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The U-Net network has its own powerful capabilities in medical image segmentation tasks, yet still it is a chal-
lenging task to make U-Net accurately segment the infected lesions of COVID-19 CT images because these 
lesion areas are usually irregular in shape, various in size, and blurry in boundaries. In this paper, a novel multi-
scale U-shaped network based on U-Net for accurate segmentation of lesion regions in COVID-19 CT images is 
proposed. First, we generate two auxiliary scale features(fi

0.5, fi
1.5) based on the main scale feature (fi

1.0) through 
zoom strategy. Secondly, we design the Scale Integration Module (SIM), which is capable of filtering and aggre-
gating scale-specific features and can fully exploit multi-scale semantic information. Thirdly, the hierarchical 
mixed module (HMM) has successfully substituted for the down-up aggregation process of the U-Net network, 
which further enhances the mixed scale features. On the dataset COVID-19-CT829, compared with the recent 
COVID-19 segmentation model, hiformer, the Dice, Sen and F-measure of our network have increased by 2.24%, 
2.83%, 3.14%, respectively; on the dataset COVID-19-CT100, the Dice, Sen and F-measure of our network have 
increased by 2.91%, 3.72%, 2.42%, respectively. Moreover, we have validated the generalizability and portability 
of our network on other medical datasets (Polyp segmentation dataset: CVC-612 and kvasir), and our network 
has also achieved superior results of COVID-19 CT image segmentation.
KEYWORDS: COVID-19 CT Image Segmentation, U-Net, zoom strategy, Scale Integration Module, hierarchi-
cal mixed module.
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1. Introduction
Since the outbreak of COVID-19(corona virus dis-
ease 2019), it has spread rapidly around the world, 
causing millions of casalties and huge economic 
losses, and posing a serious threat to human life safe-
ty. RT-PCR[42](reverse transcription polymerase 
chain reaction) is now the main method for screen-
ing COVID-19 cases, but this method has some draw-
backs, such as insufficient detection reagents, long 
detection time and low sensitivity [16, 46]. In order 
to further accelerate the detection speed and re-
duce the cost, the automatic screening of COVID-19 
by using computer tomography (CT) is emerged [3, 
44], because the CT images of the patient lungs with 
COVID-19 have obvious lesion characteristics in-
deed, which is expected to quickly and accurately seg-
ment the lesion sites from the CT images of the lungs 
of patients [2, 17, 49]. Hence, it is of great significance 
to rapidly diagnose and monitor COVID-19 patients 
with the assistance of CT images [9, 19, 22, 40]. In the 
study of COVID-19, it was observed that the lesions 
with consolidation characteristics would accumu-
late with infection. Therefore, measuring the change 
trend of the lesion area might help doctors make bet-
ter treatment decisions.
However, relying solely on experts to evaluate the in-
fection in CT scan images may be tiring and prone to 
interpretation errors. Quantifying lung injury caused 
by COVID-19 infection is a challenging task, espe-
cially for doctors who need to diagnose multiple CT 
images on the same day. Another important point is 
that experts must quantify the results before and af-
ter treatment to analyze whether the treatment is ef-
fective. This is undoubtedly a huge work. Therefore, 
it is a necessary task to use computer-aided diagnos-
tic tools to automatically segment the CT image of 
COVID-19, both for the segmentation of the infec-
tious findings of COVID-19 and for the volumetric 
quantification of the lesions.
Nowadays, deep learning method is becoming a hot 
topic in in the field of medical imaging and has shown 
promising results [12, 29, 31, 47]. Fan et al. [15] pro-
posed Inf-Net to segment the infected area of novel 
coronavirus, and proposed a semi supervised training 
method to solve the problem of insufficient labeled 
CT numbers and improved the segmentation perfor-
mance. Yazdani et al. [48] introduced a model with 

residual connection and attention awareness unit, 
which could be used to discover the relationship of 
patients with and without COVID-19. Amyar et al. [4] 
put forward a multi-task deep learning model to joint-
ly identify covid-19 patients and part of the lesion ar-
eas of covid-19 in their chest CT images. Gunraj et al. 
[18] built an enhanced deep neural network, which 
can detect COVID-19 from chest CT images by using 
various training strategies. Islam et al. [23] focused 
on the identification of brain tumors using MRI imag-
es using a federated learning (FL) and convolutional 
neural network (CNN) integrated architecture. The 
study explored the efficiency and accuracy of brain 
tumor detection through a distributed learning ap-
proach while maintaining data privacy. Połap et al. 
[34] proposed a Bilinear Pooling (BP) method that 
includes a toxicity detection module, by introducing 
toxicity detection, the model is able to identify and re-
sist potential data contamination, protect the model 
from malicious attacks, and ensure the accuracy and 
reliability of data analysis.
U-Net is currently the most widespread image seg-
mentation architecture, and it has been successful 
in many medical image domains due to its flexibility 
and optimized modular design [5]. Diniz et al. [13] 
improved the traditional U-Net, including batch nor-
malization, leaky ReLU, dropout, and residual block 
techniques. Their method, which can automatically 
segment infections caused by COVID-19, is expect-
ed to be a tool to help medical professionals fight 
COVID-19. Lizzi et al. [30] quantified the accumula-
tion of lung lesions in COVID-19 pneumonia by cas-
cading two U-nets, where the first U-net was used 
to identify lung parenchyma, and the second U-net 
calculates the areas affected by COVID-19 lesions. In 
the initial stage of COVID-19 segmentation, the UNet 
network is usually unable to distinguish between 
healthy regions and diseased regions in healthy lungs. 
To cope with this, Shamim et al. [37] increase the set 
of weights that shrink and expand the UNet path, and 
add a modified convolutional module to create a con-
nection between the encoder and decoder pipelines. 
But, the accuracy of semantic COVID-19 CT image 
segmentation of methods mentioned above is not 
good enough in practice to diagnose and treat patients 
with COVID-19 [43, 50], and it is still a challenging 
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task to accurately segment COVID-19 CT images, be-
cause COVID-19 infected lesions have the following 
characteristics (see Figure 1):
1 As far as the COVID-19 lesions in chest CT imag-

es are concerned, they often have irregular shape, 
various size, different location and blurry bound-
ary, and it is hard to segment the entire lesion areas 
for the existed methods in computer vision fields.

