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Deep learning has become one of the hottest topics in medical image processing due to the development of deep 
learning technology. Currently, medical image research and applications suffer from two problems: a lack of 
data sets and an imbalance of classification categories. To solve these problems, we propose a method of re-
sidual attention and multi-feature fusion for lung image detection. Firstly, to integrate micro- and macro-fea-
ture extraction for medical image processing, two independent residual fusion strategies are designed, namely 
the Cross Residual Feature Extraction module (CRFE) and the Residual Attention Module (RAM). Secondly, a 
three-channel mechanism is designed for the Image Compensation Model (IFM). Using three channels and two 
residual fusion strategies, a multi-composite fusion architecture is produced to improve classifier performance. 
Finally, experimental results demonstrate that the proposed model performs better than the latest algorithms 
when compared with other medical image compensation methods. 
KEYWORDS: Cross residual feature extraction, Residual attention, Cross-entropy fusion, Residual fusion strategy.
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1. Introduction
AI-based image analysis and processing has become 
one of the hottest areas in research with the devel-
opment of machine learning technology [25]. Deep 
learning technology has broad prospects in medical 
image processing [21]. Using fewer labels, Lu et al. 
proposed boundary-enhanced semi-supervised reti-
nal layer segmentation [9]. Based on previous neural 
network models, Tang et al. proposed the residual 
graph attention network model [18]. Sethy et al. [16] 
proposed a hybrid network for the categorization of 
lung histopathology images. Nazir at al. proposed a 
machine learning-based lung cancer detection using 
multiview image registration and fusion [11].
Using multi-stream multi-scale convolutional net-
works, Ciompi et al. present a deep learning system 
that automatically classifies all nodule types relevant 
for nodule diagnosis [1]. K. Sherin et al.  proposed 
an efficient deep learning approach for optimising 
lung cancer screening through advanced techniques 
[6]. In order to establish a lung cancer recognition 
model, an ANN algorithm model was selected [5]. 
In order to overcome these challenges, Poonkodi et 
al. proposed a novel approach for segmenting lung 
tumors [13]. Yan proposed an optimal lung cancer 
detection method based on CNN optimized and 
improved Snake optimization [27]. It is difficult to 
adjust these hyper-parameters physically, which de-
termines the efficacy of this system. Therefore, an 
optimized convolution neural network is suggested 
in this study and is then employed to identify lung 
cancer types [12]. 
To address the above issue, this paper proposes a 
lung cancer research model based on image com-
pensation and residual attention mechanisms. This 
primary contributions of this work can be summa-
rized as follows: (1). To integrate micro- and mac-
ro-feature extraction for medical image processing, 
we propose two different residual fusion strate-
gies, namely the Cross Residual Feature Extraction 
module (CRFE) and the Residual Attention Module 
(RAM). (2). In order to fully utilize the features in 
different branches, the cross-residual feature ex-
traction module exchanges information directly be-
tween them. (3). A three-channel fusion mechanism 
is used in the Image Compensation Model (IFM). 

2. Related Work 
Nazir at al. proposed a machine learning-based lung 
cancer detection using multiview image registration 
and fusion in 2023 [11]. Small medical image training 
sample data can be solved with this network model. 
Xia et al. [25] were able to obtain more parameters 
from MRI images. As a result of its experimental re-
sults, the area under the ROC curve (AUC) was 0.968, 
and the accuracy was 94.7% [17].
Using MRI texture features, Zhao et al. [31] devel-
oped CAD glioma grade prediction accuracy as high 
as 86.8%, with an AUC of 0.89.  Using artificial intel-
ligence, different brain tumors can be differentiated 
minimally or noninvasively in the future [20]. Based 
on multi-parameter MRI images, Litjens et al. de-
veloped a support vector machine (SVM) classifier 
prediction model [19]. Using multi-parametric MRI 
and a random forest classifier, Suh et al. distinguished 
primary central nervous system lymphoma from 
atypical glioblastoma [2]. According to Raj et al. [14], 
LSTM and CNNs are combined to form a neural net-
work model [23]. By using over-complete techniques, 
information loss can be reduced, and structural infor-
mation in the data can be mined [10]. Zhang et al. pro-
posed a joint sparse model with coupled dictionary 
for medical image fusion [29].
As a result, the data can be structured more easily. 
Data underlying any underlying statistical distribu-
tion can be better approximated with an overcom-
plete basis [17]. Similarly, it is widely used for resolv-
ing mixed signals that contain information and noise 
[2]. It is shown that the denoising idea of autoencod-
ers proposed by Valanarasu et al. improves the feature 
detection capabilities of fully complete networks, as 
well as its performance is superior to the standard 
bottleneck structure [19]. The field of neuroscience, 
which addresses the problem of maintaining stable 
sensory perception in the absence of sustained activ-
ity, is also supported by overcomplete characteriza-
tion in neuroscience [7].

3. Method
This paper proposes two different residual fusion 
strategies, namely the Cross Residual Feature Ex-
traction module (CRFE) and the Residual Attention 
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Module (RAM). A three-channel mechanism is used 
in the Image Compensation Model (IFM).

