
813Information Technology and Control 2024/3/53

Multi-Scale Temporal
Convolutional Networks and
Multi-Head Attention for
Robust Log Anomaly Detection

ITC 3/53
Information Technology
and Control
Vol. 53 / No. 3/ 2024
pp. 813-832
DOI 10.5755/j01.itc.53.3.35704

Multi-Scale Temporal Convolutional Networks and Multi-Head
Attention for Robust Log Anomaly Detection

Received 2023/11/23 Accepted after revision 2024/04/29

HOW TO CITE: Zhang, Z., Li, W., Wang, Y., Wang, Z., Sheng, X., Zhou, T. (2024). Multi-Scale
Temporal Convolutional Networks and Multi-Head Attention for Robust Log Anomaly Detection.
Information Technology and Control, 53(3), 813-832. https://doi.org/10.5755/j01.itc.53.3.35704

Corresponding author: 202212210005@nuist.edu.cn

Zhigang Zhang, Wei Li
Tianjin Electric Power Trading Center Co, Tianjin 300010, China

Yizhe Wang
Beijing Electric Power Trading Center Co, Beijing 100000, China

Zhe Wang
School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

Xiang Sheng, Tianxiang Zhou
Beijing Electric Power Trading Center Co, Beijing 100000, China

System logs are instrumental in understanding computer system behavior and ensuring system stability and
reliability, making anomaly detection in system logs crucial. However, with the increasing scale and complex-
ity of modern software systems, log data is growing exponentially, rendering traditional manual log inspec-
tion methods inefficient. Moreover, the evolution of log messages over time results in a lower accuracy rate
for anomaly detection. To address these issues, this paper proposes a log anomaly detection method based on
multi-scale temporal convolution networks and multi-head attention. This method utilizes temporal convolu-
tion networks to extract temporal information from log data and extracts hidden features of logs through differ-
ent receptive fields of multi-scale convolution kernels. By integrating the multi-head attention mechanism, the
sequential dependencies of logs can be better captured. We conducted repeated experiments on the authorita-
tive public HDFS and BGL log datasets to evaluate their detection accuracy and robustness. The experiments
demonstrate that MTCNLog outperforms existing anomaly detection methods and is robust to the continuous
evolution of logs.
KEYWORDS: Anomaly detection, System log, Log analysis, Deep learning, Neural networks.

Information Technology and Control 2024/3/53814

1. Introduction
Ensuring high availability and reliability is of utmost
importance for large-scale systems that are heavily
reliant on software [15]. These systems are designed
to serve a broad spectrum of users, providing a wide
array of services. Even the slightest malfunction
can lead to user dissatisfaction, which could po-
tentially translate into significant economic losses.
Hence, it is imperative for these systems to main-
tain continuous operation, typically on a 24x7 basis.
The implementation of precise and efficient detection
methods can mitigate system failures that are trig-
gered by anomalous events. Consequently, anomaly
detection emerges as a pivotal component in guaran-
teeing the quality assurance of complex, software-in-
tensive systems. It is through such mechanisms that
the robustness and reliability of these systems can be
upheld, thereby ensuring seamless service delivery to
the end-users.
Software-intensive systems are known to document
runtime information through the generation of con-
sole logs. The scale and complexity of these systems
often result in the production of substantial volumes
of logs. These logs, which serve as a comprehensive
record of the system’s operational status, are exten-
sively utilized for anomaly detection. Take, for exam-
ple, Alibaba’s cloud computing system, which gener-
ates an astounding 30-50 GB of trace logs every hour,
equivalent to approximately 120-200 million lines.
Each entry in a log file is essentially a semi-structured
text message, originating from a log statement. This
message comprises predefined event templates along
with several dynamic parameters, offering a detailed
insight into the system’s functioning [9]. A log mes-
sage can be deconstructed into a log event, with each
log event embodying the template or the constant
component of the message. Each log entry is time-
stamped, marking the time of its occurrence. As such,
a log file can be viewed as a log sequence, comprising
a vast number of log entries organized in the order of
system execution. Log anomalies can be categorized
into two types: individual log anomalies and log se-
quence anomalies. Individual log anomalies docu-
ment abnormal states and are typically perceived as
outliers. However, given the varied abnormal behav-
iors across different systems, detecting individual log
anomalies can be challenging without prior knowl-

edge of the target system’s abnormal behavior. Our
focus, therefore, shifts to log sequence anomalies,
which allow us to identify abnormalities arising from
an abnormal execution order or incomplete execu-
tion patterns within the log sequence. The automatic
analysis of logs, aimed at identifying anomalous sys-
tem behaviors, is becoming increasingly crucial in
managing modern complex systems. Consequently,
log anomaly detection has emerged as a vibrant area
of research in both academic and industrial settings.
Traditional methods of log anomaly detection are of-
ten deemed inefficient [19]. These methods typically
hinge on domain knowledge and utilize techniques
such as regular expression matching or keyword
searches to pinpoint anomalies. While these meth-
ods are capable of detecting anomalies, they require
substantial time and financial investment. In the con-
text of software-intensive systems, the application of
traditional log anomaly detection methods is imprac-
tical. The scale and complexity of these systems ne-
cessitate a more efficient and cost-effective approach
to anomaly detection. This highlights the need for in-
novative solutions that can effectively identify anom-
alies in log sequences, thereby enhancing the reliabil-
ity and performance of these systems.
In recent years, a multitude of data-driven approach-
es have been introduced to automate the detection of
system anomalies. A variety of log sequence anomaly
detection methods have been devised using tradition-
al machine learning techniques. These include logistic
regression [8], support vector machines and principal
component analysis. These techniques extract valu-
able features from log sequences and train binary clas-
sifiers, with or without labels, to identify system anom-
alies. While these traditional machine learning-based
methods have demonstrated high accuracy, they fall
short in capturing the temporal information embedded
within log sequences due to manual feature extraction.
To address this limitation, deep learning-based meth-
ods such as DeepLog [7], LogAnomaly [17], PLELog
[26], LogRobust [27] and HitAnomaly [14] have been
extensively employed for log sequence anomaly detec-
tion. Most of these methods leverage recurrent neural
networks (RNNs) to capture comprehensive bidirec-
tional contextual information. Despite the commend-
able performance of previous methods, both machine

815Information Technology and Control 2024/3/53

learning and deep learning-based, in log sequence
anomaly detection, there remain challenges in model-
ing and analyzing log data.
Semantic Information: Current methods predominant-
ly employ sequential vectors or quantitative vectors to
represent log sequences. However, these approaches
tend to overlook the semantic information inherent in
logs, which can result in an inadequate capture of log
features. The semantic content of logs, which provides
valuable insights into the system’s behavior, is thus of-
ten underutilized in anomaly detection.
Dependency: The detection of anomalies in log se-
quences relies heavily on both global and local depen-
dencies between logs. Previous methods have often
utilized Long Short-Term Memory networks to cap-
ture the dependency information within log sequenc-
es. However, due to the sequential nature of LSTM, it
falls short in effectively capturing global dependen-
cies. Moreover, its capacity to capture local depen-
dencies is also somewhat limited due to the absence
of interactive relationships.
Log Template Updating: The intricacy of software
functions and the regular updates to business process-
es lead to more frequent alterations to log templates,
thereby significantly increasing the diversity of log
templates. This could disrupt the correlation between
logs in the log sequence learned by the model, making
it challenging to adapt to the constantly changing situ-
ations encountered in real-world scenarios.
To address the aforementioned challenges, we intro-
duce a novel approach, MTCNLog, for handling log
sequences. First, we employed the popular log pars-
ing approach IPLoM [18] to extract log templates, and
performed post-processing operations to mitigate the
adverse effects of redundant templates, thereby facil-
itating subsequent feature extraction. Subsequently,
log templates are represented using weighted seman-
tic vectors based on Word2Vec, facilitating the capture
of semantic information hidden within the log tem-
plates. Upon obtaining the semantic vector sequences,
MTCNLog employs an improved TCN [4] based on
multiple scales and a multi-head attention mechanism
to learn hidden patterns within the log sequences and
predict whether the log sequence is anomalous.
The proposed method encompasses multiple mod-
ules, including a multi-scale convolution module, di-
lated convolution, residual blocks, and a multi-head

attention module. Due to the inherent limitations of a
single Temporal Convolutional Network in extracting
information across different time scales, the multi-
scale feature extraction module in this study employs
multiple convolutional kernels of varying sizes to
capture diverse local information. This approach ef-
fectively circumvents the need for deep stacking of
the model. Moreover, the TCN, when combined with
a multi-head attention mechanism, can effectively
integrate the contextual information of log state-
ments. The attention mechanism assigns weights to
more significant events, thereby facilitating more ac-
curate and rapid detection. Past methods have com-
monly employed Long Short-Term Memory (LSTM)
networks for detecting anomalies in log data. LSTM
captures sequence information through recursive
formulas. However, as information in LSTM can only
flow from one time step to the next, such sequential
networks struggle to effectively uncover dependen-
cies between distant log entries in the log sequenc-
es. In addition, LSTM is unable to learn the intrinsic
connection features of log sequences from a global
perspective. In log anomaly detection tasks, both local
correlations between adjacent log entries and long-
range dependencies between distant log entries can
greatly impact the final anomaly judgments. There-
fore, methods relying solely on LSTM still have some
limitations in log anomaly detection tasks. Compared
to LSTM, our MTCNLog model exhibits superior ca-
pability in extracting long-term dependency features.
Our method is particularly suited for handling system
log data, which displays distinct temporal patterns
and long-term dependencies, making it more effec-
tive than the LSTM model. The main contributions
are summarized as follows:
1 By incorporating the post-processing step into IP-

LoM, we have effectively addressed the issue of in-
sufficient accuracy in existing log templates. This
enhancement not only facilitates subsequent fea-
ture extraction but also lays a solid foundation for
the efficacy of log anomaly detection.

2 We propose a deep learning model for log anomaly
detection that fully exploits the strengths of multi-
scale feature extraction modules, temporal con-
volutional networks, and multi-headed attention
mechanisms for handling time-series data. The
multi-scale feature extraction module enhances
the model’s learning capacity via a multi-reso-

Information Technology and Control 2024/3/53816

lution receptive field. TCN can effectively distill
hidden information and temporal relationships
within features while eliminating redundant traits.
Multi-headed attention captures complex global
dependencies of log anomalies and spotlight criti-
cal information. By automatically learning salient
features and uncovering latent sequential depen-
dencies, the model achieves performant and flexi-
ble anomaly detection.

3 We have conducted numerous comparative and
robustness experiments on two authoritative
log datasets, HDFS and BGL, to validate the per-
formance of the MTCNLog model in system log
anomaly detection. The experimental results
demonstrate that MTCNLog exhibits commend-
able accuracy and robustness in system log anom-
aly detection.

The rest structure of this paper is outlined as follows:
the related work is introduced in Section 2. Section 3
describes the proposed log anomaly detection meth-
od MTCNLog, including the overall detection frame-
work, log processing, and anomaly detection model.
Finally, in Section 4, we conducted experiments to
evaluate the performance of the proposed model, and
Section 5 summarizes our work in this paper.

2. Related Work
The process of log anomaly detection involves three
crucial stages: log parsing, feature extraction, and
anomaly detection. Each stage has its specific meth-
ods and tools, and there exists a close relationship be-
tween them. In the following, we will review the relat-
ed work for each stage.

2.1. Log Parsing
Log parsing is typically the initial step in log anomaly
detection frameworks [1]. It acts as a preprocessing
tool, and its accuracy has a significant influence on
the outcomes of log anomaly detection. Log parsing
involves the conversion of semi-structured log data
into structured data [2]. Logs are unstructured and
comprise both fixed and variable components. The
goal of log parsing is to segregate the constant and
variable parts in the raw logs, thereby extracting uni-
formly formatted log templates. An illustration of log
parsing is depicted in Figure 1.

Log parsing solutions primarily fall into three catego-
ries: clustering-based approaches, frequent pattern
mining-based approaches, and heuristic approaches.
Some log parsers leverage traditional clustering algo-
rithms. For instance, LogMine [10] is a representative
clustering-based solution that utilizes a single-pass
clustering algorithm to scan all log messages, thereby
generating dense clusters.
Certain log parsers make use of frequent pattern min-
ing, a well-established technique in data mining, to un-
cover patterns that go beyond a set support threshold.
LogCluster uses hash tables to pinpoint words that oc-
cur frequently. It extracts all frequent words from each
log message to form or update potential groups.
A number of log parsers utilize a variety of heuristic
algorithms for log template extraction. Drain [11] is a
representative heuristic approach that groups origi-
nal log messages using a parsing tree of fixed depth,
with each group converging at leaf nodes. Predefined
filtering rules guide the search for suitable leaf nodes.
Spell is another widely used log parsing method that
is based on the longest common subsequence. It pro-
cesses log messages in a streaming manner into struc-
tured templates and variables. IPLoM parses logs in
three steps: it scans and partitions logs by length, di-
vides partitions using token frequency and bijection,
and extracts templates where unique tokens are con-
stants and others are variables. In this study, IPLoM
was selected as the log parsing method, transforming

Figure 1
Overview of log parsing

model exhibits superior capability in extracting
long-term dependency features. Our method is
particularly suited for handling system log data,
which displays distinct temporal patterns and long-
term dependencies, making it more effective than
the LSTM model. The main contributions are
summarized as follows:

1. By incorporating the post-processing step into
IPLoM, we have effectively addressed the issue of
insufficient accuracy in existing log templates. This
enhancement not only facilitates subsequent
feature extraction but also lays a solid foundation
for the efficacy of log anomaly detection.

2. We propose a deep learning model for log
anomaly detection that fully exploits the strengths
of multi-scale feature extraction modules, temporal
convolutional networks, and multi-headed
attention mechanisms for handling time-series
data. The multi-scale feature extraction module
enhances the model's learning capacity via a multi-
resolution receptive field. TCN can effectively
distill hidden information and temporal
relationships within features while eliminating
redundant traits. Multi-headed attention captures
complex global dependencies of log anomalies and
spotlight critical information. By automatically
learning salient features and uncovering latent
sequential dependencies, the model achieves
performant and flexible anomaly detection.

3. We have conducted numerous comparative and
robustness experiments on two authoritative log
datasets, HDFS and BGL, to validate the
performance of the MTCNLog model in system log
anomaly detection. The experimental results
demonstrate that MTCNLog exhibits
commendable accuracy and robustness in system
log anomaly detection.

The rest structure of this paper is outlined as
follows: the related work is introduced in Section 2.
Section 3 describes the proposed log anomaly
detection method MTCNLog, including the overall
detection framework, log processing, and anomaly
detection model. Finally, in Section 4, we
conducted experiments to evaluate the
performance of the proposed model, and Section 5
summarizes our work in this paper.

2. Related Work

The process of log anomaly detection involves
three crucial stages: log parsing, feature
extraction, and anomaly detection. Each stage
has its specific methods and tools, and there
exists a close relationship between them. In
the following, we will review the related work
for each stage.

2.1. Log Parsing

Log parsing is typically the initial step in log
anomaly detection frameworks [1]. It acts as a
preprocessing tool, and its accuracy has a
significant influence on the outcomes of log
anomaly detection. Log parsing involves the
conversion of semi-structured log data into
structured data [2]. Logs are unstructured and
comprise both fixed and variable components.
The goal of log parsing is to segregate the
constant and variable parts in the raw logs,
thereby extracting uniformly formatted log
templates. An illustration of log parsing is
depicted in Figure 1.

