 × 3) and a one-di-
mensional temporal convolution kernel (3 × 1 × 1), 
and its equivalent substitution is shown in Figure 
13: this method greatly reduces the complexity of 
the model, and further enhances the efficiency of 
the model. Sun et al. [70] proposed a factorized 
spatio-temporal convolutional network (FstCN), 
which decomposes the original 3D convolutional 
kernel learning into a sequential process of learn-
ing a 2D spatial kernel in the lower layer (spatial 
convolutional layer), and then learning a 1D tem-
poral kernel in the upper layer (temporal convolu-
tional layer).  
Figure 13 
Equivalent transformations for 3D convolution. 

 

 
Another approach to reduce model complexity is to 
mix 2D convolution and 3D convolution. Zhou et 
al. [115] proposed a hybrid convolutional model, 
MicT, which integrates 2D CNN and 3D CNN 
modules to generate deeper and more informative 
feature maps while reducing the training complex-
ity of each round of spatio-temporal fusion. They 
also proposed a new end-to-end 3D network 
MiCT-Net based on MiCT to better explore the 
spatio-temporal information in human behavior. 
Meanwhile, Xie et al. [104] also proposed a new 
model S3D based on I3D, which makes a series of 
attempts based on I2D and I3D, e.g., Bottom-
Heavy-I3D and Top-Heavy-I3D, where the former 
one uses 3D time-domain convolution at the lower 
level of the network and 2D convolution at the 
higher level, and the latter one is just the opposite. 
In the former case, 3D time-domain convolution is 
used at the lower level of the network, while 2D 
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Figure 14
SlowFast model structure

 

 

convolution is used at the higher level. Experimental 
results show that the latter model is faster and more 
accurate. 

The CSN proposed by Tran et al. [76] based on the 
idea of group convolution is also a good variant of 
3D CNN, which decomposes 3D convolution by 
separating channel interaction and spatio-temporal  
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interaction, which improves the recognition accuracy 
and reduces the computational cost. Secondly, 3D chan-
nel-separated convolution also provides a form of regu-
larization, which has lower training accuracy but higher 
testing accuracy than conventional 3D convolution. Li et 
al. [41] proposed a new collaborative spatio-temporal 
network (CoST) based on C2D and C3D, which retains 
the advantages of the original C2D to learn spatal and 
temporal features independently and the C3D to jointly 
learn unconstrained parameters, and collaboratively en-
codes spatial-temporal features by sharing constraints 
and applying weights to the learnable parameters. By 
sharing the convolutional kernels of different views, the 
spatial and temporal features are learned collaboratively 
so as to benefit from each other, and the performance of 
the model is greatly improved by weighted summation 
of the complementary features. Luo et al. [53] proposed 
a new decomposition method to decompose the feature 
channel into spatial and temporal groups in parallel, 
called spatio-temporal aggregation (GST). This decom-
position is similar to the two-stream network, which uses 
one path to model spatial information and the other to 
model temporal information, so that the two groups fo-
cus on the static and dynamic cues, respectively, and then 
spatial-temporal features are spliced together. At the 
same time, this decomposition not only results in fewer 
parameters, but also in higher parameter efficiency, 
which enables quantitative analysis of the contributions 
of spatial and temporal features in different layers. 
SlowFast, as an efficient network with fast and slow 
paths, is modeled as shown in Figure 14, which uses two-
stream convolution as inputs; the slow path runs at a low 
frame rate to capture detailed semantic information, i.e., 
the spatial information, while the fast path runs at a high 
temporal resolution to capture the fast-changing motion, 
i.e., the spatial information. 
In order to merge the temporal and spatial semantic in-
formation of the different paths, the fast and slow paths 
are also unilaterally connected in a lateral direction to 
merge the features of the fast path into the slow path and 

match the different temporal dimensions of the two 
paths. Although SlowFast is also a two-stream 
input, it is different from the traditional two-stream 
structure, which has more temporal and spatial 
streams, while the SlowFast model adopts the same 
backbone network to simulate different temporal 
velocities rather than spatial and temporal models. 
The absence of operations such as calculating 
optical flow makes the model more efficient and 
lighter. On this basis, the team further introduced 
the X3D [16] model, which is gradually expanded 
along multiple network axes (e.g., time, space, 
width, and depth), and finally formed a 2D image 
classification architecture. X3D adopts a simple 
step-by-step network expansion approach, which 
expands a single axis at each step, thus achieving 
good accuracy in the complexity trade-off. The 
model structure is shown in Figure 15. In order to 
expand X3D to a specific target complexity, it uses 
progressive forward expansion and then backward 
contraction, which is very light in terms of network 
width and parameters, but achieves more advanced 
performance. 
Figure 15 
X3D Model Structure. 

 

 
Meanwhile, there are some works [96, 111] that 
combine 3D convolution with LSTM to enhance 
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global attention. Wang et al. [96] proposed a new 
model I3D-LSTM based on I3D combined with 
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Meanwhile, there are some works [96, 111] that 
combine 3D convolution with LSTM to enhance 
the acquisition of contextual information and 
global attention. Wang et al. [96] proposed a new 
model I3D-LSTM based on I3D combined with 

network width and parameters, but achieves more ad-
vanced performance.
Meanwhile, there are some works [96, 111] that com-
bine 3D convolution with LSTM to enhance the 
acquisition of contextual information and global 
attention. Wang et al. [96] proposed a new model I3D-
LSTM based on I3D combined with LSTM, which 
pre-trained the 3D CNN model on the Kinetics data-
set to improve the generality of the model, and then 
introduced the Long Short-Term Memory Network 
(LSTM) to model the high-level temporal features 
generated by the pre-trained 3D CNN model, which 
realized the modeling of the sequence of low-level 
and high-level spatial-temporal features and the se-
quence of high-level spatial-temporal features. and 
high-level temporal feature sequences are modeled. 
Similar to I3D-LSTM, Zhang et al. [111] proposed a 
long term 3D convolutional fusion network (LT3D-
CFN), which replaces the CNNs in the dual-stream 
network with 3D CNNs in order to extract features 
from the spatial and temporal dimensions of a sin-
gle video clip. In addition, long term correlations are 
established between clips of a single motion video by 
adding a deep LSTM network.