3.1. Definition of the Problem
Initially, this paper designs a classifier to distinguish 
malignant pulmonary nodules from benign nodules 
[30]. Sample space X and label set Y ∈ {0, 1} represent 
the sample space and label set, respectively. Imagine 
that a classifier is constructed using the representation 
F , and that the classifier is based on a nonlinear map-
ping F x Y→( ) . There are T+ and T− samples being ex-
amined, respectively, and the total number of samples 
is T. Malignant samples are indicated by X +, benign 
samples by X −, and the total number of samples is T. 
Based on Equation (1), the accuracy (ACC) of mapping 
F onto the sample space X  can be expressed as follows:
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The ACC measures the difference between labeled 
model outputs. As a result, AUC mainly measures 
the difference between positive and negative 
rankings. AUC and ACC are being improved in this 
article. It is possible to eliminate the effects of these 
factors on the performance index during training, 
however, when the data set is small and the classes 
are unbalanced. 

3.2  Detailed Description of the Model 

3.2.1  Cross Residual Feature Extraction Module 
(CRFE) 

Convolutional neural networks (CNNs) are often 
improved through methods of increasing their 
depth. When network layers increase, gradients 
may disappear or explode during backpropagation. 
Therefore, when propagating through the network, 
after multiplying the error value by the weight, the 
weight value may gradually decrease, causing the 
gradient to approach zero. When this phenomenon 
occurs, the neural network's learning will first show 
an upward trend during the training process, but 
then stabilize and reach saturation. If the weights 
are further optimized, a neural network may not be 
able to achieve higher accuracy. 

To further improve the performance and 
accuracy of convolutional neural networks, 
network designers must adopt other 
strategies or techniques to solve the vanishing 
or exploding gradient problem. In addition to 
batch normalization, residual connections 
may be introduced, or the network structure 
may be adjusted using these strategies. As 
shown in Figure 1, the residual block 
framework consists of the following blocks: 

( ) ( ) ( ) ( )= + → = −H x F x x F x H x x . (3) 
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Figure 1  
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ule output is F x x+( ) . The residual is F x( )  as long as 
F x =( ) 0  is an identity map H x( ) .It is actually im-

plemented using a feedforward neural network with 
shortcut connections, which are just simple identity 
mappings. Increasing network depth will improve net-
work performance. The residual neural network (Res-
Block) can avoid the above situation, but it will add ad-
ditional parameters. The computational complexity of 
the network is not increased by residual learning. 
Based on the traditional residual network model 
structure, this paper proposes a cross residual fea-
ture extraction module (CRFE) based on actual and 
current medical image processing needs. In order to 
fully utilize the features in different branches, the 
cross-residual feature extraction module exchang-
es information directly between them. Through the 
convolution layer, upsampling layer, and ReLU acti-
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vation function, the intermediate medium block (in-
termediate medium) is obtained in the cross-residual 
feature extraction module. On the intermediate medi-
um block, convolution, maximum pooling, and ReLU 
function activation are performed, and finally the ob-
tained feature map is merged with the input map. 

3.2.2.  Residual Fusion Strategy (RFS)
As part of the training phase, we propose a residu-
al fusion strategy that uses features collected from 
three channels to fuse the images. The macro channel 
ZL-Net (OA), micro channel ZL-Net (DT) and general 
channels are used to process original images with dif-
ferent pixel ratios. Different scales and perspectives 
are extracted from these three channels. A feature 
cluster is formed by integrating information from the 
three channels using the cross-residual feature block. 
With a residual attention module, the model is further 
enhanced to capture the importance of features in dif-
ferent branches during training and learning, and to 
weight the features of different branches in real-life 
situations. For feature extraction and information 
transfer, the processed image clusters are input into 
the residual block of the four-layer structure in the 
experimental stage. By using the residual block, the 
vanishing gradient problem can be effectively solved 
and the network’s performance can be improved. To 
complete the processing, the residual block output is 
fused with the original image. As shown in Figure 2, 
the residual fusion strategy is illustrated.  As a result, 
the construct is trained using these cropped multi-
scale patches. In Equation (4), the final result is cal-
culated by combining the three trained models.

0 32 1 48 2 64( ') ( ') ( ')Ensemble w F X w F X w F XF = + + . (4)

In this case, F * represents the sub-model trained us-
ing multi-size cropped CT images. According to grid 
search, the integration weights w0, w1, w2 are determined.

3.2.3. Cross-entropy Loss (CEL)
In order to solve the imbalance problem, data-level 
classification is commonly used, which usually in-
volves oversampling and undersampling. In contrast, 
this method does not increase the diversity of train-
ing samples and can easily lead to overfitting. An al-
ternative approach when the diversity of the data set 
remains the same is to modify the performance index. 
In general, the CEL function is defined as follows:

0 32 1 48 2 64( ') ( ') ( ')Ensemble w F X w F X w F XF = + + . (5)

Wang et al. [24] propose the AUC approximation 
function to implement an indicator that is insensitive 
to imbalanced categories. Because it can be classified 
as a combinatorial optimization problem, directly us-
ing the AUC defined in the equation part often leads to 
NP-hard problems. 
As an explicit optimization problem, AUC optimiza-
tion is converted or approximated in practical appli-
cations. Gao et al. [3] propose a new approximation 
method, where i iF x F x+ −− ≤Ⅱ ( ) ( ) 0  and I are compu-
tational constraints. The following equation can then 
be  shown as in Equation (6).
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Therefore, the design formula of this article is as 
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1 1

( ) ( ) 0
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− ≤
=∑ ∑

Ⅱ

. (7) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized. 