Figure 1
Overview of log parsing

Log parsing solutions primarily fall into three
categories: clustering-based approaches,
frequent pattern mining-based approaches,
and heuristic approaches. Some log parsers
leverage traditional clustering algorithms. For
instance, LogMine [10] is a representative
clustering-based solution that utilizes a single-
pass clustering algorithm to scan all log
messages, thereby generating dense clusters.

Certain log parsers make use of frequent
pattern mining, a well-established technique
in data mining, to uncover patterns that go
beyond a set support threshold. LogCluster

817Information Technology and Control 2024/3/53

semi-structured log data into structured log events
and generating log templates. To enhance the accu-
racy of log parsing, post-processing operations were
also applied.

2.2. Feature Extraction
The subsequent stage in the log anomaly detection
process involves feature extraction from the logs,
which necessitates representing the logs in a format
that complies with the requirements of the anomaly
detection model.
Log representation techniques take semi-structured
raw log data or parsed log data as input and generate
representations at different levels of abstraction [20].
Specifically, it is necessary to extract relevant features
from log templates to input them into deep learning
models for detection. The advancement of Natural
Language Processing (NLP) techniques has provided
methodologies for feature representation on log tem-
plates in this context. Currently, there are three main
representation formats: sequential vectors, quantita-
tive vectors, and semantic vectors. Sequential vectors
reflect the order of log events in a window. For example,
DeepLog indexes each log event and subsequently cre-
ates sequential vectors for corresponding log windows.
Quantitative vectors, similar to log count vectors, are
used to capture the occurrences of each log event in a
log window. Semantic vectors, on the other hand, are
used to capture the meaning of each log event in a log
window. Semantic vectors are generated by applying
NLP techniques such as word embedding or topic mod-
eling on log templates. LogAnomaly utilizes sequential
vectors and quantitative vectors to detect anomalies.
In log anomaly detection, semantic vectors from lan-
guage models are used to capture log event semantics.
These vectors provide a dual-layered representation:
token-level and event-level. A log message is essen-
tially a token string, each represented as embeddings
via a pre-trained language model like Word2Vec.
Logsy [19], for example, labels preprocessed log mes-
sages and generates token embeddings from the log
template. These representations, along with token
position encoding, are input into a transformer-based
architecture, refining token-level representations
through training. Event-level embeddings, vector
representations encoding individual log templates,
are obtained by aggregating token-level embeddings
using various pooling methods. LogRobust employs a

pre-trained FastText model to compute semantic vec-
tors for log events. Moreover, certain language mod-
els are capable of directly generating such represen-
tations. For example, Swisslog [16] uses a pre-trained
BERT as the sentence encoder to directly produce se-
quence-level embeddings for log templates. In our re-
search, we have adopted a weighted vector represen-
tation method that combines Word2Vec and TF-IWF
to extract significant features from log templates.

2.3. Anomaly Detection
The task of detecting anomalies in logs can be viewed
as a binary classification problem, where the goal is to
classify a log sequence as either normal or anomalous.
Methods for log anomaly detection that have been
proposed recently can be broadly divided into two
categories: those based on data mining techniques
and those that utilize deep learning approaches.
Log anomaly detection methods, based on data min-
ing, are broadly classified into supervised and unsu-
pervised learning techniques. Supervised techniques
use labeled log data to train models, learning fixed pat-
terns corresponding to different log labels. Common
models include support vector machines, finite state
automatons [6], decision trees [5], logistic regression
[20], among others. These methods typically achieve
higher detection accuracy but require labor-intensive
and costly manual labeling. Their performance varies
across different datasets and applications. A key lim-
itation is their inability to effectively model sequen-
tial dependencies and semantic contexts among log
events. For instance, PCA and clustering treat each
log message independently, ignoring their occurrence
order. Pattern mining learns correlation but lacks
generalization. To overcome these limitations, recent
research focuses on deep learning techniques, capa-
ble of capturing complex sequential and structural log
data information.
Indeed, deep learning has garnered considerable at-
tention over the past decade due to its superior ca-
pabilities in model representation and performance.
Numerous studies have leveraged deep learning for
the detection of anomalies in log sequences.
Brown et al. [3] introduced an RNN model that incor-
porates an attention mechanism for the detection of
anomalous patterns in system logs. Zhang et al., on
the other hand, proposed a unique anomaly detection
model for the automatic analysis of console logs. This

Information Technology and Control 2024/3/53818

model leverages the Long Short-Term Memory net-
work to capture the sequential characteristics of log
sequences, marking the first application of the LSTM
model in the field of log anomaly detection. This has led
to numerous studies exploring the use of LSTM models
and their variants for log anomaly detection. OC4Seq
utilizes a multi-scale RNN framework that takes into
account the imbalanced nature of log data. This allows
for the capture of different levels of sequence patterns
by embedding discrete event sequences into a latent
space, facilitating relatively straightforward anomaly
detection. Compared to LSTM and RNN, the Tempo-
ral Convolutional Network is a novel method for time
series prediction that can capture long-term depen-
dencies. He et al. [12] utilized a TCN model, trained on
normal sequences, to forecast trends across a series of
time steps. They then fitted the errors from these pre-
dictions to a Gaussian distribution to determine if the
sequence was anomalous.
Despite the impressive achievements of many meth-
ods in log data anomaly detection, the increasing
quantity and complexity of log data in software-in-
tensive systems have made it more challenging to de-
tect anomalies in real log sequences. In this study, we
primarily utilized the TCN model, multi-head atten-
tion mechanism, and multi-scale convolution archi-
tecture to develop a deep learning-based system log
anomaly detection model. This model can effectively
handle longer log sequences, automatically learn the
importance of various log event sequences, discover

hidden dependencies in the sequences, and improve
the accuracy of anomaly detection.

3. Methodology
In this section, we provide a detailed description of the
proposed MTCNLog method. We begin by introduc-
ing the framework of MTCNLog. After presenting the
framework, we propose an improved step for IPLoM,
which parses raw logs into log templates. Following
this, we employ language models in conjunction with
TF-IWF weighting to represent log templates as se-
mantic vectors. Finally, we utilize a TCN model that
integrates a multi-head attention mechanism and a
multi-scale feature extraction module to learn the
long-term dependencies of log sequences and carry
out log anomaly detection. This approach allows us
to effectively capture the intricate patterns within log
data and enhance the accuracy of anomaly detection.

3.1. MTCNLog Framework
Our MTCNLog framework aims to leverage the se-
mantic relationships in log sequences for better log
processing. Moreover, by automatically learning
the correlation of various log event sequences, the
framework uncovers hidden dependencies within
the sequences, thereby improving the accuracy of log
anomaly detection. The MTCNLog framework is il-
lustrated in Figure 2.

Figure 2
The framework of MTCNLog

3.2. Log Parser (IPLoM)

Effective log analysis begins with log parsing,
transforming unstructured raw log messages into
structured log events. Raw logs contain runtime
information like timestamps and verbosity levels.
For instance, in the raw log “Jun 22 04:11:42 com-bo
pam_unix 17037 session closed for user news”, the
log header is “Jun 22 04:11:42 combo supam_unix
17037”, and the content is “session closed for user
news”. Log parsers aim to convert raw messages
into structured log templates by preserving
constant words and replacing variable words with
wildcards (e.g., “<*>”). This process enhances the
efficiency and effectiveness of log analysis.

Transforming dynamic, unstructured logs into a
structured format can improve anomaly detection
accuracy. Traditional log parsing, performed
manually by developers using regular expressions,
relies heavily on expert knowledge and experience
but lacks active learning capabilities. Recently,
more efficient log parsers like IPLoM have been
proposed. The IPLoM algorithm is a log data
clustering algorithm that operates by iteratively
partitioning a set of log messages. While IPLoM is

currently a competent log parsing tool,
parsing errors can still occur. If IPLoM is used
directly to construct log templates for
anomaly detection, achieving optimal
detection results can be challenging. This is
because IPLoM sometimes parses many
additional log events, which impedes the
performance of the anomaly detection model
detection. As shown in Table 1, the HDFS log
templates parsed by the IPLoM method
resulted in 42 different types of HDFS log
templates. However, some log templates were
found to be repetitive. For instance, the four
log event templates in {E9,E10,E11} are
similar, and E9 may encompass the other two
templates. Directly converting these
templates into semantic vectors could
significantly impact the reliability of log
anomaly detection. In this study, to enhance
the accuracy of log parsing, we made certain
improvements to the IPLoM method. We
incorporated a post-processing operation into
the IPLoM method. After IPLoM extracts the
templates, we further optimize the log parsing
effect to achieve a higher level of detection.

Table 1

Log templates obtained by parsing HDFS logs through the IPLoM

Event Id Log Template

E1 Receiving block<*>src:<*>dest:<*>

E2 BLOCK* NameSystem.allocateBlock: <*> <*>

… …

819Information Technology and Control 2024/3/53

3.2. Log Parser (IPLoM)
Effective log analysis begins with log parsing, trans-
forming unstructured raw log messages into struc-
tured log events. Raw logs contain runtime infor-
mation like timestamps and verbosity levels. For
instance, in the raw log “Jun 22 04:11:42 com-bo
pam_unix 17037 session closed for user news”, the log
header is “Jun 22 04:11:42 combo supam_unix 17037”,
and the content is “session closed for user news”. Log
parsers aim to convert raw messages into structured
log templates by preserving constant words and re-
placing variable words with wildcards (e.g., “<*>”).
This process enhances the efficiency and effective-
ness of log analysis.
Transforming dynamic, unstructured logs into a
structured format can improve anomaly detection ac-
curacy. Traditional log parsing, performed manually
by developers using regular expressions, relies heav-
ily on expert knowledge and experience but lacks ac-
tive learning capabilities. Recently, more efficient log
parsers like IPLoM have been proposed. The IPLoM
algorithm is a log data clustering algorithm that oper-
ates by iteratively partitioning a set of log messages.
While IPLoM is currently a competent log parsing
tool, parsing errors can still occur. If IPLoM is used
directly to construct log templates for anomaly de-
tection, achieving optimal detection results can be
challenging. This is because IPLoM sometimes pars-
es many additional log events, which impedes the per-

Table 1
Log templates obtained by parsing HDFS logs through the IPLoM

formance of the anomaly detection model detection.
As shown in Table 1, the HDFS log templates parsed
by the IPLoM method resulted in 42 different types
of HDFS log templates. However, some log templates
were found to be repetitive. For instance, the four
log event templates in {E9,E10,E11} are similar, and
E9 may encompass the other two templates. Direct-
ly converting these templates into semantic vectors
could significantly impact the reliability of log anom-
aly detection. In this study, to enhance the accuracy
of log parsing, we made certain improvements to the
IPLoM method. We incorporated a post-processing
operation into the IPLoM method. After IPLoM ex-
tracts the templates, we further optimize the log pars-
ing effect to achieve a higher level of detection.
To enhance the accuracy of parsing, it is crucial to
merge redundant templates that are similar and elim-
inate invalid templates through the post-processing
operations of IPLoM. Specifically, IPLoM will ex-
amine the log event set one by one to identify which
event templates originate from the same event. Since
the variables have been replaced by “<*>” in the pre-
vious processing, we first replace consecutive wild-
cards “<*>” with a single wildcard “<*>”. Next, we se-
lect some representative log entries that match each
log template and check for duplication. Based on the
frequency of the log templates, if duplication is found,
the final event template is extracted using the longest
common subsequence algorithm. The post-process-

Event Id Log Template

E1 Receiving block<*>src:<*>dest:<*>

E2 BLOCK* NameSystem.allocateBlock: <*> <*>

… …

E9 writeBlock <*> received exception <*>

E10 writeBlock <*> received exception java.io.IOException

E11 writeBlock <*> received exception java.io.InterruptedIOException

… …

E21 Exception in receiveBlock for block <*> <*>

E22 Exception in receiveBlock for block <*> java.io.IOException:

… …

E42 Deleting block <*> file <*>

Information Technology and Control 2024/3/53820

Table 2
Updated HDFS log templates

EventId Log Template

E1 Receiving block<*>src:<*>dest:<*>

… …

E6 Changing block file offset of block<*>from<*>to<*>meta file offset to<*>

… …

E18 Unexpected error trying to delete block<*>BlockInfo not found in volumeMap<*>

… …

E30 Deleting block<*>file<*>

ing results of the log events are displayed in Table 2.
This approach ensures a more accurate and reliable
log parsing process, thereby improving the overall ef-
fectiveness of log anomaly detection.

3.3. Log Represent
The second stage of the log analysis process involves
feature extraction. After log parsing, MTCNLog uses
a combination of Word2Vec and TF-IWF to con-
vert each log event into a semantic vector, as shown
in Figure 3. Word2Vec, an unsupervised language
model, learns semantic knowledge from extensive
text corpora. Understanding log semantics is vital

Figure 3
The process of semantic vectorization of log event

After obtaining word embedding vectors, each log
event is treated as a natural language sentence.
Given the semantic features of log events, words
contribute differently to overall semantics. A simple
average aggregation method may not accurately
reflect these features. MTCNLog uses TF-IWF
weighted aggregation, a common weighting
technique in information retrieval and exploration,
to represent the relationship between each word and
log event. TF-IWF, an enhancement of the term
frequency-inverse document frequency algorithm,
measures word importance in a sentence. The TF
term frequency matrix measures a word’s
association with a given text, while IWF measures
the word’s importance. We thus use the Term
Frequency (TF) to measure the importance of word,

where , #token is the number

of target word in a log event, #event is the number of
all words in a log event. If the word "Exception"
appears in all log events, it becomes too common and
cannot distinguish these log events, so its weight
should be reduced. Therefore, it is also necessary to
utilize inverse document frequency (IWF) as a

metric, where , #L

represents the total number of tokens for all log
events, and #T refers to the total number of times the
token appears in all log events. For each word, its TF-
IWF weight w is calculated through TF×IWF. Finally,
by summing the word vectors in the list with their
corresponding TF-IWF weights, we can obtain a
semantic vector representing a specific log event, as
shown in Equation (1).

 . (1)

Indeed, MTCNLog effectively utilizes the
semantic features of log events. The use of
semantic vectors allows it to identify log events
with similar semantics and distinguish between
different log events.

3.4 Log Anomaly Detection

Logs are a unique type of natural language, the
semantics and temporal aspects of which
warrant thorough exploration and analysis.
Therefore, we segment log events into log event
sequences. These sequences are then
transformed into vectors of semantic vectors,
derived from feature extraction, representing
the log sequences. These log sequence vectors
are subsequently input into the anomaly
detection model. We have developed an
anomaly detection model, MTCNLog, which
performs log anomaly detection based on an
enhanced TCN that combines a multi-scale
feature extraction module and a multi-head
self-attention mechanism. This approach allows
us to effectively capture the intricate patterns
within log data and enhance the accuracy of
anomaly detection.