3.5.3. Dense Connectivity for 3D CNNs
The TSN model in the dual-stream approach realiz-
es the recognition of long videos by segmenting the 
video to randomly extract frames. In 3D CNN, the 
simplest way to solve this problem is by superimpos-
ing multiple short videos. This is achieved by using a 



635Information Technology and Control 2024/2/53

convolution on each short video, e.g., using a 3×3×3 
convolution kernel, but some information is lost due 
to the superposition of multiple convolution kernels, 
resulting in a loss of accuracy. In order to solve this 
problem, Varol et al. [80] proposed the model LTC, 
which not only demonstrated that the LTC-CNN 
model with increasing time horizon improves the 
accuracy of action recognition, but also proved the 
importance of high-quality optical flow estimation 
for learning accurate action models by examining the 
effect of different low-levels on the representations, 
such as the original values of video pixels and the opti-
cal flow vector field. In the same period, Diba et al. [12] 
proposed a T3D network based on DenseNet using a 
densely connected structure, in order to make the 3D 
convolutional network can be better initialized, and 
at the same time proposed a migration learning meth-
od, transferring the knowledge from the pre-trained 
2D CNNs as a 3D CNN for the stable initialization 
of the weights, which greatly reduces the number of 
training samples, accelerates the training This great-
ly reduces the number of training samples and speeds 
up training, while maintaining the integrity of the 
original temporal information as much as possible, so 
as to make the final prediction. Related researchers 
have also investigated knowledge distillation to im-
prove the motion representation of 3D CNN frame-
works. For example, Stroud et al. [69] introduced a 
distilled 3D network (D3D) consisting of a student 
network and a teacher network, and designed a model 
that uses the teacher network to pre-train on the op-
tical flow, and then the student network is trained on 
the RGB video, and also extracts the knowledge of the 
teacher network that was trained on the sequence of 
the optical flow, and adjusts the spatial flow to simu-
late the temporal flow, effectively combining the two 
models into a single flow, which greatly improves the 
speed of prediction, while maintaining the integrity 
of the original temporal information. The spatial flow 
is adjusted to simulate the temporal flow, which ef-
fectively combines the two models into one flow and 
greatly improves the inference effect of the model.
3D CNN-based video behavior recognition meth-
ods typically perform spatio-temporal processing 
over limited time intervals via window-based 3D 
convolutional operations, where each convolution-
al operation focuses only on a relatively short period 
of contextual information in the video. Meanwhile, 

RNN-based methods recursively process video se-
quence elements, and thus cannot model relatively 
long-term spatio-temporal dependencies. However, 
Transformer can directly attend to the completion of 
video sequences through its scalable self-attention 
mechanism, and thus can effectively learn remote 
spatio-temporal relationships in videos. Therefore 
many recent works have also investigated Transform-
er-based video behavior recognition in RGB videos. 
In the next section, we review the Transformer-based 
approach.

3.6. Based on Transformer with ViT
In Video Behavior Recognition, Transformer is suit-
able for modeling and processing sequence data by 
introducing a self-attention mechanism to construct 
global connections. In video behavior recognition, the 
video is usually regarded as a time sequence, and each 
moment (or frame), can be described as a vector, us-
ing Transformer to model the video. The structure of 
Transformer-based video behavior recognition mod-
el is shown in Figure 16, the core of the model is the 
Transformer block in the box, the Transformer block 
consists of an encoder and a decoder, and the encoder 
mainly consists of a number of self-attentive blocks to 
encode the input sequence. The decoder shares a sim-
ilar architecture to the encoder, except for the addi-
tional encoder-decoder attention mechanism in each 
block. This design allows the Transformer to perform 
well in long-term dependency modeling.
In recent years, with the excellent results of Trans-
former in NLP, through its scalable self-attention 
mechanism, thus it can effectively learn long-dis-
tance spatio-temporal relations in videos. Therefore, 
many recent works have also investigated Transform-
er-based video behavior recognition in RGB videos. 
Liu et al. [51] proposed Video Swin Transformer based 
on Transformer, whose model structure is shown in 
Figure 17. It advocates the localized generalized bias 
in video Transformer. Meanwhile, it also introduces 
a cross-channel attention mechanism and a hierar-
chical multi-scale feature fusion technique to better 
capture the temporal and spatial information in the 
video. In addition, the model also utilizes the power of 
pre-trained images, and its method possesses better 
speed and accuracy than previous methods that use 
spatio-temporal decomposition to globally compute 
self-attention. Meanwhile, Arnab et al. [3] proposed 
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Figure 16
Video Behavior Recognition Model Based on Transformer

Figure 17
Video Swin Transformer Model Structure
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In recent years, with the excellent results of Transformer 
in NLP, through its scalable self-attention mechanism, 
thus it can effectively learn long-distance spatio-tem-
poral relations in videos. Therefore, many recent works 
have also investigated Transformer-based video behav-
ior recognition in RGB videos. Liu et al. [51] proposed 
Video Swin Transformer based on Transformer, whose 
model structure is shown in Figure 17. It advocates the 
localized generalized bias in video Transformer. Mean-
while, it also introduces a cross-channel attention mech-
anism and a hierarchical multi-scale feature fusion tech-
nique to better capture the temporal and spatial infor-
mation in the video. In addition, the model also utilizes 
the power of pre-trained images, and its method pos-
sesses better speed and accuracy than previous methods 
that use spatio-temporal decomposition to globally com-
pute self-attention. Meanwhile, Arnab et al. [3] proposed 
a pure Transformer-based video classification model. 
This model extracts spatio-temporal markers from the in-
put video, which are then encoded by a series of trans-
formers. In order to deal with long sequences of Token 
encountered in the video, their variant operation is ap-
plied to the model to enable it to decompose the spatial 
and temporal dimensions of the input. 
Truong et al. [78] proposed a spatio-temporally oriented 
attention architecture (DirecFormer) based on depth-sep-
arable convolution and attention, which utilizes the mag-
nitude of attention between frames as well as the direc-
tion of attention to learn the correct order of frames 
within an action video, which can improve the model's 