2 There is no obvious difference between infected 
tissue and normal tissue because the target area is 
highly similar to the background area, which easily 
results in false negatives and false positives during 
CT Lung image segmentation.

Figure 1 
Examples of the chest CT images (a) and its labeled lesion, 
(b) it can be seen that the lesion area in different CT Lung 
images changes greatly and the boundary is very unclear
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chest CT images by using various training strategies. 
Islam et al. [23] focused on the identification of brain 
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As a human being, aiming at accurately finding the 
objects in a blurred scene, people often reference 
and compare the shape or appearance changes of 
the image at different scales by enlarging and 
reducing the size of the image. Inspired by this 
human behavior, we built and designed a novel 
multi-scale U-shaped network by scale-space 
strategies to identify more accurately COVID-19 
lesion regions in CT Lung images. Scale space 
theory is an effective theoretical framework for 
promoting the understanding of image structure, 
and its ideas are widely used in the field of 
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representation lose texture and boundary details, 
which is not conducive to COVID-19 lung CT image 
segmentation. Therefore, we leverage the relation-
ship between foregrounds and backgrounds at multi-
ple scales, to fully perceive not only COVID-19 lesion 
regions but also normal tissues. Moreover, we also 
explore the fine-grained feature scale space among 
channels.
The multi-scale U-shaped network we designed is 
briefly introduced as follows:
1 We employ triple feature encoders to extract fea-

tures at different scales and provide them to the 
scale merging layer for subsequent processing.

2 we put forward a scale integration module (SIM) 
based on the attention perception mechanism, 
which can screen out useful features in the auxil-
iary scale and integrate them into the main scale. 

3 the hierarchical mixed module (HMM) we built in-
creases the receptive field range and diversifies the 
feature representation within our module, gradu-
ally integrating multi-level features in a top-down 
manner. 

Thus, our method can capture not only fine-grained 
but also mixed-scale clues, and achieve more accurate 
COVID-19 CT Lung image segmentation.

2. Materials and Methods
The structure of our COVID-19 image segmentation 
network is shown in Figure 2.
In Figure 2, according to scale space theory [27, 33], 
a popular idea in the computer vision field, we build 
the U-shaped network with multi-scale structure 
for segmentation of COVID-19 lesions, and its net-
work structure is as following: we adopt the first half 
structure of U-Net for extracting multi-level features  
Fi(i = 1 ... 5) at first; Secondly, the multi-level features 
(Fi) are cascaded to obtain feature maps of three 
scales fi

0.5, fi
1.0, fi

1.5. Subsequently, we filter the key se-
mantic information in different scales via an atten-
tion-based scale integration module (SIM), which 
greatly enhances the detection effect. Finally, we pro-
pose a down-up hierarchical mixed module (HMM) to 
fuse multi-layer features. This down-up fusion struc-
ture, as well as the top-down structure in the feature 
extraction process, constitute our novel U-shaped 

As a human being, aiming at accurately finding the 
objects in a blurred scene, people often reference and 
compare the shape or appearance changes of the im-
age at different scales by enlarging and reducing the 
size of the image. Inspired by this human behavior, 
we built and designed a novel multi-scale U-shaped 
network by scale-space strategies to identify more 
accurately COVID-19 lesion regions in CT Lung im-
ages. Scale space theory is an effective theoretical 
framework for promoting the understanding of image 
structure, and its ideas are widely used in the field of 
computer vision, such as image pyramids [1] and fea-
ture pyramids [26]. The existing inverted pyramid 
multi-scale network [45] often makes the feature 
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structure network, which is expected to capture both 
fine-grained and mixed-scale features for COVID-19 
CT Lung image segmentation.

2.1. Scale Integration Module
The proposed scale integration module (SIM) can 
weight and combine specific information of different 
scales. Specifically, SIM can self adaptively highlight 
expressions of different scales via filtering and aggre-
gation (see Figure 3).
As shown in Figure 3, before scale integration, it is nec-
essary to adjust the size of the features fi

1.5 and fi
0.5 to 

make their resolution consistent with the main scale 
features fi

1.0. That is to say, for Fi
1.5, we employ the “Max 

Pooling and Avg Pooling” hybrid structure for down 
sampling, in order to retain the effectiveness and di-
versity of COVID-19 infection region information in 
high-resolution features. For fi

0.5, we adopt “Bilinear” 
between two “Conv+BN+ReLU” modules to directly up 
sampling. Thus, these features are input into the “gen-
erator”, and three channel feature map is computed  by 
Equation (1) through a series of convolution layers.

  

 

As shown in Figure 3, before scale integration, it is 
necessary to adjust the size of the features 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5 to 
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diversity of COVID-19 infection region information in 
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by Equation (1) through a series of convolution layers. 

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖0.5,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.0,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.5 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 �τ��μ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5�, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0,φ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5��,∅��,           (1) 

where μ and φ represent bilinear interpolation and mixed 
pooling (Max Pooling and Avg Pooling) operations, 
respectively; �μ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5�, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0,φ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5��  implies the 
concatenation operation. τ(∗,∅) denotes the 
"Conv+BN+ReLU" layer stacked in the generator, and ∅ 
means the parameters of these layers. After softmax 
activation layer, the feature map of each scale 
�𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖0.5,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.0,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.5� is finally calculated. 

Let 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖0.5,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.0,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.5 represent those weights to get the final 
output f_i, and it can be calculated by Equation (2). 