( , , ) max(0,1 ( ( ) ( )))hingel F X X F X F X+ − + −= − − . (8) 

Moreover, F in this study is a nonlinear map whose 
output is limited to the range (0,1)， F X ∈( ) (0,1)  

( ( ) ( )) ( 1,1)

1 ( ( ) ( )) (0,2)

F X F X

F X F X

+ −

+ −

− − ∈ −

− − ∈
 (9) 
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equivalent to the next equation in this study. 
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In Equation (8), there is an approximation when F 
is a linear classifier, i.e. TF x W X=( ) . According to 
AUC [4], which is based on the squared loss as 
follows, this method is inconsistent with AUC: 
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There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
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Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized as shown as in Equation (7).
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In Equation (8), there is an approximation when F 
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There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
AUC [3]. Additionally, this approach is 
independent of the number of training examples. 
According to Equations (10)-(11), the former is a 
first-order penalty term, while the latter is a second-
order penalty term. The following surrogate lossy 
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classifier's performance. Furthermore, this 
paper introduces a new loss function, based 
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loss term. A proposed loss function is shown 
below Equation (13). 

( , , )
CELAUG CELL L l F X X+ −

λ= + α ⋅ , (13) 

where， R+α∈  is the coefficient AUC in the 
loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
and 1 [26]. 
 

3.2.5  Image Compensation Module (IFM) 

For more effective information extraction and 
fitting, the image compensation module 
employs a tri-channel mechanism with cross-
residual feature blocks (CRFE). A 
reconstructed feature cluster is then 
constructed using these feature information. 
A residual attention module (RAM) is also 
introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
image features. As a result of this innovative 
method, clinicians can expect a higher level of 
accuracy in tumor diagnosis. 

4. Results of Experiments and Analyses 
4.1  Dataset 

 Using LIDC-IDRI, physicians annotate 
pulmonary nodules' malignancy based on 
their morphology. The malignant pulmonary 
nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
likelihood that larger lung nodules are 

. (7)

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized.

 
 

 

As an explicit optimization problem, AUC 
optimization is converted or approximated in 
practical applications. Gao et al. [3] propose a new 
approximation method, where i iF x F x+ −− ≤Ⅱ ( ) ( ) 0
and I are computational constraints. The following 
equation can then be  shown as in Equation (6) . 

 

1 1

1 1

1 1

1[ ( ) ( )] [ ( ) ( )]
2( , )

[ ( ) ( )]

[ ( ) ( )]
1

i i i iT T

i j

T T i i
i j

T T i i
i j

F x F x F x F x
AUC F X

T T
F x F x

T T
F x F x

T T

+ −

+ −

+ −

+ − + −

= =
+ −

+ −

= =
+ −

+ −

= =
+ −

> + =
=

>
≈

≤
= −

∑ ∑

∑ ∑

∑ ∑

Ⅱ Ⅱ

Ⅱ

Ⅱ

 (6) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized as shown as in Equation (7). 

1 1

( ) ( ) 0
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− ≤
=∑ ∑

Ⅱ

. (7) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized. 

( , , ) max(0,1 ( ( ) ( )))hingel F X X F X F X+ − + −= − − . (8) 

Moreover, F in this study is a nonlinear map whose 
output is limited to the range (0,1)， F X ∈( ) (0,1)  

( ( ) ( )) ( 1,1)

1 ( ( ) ( )) (0,2)

F X F X

F X F X

+ −

+ −

− − ∈ −

− − ∈
 (9) 

From Equation (9), F X F X+ −− −1 ( ( ) ( )) is always 
greater than zero. Accordingly, Equation (10) is 
equivalent to the next equation in this study. 

1 1

( , , ) 1 ( ( ) ( ),

1 ( ( ) ( ))

hinge

T T i i
i j

l F X X F X F X

F x F x
T T

+ −

+ − + −

+ −

= =
+ −

= − −

− −
=∑ ∑

 (10) 

In Equation (8), there is an approximation when F 
is a linear classifier, i.e. TF x W X=( ) . According to 
AUC [4], which is based on the squared loss as 
follows, this method is inconsistent with AUC: 

2

1 1

(1 ( ( ) ( )))
( , , )

2
T T i i

square i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− −
=∑ ∑ . (11) 

There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
AUC [3]. Additionally, this approach is 
independent of the number of training examples. 
According to Equations (10)-(11), the former is a 
first-order penalty term, while the latter is a second-
order penalty term. The following surrogate lossy 
power function is developed for nonlinear 
mappings F:  

1 1

(1 ( ( ) ( )))
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ − λ
+ −

λ = =
+ −

− −
=

λ∑ ∑ , (12) 

where R+λ∈ .With a small number of 
samples, this paper is able to improve the 
classifier's performance. Furthermore, this 
paper introduces a new loss function, based 
mainly on the CEL term and the AUC penalty 
loss term. A proposed loss function is shown 
below Equation (13). 

( , , )
CELAUG CELL L l F X X+ −

λ= + α ⋅ , (13) 

where， R+α∈  is the coefficient AUC in the 
loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
and 1 [26]. 
 