receptive field and the efficiency of feature ex-
traction while maintaining the depth of the model. 
Yan et al. [105] proposed a multiview transformer, 
a model consisting of multiple individual encoders, 
each of which is dedicated to a single input 
representation. Horizontal connections between 
the individual encoders are used to efficiently fuse 
information from different representations of the 
input video. 
Piergiovanni et al. [57] proposed a method that can 
turn ViT coding into an efficient video model. It 
can seamlessly process both image and video in-
puts. The input is sparsely sampled for training and 
inference. At the same time, the model is easily 
scalable to accommodate large-scale pre-training 
of ViT without full fine-tuning. Qing et al. [60] 
proposed a new motion recognition scheme 
(MAR) based on VideoMAE [73], which reduces 
redundant computation by discarding a certain 
percentage of patches and running on only a 
portion of the video. Meanwhile, in order to enable 
ViT to easily perceive the details beyond the corre-
sponding patches, it proposes a unit-run masking 
module to preserve the spatio-temporal correlation 
in the video. In order to solve the problem of not 
being able to achieve accurate classification, it also 
proposes a bridging classifier to bridge the 
semantic differences between the reconstructed 
ViT coded features and the features dedicated for 
classification. 
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a pure Transformer-based video classification model. 
This model extracts spatio-temporal markers from 
the input video, which are then encoded by a series of 
transformers. In order to deal with long sequences of 
Token encountered in the video, their variant opera-
tion is applied to the model to enable it to decompose 
the spatial and temporal dimensions of the input.
Truong et al. [78] proposed a spatio-temporally ori-
ented attention architecture (DirecFormer) based 
on depth-separable convolution and attention, which 
utilizes the magnitude of attention between frames as 
well as the direction of attention to learn the correct 
order of frames within an action video, which can im-
prove the model’s receptive field and the efficiency of 
feature extraction while maintaining the depth of the 
model. Yan et al. [105] proposed a multiview trans-

former, a model consisting of multiple individual 
encoders, each of which is dedicated to a single input 
representation. Horizontal connections between the 
individual encoders are used to efficiently fuse infor-
mation from different representations of the input 
video.
Piergiovanni et al. [57] proposed a method that can 
turn ViT coding into an efficient video model. It can 
seamlessly process both image and video inputs. The 
input is sparsely sampled for training and inference. 
At the same time, the model is easily scalable to ac-
commodate large-scale pre-training of ViT without 
full fine-tuning. Qing et al. [60] proposed a new mo-
tion recognition scheme (MAR) based on VideoMAE 
[73], which reduces redundant computation by dis-
carding a certain percentage of patches and running 
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on only a portion of the video. Meanwhile, in order to 
enable ViT to easily perceive the details beyond the 
corresponding patches, it proposes a unit-run mask-
ing module to preserve the spatio-temporal correla-
tion in the video. In order to solve the problem of not 
being able to achieve accurate classification, it also 
proposes a bridging classifier to bridge the semantic 
differences between the reconstructed ViT coded fea-
tures and the features dedicated for classification.
Although ViT has been breaking the records of many 
visual tasks, it is computationally intensive, memo-
ry-intensive, and not friendly to embedded devices. In 
order to make video behavior recognition available to 
lightweight devices, Nguyen et al. [55] used the mod-
ernized structure of ConvNet to design a new action 
recognition backbone, which consists of 2D convolu-
tion, without using any 3D convolution, remote atten-
tion plug-in, which greatly reduces the computational 
effort without losing computational performance, and 
thus can be deployed on lightweight devices. The net-
work consists of only 2D convolution, without using 
any 3D convolution, remote attention plug-in, which 
greatly reduces the computational volume without 
losing computational performance, and enables light-
weight, which can be deployed on lightweight devices. 
Meanwhile, Zhang et al. [112] proposed VidTr, which 
has a video classification mechanism with separa-
ble attention. Compared with common 3D networks, 
VidTr is able to aggregate spatio-temporal informa-
tion by stacking attention and provide better perfor-
mance with higher efficiency. To further optimize the 
model, it proposes standard deviation-based topK 
pooling, which reduces the computation by discard-
ing non-informative features along the temporal di-
mension, and is more effective for prediction work 
that requires long-term temporal inference of behav-
iors. In the improved correlated behavior recognition 
algorithm based on ViT, directly applying spatio-tem-
poral converter on video data will bring heavy com-
putational and memory burden due to the significant 
increase in the number of patches and the secondary 
complexity of self-attention computation. Xiang et al. 
[102] proposed a time patch shifting (TPS) method for 
efficient 3D self-attention modeling in Transformer 
for video action recognition. With no additional cost, 
TPS shifts a portion of Patch with a specific pattern 
in the time dimension, thus converting the original 
spatial self-attention operation into a temporal one. 