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖0.5 ∙ μ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5� + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.0 ∙ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖1.5 ∙ σ�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5�      (2) 

Please note that some operations before and after the 
sampling operation are not shown in equations 1 and 2 
for simplicity, but can be found them in Figure 2. Bilinear 
interpolation is a fine-grained image scaling technique 
that is achieved by computing a weighted average of the 
pixel values of the four immediately neighboring pixels. 
The goal of hybrid pooling is to meticulously extract 
image features to ensure that salient details are captured, 
while also giving due consideration to more subtle 
variations. In summary, by selectively aggregating scale-
specific information and exploring subtle and critical 
semantic cues across scales, we aimed to construct a 
powerful feature representation that effectively responds 
to the challenges posed by irregular and diverse lesion 
shapes. This nuanced approach makes our model very 
sensitive to a large number of lesion features, thus 
improving diagnostic accuracy and reliability. 
2.2 Hierarchical Mixed Module 

After SIM, the auxiliary scale information �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5� 
is integrated with the main scale (𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0) . During this 
procedure, different channels still contain different 

semantics, and it is necessary to mine these 
valuable clues contained in the different channels. 
To this end, we put forward the hierarchical mixed 
module (HMM) to carry out information 
interaction and feature refinement among channels. 
HMM further increases the range of receiving 
domain and diversifies the feature representation in 
the module. Obviously, capturing fine-grained 
features and mixing different scale information can 
enable our model to segment covid-19 infected 
areas more accurately. The structure of HMM is 
shown in Figure 4  
Figure 4 
Illustration of the Hierarchical Mixed Module. 

 

In our proposed hierarchical hybrid module 
(HMM), we adopted an iterative hybrid strategy to 
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2.3 Loss Function 
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computer vision, such as image pyramids [1] and feature 
pyramids [26].  The existing inverted pyramid multi-
scale network [45] often makes the feature 
representation lose texture and boundary details, which 
is not conducive to COVID-19 lung CT image 
segmentation. Therefore, we leverage the relationship 
between foregrounds and backgrounds at multiple 
scales, to fully perceive not only COVID-19 lesion 
regions but also normal tissues. Moreover, we also 
explore the fine-grained feature scale space among 
channels. 
The multi-scale U-shaped network we designed is briefly 
introduced as follows: 
1. We employ triple feature encoders to extract 
features at different scales and provide them to the scale 
merging layer for subsequent processing. 
2. we put forward a scale integration module (SIM) 
based on the attention perception mechanism, which can 
screen out useful features in the auxiliary scale and 
integrate them into the main scale.  
3. the hierarchical mixed module (HMM) we built 
increases the receptive field range and diversifies the 
feature representation within our module, gradually 
integrating multi-level features in a top-down manner.  
Thus, our method can capture not only fine-grained but 
also mixed-scale clues, and achieve more accurate 
COVID-19 CT Lung image segmentation. 
 

     
2. Materials and Methods 
The structure of our COVID-19 image 
segmentation network is shown in Figure 2. 
In Figure 2, according to scale space theory [27, 
33], a popular idea in the computer vision field, we 
build the U-shaped network with multi-scale 
structure for segmentation of COVID-19 lesions, 
and its network structure is as following: we adopt 
the first half structure of U-Net for extracting multi-
level features 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑖𝑖𝑖𝑖 = 1 … 5) at first; Secondly, the 
multi-level features (𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖)  are cascaded to obtain 
feature maps of three scales 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5 . 
Subsequently, we filter the key semantic 
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based scale integration module (SIM), which 
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(HMM) to fuse multi-layer features. This down-up 
fusion structure, as well as the top-down structure 
in the feature extraction process, constitute our 
novel U-shaped structure network, which is 
expected to capture both fine-grained and mixed-
scale features for COVID-19 CT Lung image 
segmentation. 
2.1 Scale Integration Module 
The proposed scale integration module (SIM) can 
weight and combine specific information of 
different scales. Specifically, SIM can self 
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As shown in Figure 3, before scale integration, it is 
necessary to adjust the size of the features 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5 to 
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features𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0. That is to say, for 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖1.5, we employ the “Max 
Pooling and Avg Pooling” hybrid structure for down 
sampling, in order to retain the effectiveness and 
diversity of COVID-19 infection region information in 
high-resolution features. For 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5 , we adopt “Bilinear” 
between two “Conv+BN+ReLU” modules to directly up 
sampling. Thus, these features are input into the 
"generator", and three channel feature map is computed  
by Equation (1) through a series of convolution layers. 
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concatenation operation. τ(∗,∅) denotes the 
"Conv+BN+ReLU" layer stacked in the generator, and ∅ 
means the parameters of these layers. After softmax 
activation layer, the feature map of each scale 
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Please note that some operations before and after the 
sampling operation are not shown in equations 1 and 2 
for simplicity, but can be found them in Figure 2. Bilinear 
interpolation is a fine-grained image scaling technique 
that is achieved by computing a weighted average of the 
pixel values of the four immediately neighboring pixels. 
The goal of hybrid pooling is to meticulously extract 
image features to ensure that salient details are captured, 
while also giving due consideration to more subtle 
variations. In summary, by selectively aggregating scale-
specific information and exploring subtle and critical 
semantic cues across scales, we aimed to construct a 
powerful feature representation that effectively responds 
to the challenges posed by irregular and diverse lesion 
shapes. This nuanced approach makes our model very 
sensitive to a large number of lesion features, thus 
improving diagnostic accuracy and reliability. 
2.2 Hierarchical Mixed Module 

After SIM, the auxiliary scale information �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.5𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖0.5� 
is integrated with the main scale (𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖1.0) . During this 
procedure, different channels still contain different 

semantics, and it is necessary to mine these 
valuable clues contained in the different channels. 
To this end, we put forward the hierarchical mixed 
module (HMM) to carry out information 
interaction and feature refinement among channels. 
HMM further increases the range of receiving 
domain and diversifies the feature representation in 
the module. Obviously, capturing fine-grained 
features and mixing different scale information can 
enable our model to segment covid-19 infected 
areas more accurately. The structure of HMM is 
shown in Figure 4  
Figure 4 
Illustration of the Hierarchical Mixed Module. 