Figure 4

The composition of the anomaly detection
model

3.4.1 Overall Structure of Detection Model

for log anomaly detection, with word comprehension
closely tied to preceding and succeeding semantics.
Word2Vec abstracts the next word’s occurrence as a
dependency on previous words, expressing this de-
pendency and the sentence’s deep meaning in vector
form. Methods like vector weighted average yield the
entire sentence’s vector form, enhancing sentence
expressiveness. Thus, we use Word2Vec to vectorize
logs, accurately representing log events and boosting
subsequent analysis effectiveness.
After obtaining word embedding vectors, each log
event is treated as a natural language sentence. Given
the semantic features of log events, words contrib-
ute differently to overall semantics. A simple aver-
age aggregation method may not accurately reflect
these features. MTCNLog uses TF-IWF weighted
aggregation, a common weighting technique in in-
formation retrieval and exploration, to represent the
relationship between each word and log event. TF-
IWF, an enhancement of the term frequency-inverse
document frequency algorithm, measures word im-
portance in a sentence. The TF term frequency ma-
trix measures a word’s association with a given text,
while IWF measures the word’s importance. We thus
use the Term Frequency (TF) to measure the impor-
tance of word, where , #token is
the number of target word in a log event, #event is the
number of all words in a log event. If the word “Excep-
tion” appears in all log events, it becomes too common
and cannot distinguish these log events, so its weight
should be reduced. Therefore, it is also necessary to
utilize inverse document frequency (IWF) as a met-
ric, where , #L represents the

821Information Technology and Control 2024/3/53

total number of tokens for all log events, and #T re-
fers to the total number of times the token appears in
all log events. For each word, its TF-IWF weight w is
calculated through TF×IWF. Finally, by summing the
word vectors in the list with their corresponding TF-
IWF weights, we can obtain a semantic vector repre-
senting a specific log event, as shown in Equation (1).

After obtaining word embedding vectors, each log
event is treated as a natural language sentence.
Given the semantic features of log events, words
contribute differently to overall semantics. A simple
average aggregation method may not accurately
reflect these features. MTCNLog uses TF-IWF
weighted aggregation, a common weighting
technique in information retrieval and exploration,
to represent the relationship between each word and
log event. TF-IWF, an enhancement of the term
frequency-inverse document frequency algorithm,
measures word importance in a sentence. The TF
term frequency matrix measures a word’s
association with a given text, while IWF measures
the word’s importance. We thus use the Term
Frequency (TF) to measure the importance of word,

where , #token is the number

of target word in a log event, #event is the number of
all words in a log event. If the word "Exception"
appears in all log events, it becomes too common and
cannot distinguish these log events, so its weight
should be reduced. Therefore, it is also necessary to
utilize inverse document frequency (IWF) as a

metric, where , #L

represents the total number of tokens for all log
events, and #T refers to the total number of times the
token appears in all log events. For each word, its TF-
IWF weight w is calculated through TF×IWF. Finally,
by summing the word vectors in the list with their
corresponding TF-IWF weights, we can obtain a
semantic vector representing a specific log event, as
shown in Equation (1).

 . (1)

Indeed, MTCNLog effectively utilizes the
semantic features of log events. The use of
semantic vectors allows it to identify log events
with similar semantics and distinguish between
different log events.

3.4 Log Anomaly Detection

Logs are a unique type of natural language, the
semantics and temporal aspects of which
warrant thorough exploration and analysis.
Therefore, we segment log events into log event
sequences. These sequences are then
transformed into vectors of semantic vectors,
derived from feature extraction, representing
the log sequences. These log sequence vectors
are subsequently input into the anomaly
detection model. We have developed an
anomaly detection model, MTCNLog, which
performs log anomaly detection based on an
enhanced TCN that combines a multi-scale
feature extraction module and a multi-head
self-attention mechanism. This approach allows
us to effectively capture the intricate patterns
within log data and enhance the accuracy of
anomaly detection.

Figure 4

The composition of the anomaly detection
model

3.4.1 Overall Structure of Detection Model

(1)

Indeed, MTCNLog effectively utilizes the semantic
features of log events. The use of semantic vectors al-
lows it to identify log events with similar semantics
and distinguish between different log events.

3.4. Log Anomaly Detection
Logs are a unique type of natural language, the seman-
tics and temporal aspects of which warrant thorough
exploration and analysis. Therefore, we segment log
events into log event sequences. These sequences are
then transformed into vectors of semantic vectors,
derived from feature extraction, representing the log
sequences. These log sequence vectors are subse-
quently input into the anomaly detection model. We
have developed an anomaly detection model, MTCN-
Log, which performs log anomaly detection based on
an enhanced TCN that combines a multi-scale fea-
ture extraction module and a multi-head self-atten-
tion mechanism. This approach allows us to effective-
ly capture the intricate patterns within log data and
enhance the accuracy of anomaly detection.

3.4.1. Overall Structure of Detection Model
The anomaly detection model in MTCNLog is based
on a pure multi-scale convolutional structure and
Temporal Convolutional Network model, and intro-
duces a multi-head attention mechanism into the
anomaly detection model to enhance its ability to ac-
curately detect anomalies. This model leverages the
sparse connections of the convolutional structure to
effectively extract features without requiring a large
amount of computational resources. Its design com-
bines the advantages of a multi-scale convolution-
al structure, TCN model, and multi-head attention
mechanism. The multi-scale convolutional struc-
ture enables the model to capture the relationships
between hierarchical log events, the TCN model can

Figure 4
The composition of the anomaly detection model

effectively capture the temporal dependencies in log
data, and the multi-head attention can pay attention
to dependencies at different positions in the log se-
quence simultaneously. This comprehensive model-
ing of interactions between logs is conducive to learn-
ing the semantic information of logs. This mechanism
computes potential dependencies between logs and
learns from them, enabling the model to capture in-
tricate relationships within log data. By focusing on
different aspects of the log simultaneously, this model
can effectively detect anomalies that might otherwise
be overlooked. The overall structure of the model is
depicted in Figure 4.

After obtaining word embedding vectors, each log
event is treated as a natural language sentence.
Given the semantic features of log events, words
contribute differently to overall semantics. A simple
average aggregation method may not accurately
reflect these features. MTCNLog uses TF-IWF
weighted aggregation, a common weighting
technique in information retrieval and exploration,
to represent the relationship between each word and
log event. TF-IWF, an enhancement of the term
frequency-inverse document frequency algorithm,
measures word importance in a sentence. The TF
term frequency matrix measures a word’s
association with a given text, while IWF measures
the word’s importance. We thus use the Term
Frequency (TF) to measure the importance of word,

where , #token is the number

of target word in a log event, #event is the number of
all words in a log event. If the word "Exception"
appears in all log events, it becomes too common and
cannot distinguish these log events, so its weight
should be reduced. Therefore, it is also necessary to
utilize inverse document frequency (IWF) as a

metric, where , #L

represents the total number of tokens for all log
events, and #T refers to the total number of times the
token appears in all log events. For each word, its TF-
IWF weight w is calculated through TF×IWF. Finally,
by summing the word vectors in the list with their
corresponding TF-IWF weights, we can obtain a
semantic vector representing a specific log event, as
shown in Equation (1).

 . (1)

Indeed, MTCNLog effectively utilizes the
semantic features of log events. The use of
semantic vectors allows it to identify log events
with similar semantics and distinguish between
different log events.

3.4 Log Anomaly Detection

Logs are a unique type of natural language, the
semantics and temporal aspects of which
warrant thorough exploration and analysis.
Therefore, we segment log events into log event
sequences. These sequences are then
transformed into vectors of semantic vectors,
derived from feature extraction, representing
the log sequences. These log sequence vectors
are subsequently input into the anomaly
detection model. We have developed an
anomaly detection model, MTCNLog, which
performs log anomaly detection based on an
enhanced TCN that combines a multi-scale
feature extraction module and a multi-head
self-attention mechanism. This approach allows
us to effectively capture the intricate patterns
within log data and enhance the accuracy of
anomaly detection.

Figure 4

The composition of the anomaly detection
model

3.4.1 Overall Structure of Detection Model

3.4.2. TCN
In the fields of computer vision and natural lan-
guage processing, Convolutional Neural Networks
have demonstrated excellent performance in fea-
ture learning. Subsequently, methods such as Long
Short-Term Memory networks have emerged for
learning from time series data. However, the ef-
fectiveness of CNN is limited by its receptive field.

Information Technology and Control 2024/3/53822

Therefore, Bai et al. [4] proposed a special type of
convolutional neural network—Temporal Convolu-
tional Network for sequence modeling tasks. TCN
improves upon the basic CNN model and exhibits
superior performance in handling time series prob-
lems. TCN can effectively analyze the relationships
between data, with more stable gradients and higher
computational efficiency. TCN is mainly composed
of dilated convolution, causal convolution, and re-
sidual connections.

3.4.3. Casual Convolution
The causal convolution, as depicted in Figure 5, is a
crucial component of the Temporal Convolutional
Network structure. A system is deemed causal if its
output is solely dependent on current and past inputs,
and is independent of future inputs. In a similar vein,
a convolution is considered causal if the output at a
given time is influenced only by the current and previ-
ous inputs, and not by future inputs. Unlike the typical
bidirectional structure, the causal convolution has a
unidirectional structure, where the current output is
determined by the current and past inputs. This char-
acteristic of causal convolution addresses the issues
of time leakage and inconsistent input-output lengths
in sequence feature extraction. Specifically, for an in-
put X = (x0, x1, x2,…,xt,…,xT), the corresponding output
yt is related to the current input xt and a period (xt-1, xt-

2,…,xt-k) without the introduction of future inputs (xt+1,
xt+2,…,xt+T). This ensures that the model’s predictions
are based solely on relevant and chronologically ap-
propriate data, enhancing the accuracy and reliability
of the anomaly detection process.

Figure 5
Structure of the causal convolution

The anomaly detection model in MTCNLog is based
on a pure multi-scale convolutional structure and
Temporal Convolutional Network model, and
introduces a multi-head attention mechanism into
the anomaly detection model to enhance its ability to
accurately detect anomalies. This model leverages
the sparse connections of the convolutional structure
to effectively extract features without requiring a
large amount of computational resources. Its design
combines the advantages of a multi-scale
convolutional structure, TCN model, and multi-head
attention mechanism. The multi-scale convolutional
structure enables the model to capture the
relationships between hierarchical log events, the
TCN model can effectively capture the temporal
dependencies in log data, and the multi-head
attention can pay attention to dependencies at
different positions in the log sequence
simultaneously. This comprehensive modeling of
interactions between logs is conducive to learning
the semantic information of logs. This mechanism
computes potential dependencies between logs and
learns from them, enabling the model to capture
intricate relationships within log data. By focusing
on different aspects of the log simultaneously, this
model can effectively detect anomalies that might
otherwise be overlooked. The overall structure of the
model is depicted in Figure 4.

3.4.2 TCN

In the fields of computer vision and natural language
processing, Convolutional Neural Networks have
demonstrated excellent performance in feature
learning. Subsequently, methods such as Long Short-
Term Memory networks have emerged for learning
from time series data. However, the effectiveness of
CNN is limited by its receptive field. Therefore, Bai
et al. [4] proposed a special type of convolutional
neural network—Temporal Convolutional Network
for sequence modeling tasks. TCN improves upon
the basic CNN model and exhibits superior
performance in handling time series problems. TCN
can effectively analyze the relationships between
data, with more stable gradients and higher
computational efficiency. TCN is mainly composed
of dilated convolution, causal convolution, and
residual connections.

3.4.3 Casual Convolution

The causal convolution, as depicted in Figure 5, is a
crucial component of the Temporal Convolutional
Network structure. A system is deemed causal if its

output is solely dependent on current and past
inputs, and is independent of future inputs. In
a similar vein, a convolution is considered
causal if the output at a given time is influenced
only by the current and previous inputs, and
not by future inputs. Unlike the typical
bidirectional structure, the causal convolution
has a unidirectional structure, where the
current output is determined by the current and
past inputs. This characteristic of causal
convolution addresses the issues of time
leakage and inconsistent input-output lengths
in sequence feature extraction. Specifically, for
an input X = (x0, x1, x2,…,xt,…,xT), the
corresponding output yt is related to the
current input xt and a period (xt-1, xt-2,…,xt-k)
without the introduction of future inputs (xt+1,
xt+2,…,xt+T). This ensures that the model’s
predictions are based solely on relevant and
chronologically appropriate data, enhancing
the accuracy and reliability of the anomaly
detection process.

Figure 5
Structure of the causal convolution

3.4.4 Dilated Convolution

Traditional CNNs use standard convolution
kernels, with small ones offering low
complexity but potentially missing data
variations, and large ones providing a large
receptive field but high computational load.
Temporal Convolutional Networks address this
by using dilated convolution, expanding the
receptive field without significantly increasing
complexity. The dilation factor in dilated
convolution influences the input interval’s
sampling range during convolution. The
combination of causal convolution and dilated
convolution, as depicted in Figure 6, can
enhance the receptive field of the convolution

3.4.4. Dilated Convolution
Traditional CNNs use standard convolution kernels,
with small ones offering low complexity but poten-
tially missing data variations, and large ones pro-
viding a large receptive field but high computational
load. Temporal Convolutional Networks address this
by using dilated convolution, expanding the receptive
field without significantly increasing complexity. The
dilation factor in dilated convolution influences the
input interval’s sampling range during convolution.
The combination of causal convolution and dilated
convolution, as depicted in Figure 6, can enhance the
receptive field of the convolution layer and obtain
more information based on strict time constraints.
For the sequence input X = (x0, x1, x2,...,xt ,...,xT) and the
filter W = (w0, w1, w2,...,wn), the dilated convolution at
xt (1 ≤ t ≤ T) with dilation rate equal to d is defined as:

layer and obtain more information based on strict
time constraints. For the sequence input X = (x0, x1,
x2,...,xt ,...,xT) and the filter W = (w0, w1, w2,...,wn)，
the dilated convolution at xt (1 ≤ t ≤ T) with dilation
rate equal to d is defined as:

. (2)

Figure 6
Structure of the dilated causal convolution

Due to the linear increase of the dilation factor with
network depth, the receptive field of the output layer
can be effectively expanded. As a result, the entire
model can extract information from longer.

3.4.5 Multi-scale Feature Extraction

It is well established that simply increasing the depth
of convolutional neural networks is the most
straightforward approach to improve their
performance. However, deeper models also run the
risk of overfitting and lead to substantially higher
computational costs. To mitigate this issue, the
proposed MTCNLog incorporates a multi-scale
feature extraction module based on a fully
convolutional structure. Through sparse
connections, this module enables extracting local
features at different granularities from the log
sequences. Specifically, it comprises three parallel
causal convolution layers with kernels of varying
sizes - the large-scale kernels aim at capturing long-
term dependencies between logs while the small-
scale kernels target short-term relationships. By
focusing the distinct convolution kernels onto
temporal patterns across different scales, the features
can be deeply fused to output more enriched
representations. Without markedly increasing
complexity, such a configuration expands the
number of feature channels and facilitates more
comprehensive processing of multi-timescale
sequences for extracting highly abstract

characteristics. Compared to a single causal
convolution kernel, the multi-scale module
significantly empowers the model with the
capacity to gather features and patterns across
different ranges of the log events. The extraction
flexibility of a solitary kernel is confined by its
receptive field size. By contrast, the proposed
module fully exploits multi-grained
information in the sequence via the joint use of
varying receptive fields, thereby enhancing the
overall expression ability and generalization of
the model. Consequently, the final model can
learn a greater diversity of temporal features
from the log data and achieve improved
anomaly detection performance. The
architecture of the multi-scale feature extraction
module is illustrated in Figure 7.