At the same time, TPS is a plug-and-play module that 
can be inserted into existing 2D converter models to 
enhance spatio-temporal feature learning.
Most of the existing vision base models focus only on 
image pre-training, and compared to the image do-
main which has many base models, there are few base 
models in the video behavior recognition domain. 
To fill this gap, Wang et al. [84] proposed a general-
ized video base model, InternVideo, which exploits 
generative and discriminative self-supervised learn-
ing, effectively explores masked video modeling and 
video language comparison learning as pre-training 
objectives, and selectively coordinates video repre-
sentations of these two complementary frameworks 
in a learnable manner to facilitate a variety of video 
applications.
As the size of large pre-trained models continues to 
grow, and standard fully fine-tuned task-based adap-
tation strategies become prohibitively expensive in 
terms of model training and storage, parameter-effi-
cient transfer learning has emerged. Some research-
ers have used techniques such as knowledge distilla-
tion and transfer learning in this area as well. Wang 
et al. [93] proposed the Masked Video Distillation 
(MVD) technique, which is a simple but effective 
two-stage masked feature modeling framework for 
video representation learning. It starts with low-lev-
el features to pre-train video and picture models, and 
then uses the resultant features as targets for masked 
feature modeling. Student models are extracted from 
video and image teachers through mask modeling. 
Experiments show that the video Transformer pre-
trained by spatio-temporal co-teaching outperforms 
the model refined by a single teacher on numerous 
video datasets. Meanwhile, Pan et al. [56] proposed 
a new spatio-temporal adapter (ST-Adapter) for pa-
rameter-efficient fine-tuning of each video task. The 
model has built-in spatio-temporal reasoning in a 
compact design so that pre-trained image models do 
not require temporal knowledge, i.e., reasoning about 
dynamic video content can be performed at a very 
small parameter cost, which can be drastically re-
duced without decreasing the efficiency.
Wang et al. [89] proposed a video architecture ap-
proach called temporal difference network (TDN) in 
order to alleviate the problem of temporal modeling 
in video motion recognition. The core of the approach 
is to design an effective temporal module (TDM) by 
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utilizing temporal difference operators and system-
atically evaluating its impact on short-term and long-
term motion modeling to capture multi-scale tempo-
ral information for effective action recognition. TDN 
adopts a two-level differential modeling paradigm. 
Specifically, for local motion modeling, temporal 
differences over consecutive frames are used to pro-
vide a finer-grained motion pattern for the 2D CNN, 
whereas for global motion modeling, temporal differ-
ences across segments are combined to capture the 
tele-structure motivated by the motion features, with 
a performance comparable to the best performance 
on the Something-Something V1, V2, and Kinet-
ics-400 datasets.
Modern deep learning models compute self-attention 
by performing spatio-temporal 3D convolution, de-
composing 3D convolution into spatial and temporal 
convolution separately, or along the temporal dimen-
sion under the premise that feature mappings across 
consecutive frames can be well aggregated by default. 
Arguing that this premise may not always be partic-
ularly applicable to regions with large deformations, 
Long et al. [52] proposed a new block of inter-frame 
attention, known as stand-alone inter-frame atten-
tion (SIFA), which rescales offset predictions based 
on the difference between two frames to reshape the 
deformable design. Taking each spatial position in the 
current frame as a query, the local deformable neigh-
borhood in the next frame is considered as a key/val-
ue. Then, SIFA measures the similarity between the 
query keys as an independent attention to the weight-
ed average of the temporally aggregated values. And 
further, the SIFA modules are inserted into ConvNets 
and Vision Transformer to design SIFA-Net and SI-
FA-Transformer, respectively. Wu et al. [98] proposed 
a memory-enhanced multi-scale vision transformer 
(MeMViT) in order to realize the long video recog-
nition. The converter replaces most methods that 
attempt to process multiple frames at once with a 
method that processes the video online and caches it 
to memory at each iteration. With memory, the model 
can be modeled over time with reference to previous 
contexts, temporarily supporting video lengths up 
to 30 times longer than those supported by existing 
models, with only a 4.5% increase in computational 
effort, whereas traditional methods require >3000% 
of the computational power to perform the same op-
eration.

3.7. Based on Skeletal Joint Points with 
Graph Convolution
Skeletal sequences encode the motion trajectories 
of human joints, which characterize a rich set of in-
formation about human motion. Skeletal data can be 
obtained by applying pose estimation algorithms to 
RGB video or depth maps, and can also be collected 
by motion capture systems. The use of skeletal data 
for video behavior recognition has many advantag-
es, as it provides information about body structure 
and pose, its intrinsically simple and informative 
representation, scale invariance, and its robustness 
to changes in clothing texture and background. Due 
to these advantages, combined with its accuracy 
and the availability of low-cost depth sensors, skel-
eton-based video behavior recognition has attract-
ed much attention from the research community 
in recent years. Meanwhile, GCN can capture the 
connectivity model of intra-graph dependencies 
through message passing between nodes. It is just 
able to capture the high-level spatial structure and 
dynamic temporal information of skeleton data. 
The work of introducing graph convolutional neural 
network GCN combined with human skeleton key-
points into behavior recognition.
Thakkar et al. [72] proposed Partial Graph Convo-
lutional Network (PB-GCN) based on Deformable 
Part’s Model (DPM), which plots the human skeleton 
into four subgraphs and shares joints between them 
Learning uses a recognition model based on Partial 
Graph Convolutional Networks, which uses relative 
coordinates and temporal displacements to improve 
performance. Shi et al. [64] designed a directed graph 
neural network for extracting information about 
joints, bones, and their relationships to represent 
skeletal data as a directed acyclic graph based on kine-
matic dependencies between joints and bones in the 
natural human body. The model can adapt itself to the 
topology of the graph during the training process. Li et 
al. [44] introduced an encoder and decoder structure 
in order to capture richer dependencies, extending 
the existing skeleton graph to represent higher-or-
der dependencies. An action-structure graph convo-
lutional network (AS-GCN) that uses action-struc-
ture graph convolution and temporal convolution as 
the basic building blocks is further proposed to learn 
spatial and temporal features for action recognition, 
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which helps to capture more detailed action patterns 
through self-supervision.
Shi et al. [65] proposed a two-stream adaptive graph 
convolutional network (2S-AGCN), in which the to-
pology of the graphs can be learned either uniformly 
or individually in an end-to-end manner via a BP al-
gorithm. This data-driven approach increases the 
flexibility of the model in graph construction and 
brings more generalization to accommodate various 
data samples. In addition, the paper proposes a du-
al-stream framework for modeling both first- and sec-
ond-order information, which significantly improves 
the recognition accuracy. However, since the graph 
convolution operation is a local operation, it cannot 
fully investigate the non-local joints that are crucial 
for recognizing actions. Therefore, Zhang et al. [113] 
proposed a context-aware graph convolution network 
(CA-GCN), which utilizes asymmetric correlation 
measures and higher-level representations to com-
pute contextual information for greater flexibility and 
better performance. In addition, the network simpli-
fies the network by considering the context term of 
each vertex by integrating the information of all other 
vertices in addition to computing the local graph con-
volution, thus achieving a performance comparable 
to the then optimal network. Ye et al. [107] construct-
ed a GCN network by stacking multiple Context Cod-
ing Networks (CeN), which learns the dependency 
between two joints by merging the contextual fea-
tures of the remaining joints. As an advantage of CeN, 
dynamic graph topology is constructed for different 
input samples and different depths of graph convo-
lutional layers. The final results achieve state-of-the-
art performance on three challenging datasets.
Yu et al. [108] proposed a base multimodal network 
(MMNet), which fuses skeleton and RGB modal data 
to improve the accuracy of integrated recognition 
by effectively applying mutually complementary 
information. It uses a spatio-temporal graph con-
volutional network as a skeleton modality to learn 
the attentional weights, and then transfers these 
attentional weights to the network of RGB modal-
ities, which then efficiently capture the mutually 
complementary features in different RGB -D video 
modalities complement each other and provide more 
discriminative features for HAR. Duan et al. [15] 
proposed a bone-based action recognition method, 
PoseConv3D, which relies on 3D heatmap volumes 