 

In our proposed hierarchical hybrid module 
(HMM), we adopted an iterative hybrid strategy to 
enhance the integration of multi-scale features, 
which not only improves the ability of the model to 
identify fine textures and macro-anatomical 
structures, but also enhances the differentiation of 
features. Using this strategy, the model is able to 
complement each other with key clues learned from 
different channels, so as to capture key information 
in the segmentation task. The implementation of 
this hybrid strategy ensures a comprehensive and 
accurate feature characterization and is essential to 
improve the accuracy and reliability of medical 
image segmentation. 
2.3 Loss Function 
Binary cross-entropy loss (BCEL) is widely used in 
image segmentation tasks. The binary cross-
entropy loss (BCEL) function calculates the 
difference between actual and predicted labels. The 
calculation method is provided as follows:  

(2)

Please note that some operations before and after the 
sampling operation are not shown in equations 1 and 
2 for simplicity, but can be found them in Figure 2. 
Bilinear interpolation is a fine-grained image scaling 
technique that is achieved by computing a weighted 
average of the pixel values of the four immediately 
neighboring pixels. The goal of hybrid pooling is to 
meticulously extract image features to ensure that 
salient details are captured, while also giving due 
consideration to more subtle variations. In summary, 
by selectively aggregating scale-specific information 
and exploring subtle and critical semantic cues across 
scales, we aimed to construct a powerful feature rep-
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Figure 3
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resentation that effectively responds to the challeng-
es posed by irregular and diverse lesion shapes. This 
nuanced approach makes our model very sensitive to 
a large number of lesion features, thus improving di-
agnostic accuracy and reliability.

2.2. Hierarchical Mixed Module
After SIM, the auxiliary scale information (fi

1.5 and 
fi

0.5) is integrated with the main scale (fi
1.0). During 

this procedure, different channels still contain differ-
ent semantics, and it is necessary to mine these valu-
able clues contained in the different channels. To this 
end, we put forward the hierarchical mixed module 
(HMM) to carry out information interaction and fea-
ture refinement among channels. HMM further in-
creases the range of receiving domain and diversifies 
the feature representation in the module. Obviously, 
capturing fine-grained features and mixing different 
scale information can enable our model to segment 
covid-19 infected areas more accurately. The struc-
ture of HMM is shown in Figure 4 
We expand the number of channels of the feature 
map by 1*1 convolution, and divide the channels into 
N groups (Gj

N
j = 1)according to the channel dimension, 

then feature interaction of each group is implement-
ed in an iterative manner. Specifically, the first group  
G1 is split into three sets (g1

'm3
m=1)after the convolu-

tion block. Among them, g1
'1 is utilized for informa-

tion exchange with the next group of features, and g1
'2 

Figure 4
Illustration of the Hierarchical Mixed Module

and g1
'3 are regarded as channel modulation. In group  

j(1 < J < N), the feature Gj is connected with the pre-
vious group feature Gj–1

'1 , and the feature group is thus 
divided into three feature sets like first group G1. Such 
an iterative mixing strategy is good at learning the 
critical clues from different channels and obtaining a 
powerful feature representation.
In our proposed hierarchical hybrid module (HMM), 
we adopted an iterative hybrid strategy to enhance 
the integration of multi-scale features, which not 
only improves the ability of the model to identify fine 
textures and macro-anatomical structures, but also 
enhances the differentiation of features. Using this 
strategy, the model is able to complement each other 
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that is achieved by computing a weighted average of the 
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image features to ensure that salient details are captured, 
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semantic cues across scales, we aimed to construct a 
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shapes. This nuanced approach makes our model very 
sensitive to a large number of lesion features, thus 
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To this end, we put forward the hierarchical mixed 
module (HMM) to carry out information 
interaction and feature refinement among channels. 
HMM further increases the range of receiving 
domain and diversifies the feature representation in 
the module. Obviously, capturing fine-grained 
features and mixing different scale information can 
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In our proposed hierarchical hybrid module 
(HMM), we adopted an iterative hybrid strategy to 
enhance the integration of multi-scale features, 
which not only improves the ability of the model to 
identify fine textures and macro-anatomical 
structures, but also enhances the differentiation of 
features. Using this strategy, the model is able to 
complement each other with key clues learned from 
different channels, so as to capture key information 
in the segmentation task. The implementation of 
this hybrid strategy ensures a comprehensive and 
accurate feature characterization and is essential to 
improve the accuracy and reliability of medical 
image segmentation. 
2.3 Loss Function 
Binary cross-entropy loss (BCEL) is widely used in 
image segmentation tasks. The binary cross-
entropy loss (BCEL) function calculates the 
difference between actual and predicted labels. The 
calculation method is provided as follows:  
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with key clues learned from different channels, so as 
to capture key information in the segmentation task. 
The implementation of this hybrid strategy ensures 
a comprehensive and accurate feature characteriza-
tion and is essential to improve the accuracy and re-
liability of medical image segmentation.

2.3. Loss Function

Binary cross-entropy loss (BCEL) is widely used in 
image segmentation tasks. The binary cross-entropy 
loss (BCEL) function calculates the difference be-
tween actual and predicted labels. The calculation 
method is provided as follows: 

 
 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 

(3)

where Gij and Pij denote the ground truth and the pre-
dicted value at position(i, j), respectively.
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. 
The key to the uncertainty-aware loss (UAL) is that 
it allows the model to self-adjust its predictions for 
insufficient data or more noise, reduce overconfident 
predictions, and may improve the robustness of the 
model in the face of unknown or uncertain situations. 
The formula is as follows:
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where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 
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Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 
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Thus, the total loss can be calculated by Equation (5). 
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predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 
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Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 
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where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy.