Figure 7
Structure of the Multi-scale feature extraction
module

3.4.6 Residual Connection

TCN adopts residual structures [13] that can
mitigate the vanishing and exploding gradient
issues when training deep neural networks.
Specifically, residuals enable preserving the
training dynamics of models during iterative
optimization. In TCN, two residual blocks are
chained to construct the overall architecture. As
illustrated in Figure 8, each constituent block
contains a causal dilated convolution layer,
weight normalization, activation functions, and
dropout, connected in a channel-wise manner.
The residual connection facilitates gradient
propagation through the depth of the network.
By doing so, TCN is able to incorporate the
temporal convolutions in a very deep topology

(2)

Due to the linear increase of the dilation factor with
network depth, the receptive field of the output lay-
er can be effectively expanded. As a result, the entire
model can extract information from longer.

Figure 6
Structure of the dilated causal convolution

layer and obtain more information based on strict
time constraints. For the sequence input X = (x0, x1,
x2,...,xt ,...,xT) and the filter W = (w0, w1, w2,...,wn)，
the dilated convolution at xt (1 ≤ t ≤ T) with dilation
rate equal to d is defined as:

. (2)

Figure 6
Structure of the dilated causal convolution

Due to the linear increase of the dilation factor with
network depth, the receptive field of the output layer
can be effectively expanded. As a result, the entire
model can extract information from longer.

3.4.5 Multi-scale Feature Extraction

It is well established that simply increasing the depth
of convolutional neural networks is the most
straightforward approach to improve their
performance. However, deeper models also run the
risk of overfitting and lead to substantially higher
computational costs. To mitigate this issue, the
proposed MTCNLog incorporates a multi-scale
feature extraction module based on a fully
convolutional structure. Through sparse
connections, this module enables extracting local
features at different granularities from the log
sequences. Specifically, it comprises three parallel
causal convolution layers with kernels of varying
sizes - the large-scale kernels aim at capturing long-
term dependencies between logs while the small-
scale kernels target short-term relationships. By
focusing the distinct convolution kernels onto
temporal patterns across different scales, the features
can be deeply fused to output more enriched
representations. Without markedly increasing
complexity, such a configuration expands the
number of feature channels and facilitates more
comprehensive processing of multi-timescale
sequences for extracting highly abstract

characteristics. Compared to a single causal
convolution kernel, the multi-scale module
significantly empowers the model with the
capacity to gather features and patterns across
different ranges of the log events. The extraction
flexibility of a solitary kernel is confined by its
receptive field size. By contrast, the proposed
module fully exploits multi-grained
information in the sequence via the joint use of
varying receptive fields, thereby enhancing the
overall expression ability and generalization of
the model. Consequently, the final model can
learn a greater diversity of temporal features
from the log data and achieve improved
anomaly detection performance. The
architecture of the multi-scale feature extraction
module is illustrated in Figure 7.

Figure 7
Structure of the Multi-scale feature extraction
module

3.4.6 Residual Connection

TCN adopts residual structures [13] that can
mitigate the vanishing and exploding gradient
issues when training deep neural networks.
Specifically, residuals enable preserving the
training dynamics of models during iterative
optimization. In TCN, two residual blocks are
chained to construct the overall architecture. As
illustrated in Figure 8, each constituent block
contains a causal dilated convolution layer,
weight normalization, activation functions, and
dropout, connected in a channel-wise manner.
The residual connection facilitates gradient
propagation through the depth of the network.
By doing so, TCN is able to incorporate the
temporal convolutions in a very deep topology

3.4.5. Multi-scale Feature Extraction
It is well established that simply increasing the depth
of convolutional neural networks is the most straight-
forward approach to improve their performance. How-
ever, deeper models also run the risk of overfitting and
lead to substantially higher computational costs. To
mitigate this issue, the proposed MTCNLog incorpo-
rates a multi-scale feature extraction module based on

823Information Technology and Control 2024/3/53

a fully convolutional structure. Through sparse con-
nections, this module enables extracting local features
at different granularities from the log sequences. Spe-
cifically, it comprises three parallel causal convolution
layers with kernels of varying sizes - the large-scale
kernels aim at capturing long-term dependencies be-
tween logs while the small-scale kernels target short-
term relationships. By focusing the distinct convolu-
tion kernels onto temporal patterns across different
scales, the features can be deeply fused to output more
enriched representations. Without markedly increas-
ing complexity, such a configuration expands the num-
ber of feature channels and facilitates more compre-
hensive processing of multi-timescale sequences for
extracting highly abstract characteristics. Compared
to a single causal convolution kernel, the multi-scale
module significantly empowers the model with the ca-
pacity to gather features and patterns across different
ranges of the log events. The extraction flexibility of
a solitary kernel is confined by its receptive field size.
By contrast, the proposed module fully exploits multi-
grained information in the sequence via the joint use of
varying receptive fields, thereby enhancing the over-
all expression ability and generalization of the model.
Consequently, the final model can learn a greater diver-
sity of temporal features from the log data and achieve
improved anomaly detection performance. The archi-
tecture of the multi-scale feature extraction module is
illustrated in Figure 7.

Figure 7
Structure of the Multi-scale feature extraction module

layer and obtain more information based on strict
time constraints. For the sequence input X = (x0, x1,
x2,...,xt ,...,xT) and the filter W = (w0, w1, w2,...,wn)，
the dilated convolution at xt (1 ≤ t ≤ T) with dilation
rate equal to d is defined as:

. (2)

Figure 6
Structure of the dilated causal convolution

Due to the linear increase of the dilation factor with
network depth, the receptive field of the output layer
can be effectively expanded. As a result, the entire
model can extract information from longer.

3.4.5 Multi-scale Feature Extraction

It is well established that simply increasing the depth
of convolutional neural networks is the most
straightforward approach to improve their
performance. However, deeper models also run the
risk of overfitting and lead to substantially higher
computational costs. To mitigate this issue, the
proposed MTCNLog incorporates a multi-scale
feature extraction module based on a fully
convolutional structure. Through sparse
connections, this module enables extracting local
features at different granularities from the log
sequences. Specifically, it comprises three parallel
causal convolution layers with kernels of varying
sizes - the large-scale kernels aim at capturing long-
term dependencies between logs while the small-
scale kernels target short-term relationships. By
focusing the distinct convolution kernels onto
temporal patterns across different scales, the features
can be deeply fused to output more enriched
representations. Without markedly increasing
complexity, such a configuration expands the
number of feature channels and facilitates more
comprehensive processing of multi-timescale
sequences for extracting highly abstract

characteristics. Compared to a single causal
convolution kernel, the multi-scale module
significantly empowers the model with the
capacity to gather features and patterns across
different ranges of the log events. The extraction
flexibility of a solitary kernel is confined by its
receptive field size. By contrast, the proposed
module fully exploits multi-grained
information in the sequence via the joint use of
varying receptive fields, thereby enhancing the
overall expression ability and generalization of
the model. Consequently, the final model can
learn a greater diversity of temporal features
from the log data and achieve improved
anomaly detection performance. The
architecture of the multi-scale feature extraction
module is illustrated in Figure 7.

Figure 7
Structure of the Multi-scale feature extraction
module

3.4.6 Residual Connection

TCN adopts residual structures [13] that can
mitigate the vanishing and exploding gradient
issues when training deep neural networks.
Specifically, residuals enable preserving the
training dynamics of models during iterative
optimization. In TCN, two residual blocks are
chained to construct the overall architecture. As
illustrated in Figure 8, each constituent block
contains a causal dilated convolution layer,
weight normalization, activation functions, and
dropout, connected in a channel-wise manner.
The residual connection facilitates gradient
propagation through the depth of the network.
By doing so, TCN is able to incorporate the
temporal convolutions in a very deep topology

3.4.6. Residual Connection
TCN adopts residual structures [13] that can mitigate
the vanishing and exploding gradient issues when
training deep neural networks. Specifically, residuals
enable preserving the training dynamics of models
during iterative optimization. In TCN, two residual
blocks are chained to construct the overall architec-
ture. As illustrated in Figure 8, each constituent block
contains a causal dilated convolution layer, weight
normalization, activation functions, and dropout,
connected in a channel-wise manner. The residual
connection facilitates gradient propagation through
the depth of the network. By doing so, TCN is able to
incorporate the temporal convolutions in a very deep
topology for effectively capturing long-term depen-
dencies in sequential data.

Figure 8
Structure of the residual connection block

for effectively capturing long-term dependencies in
sequential data.

Figure 8

Structure of the residual connection block

By utilizing diluted convolutions and Multi-scale
feature extraction structures, MTCNLog can attain a
broader receptive field compared to vanilla TCNs,
enabling it to capture longer-range dependencies in
log sequences. Meanwhile, stacking multiple layers
is imperative for MTCNLog to achieve compelling
detection accuracy through learning highly abstract
input representations over depth. Addressing
performance degradation from vanishing or
exploding gradients, TCN constructs a deep feature
extractor using chained residual blocks. Each block
contains a causal dilated convolution channel,
weight normalization, activation functions, and
dropout. The multi-scale feature extraction module
and dilated causal convolution use causal dilated
convolution as a fundamental unit. A supplementary
1×1 convolution branch matches dimensions for
element-wise addition. Weight normalization
regularizes the parameter space, enhancing training
speed, while dropout mitigates overfitting associated
with deep topologies.

The classic TCN model uses the ReLU activation
function for data transformation. However, outliers
can cause neuron “death” and abnormal network
parameter updates. Negative values, forced to 0,
significantly impact sequential feature extraction in
log sequences. The ReLU function is depicted in
Figure 9(a), with its mathematical expression in
Equation (3).

 . (2)

To address this issue, we propose the parametric

rectified linear unit and Leaky ReLU as
alternatives to the ReLU function. These
activation functions have parameters in the
negative region, preventing the forcing of all
negative values to zero and effectively avoiding
“dead” neurons. The function graphs of PReLU
and LeakyReLU are shown in Figure 9(b) and
Figure 9(c), and their mathematical expressions
are given by Equations (4)-(5), respectively.

 (3)

 . (4)

Figure 9
The function graph of ReLU, PreLU and
LeakyReLU

The difference between the two lies in whether
the parameters are learnable. Among them, λ is
a learnable parameter, while a is a fixed value.
Although each PReLU only needs to learn a
small number of parameters, each residual
structure after the improvement contains 3
activation functions. If we improve the
activation function to PReLU, after multiple
layers of network transformation, a large
number of parameters need to be learned.
Therefore, we choose LeakyReLU as the
activation function in the residual structure.

3.4.7 Multi-head Attention Mechanism

Attention models optimize parameters by
leveraging data correlations, enhancing model
accuracy. Initially applied in natural language
processing, attention matches queries with key-
value pairs to generate weighted outputs. The
query, keys, values, and output are all d-
dimensional vectors. The weight for each value
is determined by the dot product between the
query and the corresponding key. However,
large differences in dot products can lead to
vanishing gradients when applying softmax
normalization. To mitigate this, a scaling factor
is introduced before dot products for rescaling.
The innovation of attention mechanisms is
multi-head attention, conducting multiple
independent attention calculations. Each head

By utilizing diluted convolutions and Multi-scale
feature extraction structures, MTCNLog can attain
a broader receptive field compared to vanilla TCNs,
enabling it to capture longer-range dependencies in
log sequences. Meanwhile, stacking multiple layers
is imperative for MTCNLog to achieve compelling
detection accuracy through learning highly abstract
input representations over depth. Addressing per-
formance degradation from vanishing or exploding
gradients, TCN constructs a deep feature extractor
using chained residual blocks. Each block contains
a causal dilated convolution channel, weight nor-

Information Technology and Control 2024/3/53824

malization, activation functions, and dropout. The
multi-scale feature extraction module and dilated
causal convolution use causal dilated convolution as
a fundamental unit. A supplementary 1×1 convolution
branch matches dimensions for element-wise addi-
tion. Weight normalization regularizes the parameter
space, enhancing training speed, while dropout miti-
gates overfitting associated with deep topologies.
The classic TCN model uses the ReLU activation func-
tion for data transformation. However, outliers can
cause neuron “death” and abnormal network parame-
ter updates. Negative values, forced to 0, significantly
impact sequential feature extraction in log sequences.
The ReLU function is depicted in Figure 9(a), with its
mathematical expression in Equation (3).

for effectively capturing long-term dependencies in
sequential data.

Figure 8

Structure of the residual connection block

By utilizing diluted convolutions and Multi-scale
feature extraction structures, MTCNLog can attain a
broader receptive field compared to vanilla TCNs,
enabling it to capture longer-range dependencies in
log sequences. Meanwhile, stacking multiple layers
is imperative for MTCNLog to achieve compelling
detection accuracy through learning highly abstract
input representations over depth. Addressing
performance degradation from vanishing or
exploding gradients, TCN constructs a deep feature
extractor using chained residual blocks. Each block
contains a causal dilated convolution channel,
weight normalization, activation functions, and
dropout. The multi-scale feature extraction module
and dilated causal convolution use causal dilated
convolution as a fundamental unit. A supplementary
1×1 convolution branch matches dimensions for
element-wise addition. Weight normalization
regularizes the parameter space, enhancing training
speed, while dropout mitigates overfitting associated
with deep topologies.

The classic TCN model uses the ReLU activation
function for data transformation. However, outliers
can cause neuron “death” and abnormal network
parameter updates. Negative values, forced to 0,
significantly impact sequential feature extraction in
log sequences. The ReLU function is depicted in
Figure 9(a), with its mathematical expression in
Equation (3).

 . (2)

To address this issue, we propose the parametric

rectified linear unit and Leaky ReLU as
alternatives to the ReLU function. These
activation functions have parameters in the
negative region, preventing the forcing of all
negative values to zero and effectively avoiding
“dead” neurons. The function graphs of PReLU
and LeakyReLU are shown in Figure 9(b) and
Figure 9(c), and their mathematical expressions
are given by Equations (4)-(5), respectively.

 (3)

 . (4)

Figure 9
The function graph of ReLU, PreLU and
LeakyReLU

The difference between the two lies in whether
the parameters are learnable. Among them, λ is
a learnable parameter, while a is a fixed value.
Although each PReLU only needs to learn a
small number of parameters, each residual
structure after the improvement contains 3
activation functions. If we improve the
activation function to PReLU, after multiple
layers of network transformation, a large
number of parameters need to be learned.
Therefore, we choose LeakyReLU as the
activation function in the residual structure.

3.4.7 Multi-head Attention Mechanism

Attention models optimize parameters by
leveraging data correlations, enhancing model
accuracy. Initially applied in natural language
processing, attention matches queries with key-
value pairs to generate weighted outputs. The
query, keys, values, and output are all d-
dimensional vectors. The weight for each value
is determined by the dot product between the
query and the corresponding key. However,
large differences in dot products can lead to
vanishing gradients when applying softmax
normalization. To mitigate this, a scaling factor
is introduced before dot products for rescaling.
The innovation of attention mechanisms is
multi-head attention, conducting multiple
independent attention calculations. Each head

(3)

To address this issue, we propose the parametric rec-
tified linear unit and Leaky ReLU as alternatives to
the ReLU function. These activation functions have
parameters in the negative region, preventing the
forcing of all negative values to zero and effective-
ly avoiding “dead” neurons. The function graphs of
PReLU and LeakyReLU are shown in Figure 9(b) and
Figure 9(c), and their mathematical expressions are
given by Equations (4)-(5), respectively.

for effectively capturing long-term dependencies in
sequential data.