3.2.5  Image Compensation Module (IFM) 

For more effective information extraction and 
fitting, the image compensation module 
employs a tri-channel mechanism with cross-
residual feature blocks (CRFE). A 
reconstructed feature cluster is then 
constructed using these feature information. 
A residual attention module (RAM) is also 
introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
image features. As a result of this innovative 
method, clinicians can expect a higher level of 
accuracy in tumor diagnosis. 

4. Results of Experiments and Analyses 
4.1  Dataset 

 Using LIDC-IDRI, physicians annotate 
pulmonary nodules' malignancy based on 
their morphology. The malignant pulmonary 
nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
likelihood that larger lung nodules are 

(8)

Moreover, F in this study is a nonlinear map whose 
output is limited to the range (0,1) , F X ∈( ) (0,1)

( ( ) ( )) ( 1,1)
1 ( ( ) ( )) (0,2)

F X F X
F X F X

+ −

+ −

− − ∈ −
− − ∈  (9)

From Equation (9), F X F X+ −− −1 ( ( ) ( )) is always 
greater than zero. Accordingly, Equation (10) is equiv-
alent to the next equation in this study.

 
 

 

As an explicit optimization problem, AUC 
optimization is converted or approximated in 
practical applications. Gao et al. [3] propose a new 
approximation method, where i iF x F x+ −− ≤Ⅱ ( ) ( ) 0
and I are computational constraints. The following 
equation can then be  shown as in Equation (6) . 

 

1 1

1 1

1 1

1[ ( ) ( )] [ ( ) ( )]
2( , )

[ ( ) ( )]

[ ( ) ( )]
1

i i i iT T

i j

T T i i
i j

T T i i
i j

F x F x F x F x
AUC F X

T T
F x F x

T T
F x F x

T T

+ −

+ −

+ −

+ − + −

= =
+ −

+ −

= =
+ −

+ −

= =
+ −

> + =
=

>
≈

≤
= −

∑ ∑

∑ ∑

∑ ∑

Ⅱ Ⅱ

Ⅱ

Ⅱ

 (6) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized as shown as in Equation (7). 

1 1

( ) ( ) 0
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− ≤
=∑ ∑

Ⅱ

. (7) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized. 

( , , ) max(0,1 ( ( ) ( )))hingel F X X F X F X+ − + −= − − . (8) 

Moreover, F in this study is a nonlinear map whose 
output is limited to the range (0,1)， F X ∈( ) (0,1)  

( ( ) ( )) ( 1,1)

1 ( ( ) ( )) (0,2)

F X F X

F X F X

+ −

+ −

− − ∈ −

− − ∈
 (9) 

From Equation (9), F X F X+ −− −1 ( ( ) ( )) is always 
greater than zero. Accordingly, Equation (10) is 
equivalent to the next equation in this study. 

1 1

( , , ) 1 ( ( ) ( ),

1 ( ( ) ( ))

hinge

T T i i
i j

l F X X F X F X

F x F x
T T

+ −

+ − + −

+ −

= =
+ −

= − −

− −
=∑ ∑

 (10) 

In Equation (8), there is an approximation when F 
is a linear classifier, i.e. TF x W X=( ) . According to 
AUC [4], which is based on the squared loss as 
follows, this method is inconsistent with AUC: 

2

1 1

(1 ( ( ) ( )))
( , , )

2
T T i i

square i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− −
=∑ ∑ . (11) 

There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
AUC [3]. Additionally, this approach is 
independent of the number of training examples. 
According to Equations (10)-(11), the former is a 
first-order penalty term, while the latter is a second-
order penalty term. The following surrogate lossy 
power function is developed for nonlinear 
mappings F:  

1 1

(1 ( ( ) ( )))
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ − λ
+ −

λ = =
+ −

− −
=

λ∑ ∑ , (12) 

where R+λ∈ .With a small number of 
samples, this paper is able to improve the 
classifier's performance. Furthermore, this 
paper introduces a new loss function, based 
mainly on the CEL term and the AUC penalty 
loss term. A proposed loss function is shown 
below Equation (13). 

( , , )
CELAUG CELL L l F X X+ −

λ= + α ⋅ , (13) 

where， R+α∈  is the coefficient AUC in the 
loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
and 1 [26]. 
 

3.2.5  Image Compensation Module (IFM) 

For more effective information extraction and 
fitting, the image compensation module 
employs a tri-channel mechanism with cross-
residual feature blocks (CRFE). A 
reconstructed feature cluster is then 
constructed using these feature information. 
A residual attention module (RAM) is also 
introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
image features. As a result of this innovative 
method, clinicians can expect a higher level of 
accuracy in tumor diagnosis. 

4. Results of Experiments and Analyses 
4.1  Dataset 

 Using LIDC-IDRI, physicians annotate 
pulmonary nodules' malignancy based on 
their morphology. The malignant pulmonary 
nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
likelihood that larger lung nodules are 

(10)

In Equation (8), there is an approximation when F is 
a linear classifier, i.e. TF x W X=( ) . According to AUC 
[4], which is based on the squared loss as follows, this 
method is inconsistent with AUC:

 
 

 

As an explicit optimization problem, AUC 
optimization is converted or approximated in 
practical applications. Gao et al. [3] propose a new 
approximation method, where i iF x F x+ −− ≤Ⅱ ( ) ( ) 0
and I are computational constraints. The following 
equation can then be  shown as in Equation (6) . 