3. Implementation Details 
3.1. Dataset

We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 la-
beled CT images, where 50 images are randomly cho-
sen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset 

and contains 829 CT images, where 709 images are 
randomly chosen for training and the remained 120 
images for testing. All the CT images are from more 
than 40 COVID-19 patients and collected by the Ital-
ian Society of Medical and Interventional Radiology. 
A radiologist segmented the CT images manually by 
using three labels for identifying lung infections [21]: 
ground-glass, consolidation and pleural effusion.

3.2. Training Parameters
Our model is implemented under the PyTorch frame 
on the operation system of Ubuntu V20.04 distribu-
tion. The hardware environment is as follows: CPU, 
Intel E5-2637; GPU, NVIDIA 3090ti(24G). We built 
our network by using the PyTorch framework, where 
adam optimization [28]  was employed for training, 
and the weight value was attenuated to 1e-4. While, 
we employ the learning rate strategy poly, and the ini-
tial learning rate is 1e-3. Thus, we adopted the above 
strategy to train 100 epochs on the training set to get 
the final result, and set the batch size to 8. Moreover, 
we used the same strategy to train other segmentation 
networks to ensure the comparison fairly.

3.3. Evaluation Metrics
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-mea-
sure, mIOU, Mean Absolute Error (MAE) are em-
ployed. Specifically, Dice, Sen, Spec, F-measure and 
mIOU range from 0 to 1; and the larger these values, 
the better the model. By contrary, a lower value of 
MAE indicates better segmentation accuracy.
Dice, Sen, Spec and mIOU are usually adopted in 
image segmentation, and they can be calculated by 
Equations (6)-(9), respectively.
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Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
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where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
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chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
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attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
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3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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presents a comparative analysis of these metrics in 
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algorithm or model, thus providing a quantitative 
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time requirements. The Parameter value quantifies 
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Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 
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Thus, the total loss can be calculated by Equation (5).  
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where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 

, (7)

 
 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 
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Thus, the total loss can be calculated by Equation (5).  
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where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 
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where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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ℎ(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎∈𝑈𝑈𝑈𝑈{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵�|𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏|�},      (11) 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 

, (9)

where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive sample; 
FP denotes the part that is predicted to be a positive 
sample, but it is actually a negative sample; TN means 
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the area that is predicted to be a negative sample, and 
it is actually a negative sample; FN implicates a pre-
dicted negative sample, yet it is actually a positive 
sample; k refers to the category.
Hausdorff distance (HD) is a measure describing the 
degree of similarity between two sets of points, and it 
is a defined form of distance between the two sets of 
points. The smaller the value of Hausdorff distance, 
the higher the similarity of the two sets. Suppose 
there are two sets A = a1, ..., ap and B = b1, ..., bq, then the 
Hausdorff distance between these two sets of points 
can be defined as follows.

 
 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 
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𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�ℎ(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵), ℎ(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴)�,      (10) 

ℎ(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎∈𝑈𝑈𝑈𝑈{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵�|𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏|�},      (11) 

ℎ(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎∈𝑈𝑈𝑈𝑈�|𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎|�},      (12) 

 
where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 

(11)

 
 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
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where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
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where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
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In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 
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where || * || is the distance normal form between point 
sets A and B.
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation (11).

 
 

 

𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = −𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − �1 − 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�       (3) 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 denote the ground truth and the 
predicted value at 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠, 𝑗𝑗𝑗𝑗), respectively. 
Because the COVID-19 infected lesion is complex and 
fuzzy, just BCEL function training cannot accurately 
identify the infected lesion. Hence, we also employ an 
uncertainty-aware loss (UAL) to assist with training. The 
key to the uncertainty-aware loss (UAL) is that it allows 
the model to self-adjust its predictions for insufficient 
data or more noise, reduce overconfident predictions, and 
may improve the robustness of the model in the face of 
unknown or uncertain situations. The formula is as 
follows: 

𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 1 − �2𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 1�2.                        (4)  

Thus, the total loss can be calculated by Equation (5).  
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + γ𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵 ,          (5) 
where γ is the balance coefficient, and the adjustment 
strategy is an increasing cosine strategy. 
 

 
3. Implementation Details  
3.1 Dataset 
We conducted experiments on two sub datasets of 
COVID19 CT segmentation [24]: COVID-19-CT100 
and COVID-19-CT829. The former consists of 100 
labeled CT images, where 50 images are randomly 
chosen for training and the rest of 50 images for testing. 
The latter is the first open-access COVID-19 dataset and 
contains 829 CT images, where 709 images are randomly 
chosen for training and the remained 120 images for 
testing. All the CT images are from more than 40 
COVID-19 patients and collected by the Italian Society 
of Medical and Interventional Radiology. A radiologist 
segmented the CT images manually by using three labels 
for identifying lung infections [21]: ground-glass, 
consolidation and pleural effusion. 
3.2 Training Parameters 
Our model is implemented under the PyTorch frame on 
the operation system of Ubuntu V20.04 distribution. The 
hardware environment is as follows: CPU, Intel E5-2637; 
GPU, NVIDIA 3090ti(24G). We built our network by 
using the PyTorch framework, where adam optimization 
[28]  was employed for training, and the weight value was 
attenuated to 1e-4. While, we employ the learning rate 
strategy poly, and the initial learning rate is 1e-3. Thus, 
we adopted the above strategy to train 100 epochs on the 
training set to get the final result, and set the batch size to 
8. Moreover, we used the same strategy to train other 
segmentation networks to ensure the comparison fairly. 
3.3 Evaluation Metrics 
The evaluation metrics of Dice similarity coefficient 
(Dice), Sensitivity (Sen), Specificity (Spec), F-measure, 
mIOU, Mean Absolute Error (MAE) are employed. 
Specifically, Dice, Sen, Spec, F-measure and mIOU 
range from 0 to 1; and the larger these values, the better 
the model. By contrary, a lower value of MAE indicates 
better segmentation accuracy. 
Dice, Sen, Spec and mIOU are usually adopted in image 

segmentation, and they can be calculated by 
Equations (6)-(9), respectively. 
 