Figure 8

Structure of the residual connection block

By utilizing diluted convolutions and Multi-scale
feature extraction structures, MTCNLog can attain a
broader receptive field compared to vanilla TCNs,
enabling it to capture longer-range dependencies in
log sequences. Meanwhile, stacking multiple layers
is imperative for MTCNLog to achieve compelling
detection accuracy through learning highly abstract
input representations over depth. Addressing
performance degradation from vanishing or
exploding gradients, TCN constructs a deep feature
extractor using chained residual blocks. Each block
contains a causal dilated convolution channel,
weight normalization, activation functions, and
dropout. The multi-scale feature extraction module
and dilated causal convolution use causal dilated
convolution as a fundamental unit. A supplementary
1×1 convolution branch matches dimensions for
element-wise addition. Weight normalization
regularizes the parameter space, enhancing training
speed, while dropout mitigates overfitting associated
with deep topologies.

The classic TCN model uses the ReLU activation
function for data transformation. However, outliers
can cause neuron “death” and abnormal network
parameter updates. Negative values, forced to 0,
significantly impact sequential feature extraction in
log sequences. The ReLU function is depicted in
Figure 9(a), with its mathematical expression in
Equation (3).

 . (2)

To address this issue, we propose the parametric

rectified linear unit and Leaky ReLU as
alternatives to the ReLU function. These
activation functions have parameters in the
negative region, preventing the forcing of all
negative values to zero and effectively avoiding
“dead” neurons. The function graphs of PReLU
and LeakyReLU are shown in Figure 9(b) and
Figure 9(c), and their mathematical expressions
are given by Equations (4)-(5), respectively.

 (3)

 . (4)

Figure 9
The function graph of ReLU, PreLU and
LeakyReLU

The difference between the two lies in whether
the parameters are learnable. Among them, λ is
a learnable parameter, while a is a fixed value.
Although each PReLU only needs to learn a
small number of parameters, each residual
structure after the improvement contains 3
activation functions. If we improve the
activation function to PReLU, after multiple
layers of network transformation, a large
number of parameters need to be learned.
Therefore, we choose LeakyReLU as the
activation function in the residual structure.

3.4.7 Multi-head Attention Mechanism

Attention models optimize parameters by
leveraging data correlations, enhancing model
accuracy. Initially applied in natural language
processing, attention matches queries with key-
value pairs to generate weighted outputs. The
query, keys, values, and output are all d-
dimensional vectors. The weight for each value
is determined by the dot product between the
query and the corresponding key. However,
large differences in dot products can lead to
vanishing gradients when applying softmax
normalization. To mitigate this, a scaling factor
is introduced before dot products for rescaling.
The innovation of attention mechanisms is
multi-head attention, conducting multiple
independent attention calculations. Each head

(4)

for effectively capturing long-term dependencies in
sequential data.

Figure 8

Structure of the residual connection block

By utilizing diluted convolutions and Multi-scale
feature extraction structures, MTCNLog can attain a
broader receptive field compared to vanilla TCNs,
enabling it to capture longer-range dependencies in
log sequences. Meanwhile, stacking multiple layers
is imperative for MTCNLog to achieve compelling
detection accuracy through learning highly abstract
input representations over depth. Addressing
performance degradation from vanishing or
exploding gradients, TCN constructs a deep feature
extractor using chained residual blocks. Each block
contains a causal dilated convolution channel,
weight normalization, activation functions, and
dropout. The multi-scale feature extraction module
and dilated causal convolution use causal dilated
convolution as a fundamental unit. A supplementary
1×1 convolution branch matches dimensions for
element-wise addition. Weight normalization
regularizes the parameter space, enhancing training
speed, while dropout mitigates overfitting associated
with deep topologies.

The classic TCN model uses the ReLU activation
function for data transformation. However, outliers
can cause neuron “death” and abnormal network
parameter updates. Negative values, forced to 0,
significantly impact sequential feature extraction in
log sequences. The ReLU function is depicted in
Figure 9(a), with its mathematical expression in
Equation (3).

 . (2)

To address this issue, we propose the parametric

rectified linear unit and Leaky ReLU as
alternatives to the ReLU function. These
activation functions have parameters in the
negative region, preventing the forcing of all
negative values to zero and effectively avoiding
“dead” neurons. The function graphs of PReLU
and LeakyReLU are shown in Figure 9(b) and
Figure 9(c), and their mathematical expressions
are given by Equations (4)-(5), respectively.

 (3)

 . (4)

Figure 9
The function graph of ReLU, PreLU and
LeakyReLU

The difference between the two lies in whether
the parameters are learnable. Among them, λ is
a learnable parameter, while a is a fixed value.
Although each PReLU only needs to learn a
small number of parameters, each residual
structure after the improvement contains 3
activation functions. If we improve the
activation function to PReLU, after multiple
layers of network transformation, a large
number of parameters need to be learned.
Therefore, we choose LeakyReLU as the
activation function in the residual structure.

3.4.7 Multi-head Attention Mechanism

Attention models optimize parameters by
leveraging data correlations, enhancing model
accuracy. Initially applied in natural language
processing, attention matches queries with key-
value pairs to generate weighted outputs. The
query, keys, values, and output are all d-
dimensional vectors. The weight for each value
is determined by the dot product between the
query and the corresponding key. However,
large differences in dot products can lead to
vanishing gradients when applying softmax
normalization. To mitigate this, a scaling factor
is introduced before dot products for rescaling.
The innovation of attention mechanisms is
multi-head attention, conducting multiple
independent attention calculations. Each head

(5)

Figure 9
The function graph of ReLU, PreLU and LeakyReLU

The difference between the two lies in whether the
parameters are learnable. Among them, λ is a learn-
able parameter, while a is a fixed value. Although each
PReLU only needs to learn a small number of param-

eters, each residual structure after the improvement
contains 3 activation functions. If we improve the ac-
tivation function to PReLU, after multiple layers of
network transformation, a large number of parameters
need to be learned. Therefore, we choose LeakyReLU
as the activation function in the residual structure.

3.4.7. Multi-head Attention Mechanism
Attention models optimize parameters by leveraging
data correlations, enhancing model accuracy. Initial-
ly applied in natural language processing, attention
matches queries with key-value pairs to generate
weighted outputs. The query, keys, values, and output
are all d-dimensional vectors. The weight for each val-
ue is determined by the dot product between the que-
ry and the corresponding key. However, large differ-
ences in dot products can lead to vanishing gradients
when applying softmax normalization. To mitigate
this, a scaling factor is introduced before dot prod-
ucts for rescaling. The innovation of attention mech-
anisms is multi-head attention, conducting multiple
independent attention calculations. Each head focus-
es on a different feature subspace, allowing the model
to integrate information from different granularities.
To address the issue of sequential models like TCN
losing precedence information over long sequences,
multi-head attention is used to mine long-range cor-
relations in data more effectively. Specifically, the
model constructs a multi-head computational unit
based on scaled dot product attention, as illustrated
in Figure 10(a). The calculations are as follows:

focuses on a different feature subspace, allowing the
model to integrate information from different
granularities. To address the issue of sequential
models like TCN losing precedence information over
long sequences, multi-head attention is used to mine
long-range correlations in data more effectively.
Specifically, the model constructs a multi-head
computational unit based on scaled dot product
attention, as illustrated in Figure 10(a). The
calculations are as follows:

 , (5)

where Q, K, and V denote the query, key and value
matrices separately; dK refers to the dimension of K.
After computing query-key similarities as weights,
they are divided by dK to prevent overlarge dot
products. As shown in Figure 10(b), attention from
multiple heads is generated in parallel and
concatenated as the final output, formulated as:
Multibead(Q,K,V)=Concat(head1,...,headb)W0,
where,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑄𝑄𝑄𝑄 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖
𝐾𝐾𝐾𝐾 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑉𝑉𝑉𝑉 are all projection matrices. Q, K,
and V first undergo linear transformations and then
undergo point-wise multi-head attention h-
scrunching, which can be defined as multi-head
attention. Finally, the results of h scaled dot-product
attentions are concatenated and another linear
transformation is applied to obtain the output of
multi-head attention.

Figure 10
Details of the self-attention mechanism

The integration of multi-head attention, temporal
convolutional networks, and a multi-scale feature
extractor forms a robust anomaly detection model.
This model enhances anomaly detection by
highlighting key parts of log sequences and revealing
hidden inter-log dependencies. Multi-head attention
facilitates learning cross-log relevance, TCN use
layered causal dilated convolutions to collect
temporal contextual signals, and the multi-scale
module identifies correlated patterns across different

ranges. These components work together to
effectively extract diagnostic features sensitive
to abnormalities, covering both local and global
log interactions.

4. Experiment
In this section, we will first outline the
experimental dataset and evaluation metrics.
Following this, we will compare the
performance of MTCNLog on large-scale
system log data with existing methods. We will
also examine the impact of key parameters in
the model on its performance. Finally, we will
verify the effectiveness of each module of
MTCNLog and its robustness to unseen logs.

4.1 Dataset

To assess the performance of MTCNLog, we
utilized the HDFS and BGL log datasets, which
are two widely recognized datasets for log
anomaly detection.

The HDFS dataset is a public benchmark
dataset frequently used for log-based anomaly
detection. It comprises 11,175,629 log messages
generated from over 200 Amazon EC2 nodes, of
which 288,250 messages are abnormal,
accounting for less than 2.6%.

The BlueGene/L supercomputer system at
Lawrence Livermore National Laboratory
(LLNL) gave rise to BGL, which comprises
4,747,963 log messages, including 348,460 logs
identified as anomalies. The specific
information is presented in Table 3.

Table 3

Summary of the datasets
System Time logs Anomalis Templates
HDFS 2 days 11,175,629 16,838 30
BGL 215 days 4,747,963 348,460 378

4.2 Baselines

We compared our approach with six distinct
methods, including unsupervised ones such as
PCA and Deeplog, semi-supervised
LogAnomaly, and supervised methods like
LogRobust and LightLog.

PCA [31]: Principal Component Analysis is
used for statistical analysis on log sequences,
extracting an event count matrix. The count

, (6)

where Q, K, and V denote the query, key and value ma-
trices separately; dK refers to the dimension of K. Af-
ter computing query-key similarities as weights, they
are divided by dK to prevent overlarge dot products. As
shown in Figure 10(b), attention from multiple heads
is generated in parallel and concatenated as the final
output, formulated as:
Multibead(Q,K,V)=Concat(head1,...,headbW0,
where

focuses on a different feature subspace, allowing the
model to integrate information from different
granularities. To address the issue of sequential
models like TCN losing precedence information over
long sequences, multi-head attention is used to mine
long-range correlations in data more effectively.
Specifically, the model constructs a multi-head
computational unit based on scaled dot product
attention, as illustrated in Figure 10(a). The
calculations are as follows:

 , (5)

where Q, K, and V denote the query, key and value
matrices separately; dK refers to the dimension of K.
After computing query-key similarities as weights,
they are divided by dK to prevent overlarge dot
products. As shown in Figure 10(b), attention from
multiple heads is generated in parallel and
concatenated as the final output, formulated as:
Multibead(Q,K,V)=Concat(head1,...,headb)W0,
where,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑄𝑄𝑄𝑄 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖
𝐾𝐾𝐾𝐾 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑉𝑉𝑉𝑉 are all projection matrices. Q, K,
and V first undergo linear transformations and then
undergo point-wise multi-head attention h-
scrunching, which can be defined as multi-head
attention. Finally, the results of h scaled dot-product
attentions are concatenated and another linear
transformation is applied to obtain the output of
multi-head attention.

Figure 10
Details of the self-attention mechanism

The integration of multi-head attention, temporal
convolutional networks, and a multi-scale feature
extractor forms a robust anomaly detection model.
This model enhances anomaly detection by
highlighting key parts of log sequences and revealing
hidden inter-log dependencies. Multi-head attention
facilitates learning cross-log relevance, TCN use
layered causal dilated convolutions to collect
temporal contextual signals, and the multi-scale
module identifies correlated patterns across different

ranges. These components work together to
effectively extract diagnostic features sensitive
to abnormalities, covering both local and global
log interactions.

4. Experiment
In this section, we will first outline the
experimental dataset and evaluation metrics.
Following this, we will compare the
performance of MTCNLog on large-scale
system log data with existing methods. We will
also examine the impact of key parameters in
the model on its performance. Finally, we will
verify the effectiveness of each module of
MTCNLog and its robustness to unseen logs.

4.1 Dataset

To assess the performance of MTCNLog, we
utilized the HDFS and BGL log datasets, which
are two widely recognized datasets for log
anomaly detection.

The HDFS dataset is a public benchmark
dataset frequently used for log-based anomaly
detection. It comprises 11,175,629 log messages
generated from over 200 Amazon EC2 nodes, of
which 288,250 messages are abnormal,
accounting for less than 2.6%.

The BlueGene/L supercomputer system at
Lawrence Livermore National Laboratory
(LLNL) gave rise to BGL, which comprises
4,747,963 log messages, including 348,460 logs
identified as anomalies. The specific
information is presented in Table 3.

Table 3

Summary of the datasets
System Time logs Anomalis Templates
HDFS 2 days 11,175,629 16,838 30
BGL 215 days 4,747,963 348,460 378

4.2 Baselines

We compared our approach with six distinct
methods, including unsupervised ones such as
PCA and Deeplog, semi-supervised
LogAnomaly, and supervised methods like
LogRobust and LightLog.

PCA [31]: Principal Component Analysis is
used for statistical analysis on log sequences,
extracting an event count matrix. The count

 are all projection matrices. Q, K,
and V first undergo linear transformations and then
undergo point-wise multi-head attention h-scrunch-
ing, which can be defined as multi-head attention.
Finally, the results of h scaled dot-product attentions

825Information Technology and Control 2024/3/53

are concatenated and another linear transformation is
applied to obtain the output of multi-head attention.
The integration of multi-head attention, temporal
convolutional networks, and a multi-scale feature
extractor forms a robust anomaly detection model.
This model enhances anomaly detection by highlight-
ing key parts of log sequences and revealing hidden
inter-log dependencies. Multi-head attention facil-
itates learning cross-log relevance, TCN use layered
causal dilated convolutions to collect temporal con-
textual signals, and the multi-scale module identifies
correlated patterns across different ranges. These
components work together to effectively extract di-
agnostic features sensitive to abnormalities, covering
both local and global log interactions.

4. Experiment
In this section, we will first outline the experimen-
tal dataset and evaluation metrics. Following this,
we will compare the performance of MTCNLog on
large-scale system log data with existing methods. We
will also examine the impact of key parameters in the
model on its performance. Finally, we will verify the
effectiveness of each module of MTCNLog and its ro-
bustness to unseen logs.

4.1. Dataset
To assess the performance of MTCNLog, we utilized
the HDFS and BGL log datasets, which are two widely
recognized datasets for log anomaly detection.

Figure 10
Details of the self-attention mechanism

focuses on a different feature subspace, allowing the
model to integrate information from different
granularities. To address the issue of sequential
models like TCN losing precedence information over
long sequences, multi-head attention is used to mine
long-range correlations in data more effectively.
Specifically, the model constructs a multi-head
computational unit based on scaled dot product
attention, as illustrated in Figure 10(a). The
calculations are as follows:

 , (5)

where Q, K, and V denote the query, key and value
matrices separately; dK refers to the dimension of K.
After computing query-key similarities as weights,
they are divided by dK to prevent overlarge dot
products. As shown in Figure 10(b), attention from
multiple heads is generated in parallel and
concatenated as the final output, formulated as:
Multibead(Q,K,V)=Concat(head1,...,headb)W0,
where,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑄𝑄𝑄𝑄 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖
𝐾𝐾𝐾𝐾 ,𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

𝑉𝑉𝑉𝑉 are all projection matrices. Q, K,
and V first undergo linear transformations and then
undergo point-wise multi-head attention h-
scrunching, which can be defined as multi-head
attention. Finally, the results of h scaled dot-product
attentions are concatenated and another linear
transformation is applied to obtain the output of
multi-head attention.