rather than graphical sequences. Compared with the 
GCN-based method, PoseConv3D is more efficient 
in learning spatio-temporal features, more reliable 
against pose estimation noise, and has better gener-
alization ability. In addition, the model can handle 
multiplayer scenarios without additional computa-
tional cost, and its hierarchical features can be easily 
integrated with other modalities in the early fusion 
stage, providing a good design space for performance 
improvement. Ahn et al. [2] in order to solve the prob-
lem of cross-modal data requiring separate models 
and balanced feature representations, proposed a 
spatio-temporal transformer (STAR), which can effi-
ciently use two cross-modal features as recognizable 
vectors. The STAR transformer encoder consists of a 
full spatio-temporal attention (FAttn) module and a 
proposed sawtooth spatio-temporal attention (ZAt-
tn) module. Similarly, the sequential decoder consists 
of a FAttn module and a proposed Binary Spatiotem-
poral Attention (BAttn) module. STAR-transformer 
further gains a great deal by correctly arranging the 
pairing of FAttn, ZAttn, and BAttn modules to learn 
effective multi-feature representations of spatio-
temporal features. Qi et al. [59] proposed an efficient 
graph convolutional network based on multi-order 
feature information (MFGCN) for human skeletal 
action recognition, which introduces angular fea-
tures (called fourth-order features), which are im-
plicitly embedded into other third-order features by 
encoding the angular features in order to robustly 
capture detailed features in the spatiotemporal di-
mension and enhance the ability to differentiate be-
tween similar actions; second, a content-adaptive 
approach is used to construct an adjacency matrix to 
dynamically learning the topology between skeleton 
joints; finally, a spatio-temporal information sliding 
extraction module (STISE) is developed to improve 
the interconnectivity of spatio-temporal information.
In summary, skeletal morphology provides informa-
tion about body structure, which represents human 
behavior in a simple, efficient, and informative way. 
However, video behavior recognition using skeleton 
data still faces challenges because of its very sparse 
representation, noisy skeleton information, and lack 
of shape information which is important when deal-
ing with human-computer interaction. Therefore, 
some existing work on video behavior recognition 
also focuses on the use of depth maps.
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4. Comparison of Models and 
Analysis of Their Effects
This section compares the dominant methods on the 
benchmark dataset. First, in Section 4.1, we present 
standard evaluation schemes. Next, we divide the 
common benchmarks into four categories based on 
model characteristics, and in Section 4.2, we compare 
the accuracy of hand-crafted and using convolutional 
neural network models on common datasets such as 
UCF101, HMDB51, and Kinetics400. In Section 4.3, 
we extend the NTU RGB+D dataset and compare the 
accuracy of LSTM and its variant models. Similarly, 
in Section 4.4 and Section 4.5, we extend the Skele-
ton-Kinetics dataset and the Something-Something 
V2 dataset, respectively, and then compare the ac-
curacy on the Skeleton-+GCN model and the Trans-
former and ViT models, respectively. Finally, in Sec-
tion 4.6, we compare the mAP of the models.

4.1. Evaluation Program

During model training, a video frame clip is usual-
ly randomly selected to constitute a small batch of 
samples. However, for a fair comparison, we need a 
standardized process in the evaluation phase. For 2D 
CNNs, a widely adopted evaluation scheme is to take 
25 frames uniformly in each video, crop each frame at 
the corners and center, then perform horizontal flip-
ping for data enhancement, and finally average the 
prediction scores of all samples. This means that we 
use 250 frames per video for inference. For 3D CNNs, 
a widely adopted evaluation scheme called the 30-
view strategy, which uniformly draws 10 clips in the 
relevant dataset and performs three data enhance-
ment schemes for each video clip. Specifically, the 
shorter spatial side is extended to 256 pixels, three 
256 × 256 frames are taken to cover the spatial dimen-
sion, and the scores are averaged for prediction.
In terms of evaluation metrics, we report the accu-
racy of single-label action recognition, as well as the 
mAP (mean average precision) of multi-label action 
recognition.

4.2. Manual and Convolutional Neural 
Networks

In chronological order, we first provide in Table 5 the 
results of early hand-crafted and subsequent initial 

attempts at dual/multistream networks using deep 
learning. We find that before deep learning was widely 
used, most methods were still based on hand-crafted, 
e.g., IDT, spatio-temporal trajectory-based, and spa-
tio-temporal point-of-interest-based models whose 
results were not particularly good. In the absence of 
motion/time modeling, the performance of Deep-
Video is not as effective as other modeling methods. 
However, DeepVideo was sort of the first time that the 
behavior recognition task was transferred from tradi-
tional methods (non-CNN) to deep learning. Subse-
quently, more and more models started to use deep 
learning, and the dual-stream model used both data 
modalities of RGB images and optical streams for the 
first time, which led to a significant performance im-
provement, and many subsequent models continued 
to follow the structure of the dual-stream model. For 
example, the TDD model uses trajectory pooling to 
extract motion-aware CNN features based on the du-
al-stream.
Next, we compare 3D CNN-based methods in the 
lower part of Table 5. C3D does not perform as well as 
the two-stream model in 2D CNNs, although it uses 
a large amount of data during the training process, 
which may be due to the difficulty of optimizing the 3D 
kernel. Inspired by this, several papers, including I3D, 
P3D [61], R(2+1)D [77], and S3D [104], decompose the 
3D convolutional filter into a 2D spatial kernel and a 
1D temporal kernel to simplify training. In addition, 
I3D introduces an inflation strategy that avoids train-
ing from scratch. They inflate 3D model weights from 
a trained 2D network. By using these techniques, they 
can achieve good performance without optical flow.
By comparing the results of the experimental data in 
Table 5, we can see that not all cases are necessarily 
better for 3D CNNs than for 2D CNNs. Many models 
absorb the advantages of both, and some of them are 
able to obtain higher recognition accuracy than the 
two-stream network (above), and their performance 
is comparable to that of 3D CNN. Since these models 
are based on 2D CNNs and do not use optical flow, 
they offer efficiency advantages in both training and 
inference, and most of them are also real-time meth-
ods. Therefore, based on the need for efficiency, we 
believe that 2D CNN + time-domain modeling is a 
promising research direction. Here, temporal mod-
eling can be attention-based, stream-based, or 3D 
kernel-based.