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁

,                                           (6)    

𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁

,                                                 （7） 

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁
𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁

,                                              （8） 

𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑘𝑘𝑘𝑘+1

∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 ,        (9) 

 
where TP represents the area that is predicted to be 
a positive sample, and it is actually a positive 
sample; FP denotes the part that is predicted to be a 
positive sample, but it is actually a negative sample; 
TN means the area that is predicted to be a negative 
sample, and it is actually a negative sample; FN 
implicates a predicted negative sample, yet it is 
actually a positive sample; k refers to the category. 
Hausdorff distance (HD) is a measure describing 
the degree of similarity between two sets of points, 
and it is a defined form of distance between the two 
sets of points. The smaller the value of Hausdorff 
distance, the higher the similarity of the two sets. 
Suppose there are two sets𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎1, … , 𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 and 𝐵𝐵𝐵𝐵 =
𝑏𝑏𝑏𝑏1, … , 𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞 , then the Hausdorff distance between 
these two sets of points can be defined as follows. 
 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠�ℎ(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵), ℎ(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴)�,      (10) 

ℎ(𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎∈𝑈𝑈𝑈𝑈{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵�|𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏|�},      (11) 

ℎ(𝐵𝐵𝐵𝐵,𝐴𝐴𝐴𝐴) = 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎∈𝑈𝑈𝑈𝑈�|𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎|�},      (12) 

 
where || ∗ || is the distance normal form between 
point sets A and B. 
Mean Absolute Error (MAE) can measure the error 
between prediction maps and ground truth maps at 
the pixel level, and it is computed from Equation 
(11). 
 

𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 1
𝑤𝑤𝑤𝑤×ℎ

∑ ∑ �𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦),−(𝑠𝑠𝑠𝑠,𝑦𝑦𝑦𝑦)�ℎ
𝑦𝑦𝑦𝑦

𝑤𝑤𝑤𝑤
𝑥𝑥𝑥𝑥 ,      (13) 

 
In the evaluation of the neural network architecture, 
"FLOPs" (floating point operations per second) and 
"Params" (parameters) are the key indicators of the 
model performance and complexity. Table 1 
presents a comparative analysis of these metrics in 
the different models. FLOPs represent 
computational workloads, representing the total 
number of floating-point operations required by an 
algorithm or model, thus providing a quantitative 
measure of algorithmic complexity and inference 
time requirements. The Parameter value quantifies 

. (13)

In the evaluation of the neural network architecture, 
“FLOPs” (floating point operations per second) and 
“Params” (parameters) are the key indicators of the 
model performance and complexity. Table 1 presents 
a comparative analysis of these metrics in the differ-
ent models. FLOPs represent computational work-

loads, representing the total number of floating-point 
operations required by an algorithm or model, thus 
providing a quantitative measure of algorithmic com-
plexity and inference time requirements. The Param-
eter value quantifies the total number of trainable 
parameters of the model, measured in megabytes (M).

4. Results and Discussion
4.1. Comparative Experiment 
To fully evaluate our network in segmentation of 
COVID-19 CT images, we conduct experiments on 
two datasets (COVID-19-CT100 and COVID-19-
CT8[26]), and compare it with the state-of-the-
art segmentation networks such as PraNet [14], 
SwinUNet [8], SegNet [6], Deeplabv3 [11], PSPNet 
[51], TransUNet [10], U-Net [35], U-Net++ [52], Inf-
Net [15], Attention-UNet [32],  hiformer [20], DM2T-
Net [41] and C2FVL [49], etc. In order to compare 
the performance of these networks fairly, all of them 
are trained with the same parameter optimization 
strategy. All networks use the same initial parameter 
settings for fair comparison, and the above optimiza-
tion strategies are used to automatically update the 
weights during the training process of different net-
works. The numerical evaluation results of related 
methods are listed in Table 1. 
From Table 2, we can see that our network consis-
tently achieves the best or nearly the best perfor-
mance in terms of all metrics on the two datasets. On 
dataset of COVID-19-CT829, our network is slightly 
worse than U-Net network in mIOU, but it, in con-
trast, confirm the strong performance of U-shaped 
network in image segmentation. This is exactly the 
reason that our multi-scale network based on the 
U-shaped network performs very well. On the data-
set of COVID-19-CT829, compared with the recent 
COVID-19 segmentation model, hiformer, the Dice 
similarity coefficient of our network has increased by 
2.24%, and the sensitivity (Sen) has raised by 2.83%, 
and the other evaluation indicator F-measure has im-
proved by 3.14%; Meanwhile, the mean absolute er-
ror (MAE) has decreased by 0.25%. On the dataset of 
COVID-19-CT100, compared with hiformer, the Dice 
similarity coefficient has increased by 2.91%, the sen-
sitivity (Sen) has raised by 3.72%, and F-measure has 
improved by 2.42%. 

Table 1
Performance evaluation results of the partial

models Flops Params

U-Net 47.65 G 13.40 M

DeepLabV3 28.57 G 58.16 M

ResUNet 104.46 G 35.92 M

Attention-UNet 102.03 G 34.88 M

TransUNet 67.14 G 110.37 M

SegNet 30.73 G 29.44 M

MTUNet 44.78 G 75.07 M

Ours 23.83 G 13.40 M
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Table 2
Quantitative evaluation results of infection area segmentation on COVID-19-CT100 and COVID-19-CT829

Methods Dice (%) Sen (%) Spec(%) HD mIOU(%) MAE (%)