Figure 10
Details of the self-attention mechanism

The integration of multi-head attention, temporal
convolutional networks, and a multi-scale feature
extractor forms a robust anomaly detection model.
This model enhances anomaly detection by
highlighting key parts of log sequences and revealing
hidden inter-log dependencies. Multi-head attention
facilitates learning cross-log relevance, TCN use
layered causal dilated convolutions to collect
temporal contextual signals, and the multi-scale
module identifies correlated patterns across different

ranges. These components work together to
effectively extract diagnostic features sensitive
to abnormalities, covering both local and global
log interactions.

4. Experiment
In this section, we will first outline the
experimental dataset and evaluation metrics.
Following this, we will compare the
performance of MTCNLog on large-scale
system log data with existing methods. We will
also examine the impact of key parameters in
the model on its performance. Finally, we will
verify the effectiveness of each module of
MTCNLog and its robustness to unseen logs.

4.1 Dataset

To assess the performance of MTCNLog, we
utilized the HDFS and BGL log datasets, which
are two widely recognized datasets for log
anomaly detection.

The HDFS dataset is a public benchmark
dataset frequently used for log-based anomaly
detection. It comprises 11,175,629 log messages
generated from over 200 Amazon EC2 nodes, of
which 288,250 messages are abnormal,
accounting for less than 2.6%.

The BlueGene/L supercomputer system at
Lawrence Livermore National Laboratory
(LLNL) gave rise to BGL, which comprises
4,747,963 log messages, including 348,460 logs
identified as anomalies. The specific
information is presented in Table 3.

Table 3

Summary of the datasets
System Time logs Anomalis Templates
HDFS 2 days 11,175,629 16,838 30
BGL 215 days 4,747,963 348,460 378

4.2 Baselines

We compared our approach with six distinct
methods, including unsupervised ones such as
PCA and Deeplog, semi-supervised
LogAnomaly, and supervised methods like
LogRobust and LightLog.

PCA [31]: Principal Component Analysis is
used for statistical analysis on log sequences,
extracting an event count matrix. The count

(a) (b)

The HDFS dataset is a public benchmark dataset fre-
quently used for log-based anomaly detection. It com-
prises 11,175,629 log messages generated from over
200 Amazon EC2 nodes, of which 288,250 messages
are abnormal, accounting for less than 2.6%.
The BlueGene/L supercomputer system at Lawrence
Livermore National Laboratory (LLNL) gave rise to
BGL, which comprises 4,747,963 log messages, in-
cluding 348,460 logs identified as anomalies. The spe-
cific information is presented in Table 3.

Table 3
Summary of the datasets

System Time logs Anomalis Templates

HDFS 2 days 11,175,629 16,838 30

BGL 215 days 4,747,963 348,460 378

4.2. Baselines

We compared our approach with six distinct meth-
ods, including unsupervised ones such as PCA and
Deeplog, semi-supervised LogAnomaly, and super-
vised methods like LogRobust and LightLog.
PCA [31]: Principal Component Analysis is used for
statistical analysis on log sequences, extracting an
event count matrix. The count matrix is then decom-
posed using singular value decomposition by PCA to
obtain ordered features.
LightLog [23]: Lightlog is a lightweight TCN deployed
on edge devices for the supervised classification of
temporal log data. It alleviates the substantial compu-
tational load of the downstream processing pipeline
during both the training and detection phases.
Deeplog [7]: DeepLog, a trailblazing framework for
system log anomaly detection, uses advanced deep
learning techniques, specifically recurrent neural
networks, to model the sequential dependencies in
logs and identify anomalies.
LogRobust [27]: LogRobust vectorizes words, com-
putes their TF-IDF, and derives the log template’s se-
mantic vector by summing the weights with the TF-
IDF.
LogAnomaly [17]: LogAnomaly identifies anomalies
by using a log template count vector and learning nor-
mal log sequence patterns.

Information Technology and Control 2024/3/53826

4.3. Evaluation Metrics
To evaluate the effectiveness of the proposed model
in anomaly detection, we use Precision, Recall, and
F1-score as evaluation metrics. These metrics are de-
fined as follows:
Precision is the percentage of anomalies that are cor-
rectly detected among all the detected anomalies by
the model. The formula is as follows:

matrix is then decomposed using singular value
decomposition by PCA to obtain ordered features.

LightLog [23]: Lightlog is a lightweight TCN
deployed on edge devices for the supervised
classification of temporal log data. It alleviates the
substantial computational load of the downstream
processing pipeline during both the training and
detection phases.

Deeplog [7]: DeepLog, a trailblazing framework for
system log anomaly detection, uses advanced deep
learning techniques, specifically recurrent neural
networks, to model the sequential dependencies in
logs and identify anomalies.

LogRobust [27]: LogRobust vectorizes words,
computes their TF-IDF, and derives the log
template’s semantic vector by summing the weights
with the TF-IDF.

LogAnomaly [17]: LogAnomaly identifies anomalies
by using a log template count vector and learning
normal log sequence patterns.

4.3 Evaluation Metrics

To evaluate the effectiveness of the proposed model
in anomaly detection, we use Precision, Recall, and
F1-score as evaluation metrics. These metrics are
defined as follows:

Precision is the percentage of anomalies that are
correctly detected among all the detected anomalies
by the model. The formula is as follows:

 . (6)

Recall refers to the percentage of anomalies that are
correctly detected by the model among all the
anomalies. The formula is as follows:

 . (7)

The F1-score is equivalent to the weighted average of
the comprehensive evaluation metrics Precision and
Recall. The formula is as follows:

 . (8)

4.4 Experiment Setting

This experiment was developed using Python 3.7,
and the deep learning framework PyTorch 1.10.2 was
used to construct the model. It was run on a
Windows 10 64bit environment with an Intel(R)
Core(TM) i5-9400F processor and 16GB memory, and
the GeForce RTX 2060 GPU was used to accelerate

model training.

In our experiments, we fine-tuned the
parameters of our deep neural network model
on each dataset. Some parameters remained
constant across datasets, while others needed
unique adjustments. To avoid overfitting, we
trained the predictive model on the training set
and used early stopping on the validation set.
We recorded the parameter configurations that
produced the best results. Specifically, we set
the length of the log sequence m = 40, the size of
the sliding window was 100. We set the
maximum training epoch = 150, the learning
rate lr = 0.001, the number of LR reduction
iteration rounds lr_step = (30, 40), the LR
reduction rate lr_decay_ratio = 0.1, dropout was
0.5, the batch size batch_size (HDFS) = 24, and
the batch size batch_size (BGL) = 36. Other
hyperparameters were set as follows: TCN
input channels were 300, output channels were
200, and the number of TCN residual units was
3. Multi-scale convolution kernel sizes were [1,
3, 5], multi-head attention heads were 8.

4.5 Results Analysis

In our approach, we employ an enhanced
IPLoM for log template extraction. However,
there are numerous alternative methods for log
template extraction available. Therefore, it’s
essential to validate the effectiveness of our
method through experiments and assess the
impact of the log parser on anomaly detection
performance. In these experiments, we applied
representative log parsing methods currently
available, including Drain, Spell, Logram,
IPLoM and Lenma. The experimental results
are presented in Table 4.

Table 4

Impact of Log Parser on Anomaly Detection
Performance

Parser HDFS(%) BGL(%)
P R F1 P R F1

Drain 97.94 97.12 97.53 97.68 98.31 97.99
Spell 96.76 95.11 95.93 98.31 98.45 98.38

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03
Logram 96.32 96.78 96.55 98.31 95.42 96.84
Lenma 96.87 94.10 95.46 98.11 97.87 97.99
Ours 97.91 98.72 98.31 98.25 98.57 98.41

The aforementioned log parsers exhibit high-

(7)

Recall refers to the percentage of anomalies that are
correctly detected by the model among all the anoma-
lies. The formula is as follows:

matrix is then decomposed using singular value
decomposition by PCA to obtain ordered features.

LightLog [23]: Lightlog is a lightweight TCN
deployed on edge devices for the supervised
classification of temporal log data. It alleviates the
substantial computational load of the downstream
processing pipeline during both the training and
detection phases.

Deeplog [7]: DeepLog, a trailblazing framework for
system log anomaly detection, uses advanced deep
learning techniques, specifically recurrent neural
networks, to model the sequential dependencies in
logs and identify anomalies.

LogRobust [27]: LogRobust vectorizes words,
computes their TF-IDF, and derives the log
template’s semantic vector by summing the weights
with the TF-IDF.

LogAnomaly [17]: LogAnomaly identifies anomalies
by using a log template count vector and learning
normal log sequence patterns.

4.3 Evaluation Metrics

To evaluate the effectiveness of the proposed model
in anomaly detection, we use Precision, Recall, and
F1-score as evaluation metrics. These metrics are
defined as follows:

Precision is the percentage of anomalies that are
correctly detected among all the detected anomalies
by the model. The formula is as follows:

 . (6)

Recall refers to the percentage of anomalies that are
correctly detected by the model among all the
anomalies. The formula is as follows:

 . (7)

The F1-score is equivalent to the weighted average of
the comprehensive evaluation metrics Precision and
Recall. The formula is as follows:

 . (8)

4.4 Experiment Setting

This experiment was developed using Python 3.7,
and the deep learning framework PyTorch 1.10.2 was
used to construct the model. It was run on a
Windows 10 64bit environment with an Intel(R)
Core(TM) i5-9400F processor and 16GB memory, and
the GeForce RTX 2060 GPU was used to accelerate

model training.

In our experiments, we fine-tuned the
parameters of our deep neural network model
on each dataset. Some parameters remained
constant across datasets, while others needed
unique adjustments. To avoid overfitting, we
trained the predictive model on the training set
and used early stopping on the validation set.
We recorded the parameter configurations that
produced the best results. Specifically, we set
the length of the log sequence m = 40, the size of
the sliding window was 100. We set the
maximum training epoch = 150, the learning
rate lr = 0.001, the number of LR reduction
iteration rounds lr_step = (30, 40), the LR
reduction rate lr_decay_ratio = 0.1, dropout was
0.5, the batch size batch_size (HDFS) = 24, and
the batch size batch_size (BGL) = 36. Other
hyperparameters were set as follows: TCN
input channels were 300, output channels were
200, and the number of TCN residual units was
3. Multi-scale convolution kernel sizes were [1,
3, 5], multi-head attention heads were 8.

4.5 Results Analysis

In our approach, we employ an enhanced
IPLoM for log template extraction. However,
there are numerous alternative methods for log
template extraction available. Therefore, it’s
essential to validate the effectiveness of our
method through experiments and assess the
impact of the log parser on anomaly detection
performance. In these experiments, we applied
representative log parsing methods currently
available, including Drain, Spell, Logram,
IPLoM and Lenma. The experimental results
are presented in Table 4.

Table 4

Impact of Log Parser on Anomaly Detection
Performance

Parser HDFS(%) BGL(%)
P R F1 P R F1

Drain 97.94 97.12 97.53 97.68 98.31 97.99
Spell 96.76 95.11 95.93 98.31 98.45 98.38

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03
Logram 96.32 96.78 96.55 98.31 95.42 96.84
Lenma 96.87 94.10 95.46 98.11 97.87 97.99
Ours 97.91 98.72 98.31 98.25 98.57 98.41

The aforementioned log parsers exhibit high-

(8)

The F1-score is equivalent to the weighted average of
the comprehensive evaluation metrics Precision and
Recall. The formula is as follows:

matrix is then decomposed using singular value
decomposition by PCA to obtain ordered features.

LightLog [23]: Lightlog is a lightweight TCN
deployed on edge devices for the supervised
classification of temporal log data. It alleviates the
substantial computational load of the downstream
processing pipeline during both the training and
detection phases.

Deeplog [7]: DeepLog, a trailblazing framework for
system log anomaly detection, uses advanced deep
learning techniques, specifically recurrent neural
networks, to model the sequential dependencies in
logs and identify anomalies.

LogRobust [27]: LogRobust vectorizes words,
computes their TF-IDF, and derives the log
template’s semantic vector by summing the weights
with the TF-IDF.

LogAnomaly [17]: LogAnomaly identifies anomalies
by using a log template count vector and learning
normal log sequence patterns.

4.3 Evaluation Metrics

To evaluate the effectiveness of the proposed model
in anomaly detection, we use Precision, Recall, and
F1-score as evaluation metrics. These metrics are
defined as follows:

Precision is the percentage of anomalies that are
correctly detected among all the detected anomalies
by the model. The formula is as follows:

 . (6)

Recall refers to the percentage of anomalies that are
correctly detected by the model among all the
anomalies. The formula is as follows:

 . (7)

The F1-score is equivalent to the weighted average of
the comprehensive evaluation metrics Precision and
Recall. The formula is as follows:

 . (8)

4.4 Experiment Setting

This experiment was developed using Python 3.7,
and the deep learning framework PyTorch 1.10.2 was
used to construct the model. It was run on a
Windows 10 64bit environment with an Intel(R)
Core(TM) i5-9400F processor and 16GB memory, and
the GeForce RTX 2060 GPU was used to accelerate

model training.

In our experiments, we fine-tuned the
parameters of our deep neural network model
on each dataset. Some parameters remained
constant across datasets, while others needed
unique adjustments. To avoid overfitting, we
trained the predictive model on the training set
and used early stopping on the validation set.
We recorded the parameter configurations that
produced the best results. Specifically, we set
the length of the log sequence m = 40, the size of
the sliding window was 100. We set the
maximum training epoch = 150, the learning
rate lr = 0.001, the number of LR reduction
iteration rounds lr_step = (30, 40), the LR
reduction rate lr_decay_ratio = 0.1, dropout was
0.5, the batch size batch_size (HDFS) = 24, and
the batch size batch_size (BGL) = 36. Other
hyperparameters were set as follows: TCN
input channels were 300, output channels were
200, and the number of TCN residual units was
3. Multi-scale convolution kernel sizes were [1,
3, 5], multi-head attention heads were 8.

4.5 Results Analysis

In our approach, we employ an enhanced
IPLoM for log template extraction. However,
there are numerous alternative methods for log
template extraction available. Therefore, it’s
essential to validate the effectiveness of our
method through experiments and assess the
impact of the log parser on anomaly detection
performance. In these experiments, we applied
representative log parsing methods currently
available, including Drain, Spell, Logram,
IPLoM and Lenma. The experimental results
are presented in Table 4.