 

1 1

1 1

1 1

1[ ( ) ( )] [ ( ) ( )]
2( , )

[ ( ) ( )]

[ ( ) ( )]
1

i i i iT T

i j

T T i i
i j

T T i i
i j

F x F x F x F x
AUC F X

T T
F x F x

T T
F x F x

T T

+ −

+ −

+ −

+ − + −

= =
+ −

+ −

= =
+ −

+ −

= =
+ −

> + =
=

>
≈

≤
= −

∑ ∑

∑ ∑

∑ ∑

Ⅱ Ⅱ

Ⅱ

Ⅱ

 (6) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized as shown as in Equation (7). 

1 1

( ) ( ) 0
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− ≤
=∑ ∑

Ⅱ

. (7) 

Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized. 

( , , ) max(0,1 ( ( ) ( )))hingel F X X F X F X+ − + −= − − . (8) 

Moreover, F in this study is a nonlinear map whose 
output is limited to the range (0,1)， F X ∈( ) (0,1)  

( ( ) ( )) ( 1,1)

1 ( ( ) ( )) (0,2)

F X F X

F X F X

+ −

+ −

− − ∈ −

− − ∈
 (9) 

From Equation (9), F X F X+ −− −1 ( ( ) ( )) is always 
greater than zero. Accordingly, Equation (10) is 
equivalent to the next equation in this study. 

1 1

( , , ) 1 ( ( ) ( ),

1 ( ( ) ( ))

hinge

T T i i
i j

l F X X F X F X

F x F x
T T

+ −

+ − + −

+ −

= =
+ −

= − −

− −
=∑ ∑

 (10) 

In Equation (8), there is an approximation when F 
is a linear classifier, i.e. TF x W X=( ) . According to 
AUC [4], which is based on the squared loss as 
follows, this method is inconsistent with AUC: 

2

1 1

(1 ( ( ) ( )))
( , , )

2
T T i i

square i j

F x F x
l F X X

T T
+ −

+ −
+ −

= =
+ −

− −
=∑ ∑ . (11) 

There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
AUC [3]. Additionally, this approach is 
independent of the number of training examples. 
According to Equations (10)-(11), the former is a 
first-order penalty term, while the latter is a second-
order penalty term. The following surrogate lossy 
power function is developed for nonlinear 
mappings F:  

1 1

(1 ( ( ) ( )))
( , , ) T T i i

i j

F x F x
l F X X

T T
+ −

+ − λ
+ −

λ = =
+ −

− −
=

λ∑ ∑ , (12) 

where R+λ∈ .With a small number of 
samples, this paper is able to improve the 
classifier's performance. Furthermore, this 
paper introduces a new loss function, based 
mainly on the CEL term and the AUC penalty 
loss term. A proposed loss function is shown 
below Equation (13). 

( , , )
CELAUG CELL L l F X X+ −

λ= + α ⋅ , (13) 

where， R+α∈  is the coefficient AUC in the 
loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
and 1 [26]. 
 

3.2.5  Image Compensation Module (IFM) 

For more effective information extraction and 
fitting, the image compensation module 
employs a tri-channel mechanism with cross-
residual feature blocks (CRFE). A 
reconstructed feature cluster is then 
constructed using these feature information. 
A residual attention module (RAM) is also 
introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
image features. As a result of this innovative 
method, clinicians can expect a higher level of 
accuracy in tumor diagnosis. 

4. Results of Experiments and Analyses 
4.1  Dataset 

 Using LIDC-IDRI, physicians annotate 
pulmonary nodules' malignancy based on 
their morphology. The malignant pulmonary 
nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
likelihood that larger lung nodules are 

(11)

There are significant advantages to this indicator 
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following surrogate lossy power function is developed 
for nonlinear mappings F:

Figure 3 
Image compensation model diagram

  

map is merged with the input map.  

3.2.2  Residual Fusion Strategy（RFS） 

As part of the training phase, we propose a residual 
fusion strategy that uses features collected from 
three channels to fuse the images. The macro 
channel ZL-Net (OA), micro channel ZL-Net (DT) 
and general channels are used to process original 
images with different pixel ratios. Different scales 
and perspectives are extracted from these three 
channels. A feature cluster is formed by integrating 
information from the three channels using the 
cross-residual feature block. With a residual 
attention module, the model is further enhanced to 
capture the importance of features in different 
branches during training and learning, and to 
weight the features of different branches in real-life 
situations. For feature extraction and information 
transfer, the processed image clusters are input into 
the residual block of the four-layer structure in the 
experimental stage. By using the residual block, the 
vanishing gradient problem can be effectively 
solved and the network's performance can be 
improved. To complete the processing, the residual 
block output is fused with the original image. As 
shown in Figure 2, the residual fusion strategy is 
illustrated.  As a result, the construct is trained 
using these cropped multi-scale patches. In 
Equation (4), the final result is calculated by 
combining the three trained models. 