COVID-19-CT100

PraNet [14] 63.42 68.25 91.97 48.59 72.07 9.92

SwinUNet [8] 70.86 71.76 94.69 45.09 76.98 7.53

SegNet [6] 69.76 69.93 94.95 40.12 76.53 7.61

Deeplabv3 [11] 67.59 71.38 93.35 40.78 73.79 8.98

PSPNet [51] 68.19 69.77 94.57 44.92 75.70 7.98

TransUNet [10] 75.16 78.10 95.58 38.68 80.31 6.42

U-Net [35] 74.06 74.56 96.31 37.43 80.37 6.78

U-Net++ [52] 75.58 75.97 96.26 34.66 80.15 6.16

Inf-Net [15] 66.38 69.72 92.94 37.14 73.39 9.05

Attention-Unet [32] 74.89 72.43 96.80 36.53 80.17 6.04

Hiformer [20] 76.47 76.44 96.54 39.79 81.06 5.82

DM2Tnet [41] 76.73 75.95 96.34 40.50 78.42 7.02

C2FVL [49] 78.17 79.60 97.03 35.93 80.13 6.29

Ours 79.38 80.12 96.62 33.43 81.52 5.66

COVID-19-CT829

PraNet [14] 78.84 83.34 99.04 18.96 83.09 1.41

SwinUNet [8] 79.02 84.30 99.11 21.55 83.65 1.34

SegNet [6] 80.53 86.19 99.10 19.97 84.58 1.27

Deeplabv3 [11] 80.66 82.88 99.26 20.21 85.42 1.16

PSPNet [51] 80.44 84.91 99.16 21.42 84.01 1.23

TransUNet [10] 82.70 84.68 99.38 19.75 86.49 1.05

U-Net [35] 83.73 86.68 99.34 18.31 87.83 0.96

U-Net++ [52] 83.20 88.54 99.22 17.99 86.54 1.08

Inf-Net [15] 83.06 85.19 99.30 15.71 86.60 1.06

Attention-Unet [32] 84.01 86.83 99.38 18.65 87.45 0.97

Hiformer [20] 83.84 86.65 99.37 16.24 87.17 1.00

DM2Tnet [41] 83.91 89.55 99.32 17.22 86.95 0.92

C2FVL [49] 85.06 90.02 99.15 15.37 88.60 0.88

Ours 86.25 89.48 99.70 14.22 87.05 0.75

To further evaluate the superiority of our multi-scale 
U-shaped network (MS-UNet), some qualitative 
comparison (Visual comparison) experiments of re-
lated image segmentation methods were conducted, 
as shown in Figures 5-6.
In Figures 5-6, we can easily find out the superiority of 
our network. On the data set COVID-19-CT100, we can 
see that the image segmentation results of our network 

are more refined and its texture is also clearer, especially 
the results of these red boxes. Looking carefully at Fig-
ure 5 (Visual comparison of infection area segmenta-
tion result on dataset COVID-19-CT829), our network 
MS-UNet can perfectly segment some small infection 
areas (Rows 3, 4 and 5), which is almost impossible for 
other networks to achieve. Our image segmentation 
results have clearer, more complete object regions and 
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Figure 5
Visual comparison of infection area segmentation result on dataset COVID-19-CT100

Figure 6 
Visual comparison of infection area segmentation result on dataset COVID-19-CT829
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Figure 7 
Visual comparison results: green represents true positive, red represents false negative and yellow represents false positive
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sharper contours, all of which result from the ability of 
our network to capture fine-grained and mixed scale 
cues by using a zoom strategy. To more intuitively illus-
trate the difference among the segmentation results of 
each model, another kind of visual comparison experi-
ments were conducted, as shown in Figure 7.
In Figure 7, green represents correctly predicted ar-
eas, red denotes missing areas, and yellow implies 
incorrectly predicted areas. We observed that the 
results of PraNet, DeepLabv3 and InfNet have more 
red areas, which indicates that the three models have 
a higher probability of omission; the results of UNet 
and hiformer have more yellow areas, which means 
that the two models have a higher error probability 
when predicting image pixels that do not belong to 
this category. For our MS-UNet network, it can ob-
tain the maximum number of correct pixel prediction 
regions, and reduce the error prediction probability 
of adjacent regions as well, and predict correctly the 
negative samples to a great extent too. The reason 
is that we adopt the zoom strategy to extract more 
abundant features from the three scales, and the pro-
posed scale integration module (SIM) can effectively 
fuse them together, both of which can lead to a sound 
COVID-19 CT image segmentation with exact back-
ground border area and pathological texture.
The PR (Precision-Recall) and F-measure curves 
of the related 12 networks are shown in Figures 8-9, 
where the red bold lines represent the results of our 
network. P means precision, and R represents recall. 
It is not difficult to see that the PR and F-measure 
curves of our network are all at the top, which illus-
trate that our network performs better than others for 
COVID-19 CT image segmentation. Please note that 
F-Measure is a weighted harmonic average of preci-
sion and recall, which can be calculated as follows.

𝐹𝐹𝐹𝐹 −𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷 = �(𝑎𝑎𝑎𝑎}2+1�∗𝑇𝑇𝑇𝑇∗𝑅𝑅𝑅𝑅
𝑎𝑎𝑎𝑎2∗𝑇𝑇𝑇𝑇∗𝑅𝑅𝑅𝑅

, 
(14)

(14)

where a is the weight, and P and R represent precision 
and recall, respectively.

4.2. Ablation Experiment 
We also conducted an ablation experiment to prove the 
effectiveness of each module in our network. In the ab-
lation experiment, the structure diagram of each part 
is shown in Figure 10, and the experimental results are 
listed in Table 2. The Backbone in Figure 10 is UNet, 

(a)

(a)

(b)

(b)

Figure 8
Precision-Recall curve for datasets (a) COVID-19-CT829 
and (b) COVID-19-CT100

Figure 9 
F-measure curve for datasets (a) COVID-19-CT829 and (b) 
COVID-19-CT100
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corresponding to row 1 in Table 2. The results of us-
ing the zoom strategy and fusing the scale integration 
module (HMM) in the UNet network correspond to 
the results in the second row of Table 2. After replacing 
the upward fusion process of the UNet network with 
the hierarchical mixed module (HMM) proposed, the 
results correspond to the data in row 3 of Table 2. The 
data in row 4 of Table 2 are the results of the complete 
MS-UNet model that we designed. From all the results 
in Table 2, it can be seen that after adding the SIM and 
HMM modules separately, the performance of the net-
work has been improved, which can verify the effec-
tiveness of these two modules. 