Table 4

Impact of Log Parser on Anomaly Detection
Performance

Parser HDFS(%) BGL(%)
P R F1 P R F1

Drain 97.94 97.12 97.53 97.68 98.31 97.99
Spell 96.76 95.11 95.93 98.31 98.45 98.38

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03
Logram 96.32 96.78 96.55 98.31 95.42 96.84
Lenma 96.87 94.10 95.46 98.11 97.87 97.99
Ours 97.91 98.72 98.31 98.25 98.57 98.41

The aforementioned log parsers exhibit high-

(9)

4.4. Experiment Setting
This experiment was developed using Python 3.7, and
the deep learning framework PyTorch 1.10.2 was used
to construct the model. It was run on a Windows 10
64bit environment with an Intel(R) Core(TM) i5-
9400F processor and 16GB memory, and the GeForce
RTX 2060 GPU was used to accelerate model train-
ing.
In our experiments, we fine-tuned the parameters of
our deep neural network model on each dataset. Some
parameters remained constant across datasets, while
others needed unique adjustments. To avoid overfit-
ting, we trained the predictive model on the training
set and used early stopping on the validation set. We
recorded the parameter configurations that produced
the best results. Specifically, we set the length of the
log sequence m = 40, the size of the sliding window
was 100. We set the maximum training epoch = 150,
the learning rate lr = 0.001, the number of LR reduc-
tion iteration rounds lr_step = (30, 40), the LR re-
duction rate lr_decay_ratio = 0.1, dropout was 0.5, the
batch size batch_size (HDFS) = 24, and the batch size

batch_size (BGL) = 36. Other hyperparameters were
set as follows: TCN input channels were 300, output
channels were 200, and the number of TCN residu-
al units was 3. Multi-scale convolution kernel sizes
were [1, 3, 5], multi-head attention heads were 8.

4.5. Results Analysis
In our approach, we employ an enhanced IPLoM for
log template extraction. However, there are numerous
alternative methods for log template extraction avail-
able. Therefore, it’s essential to validate the effective-
ness of our method through experiments and assess
the impact of the log parser on anomaly detection
performance. In these experiments, we applied repre-
sentative log parsing methods currently available, in-
cluding Drain, Spell, Logram, IPLoM and Lenma. The
experimental results are presented in Table 4.
The aforementioned log parsers exhibit high-perfor-
mance metrics on both the HDFS and BGL datasets,
suggesting that the impact of the log parser on the
performance of deep learning-based log anomaly de-
tection is relatively minor. While Drain and Spell have
the highest Precision metrics on HDFS and BGL, re-
spectively, our method’s Precision is slightly lower.
However, our method achieves optimal levels for both
Recall and F1-score, demonstrating its effectiveness.
When considering overall performance, our method
outperforms the others, further validating its efficacy.
Furthermore, we evaluated MTCNLog against five
other anomaly detection techniques: PCA, LightLog,
Deeplog, LogRobust, and LogAnomaly. The assess-
ment was conducted on a variety of datasets to gauge
the model’s performance in log anomaly detection. For
unsupervised techniques like PCA and DeepLog, only
normal log sequences from the training dataset were
utilized to construct the anomaly detection model. As
depicted in Figure 11, it is evident from the Recall that,
compared to traditional PCA, the recall rate on the
HDFS dataset has increased by 30.65%, and the recall
rate on BGL has increased by 28.82%. This suggests
that the MTCNLog model exhibits a high recall rate on
both the HDFS and BGL datasets, thereby enhancing
its ability to accurately detect anomalies. The preci-
sion of the model further underscores its effectiveness
in detecting abnormal log data. As can be seen from
the F1-score, our method achieved an impressive F1-
score of 98.65% and 98.34% on the HDFS and BGL
datasets, respectively, surpassing all other methods.

827Information Technology and Control 2024/3/53

Table 4
Impact of Log Parser on Anomaly Detection Performance

Parser
HDFS(%) BGL(%)

P R F1 P R F1

Drain 97.94 97.12 97.53 97.68 98.31 97.99

Spell 96.76 95.11 95.93 98.31 98.45 98.38

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03

Logram 96.32 96.78 96.55 98.31 95.42 96.84

Lenma 96.87 94.10 95.46 98.11 97.87 97.99

Ours 97.91 98.72 98.31 98.25 98.57 98.41

Figure 11
Comparison of different methods. (a) HDFS dataset. (b) BGL dataset

performance metrics on both the HDFS and BGL
datasets, suggesting that the impact of the log parser
on the performance of deep learning-based log
anomaly detection is relatively minor. While Drain
and Spell have the highest Precision metrics on
HDFS and BGL, respectively, our method’s Precision
is slightly lower. However, our method achieves
optimal levels for both Recall and F1-score,
demonstrating its effectiveness. When considering
overall performance, our method outperforms the
others, further validating its efficacy.

Furthermore, we evaluated MTCNLog against five
other anomaly detection techniques: PCA, LightLog,
Deeplog, LogRobust, and LogAnomaly. The
assessment was conducted on a variety of datasets to
gauge the model’s performance in log anomaly
detection. For unsupervised techniques like PCA and
DeepLog, only normal log sequences from the
training dataset were utilized to construct the
anomaly detection model. As depicted in Figure 11,
it is evident from the Recall that, compared to
traditional PCA, the recall rate on the HDFS dataset
has increased by 30.65%, and the recall rate on BGL
has increased by 28.82%. This suggests that the
MTCNLog model exhibits a high recall rate on both
the HDFS and BGL datasets, thereby enhancing its
ability to accurately detect anomalies. The precision
of the model further underscores its effectiveness in
detecting abnormal log data. As can be seen from the
F1-score, our method achieved an impressive F1-
score of 98.65% and 98.34% on the HDFS and BGL
datasets, respectively, surpassing all other methods.

Indeed, both PCA and DeepLog employ the log
template's index for log representation, which may
overlook the semantic information embedded in the

templates. Furthermore, during the anomaly
detection process, DeepLog independently
models and identifies anomalies in execution
path types and parameter types, potentially
neglecting the interrelationships among various
anomalies. Notably, compared to LogRobust,
which is known for its robust detection
performance, our method’s F1-score increased
by 1.4% and 0.99%, respectively. We also found
that supervised methods for anomaly
prediction significantly surpassed
unsupervised methods in terms of precision,
recall, and F1-score, leading us to adopt this
approach for optimal anomaly detection rates.
Interestingly, the unsupervised DeepLog also
demonstrated commendable performance.
However, further exploration is required to
significantly enhance the detection
performance of unsupervised anomaly
detection methods to meet practical needs.
MTCNLog integrates Word2vec and TF-IWF to
better extract semantic information from logs,
improving anomaly detection accuracy.
Temporal convolutional networks equipped
with multi-scale feature extraction modules and
multi-headed attention perform log anomaly
detection. High recall and F1-score demonstrate
the efficacy of this model for detecting
anomalies in log sequences. Our model exhibits
robust performance across datasets, precisely
identifying abnormalities in both the HDFS and
BGL logs. The amalgamation of semantic-aware
embeddings and multi-faceted temporal
modeling enables precise, stable detection of
anomalies regardless of log source.

Figure 11

Comparison of different methods. (a) HDFS dataset. (b) BGL dataset.

 (a) HDFS (b) BGL

Indeed, both PCA and DeepLog employ the log tem-
plate’s index for log representation, which may over-
look the semantic information embedded in the tem-
plates. Furthermore, during the anomaly detection
process, DeepLog independently models and iden-
tifies anomalies in execution path types and param-
eter types, potentially neglecting the interrelation-
ships among various anomalies. Notably, compared
to LogRobust, which is known for its robust detec-
tion performance, our method’s F1-score increased
by 1.4% and 0.99%, respectively. We also found that
supervised methods for anomaly prediction signifi-
cantly surpassed unsupervised methods in terms
of precision, recall, and F1-score, leading us to
adopt this approach for optimal anomaly detection
rates. Interestingly, the unsupervised DeepLog also
demonstrated commendable performance. Howev-

er, further exploration is required to significantly
enhance the detection performance of unsupervised
anomaly detection methods to meet practical needs.
MTCNLog integrates Word2vec and TF-IWF to
better extract semantic information from logs, im-
proving anomaly detection accuracy. Temporal
convolutional networks equipped with multi-scale
feature extraction modules and multi-headed atten-
tion perform log anomaly detection. High recall and
F1-score demonstrate the efficacy of this model for
detecting anomalies in log sequences. Our model ex-
hibits robust performance across datasets, precisely
identifying abnormalities in both the HDFS and BGL
logs. The amalgamation of semantic-aware embed-
dings and multi-faceted temporal modeling enables
precise, stable detection of anomalies regardless of
log source.

Information Technology and Control 2024/3/53828

Figure 12
Effect of Multi-scale structure branch number on
Precision, Recall, and F1-score

To assess the effect of the number of branches in the
multi-scale feature extraction structure, we began
with a single causal convolution branch (L=1) and
incrementally increased the number of convolution
branches L to 1, 2, 3, 4, and 5. Figure 12 illustrates
the experimental results of MTCNLog with varying
branch numbers. As depicted in Figure 12, MTCN-
Log maintains relatively consistent accuracy across
different branch numbers, but the F1-score exhib-
its significant fluctuations. Despite the increase in
branch number, MTCNLog’s anomaly detection effi-
ciency does not significantly decline and remains at a
high level. However, excessively small or large branch
numbers result in marginally lower recall rates and
F1-scores, causing the model to miss some anomalies.
In conclusion, MTCNLog exhibits optimal perfor-
mance when the branch number is 3.

To assess the effect of the number of branches in the
multi-scale feature extraction structure, we began
with a single causal convolution branch (L=1) and
incrementally increased the number of convolution
branches L to 1, 2, 3, 4, and 5. Figure 12 illustrates the
experimental results of MTCNLog with varying
branch numbers. As depicted in Figure 12,
MTCNLog maintains relatively consistent accuracy
across different branch numbers, but the F1-score
exhibits significant fluctuations. Despite the increase
in branch number, MTCNLog’s anomaly detection
efficiency does not significantly decline and remains
at a high level. However, excessively small or large
branch numbers result in marginally lower recall
rates and F1-scores, causing the model to miss some
anomalies. In conclusion, MTCNLog exhibits
optimal performance when the branch number is 3.

Furthermore, our experiment examined the impact
of the number of branches in the multi-scale feature
extraction structure and the number of multi-head
attention layers on the model’s performance. We
conducted tests on the HDFS dataset, altering one
parameter value while maintaining the default
values for the others.To observe its influence on
MTCNLog, we took two as the step size and set the
number of heads to values within [2,12]. Figure 13
shows its influence on MTCNLog, from which we
can find that when the number of heads tends to
eight, precision, recall, and F1-score all tend to
stabilize. Therefore, in this experiment, we set the
number of heads in self-attention to eight.

Figure 12
Effect of Multi-scale structure branch number on
Precision, Recall, and F1-score

Since we introduced the multi-head attention
mechanism, the number of heads in self-attention
cannot be ignored. To observe its influence on
MTCNLog, we took two as the step size and set the

number of heads to values within [2,12]. Figure
13 shows its influence on MTCNLog, from
which we can find that when the number of
heads tends to eight, precision, recall, and F1-
score all tend to stabilize. Therefore, in this
experiment, we set the number of heads in self-
attention to eight.

Figure 13
Effect of Heads of self-attention on Precision,
Recall, and F1-score

4.6 Ablation Study

We conducted ablation studies on the HDFS
dataset to assess the impact of each module on
the experimental outcomes, as illustrated in
Figure 14. The results show that the multi-scale
structure enhances the model’s detection
performance, validating the effectiveness of
incorporating the multi-scale convolution
structure for log sequence processing. The
introduction of the multi-head attention
mechanism resulted in an 11 percentage point
increase in the model’s F1-score. This indicates
that the multi-head attention module can
autonomously learn the significance of different
log sequences and extract higher-level hidden
features within the sequence, thereby
significantly boosting the accuracy of anomaly
detection. Moreover, we attempted to replace
the TCN with a 1D-CNN in the multi-scale
feature extraction layer. The results once again
demonstrated that this module plays a
significant role in anomaly detection. This is
due to the fact that TCNs are more sensitive to
sequence order and can capture dependencies
over longer distances, whereas 1D-CNNs
typically only capture local features. These
ablation experiments confirm that every
module contribute to the model’s performance.

Furthermore, our experiment examined the impact of
the number of branches in the multi-scale feature ex-
traction structure and the number of multi-head atten-
tion layers on the model’s performance. We conducted
tests on the HDFS dataset, altering one parameter val-
ue while maintaining the default values for the others.
To observe its influence on MTCNLog, we took two
as the step size and set the number of heads to values
within [2,12]. Figure 13 shows its influence on MTCN-
Log, from which we can find that when the number of
heads tends to eight, precision, recall, and F1-score all
tend to stabilize. Therefore, in this experiment, we set
the number of heads in self-attention to eight.
Since we introduced the multi-head attention mech-
anism, the number of heads in self-attention cannot

be ignored. To observe its influence on MTCNLog, we
took two as the step size and set the number of heads to
values within [2,12]. Figure 13 shows its influence on
MTCNLog, from which we can find that when the num-
ber of heads tends to eight, precision, recall, and F1-
score all tend to stabilize. Therefore, in this experiment,
we set the number of heads in self-attention to eight.

Figure 13
Effect of Heads of self-attention on Precision, Recall, and
F1-score

To assess the effect of the number of branches in the
multi-scale feature extraction structure, we began
with a single causal convolution branch (L=1) and
incrementally increased the number of convolution
branches L to 1, 2, 3, 4, and 5. Figure 12 illustrates the
experimental results of MTCNLog with varying
branch numbers. As depicted in Figure 12,
MTCNLog maintains relatively consistent accuracy
across different branch numbers, but the F1-score
exhibits significant fluctuations. Despite the increase
in branch number, MTCNLog’s anomaly detection
efficiency does not significantly decline and remains
at a high level. However, excessively small or large
branch numbers result in marginally lower recall
rates and F1-scores, causing the model to miss some
anomalies. In conclusion, MTCNLog exhibits
optimal performance when the branch number is 3.

Furthermore, our experiment examined the impact
of the number of branches in the multi-scale feature
extraction structure and the number of multi-head
attention layers on the model’s performance. We
conducted tests on the HDFS dataset, altering one
parameter value while maintaining the default
values for the others.To observe its influence on
MTCNLog, we took two as the step size and set the
number of heads to values within [2,12]. Figure 13
shows its influence on MTCNLog, from which we
can find that when the number of heads tends to
eight, precision, recall, and F1-score all tend to
stabilize. Therefore, in this experiment, we set the
number of heads in self-attention to eight.

Figure 12
Effect of Multi-scale structure branch number on
Precision, Recall, and F1-score

Since we introduced the multi-head attention
mechanism, the number of heads in self-attention
cannot be ignored. To observe its influence on
MTCNLog, we took two as the step size and set the

number of heads to values within [2,12]. Figure
13 shows its influence on MTCNLog, from
which we can find that when the number of
heads tends to eight, precision, recall, and F1-
score all tend to stabilize. Therefore, in this
experiment, we set the number of heads in self-
attention to eight.

Figure 13
Effect of Heads of self-attention on Precision,
Recall, and F1-score

4.6 Ablation Study

We conducted ablation studies on the HDFS
dataset to assess the impact of each module on
the experimental outcomes, as illustrated in
Figure 14. The results show that the multi-scale
structure enhances the model’s detection
performance, validating the effectiveness of
incorporating the multi-scale convolution
structure for log sequence processing. The
introduction of the multi-head attention
mechanism resulted in an 11 percentage point
increase in the model’s F1-score. This indicates
that the multi-head attention module can
autonomously learn the significance of different
log sequences and extract higher-level hidden
features within the sequence, thereby
significantly boosting the accuracy of anomaly
detection. Moreover, we attempted to replace
the TCN with a 1D-CNN in the multi-scale
feature extraction layer. The results once again
demonstrated that this module plays a
significant role in anomaly detection. This is
due to the fact that TCNs are more sensitive to
sequence order and can capture dependencies
over longer distances, whereas 1D-CNNs
typically only capture local features. These
ablation experiments confirm that every
module contribute to the model’s performance.