0 32 1 48 2 64( ') ( ') ( ')Ensemble w F X w F X w F XF = + + . (4) 

In this case, F *  represents the sub-model trained 

using multi-size cropped CT images. 
According to grid search, the integration 
weights w0 、 w1 、 w2 are determined. 

Figure 2   
Residual fusion strategy 

 
3.2.3  Cross-entropy Loss（CEL） 

In order to solve the imbalance problem, data-
level classification is commonly used, which 
usually involves oversampling and 
undersampling. In contrast, this method does 
not increase the diversity of training samples 
and can easily lead to overfitting. An 
alternative approach when the diversity of the 
data set remains the same is to modify the 
performance index. In general, the CEL 
function is defined as follows: 

1
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Wang et al. [24] propose the AUC 
approximation function to implement an 
indicator that is insensitive to imbalanced 
categories. Because it can be classified as a 
combinatorial optimization problem, directly 
using the AUC defined in the equation part 
often leads to NP-hard problems.  
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As an explicit optimization problem, AUC 
optimization is converted or approximated in 
practical applications. Gao et al. [3] propose a new 
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and I are computational constraints. The following 
equation can then be  shown as in Equation (6) . 
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Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized as shown as in Equation (7). 
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Therefore, the design formula of this article is as 
shown in (6), which represents the target item that 
needs to be optimized. 
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From Equation (9), F X F X+ −− −1 ( ( ) ( )) is always 
greater than zero. Accordingly, Equation (10) is 
equivalent to the next equation in this study. 
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In Equation (8), there is an approximation when F 
is a linear classifier, i.e. TF x W X=( ) . According to 
AUC [4], which is based on the squared loss as 
follows, this method is inconsistent with AUC: 
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There are significant advantages to this indicator 
function, since it proves that when F is a linear 
mapping, the squared loss is consistent with the 
AUC [3]. Additionally, this approach is 
independent of the number of training examples. 
According to Equations (10)-(11), the former is a 
first-order penalty term, while the latter is a second-
order penalty term. The following surrogate lossy 
power function is developed for nonlinear 
mappings F:  
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where R+λ∈ .With a small number of 
samples, this paper is able to improve the 
classifier's performance. Furthermore, this 
paper introduces a new loss function, based 
mainly on the CEL term and the AUC penalty 
loss term. A proposed loss function is shown 
below Equation (13). 
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where， R+α∈  is the coefficient AUC in the 
loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
and 1 [26]. 
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introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
image features. As a result of this innovative 
method, clinicians can expect a higher level of 
accuracy in tumor diagnosis. 

4. Results of Experiments and Analyses 
4.1  Dataset 

 Using LIDC-IDRI, physicians annotate 
pulmonary nodules' malignancy based on 
their morphology. The malignant pulmonary 
nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
likelihood that larger lung nodules are , (12)
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loss term of the AUC. For 32, 48, and 64 sizes, 
𝛼𝛼𝛼𝛼 adopts the corresponding values of 0.5, 0.75, 
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employs a tri-channel mechanism with cross-
residual feature blocks (CRFE). A 
reconstructed feature cluster is then 
constructed using these feature information. 
A residual attention module (RAM) is also 
introduced to enhance the model's 
performance by compensating for 
information features extracted from the 
original image. In residual fusion, key 
information in medical images is captured 
using residual networks based on this 
framework. 

To integrate multi-pixel image features, the 
model uses a novel loss function to take into 
account the contribution of each pixel during 
the optimization process. To obtain a more 
accurate classification of benign and 
malignant tumors, the model uses an 
information exchange module to interact with 
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nodules are clearly irregular and have lobular, 
needle-like, cavity-like, and other shapes. The 
edges of benign pulmonary nodules are 
sharper and more regular. Due to their lack of 
calcification, some malignant lung nodules 
are not brighter than benign lung nodules. 
The clinical definition of low density is that it 
is too low to be malignant. There is a higher 
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where, R+α∈  is the coefficient AUC in the loss term 
of the AUC. For 32, 48, and 64 sizes, α adopts the cor-
responding values of 0.5, 0.75, and 1 [26].

3.2.5. Image Compensation Module (IFM)
For more effective information extraction and fitting, 
the image compensation module employs a tri-chan-
nel mechanism with cross-residual feature blocks 
(CRFE). A reconstructed feature cluster is then 
constructed using these feature information. A re-
sidual attention module (RAM) is also introduced to 
enhance the model’s performance by compensating 
for information features extracted from the original 
image. In residual fusion, key information in medical 
images is captured using residual networks based on 
this framework.
To integrate multi-pixel image features, the model uses 
a novel loss function to take into account the contri-
bution of each pixel during the optimization process. 
To obtain a more accurate classification of benign and 
malignant tumors, the model uses an information ex-
change module to interact with image features. As a re-
sult of this innovative method, clinicians can expect a 
higher level of accuracy in tumor diagnosis.

4. Results of Experiments and 
Analyses

4.1. Dataset
Using LIDC-IDRI, physicians annotate pulmonary 
nodules’ malignancy based on their morphology. The 
malignant pulmonary nodules are clearly irregular 
and have lobular, needle-like, cavity-like, and other 
shapes. The edges of benign pulmonary nodules are 

sharper and more regular. Due to their lack of calcifi-
cation, some malignant lung nodules are not brighter 
than benign lung nodules. The clinical definition of 
low density is that it is too low to be malignant. There 
is a higher likelihood that larger lung nodules are ma-
lignant based on this figure. 