641Information Technology and Control 2024/2/53

Table 5
Performance of manuals, CNNs/and their variants, dual/multistream, 3D CNNs, and related variants

Model 
Category

Model Name/ 
Literature Index Pre-training Modal (computing, 

linguistics)
Accuracy on relevant datasets

UCF101 HMDB51 Kinetics400

craft

IDT [83] ImageNet RGB 86.4 61.7

time and space track [5]

TSPI [39]

Orbit [88]

Dual/
multistream 
and CNN 
variants

DeepVideo [37] ImageNet RGB 65.4 -

Two-Stream [66] ImageNet RGB+Flow 88.0 59.4

LSF CNN [82] ImageNet RGB+Flow 94.8 70.2

Literatures [90] ImageNet RGB+Flow 91.4 -

Siamese [94]

TDD [88]

Literatures [19] - RGB+Flow 94.2 68.9

Literatures [85] - RGB+Flow 94.6 68.9

TSN [91] Sports-1M RGB+Flow 94.2 69.4

SR-CNNS [86]

Literatures [100] Kinetics-400 RGB+Audio 92.2 -

AVSlowFast [103] Kinetics-400 RGB+Audio 93.6 -

Literatures [87]

Literatures [4] Kinetics-400 RGB+Flow 95.5 72.5

3D CNN and 
its variants

C3D [74] Sports1M RGB 82.3 56.8 59.5

I3D [9] ImageNet, K400 RGB 95.6 74.8 71.1

3D-DenseNet-SPP 
[106] K400 RGB 88.94 / /

Literatures [30] ImageNet RGB 92.7 69.1 /

Two-stream I3D [25] K400 RGB 98.0 80.7 /

STCNet [11] Sports1M RGB 96.5 74.9 /

P3D [61] Sports1M RGB 93.7 / 71.6

R(2+1)D [77] K400 RGB 96.8 74.5 72.0

MicT [115] ImageNet+Sports1M RGB 88.9 63.8 /

S3D [104] ImageNet+ K400 RGB 96.8 / 72.0

CSN [76] Sports1M RGB / / 77.0

CoST [41] ImageNet RGB / / 82.7

SlowFast [17] K400 RGB / / 79.8

X3D [16] IamgeNet RGB / / 80.4

LTC [80] ImageNet RGB+Flow 92.7 67.2 /

T3D+TSN [12] Sports1M RGB 93.2 63.5 /
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4.3. LSTM and Its Variants
We found that although 2D CNN can handle spatial 
information very well, its effect on temporal infor-
mation is still unsatisfactory, such as TDD and TSN 
models have captured the spatial information very 
well, and utilized convolutional neural networks to 
acquire spatial features layer by layer, because the 
temporal dimension has not been well utilized, so that 
the above models do not have much change in the ac-
tion, and the features captured are more similar to the 
image recognition task, and lack of significance of the 
video action recognition task.
LSTM can be a good solution to the problem of 
time-domain modeling, and it can extract action in-

formation over a long time span. Although LRCN, 
as the pioneer in this field, did not surpass the then 
popular dual stream network in terms of effect, the 
idea of stripping the temporal and spatial informa-
tion and sending the feature maps after convolution-
al operation as input to LSTM for the next step of 
learning, especially for the complex dynamic model-
ing of temporal information, the method still plays a 
great role in the effectiveness of the method. 
Most of the subsequent LSTM-based variants of the 
model continue to follow the idea of LRCN, and the 
accuracy of the model on UCF101, HMDB51, and 
other datasets is shown in Table 6.

Table 6
LSTM and its related variants

Model name or method Pre-training Input modal
Accuracy on relevant datasets

UCF101 HMDB51 NTU RGB+D

LRCN [14] ImageNet RGB+Flow 82.3 / /

DB-LSTM [79] Sports-1M RGB+Flow 91.21 87.64 /

Gammulle [21] ImageNet RGB+Flow 94.6 69.0 /

Literatures [45] Sports-1M RGB+Flow 91.9 64.1 /

GCA-LSTM [48] Kinetics400 RGB 66.2 84.0

I3D-LSTM [96] Kinetics400 RGB+Flow 95.1 / /

IP-LSTM+IDT [109] Sports1M RGB+Flow 91.4 68.2 /

Proposed Method [92] / RGB 84.1 / /

Srivastava [68]

LiteEval [101]

VideoLSTM [46]

4.4. Bone + GCN
Before the large-scale application of skeletal data, 
most of the data used for video behavior recogni-
tion are RGB images obtained by frame extraction of 
video, but whether using RGB images or extracting 
optical streams from video, 2D CNN, 3D CNN, and 
LSTM will generate a large amount of data, and also 
generate a large amount of redundant information, 
which makes the training of the model is very diffi-
cult, and greatly increases the difficulty of training 
the model.