4.3. Generalizability Study
The above experimental results have confirmed that 
the novel U-shaped network by adopting zoom strat-

egy has stronger COVID-19 CT image segmentation 
ability. To further explore its generalizability and por-
tability, we conducted experiments on two medical 
polyp segmentation datasets: CVC-612 and Kvasir, 
where dataset Kvasir is the current largest publicly 
available and challenging dataset. Kvasir-SEG data-
set contains 1000 high-quality images of polyps along 
with the corresponding precise labels. The CVC-612 
dataset includes 612 images from 31 colonoscopy se-
quences and their labels. We compare our model with 
13 state-of-the-art segmentation methods fairly by 
using the same training parameter settings. The ex-
perimental results are shown in Table 3, where our 
network (MS-UNet) outperforms or comes close to 
other advanced models in all metrics in the two data-
sets mentioned above. This indicates that our model 
has a strong learning capability. 

Figure 10 
The structure diagram of each part in the ablation experiment

Table 3
Ablation experiment results

Methods Dice (%) Sen (%) Spec (%) F-measure (%) mIOU (%) MAE (%)

COVID-19-CT829

Backbone 83.73 86.68 99.34 80.45 87.83 0.96

Backbone + SIM 85.42 88.12 9940 84.20 86.33 0.78

Backbone + HMM 84.73 87.64 99.25 82.25 85.93 0.82

Backbone + SIM + HMM(Ours) 86.25 89.48 99.70 85.61 87.05 0.75

COVID-19-CT100

Backbone 74.06 74.56 96.31 74.02 80.37 6.78

Backbone + SIM 76.47 77.79 96.69 77.01 80.55 6.06

Backbone + HMM 75.12 76.46 96.48 76.44 80.73 6.21

Backbone + SIM + HMM(Ours) 79.38 80.12 96.62 77.93 81.52 5.66
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Table 4
Experimental results on polyp segmentation dataset CVC-612 and Kvasir

Methods Dice (%) Sen (%) Spec (%) HD mIOU (%) MAE (%)

C
V

C
-6

12

PraNet [14] 84.03 85.52 91.36 10.11 92.50 1.07

SwinUNet [8] 78.12 84.05 95.32 30.04 86.98 2.12

SegNet [6] 85.16 87.11 97.72 15.97 91.73 1.28

Deeplabv3 [11] 78.19 79.06 95.81 23.72 86.27 2.13

PSPNet [51] 86.19 88.69 97.58 15.84 92.38 1.19

TransUNet [10] 87.43 88.49 98.37 20.48 91.16 1.38

U-Net [35] 86.37 88.23 96.18 12.62 92.24 1.19

U-Net++ [52] 88.82 91.11 97.73 12.83 92.91 1.11

Inf-Net [15] 86.34 87.69 97.71 15.97 90.43 1.49

Attention-Unet [32] 88.09 89.48 97.84 12.75 96.23 1.14

Hiformer [20] 90.75 92.74 97.86 9.94 95.20 0.73

DM2Tnet [41] 91.02 91.79 97.89 9.42 96.67 0.75

C2FVL [49] 91.23 93.07 98.54 8.97 97.55 0.69

Ours 91.64 92.11 99.37 8.45 94.45 0.62

K
va

si
r

PraNet [14] 77.10 80.95 94.37 43.99 80.69 5.02

SwinUNet [8] 64.70 69.67 93.06 63.39 73.53 8.17

SegNet [6] 83.50 87.38 95.39 38.53 85.04 4.15

Deeplabv3[11] 70.35 75.19 95.96 56.77 76.99 6.61

PSPNet [51] 81.47 86.89 95.64 42.04 83.64 4.65

TransUNet [10] 79.39 85.89 97.13 39.02 81.61 5.25

U-Net [35] 85.65 89.43 98.00 41.08 85.94 3.84

U-Net++ [52] 85.82 89.16 97.02 39.25 86.52 3.64

Inf-Net [15] 76.31 83.56 93.53 43.73 80.02 5.15

Attention-Unet [32] 86.84 89.13 98.21 38.46 87.60 3.35

Hiformer [20] 87.85 91.15 97.90 31.64 88.62 3.10

DM2Tnet [41] 86.73 90.41 96.96 28.84 89.33 2.93

C2FVL [49] 89.86 92.36 98.05 23.78 90.75 2.12

Ours 90.55 92.05 98.00 18.14 93.55 1.21

All of the above experiments can confirm that our 
model can accurately locate and segment the target 
region in various challenging scenes, and has strong 
generalization ability and portability too.

5. Conclusion
We have built and designed a multi-scale U-shaped net-
work which combines scale integration modules (SIM) 

and hierarchical mixed module (HMM) for COVID-19 
CT image segmentation. The SIM and HMM are good 
at learning to distinguishing the effective semantic in-
formation in mixed scale, and fully exploring the im-
perceptible clues between the candidate object and the 
background environment. Both quantitative and qual-
itative experimental results confirmed that our net-
work (MS-UNet) is superior to the existed COVID-19 
CT image segmentation models. Future research will 
aim to develop federated learning methods conduct-
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ed across multiple healthcare settings to enhance di-
agnostic accuracy and efficiency without sacrificing 
patient privacy. Further, we will explore toxicant de-
tection techniques to identify and resist data contam-
ination and ensure data quality and model robustness 
in a distributed learning environment. 
The powerful learning and generalization capability 
of MS-UNet demonstration means that its applica-
tion is not limited to COVID-19 CT images, but can 
also be extended to other medical image analysis 
tasks, such as tumor recognition and disease markers, 

which will further enhance the utility and value of the 
model. Future work will aim to simplify the inference 
structure of the network and design more lightweight 
models to facilitate the integration and application of 
this technology, especially in resource-constrained 
environments. 
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