Table 1  
Dataset sheet

LIDC-DRI Benign Uncertain Malignant

MML 1 2 3 4 5

numbers 325 831 957 436 120

There are 1018 clinical chest CT scans of pulmonary 
nodules in the LIDC-IDRI database, which is avail-
able from the Archives of Cancer Imaging [22]. The 
CT image is accompanied by an XML file detailing the 
location of the nodule. It is generally accepted that 
some suspicious lesions merge into the same pulmo-
nary nodule, if the center of the lesions is located in 
a different area. There is a main focus on nodule di-
ameters over 3 mm in this article. The total number of 
lung nodules obtained by this paper is 2669.
1 Construction and preprocessing of data sets
For training and testing, all lung nodules are cropped 
from the original CT images. Using NumPy, a 64-pixel 
3D path was extracted from the CT image around the 
lung nodule’s center for preprocessing. Each pixel in 
the original cropped patch contains its CT value ( ctV ). 
To map CT values to V levels in the range [0,1], the fol-
lowing Equation (14) is used.
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There are 1018 clinical chest CT scans of pulmonary 
nodules in the LIDC-IDRI database, which is 
available from the Archives of Cancer Imaging [22]. 
The CT image is accompanied by an XML file 
detailing the location of the nodule. It is generally 
accepted that some suspicious lesions merge into 
the same pulmonary nodule, if the center of the 
lesions is located in a different area. There is a main 
focus on nodule diameters over 3 mm in this article. 
The total number of lung nodules obtained by this 
paper is 2669. 
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For training and testing, all lung nodules are 
cropped from the original CT images. Using 
NumPy, a 64-pixel 3D path was extracted from the 
CT image around the lung nodule's center for 
preprocessing. Each pixel in the original cropped 
patch contains its CT value ( ctV ). To map CT values 
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Figure 4  

The malignant samples cropped from lung CT images 

 

 
Figure 5  

The Benign samples cropped from lung CT images 

 
As part of the training process, this paper crops 
plaques of different sizes from images of the lesion 
centers that have been preprocessed. Additionally, 
samples are flipped and translated to increase their 
diversity. Firstly, the input is passed through two 
convolutional layers and then through a maximum 
pooling layer (MP). Through a global average 
pooling layer, the last block is converted into 

feature vectors. Secondly, there is a layer that 
is fully connected and a layer that is output. 
There are three subnetworks in this article, 
whose structures are identical except for the 
input size. To obtain the final integration 
result, these three subnets are combined. As a 
result of the limited data sets, this study 
employs optical networks in which each 
subnet contains ten layers. To improve the 
performance of this model under imbalanced 
categories, we introduce a loss function that 
incorporates cross-entropy and AUC. 

(2) Enhancement of the data 

 An ensemble of lightweight models is used in 
this article as an alternative solution. It is 
easier to solve the overfitting problem with 
lightweight models because they have fewer 
parameters than large models. Multi-
lightweight models are used in this paper to 
evaluate the task in an integrated manner. In 
this case, 2D convolutional neural networks 
are usually used as the backbone network. 
The decomposition process, however, may 
result in a loss of heterogeneity in lung 
nodules. A three-dimensional convolutional 
neural network is used as the backbone 
network in this paper. 
4.2  Index of Experimental Evaluation 

There are four commonly used evaluation 
indicators in the model: Accuracy (
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Recall ( TP
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2 * *1 ). 

These four indicators are explained in detail 
below, along with their definitions and 
formulas.  

Table 2   

Environment settings for experiments 

hardware 

CPU  Intel(R) Core(TM) i9-10900X 
GPU  NVIDIA RTX 3090 24G 

Memory 64GB 
Disk 512G M.2 SSD 

software 
System Ubuntu 18.04.5 Server 
Python 3.7.6 
Pytorch 1.10.0 

4.3  Environment Settings for Experiments 

The deep learning model in this article was 
developed using the Python programming 
language and Pytorch deep learning 
framework under a Linux environment. As 
shown in Table 2, detailed parameters of 
software and hardware are configured. A RTX 

(14)

As part of the training process, this paper crops 
plaques of different sizes from images of the lesion 
centers that have been preprocessed. Additionally, 
samples are flipped and translated to increase their 
diversity. Firstly, the input is passed through two 
convolutional layers and then through a maximum 
pooling layer (MP). Through a global average pooling 
layer, the last block is converted into feature vectors. 
Secondly, there is a layer that is fully connected and a 
layer that is output. There are three subnetworks in 
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Figure 4 
The malignant samples cropped from lung CT images

Figure 5 
The Benign samples cropped from lung CT images

this article, whose structures are identical except for 
the input size. To obtain the final integration result, 
these three subnets are combined. As a result of the 
limited data sets, this study employs optical networks 
in which each subnet contains ten layers. To improve 
the performance of this model under imbalanced cat-
egories, we introduce a loss function that incorpo-
rates cross-entropy and AUC.
2 Enhancement of the data
An ensemble of lightweight models is used in this ar-
ticle as an alternative solution. It is easier to solve 
the overfitting problem with lightweight models be-
cause they have fewer parameters than large models. 
Multi-lightweight models are used in this paper to 
evaluate the task in an integrated manner. In this case, 
2D convolutional neural networks are usually used as 
the backbone network. The decomposition process, 
however, may result in a loss of heterogeneity in lung 
nodules. A three-dimensional convolutional neural 
network is used as the backbone network in this paper.