This greatly increases the difficulty of model train-
ing. However, with the large-scale application of 
motion capture systems, as well as the application 
of pose estimation algorithms for RGB videos and 
depth maps, which can collect a large amount of hu-
man skeletal information, the advantages of skeletal 
data and graph convolutional neural networks men-
tioned in Section 3.7 have enabled the development 
of related models. We extend the Skeleton-Kinetics 
and NTU RGB + D (60/120) skeletal datasets, and 
summarize the accuracy of 10 relevant models on 
this dataset, as shown in Table 7.
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Table 7
Performance of Bone+GCN and related variants

Model name or 
method Ppre-training Input modal

Accuracy on relevant datasets

HMDB51 Skeleton-Kinetics
(Top-1/Top-5)

NTU RGB + 
D(60/120)

PB-GCN [72] ImageNet RGB+Skeleton 88.17 - 93.2/-
DGNN [64] Sports1M RGB+Skeleton - 36.9/59.6 96.1/-
AS-GCN [44] Kinetics-400 RGB+Skeleton - - 94.2/-
2S-AGCN [65] Kinetics-400 RGB+Skeleton - 36.1/58.7 95.1/-
CA-GCN [113] Kinetics-400 RGB+Skeleton - 33.3/55.4 96.0/-
Dynamic-GCN [107] Kinetics-400 RGB+Skeleton - 37.9/61.3 96.0/88.6
PointNet++ [58] - RGB+Skeleton - - 85.1/-
CTR-GCN [10] Kinetics-400 RGB+Skeleton - 96.8/90.6
PoseC3D [15] Kinetics-400 RGB+Skeleton 85.0 - 97.1/90.3
MMNet [108]

4.5. Transformer and ViT

In recent years, the hot Transformer and ViT have also 
been applied to the field of video behavior recognition, 
its scalable self-attention mechanism can naturally 
learn long-distance spatio-temporal relationships in 
video, and its internal self-attention blocks and de-
coder and encoder structures also enable the model 
to perform better in long-term dependency model-
ing. Video Swin Transformer extracts spatio-tem-

poral tokens from the input data, and then encodes 
and decodes them by a series of converters, obtaining 
the corresponding long sequence of tokens, which is 
greatly improved by various attention blocks. Subse-
quent related variant models are also mostly based 
on this foundation for tinkering and performing vari-
ant operations to decompose the spatial and tempo-
ral dimensions of the input, and the accuracy of the 
related variant models on some datasets is shown 
 in Tables 6-8.

Table 8
Transformer and the performance of ViT

Model name or method Pre-training Modes
Accuracy on relevant datasets (Average Accuracy / %)

UCF101 HMDB51 Kinetics(400/600) SSv2(Top-1/Top-5)

Video Swin Transformer [51] ImageNet RGB - - 84.9/85.9 69.6/92.7

ViViT [3] Sports1M RGB 82.3 56.8 84.9/85.8 65.9/89.9

TubeViT [57] ImageNet RGB 95.6 74.8 90.9/91.8 76.1/95.2

MAR [60] Kinetics-400 RGB 95.9 74.1 85.3/- 74.7/94.9

VidTr [112] Kinetics-400 RGB 96.7 74.4 79.1/- 63.0/-

VidConv [55] Kinetics-400 RGB - - 80.5/86.1 65.1/89.6

TPS [102] Kinetics-400 RGB - - 82.5/- 69.8/93.0

InternVideo [84] Kinetics-400 RGB 91.85 89.3 91.1/91.3 77.2/-

MVD [93] Kinetics-400 RGB 97.5 79.7 87.2/- 77.3/-

ST-Adapter [56] CLIP RGB - - 87.2/- 72.3/93.9

TDN [89] Kinetics-400 RGB - - 79.4/- 68.2/91.6

SIFA-Transformer [52] Kinetics-400 RGB - - 83.1/84.5 69.8/93.1
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Table 9
mAP of different model structures on several datasets

Model Model Structure Input UCF101 mAP/ % HMDB51 mAP/ %

Wan et al. [82] Two-Stream RGB+OF 87.96 71.71

Simonyan et al. [66] Two-Stream RGB+OF 88.0 59.4

Wang et al. [86] Two-Stream RGB+OF 88.9 61.3

Wang et al. [88] Two-Stream RGB+OF 91.5 64.5

Feichtenhofer et al. [20] Two-Stream RGB+OF 92.5 65.4

Wang et al. [91] Two-Stream RGB+OF 94.2 69.4

Feichtenhofer et al. [18] Two-Stream RGB+OF 94.6 70.3

Tran et al. [75] 3D CNN RGB 85.8 54.9

Diba et al. [12] 3D CNN RGB 93.2 63.5

SlowFast [17] 2D CNN RGB 94.5 68.8

Tran et al. [77] 3D CNN RGB 97.3 78.7

Donahue et al. [14] CNN-LSTM RGB+OF 73.8 68.3

Srivastava et al. [68] CNN-LSTM RGB+OF 75.8 44.0

Liu et al. [48] GCA-LSTM Skeleton 76.8 71.9

Ng et al. [54] CNN-LSTM RGB+OF 88.6 -

Liu et al. [51] Transformer RGB - 67.1

Truong et al. [78] Transformer RGB 67.3 68.2

4.6. Performance Comparison of Different 
Architectural Models
In the previous subsection, the accuracy of different 
models is mainly compared, but in real-life scenar-
ios, it is not enough to rely on the accuracy alone to 
deploy the models, in this subsection, we further 
evaluate some of the above mentioned models from 
the perspective of mAP, in the RGB and Optical Flow 
(OF) of the original video as well as other data modal-
ities, we mainly compare the algorithms on UCF101 
and HMDB51 data sets. We performed the algorithm 
comparison mainly on the UCF101 and HMDB51 
datasets; Table 9 describes the comparison results 
of different recognition algorithms in RGB and OF as 
well as other data modalities, where the mean accu-
racy percentage (mAP) is used as a criterion for the 
behavioral recognition algorithms.
Table 9 compares the average accuracy of current 
mainstream behavior recognition algorithms on 
UCF101 and HMDB51 datasets based on the model 