4.2. Index of Experimental Evaluation
There are four commonly used evaluation indicators 
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2 * *1 ). These four indicators are explained in 
detail below, along with their definitions and formulas. 

4.3. Environment Settings for Experiments
The deep learning model in this article was developed 
using the Python programming language and Pytorch 
deep learning framework under a Linux environment. 
As shown in Table 2, detailed parameters of software 
and hardware are configured. A RTX 3090 (24GB) and 
CUDA 11.4 were used in this article. In Python 3.7 and 
Pytorch-v1.10.0, the designed network model is used.

Table 2  
Environment settings for experiments

hardware

CPU Intel(R) Core(TM) i9-10900X

GPU NVIDIA RTX 3090 24G

Memory 64GB

Disk 512G M.2 SSD

software

System Ubuntu 18.04.5 Server

Python 3.7.6

Pytorch 1.10.0
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4.4. Parameter Settings
As shown in Table 3, the parameter settings of the ex-
perimental model are described in this article.

stands for KiU-Net [19], DAS stands for DAS-Net [8], 
SD2023 [15], ZlOA stands for Zl-Net OA, ZlDT stands 
for Zl-Net DT, and IFM stands for the image fusion 
model. There are some suboptimal indicators, indi-
cating that the model could be optimized, such as Pre-
cision and AUC. It is possible that the loss of features 
caused by the image reconstruction module may af-
fect the quality of the image. 

4.6. Ablation Experiments
A research on ablation is performed using the U-Net 
and the KiU-Net traditional over-complete architec-
ture models. A residual fusion strategy is evaluated by 
analyzing the information loss of image information 
within a single data set. Furthermore, a spatially over-
complete network model and a traditional IMF image 
compensation model are compared. The LIDC-IDRI 
dataset was used in this experiment. Under a single 
data set, the information extraction degree and loss 
bias of each model are verified. In Table 4, it is shown 
that while U-Net captures a certain amount of image 
detail features, it cannot capture features like KiU-
Net and IFM (the proposed image fusion model). The 
majority of these advanced features eventually lead 
to a severe loss of U-Net functionality. Based on an 
experimental comparison of the loss rate in the infor-
mation extraction process with the KiU-Net model 
using an overcomplete architecture, it was found that 
KiU-Net still has a higher loss convergence than IFM. 
As shown in Figure 8, experimental results were ob-
tained. As a result, residual fusion has been shown to 
be effective.

Table 3  
Training parameters

Parameter Value

ResBlock layers 4

Batch size 120

Dropout 0.5

Optimizer Adam

Learning rate 1e-3

Hidden layer size 486

Epoch 30

4.5. Results of Experiments
An evaluation was performed by calculating the mean 
and standard deviation of the Acc, sensitivity/recall, 
specificity, precision with a cutoff value of 0.5, F1 
score and AUC. Model parameters are saved at the 
end of each epoch after 120 epochs of training. 
In the beginning, learning rate lr is set to e −1 3 , and 
every 30 epochs it is changed to lr lr= * 0.1  again. 
In Table 4, the image compensation model proposed 
in this chapter successfully enables the model to ex-
tract a wider range of features from pulmonary nod-
ules. MD stands for OL [9] MSCS-DeepLN [26], KiU 

Table  3
Comparison experiment results

Model Acc Recall Precision AUC F1 Score

OL 93.11±0.18 - - - -

SD2023 93.40±0.16 - - - -

MD 92.65±0.26 85.58±0.94 90.39±0.94 94.00±0.25 87.91±0.43

KiU 92.06±0.28 83.62±0.51 90.27 ± 1.28 93.88 ± 0.17 86.82 ± 0.33

DAS 92.17±0.23 84.55±0.37 90.78 ± 0.21 92.58 ± 0.24 86.98± 0.12

ZlOA 92.78± 0.17 84.68 ± 1.23 91.95 ± 0.60 93.78 ± 0.23 87.16 ± 0.41

ZlDT 92.12 ± 0.23 84.36 ± 1.64 89.80 ± 0.75 94.35 ± 0.37 87.98 ± 0.54

IFM 93.65±0.26 87.58±0.94 90.89±0.94 94.00±0.25 88.91±0.43
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5. Conclusion
In this paper, we propose a medical image network 
model that enhances energy by merging medical 
image compensation with special effects informa-
tion extraction. There are three advantage mod-
ules in the network model: a full feature extraction 
module, a feature fusion module, and an image re-
construction module.  In the full feature extraction 
module, multi-scale and multi-dimensional feature 
extraction mechanisms are used. Multiple parallel 
medical images are extracted and merged using a 
residual fusion strategy. The fused features are then 
fed into the image reconstruction module. Multidi-
mensional image extraction in the feature extraction 
module can better extract detailed information from 
medical images. There is room for future research to 
incorporate a broader range of models, datasets, and 
metrics.
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