structures of Two-Stream, 3D CNN, CNN-LSTM, 
and Transformer. The data modalities mainly in-
clude RGB and optical flow OF. based on the results 
in the table, we can see that not all model structures 
are the best, but the Two-Stream and 3D CNN mod-
els are slightly better relative to CNN-LSTM. In each 
model structure, subsequent studies have made some 
improvements on the former. For example, Feicht-
enhofer et al. [20] changed the fusion method of the 
model based on Simonyan et al. [66], Wang et al. [91] 
introduced a sparse temporal sampling strategy, and 
Wang et al. [86] used an end-to-end Faster-RCNN 
network instead of standard spatial streaming, which 
further improves the recognition accuracy of the 
model. Among the RNN-LSTM models, the CNN-
LSTM model pioneered by Donahue et al. [14] learns 
the temporal and spatial streams separately and 
achieves good results, on which Srivastava et al. [68] 
maps the input video into a fixed-length representa-
tion and decodes it by a decoder, which also further 
improves the accuracy of the model.
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There are also many influencing factors when com-
paring the performance of the same model structure 
on different datasets, and different model structures 
on the same dataset. For example, according to the 
experimental results of the SlowFast paper, the av-
erage accuracy (mAP) of the SlowFast model on 
the UCF101 dataset is about 94.5%, whereas on the 
HMDB51 dataset, the average accuracy (mAP) is 
about 68.8%. Compared with its performance on the 
UCF101 dataset, its performance on HMDB51 is de-
graded, probably due to the fact that the video clips 
in the HMDB51 dataset are shorter and relatively 
complex, and there are more motion blur and fast 
movements in the videos, which makes it difficult to 
recognize them accurately. In contrast, the average 
accuracy (mAP) of the TDD model on the UCF101 
dataset is about 91.5%, which is relatively close to 
the performance of the TDD model on the UCF101 
dataset compared to the SlowFast model. However, 
the TDD model requires a larger amount of compu-
tation and more time and computational resources 
for training and inference compared to the SlowFast 
model, and this result is also affected by many other 
factors, such as hyper-parameter selection, data pre-
processing, and so on. Therefore, in specific appli-
cations, it is necessary to choose the suitable model 
according to the task requirements, and adjust and 
optimize it according to the actual situation.
From the analysis of the previous subsections about 
the video behavior recognition models with different 
structures, we can see that the 2D convolution-based 
video behavior recognition models usually require 
less number of parameters and are computationally 
fast, but they are usually ineffective on some similar 
scenes or video tasks that are very dependent on tim-
ing information. 3D convolutional-based recognition 
models, on the other hand, take timing information 
into account, but this also introduces a higher num-
ber of parameters, which may reduce the training 
speed and inference speed of the network. There are 
some Transformer-based video recognition models 
that have outperformed convolutional network-based 
video recognition models in terms of accuracy, but 
in terms of model training, more data is required to 
train Transformer from scratch compared to CNN. 
This is because the CNN implementation already im-
plies some a priori knowledge about the image, such 
as the translation invariance of the image; whereas 

Transformer requires time-consuming pre-training 
on a large-scale training dataset to learn these rules. 
Therefore, when choosing a video behavior recogni-
tion model, not only the recognition effect of the mod-
el should be considered, but also factors such as the 
complexity of the model, the amount of computation, 
and the training requirements need to be taken into 
account.

5. Future Work
From methods based on traditional manual feature 
extraction, to the extensive use of deep learning, and 
now the introduction of the attention mechanism, 
each development aims to solve the previous prob-
lems or improve the efficiency. Traditional manual 
methods are not only less efficient but also more lim-
ited as they require relevant prior knowledge. The 
emergence of deep learning alleviates this problem by 
extracting high-dimensional features from raw video 
data through convolutional operations, which is fur-
ther combined with temporal-spatial streaming to 
obtain richer contextual semantic information about 
the video data and increase the descriptive capabil-
ity of the model. However, as the depth of the model 
increases, and the data volume grows, problems such 
as deep convolutional operations are often difficult to 
effectively capture continuous time-space informa-
tion are gradually exposed. In addition, the introduc-
tion of the attention mechanism is further addressing 
this problem. One of the key tasks in video behavior 
recognition is the video feature extraction method. In 
addition, video behavior recognition technology faces 
problems such as illumination, occlusion, and change 
of viewing angle in practical applications. In the fu-
ture, video behavior recognition technology needs 
to further improve the accuracy, robustness and re-
al-time performance, as well as enhance the fusion 
processing of multimodal data to achieve more accu-
rate and efficient video behavior recognition. In addi-
tion, attention needs to be paid to privacy protection 
to ensure the legality and compliance of video behav-
ior recognition technology.
Possible future research directions and their chal-
lenges are listed below:
1 Efficient models: Although existing models have 

been able to achieve high accuracy, most of them 
are limited to laboratory settings. This is because 
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most of the methods are developed offline, which 
means that the input video data is manually set 
rather than a random video stream online. In ad-
dition, many models are poorly time-sensitive, 
making it difficult to achieve real-time detection. 
Therefore, how to design a suitable model becomes 
a key issue.

2 New datasets: current datasets used for video ac-
tions tend to be somewhat subjective, and many 
video data do not take into account motion on the 
timeline. For example, some actions can be rec-
ognized by only some frames in the video, which 
makes the video data lose the meaning of time 
stream. In addition, some video datasets may cause 
the model to learn some wrong knowledge due to 
the lack of accuracy of their accompanying annota-
tion files. This calls for a more accurate dataset to 
orient the research to take more account of tempo-
ral issues, fine-grained behavioral issues in human 
activities, and to improve the ability of the model in 
modeling specific action information, thus advanc-
ing the progress of video behavior recognition.

3 Multimodal features and their fusion: most of the 
current research on human action recognition has 
mainly considered visual features in videos, and 
many of them are only based on frames extracted 
from videos. However, video behavior recognition 
has strong temporal correlation. Therefore, multi-
modal data can be used as an aid for fusion detec-
tion, which helps the model to further acquire deep 
features. How to synergistically utilize the comple-
mentarity between multimodal features to select 
appropriate modal data for training based on the 
differences in data and the needs of the problem is 
also a future research focus.

6. Conclusion
In recent years, video behavior recognition technolo-
gy has been constantly innovated, and its application 

areas have become more and more extensive, such as 
automatic driving, intelligent security and other re-
lated fields are also increasingly concerned about the 
development of related technologies. In this paper, we 
provide a comprehensive overview of the process of 
video behavior recognition from the relevant data-
set, video preprocessing, feature extraction, and then 
the design of the relevant model, and summarize and 
analyze the advantages and disadvantages of various 
methods according to the characteristics of the rel-
evant model. Finally, we summarize some existing 
problems and possible future research directions 
in the field of video behavior recognition, hoping to 
provide subsequent researchers with a better under-
standing of the current research status in the field of 
video behavior recognition.
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