4.6. Ablation Study
We conducted ablation studies on the HDFS dataset to
assess the impact of each module on the experimental
outcomes, as illustrated in Figure 14. The results show
that the multi-scale structure enhances the model’s
detection performance, validating the effectiveness
of incorporating the multi-scale convolution struc-
ture for log sequence processing. The introduction of

Figure 14
Results of ablation study

Figure 14
Results of ablation study

4.7 Robustness and Efficiency

In this section, we evaluate the robustness of the
model based on unseen log types. We compare the
final representations of different block_id log
sequences to assess the log types. Absolutely, given
the massive volume of system log data, processing
time indeed becomes a critical factor. In our
experiments, we also evaluated the time
consumption of our model across different log
datasets, highlighting the efficiency of our approach.

Figure 15
Distribution of log types for randomly partitioned
HDFS datasets

In our research, we analyzed the distribution of log

template quantities in the log dataset to
examine MTCNLog’s detection effect on new
types of logs. As depicted in Figure 15, due to
the inherent instability of log data, an increase
in the number of logs can introduce new log
templates. To address this, MTCNLog learns
the semantic features of logs to identify whether
new log templates are anomalous. This
approach allows for more robust and adaptive
anomaly detection, even in the face of evolving
log data.

It is noteworthy that new log templates often
contain some out-of-vocabulary (OOV) words,
which makes it difficult to extract the semantic
information of the log templates. To reduce the
OOV words, we employ the classic subword
segmentation method in natural language
processing to divide an OOV word into several
subwords that have appeared before. For
instance, the OOV long word “allocateBlock” is
split into “allocate” and “Block”, thereby
reducing the number of OOV words and
enhancing the effect of semantic feature
extraction. To further assess the model’s
effectiveness on new types of logs, we trained
the model on varying amounts of log sequences
on the HDFS. Table 5 provides a summary of
the proportion of new log templates and their
detection results. The model’s performance
improves as the training ratio increases.
Remarkably, even when the proportion of new
templates is as high as 60%, the F1-score still
achieves 96.55%. This can be attributed to the
semantic representation of normal log events.
Changes in the events can still be represented as
vectors similar to the original events, while
vectors of abnormal events and normal events
differ significantly. Consequently, MTCNLog
exhibits robustness to variations in log events.

Table 5

Evaluation results of a new type of log for HDFS dataset

Training log
sequences

Num of log
templates Percentage of new templates (%) Precision Recall F1-score

4000 13 56.7 0.9454 0.9631 0.9542

5000 14 53.3 0.9631 0.9645 0.9638

6000 15 50 0.9714 0.9687 0.9701

7000 16 46.7 0.9814 0.9832 0.9823

829Information Technology and Control 2024/3/53

the multi-head attention mechanism resulted in an
11 percentage point increase in the model’s F1-score.
This indicates that the multi-head attention module
can autonomously learn the significance of different
log sequences and extract higher-level hidden features
within the sequence, thereby significantly boosting the
accuracy of anomaly detection. Moreover, we attempt-
ed to replace the TCN with a 1D-CNN in the multi-
scale feature extraction layer. The results once again
demonstrated that this module plays a significant
role in anomaly detection. This is due to the fact that
TCNs are more sensitive to sequence order and can
capture dependencies over longer distances, whereas
1D-CNNs typically only capture local features. These
ablation experiments confirm that every module con-
tribute to the model’s performance.

4.7. Robustness and Efficiency
In this section, we evaluate the robustness of the model
based on unseen log types. We compare the final repre-
sentations of different block_id log sequences to assess
the log types. Absolutely, given the massive volume
of system log data, processing time indeed becomes a
critical factor. In our experiments, we also evaluated
the time consumption of our model across different log
datasets, highlighting the efficiency of our approach.
In our research, we analyzed the distribution of log
template quantities in the log dataset to examine
MTCNLog’s detection effect on new types of logs. As
depicted in Figure 15, due to the inherent instability
of log data, an increase in the number of logs can in-

Figure 15
Distribution of log types for randomly partitioned HDFS
datasets

Figure 14
Results of ablation study

4.7 Robustness and Efficiency

In this section, we evaluate the robustness of the
model based on unseen log types. We compare the
final representations of different block_id log
sequences to assess the log types. Absolutely, given
the massive volume of system log data, processing
time indeed becomes a critical factor. In our
experiments, we also evaluated the time
consumption of our model across different log
datasets, highlighting the efficiency of our approach.

Figure 15
Distribution of log types for randomly partitioned
HDFS datasets

In our research, we analyzed the distribution of log

template quantities in the log dataset to
examine MTCNLog’s detection effect on new
types of logs. As depicted in Figure 15, due to
the inherent instability of log data, an increase
in the number of logs can introduce new log
templates. To address this, MTCNLog learns
the semantic features of logs to identify whether
new log templates are anomalous. This
approach allows for more robust and adaptive
anomaly detection, even in the face of evolving
log data.

It is noteworthy that new log templates often
contain some out-of-vocabulary (OOV) words,
which makes it difficult to extract the semantic
information of the log templates. To reduce the
OOV words, we employ the classic subword
segmentation method in natural language
processing to divide an OOV word into several
subwords that have appeared before. For
instance, the OOV long word “allocateBlock” is
split into “allocate” and “Block”, thereby
reducing the number of OOV words and
enhancing the effect of semantic feature
extraction. To further assess the model’s
effectiveness on new types of logs, we trained
the model on varying amounts of log sequences
on the HDFS. Table 5 provides a summary of
the proportion of new log templates and their
detection results. The model’s performance
improves as the training ratio increases.
Remarkably, even when the proportion of new
templates is as high as 60%, the F1-score still
achieves 96.55%. This can be attributed to the
semantic representation of normal log events.
Changes in the events can still be represented as
vectors similar to the original events, while
vectors of abnormal events and normal events
differ significantly. Consequently, MTCNLog
exhibits robustness to variations in log events.

Table 5

Evaluation results of a new type of log for HDFS dataset

Training log
sequences

Num of log
templates Percentage of new templates (%) Precision Recall F1-score

4000 13 56.7 0.9454 0.9631 0.9542

5000 14 53.3 0.9631 0.9645 0.9638

6000 15 50 0.9714 0.9687 0.9701

7000 16 46.7 0.9814 0.9832 0.9823

troduce new log templates. To address this, MTCN-
Log learns the semantic features of logs to identify
whether new log templates are anomalous. This ap-
proach allows for more robust and adaptive anomaly
detection, even in the face of evolving log data.
It is noteworthy that new log templates often contain
some out-of-vocabulary (OOV) words, which makes it
difficult to extract the semantic information of the log
templates. To reduce the OOV words, we employ the
classic subword segmentation method in natural lan-
guage processing to divide an OOV word into several
subwords that have appeared before. For instance,
the OOV long word “allocateBlock” is split into “al-
locate” and “Block”, thereby reducing the number of
OOV words and enhancing the effect of semantic fea-
ture extraction. To further assess the model’s effec-
tiveness on new types of logs, we trained the model
on varying amounts of log sequences on the HDFS.
Table 5 provides a summary of the proportion of new
log templates and their detection results. The model’s
performance improves as the training ratio increases.
Remarkably, even when the proportion of new tem-
plates is as high as 60%, the F1-score still achieves
96.55%. This can be attributed to the semantic repre-
sentation of normal log events. Changes in the events
can still be represented as vectors similar to the origi-
nal events, while vectors of abnormal events and nor-
mal events differ significantly. Consequently, MTCN-
Log exhibits robustness to variations in log events.
In summary, Table 6 shows the time consumption of
different log anomaly detection methods on various
datasets. As can be seen, PCA is based on cluster com-
putation and does not involve complex neural network
weight calculations. LightLog is a lightweight network
deployed on edge devices that reduces the number of
model parameters through global average pooling, thus
their training and testing times are relatively short.
Among other methods involving neural network mod-
els, our proposed MTCNLog method has shorter train-
ing and testing times than LogAnomaly and Deeplog,
but slightly higher compared to methods like LogRo-
bust. This is due to the introduction of a pre-trained
model, which increases the model’s input from 1-di-
mensional to 300-dimensional, leading to an increase
in model parameters, and the introduction of a multi-
head attention mechanism results in more parame-
ters than LSTM. In conclusion, although our method
outperforms traditional methods and deep learning

Information Technology and Control 2024/3/53830

Table 5
Evaluation results of a new type of log for HDFS dataset

Training log sequences Num of log templates Percentage of new templates (%) Precision Recall F1-score

4000 13 56.7 0.9454 0.9631 0.9542

5000 14 53.3 0.9631 0.9645 0.9638

6000 15 50 0.9714 0.9687 0.9701

7000 16 46.7 0.9814 0.9832 0.9823

8000 17 43.3 0.9825 0.9844 0.9834

Table 6
Time consumption of different methods on log datasets

Method
HDFS BGL

Training Testing Training Testing

PCA [31] 27 min 1.5 s 13 s 1 s

DeepLog [7] 2 h 25 min 42 min 1 h 6 min 10.5 min

LogAnomaly [17] 2 h 40 min 50 min 2 h 20 min 24 min

LogRobust [27] 1h 13 min 12 min 51 min 7 min

LightLog [23] 29 min 2 min 16 min 1.5 min

MTCNLog (ours) 1 h 45 min 23 min 1 h 30 min 18 min

methods like DeepLog in terms of metric evaluation,
it is slightly inferior to them in terms of log processing
timeliness. Therefore, MTCNLog is suitable for tasks
that require high accuracy in log detection and low
time consumption. The slightly larger time consump-
tion of MTCNLog is a shortcoming that we will focus
on researching and improving in the future.

5. Conclusions
Anomaly detection plays a pivotal role in ensuring
system reliability. In this paper, we introduce MTCN-
Log, a novel deep learning-based framework for log-
based anomaly event detection. This framework en-
hances the accuracy of log parsing by incorporating
post-processing operations, resulting in more precise
log templates. Feature extraction is performed using
the Word2Vec and TF-IWF weighting algorithms,
yielding weighted sentence embedding vectors.
These vectors leverage semantic information to gen-
erate more effective feature representations from log
event sequences. The final anomaly detection model
is constructed based on multi-head attention mech-

anisms, multi-scale convolution, and temporal con-
volution networks. This model simultaneously learns
local features and long-distance dependency features
of logs, enabling it to handle new types of log tem-
plates. We evaluated MTCNLog on the authoritative
HDFS dataset. The results validate the effectiveness
of MTCNLog and confirm the utility of the TCN mod-
el, multi-scale convolution module, and multi-head
attention mechanism for log-based anomaly event
detection. This paper primarily focuses on semantic
feature extraction from individual log statements.
However, in practical production, operators often an-
alyze faults based on multiple logs. Therefore, future
work will explore the semantic feature representa-
tion of multiple types of logs. As the scale of system
logs and the number of log templates continue to
grow, we will also investigate more efficient semantic
extraction methods to reduce the execution time and
memory computation costs of log anomaly detection.

Acknowledgement
This research was funded by grants from State Grid
Corporation Science and Technology Program
(SGSXDK00DJJS2250061).

831Information Technology and Control 2024/3/53

References
1. Bai, Y., Chi, Y., Zhao, D. PatCluster: A Top-Down Log

Parsing Method Based on Frequent Words. IEEE Ac-
cess 2023, 11, 8275-8282. https://doi.org/10.1109/AC-
CESS.2023.3239012

2. Bin Lashram, A., Hsairi, L., Al Ahmadi, H. HCLPars:
A New Hierarchical Clustering Log Parsing Meth-
od. Engineering, Technology & Applied Science Re-
search, 2023, 13, 11130-11138. https://doi.org/10.48084/
etasr.6013

3. Brown, A., Tuor, A., Hutchinson, B., Nichols, N. Recur-
rent Neural Network Attention Mechanisms for Inter-
pretable System Log Anomaly Detection. In Proceed-
ings of the First Workshop on Machine Learning for
Computing Systems, Tempe AZ USA, June 12 2018, 1-8.
https://doi.org/10.1145/3217871.3217872

4. Bai, S., Kolter, J. Z., Koltun, V. Bai, S., Kolter, J. Z., Koltun,
V. An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling. arXiv
preprint, 2018. arXiv:1803.01271.

5. Chen, M., Zheng, A. X., Lloyd, J., Jordan, M. I., Brewer, E.
Failure Diagnosis Using Decision Trees. In Proceedings
of the International Conference on Autonomic Com-
puting, New York, NY, USA, 2004, 36-43. https://doi.
org/10.1109/ICAC.2004.1301345

6. Debnath, B., Solaimani, M., Gulzar, M. A. G., Arora, N., Lu-
mezanu, C., Xu, J., Zong, B., Zhang, H., Jiang, G., Khan, L.
LogLens: A Real-Time Log Analysis System. In Proceed-
ings of the 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), Vienna, 2018,
1052-1062. https://doi.org/10.1109/ICDCS.2018.00105

7. Du, M., Li, F., Zheng, G., Srikumar, V. DeepLog: Anoma-
ly Detection and Diagnosis from System Logs through
Deep Learning. In Proceedings of the 2017 ACM SIG-
SAC Conference on Computer and Communications
Security, Dallas Texas USA, 2017, 1285-1298. https://
doi.org/10.1145/3133956.3134015

8. Farshchi, M., Schneider, J.-G., Weber, I., Grundy, J. Ex-
perience Report: Anomaly Detection of Cloud Applica-
tion Operations Using Log and Cloud Metric Correla-
tion Analysis. In Proceedings of the 2015 IEEE 26th
International Symposium on Software Reliability Engi-
neering (ISSRE), Gaithersbury, MD, USA, 2015, 24-34.
https://doi.org/10.1109/ISSRE.2015.7381796

9. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M. R. A
Survey on Automated Log Analysis for Reliability En-
gineering. ACM Computing Surveys, 2022, 54, 1-37.
https://doi.org/10.1145/3460345

10. Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G.,
Mueen, A. LogMine: Fast Pattern Recognition for Log
Analytics. In Proceedings of the 25th ACM Internation-
al on Conference on Information and Knowledge Man-
agement, Indianapolis Indiana USA, 2016, 1573-1582.
https://doi.org/10.1145/2983323.2983358

11. He, P., Zhu, J., Zheng, Z., Lyu, M. R. Drain: An Online Log
Parsing Approach with Fixed Depth Tree. In Proceed-
ings of the 2017 IEEE International Conference on Web
Services (ICWS), 2017, 33-40. https://doi.org/10.1109/
ICWS.2017.13

12. He, Y., Zhao, J. Temporal Convolutional Networks for
Anomaly Detection in Time Series. Journal of Phys-
ics: Conference Series, 2019, 1213, 042050. https://doi.
org/10.1088/1742-6596/1213/4/042050

13. He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Las Vegas, NV, USA, 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90

14. Huang, S., Liu, Y., Fung, C., He, R., Zhao, Y., Yang, H.,
Luan, Z. HitAnomaly: Hierarchical Transformers for
Anomaly Detection in System Log. IEEE Transactions
on Network and Service Management, 2020, 17, 2064-
2076. https://doi.org/10.1109/TNSM.2020.3034647

15. Le, V.-H., Zhang, H. Log-Based Anomaly Detection
with Deep Learning: How Far Are We? In Proceed-
ings of the 44th International Conference on Soft-
ware Engineering, 2022, 1356-1367. https://doi.
org/10.1145/3510003.3510155

16. Li, X., Chen, P., Jing, L., He, Z., Yu, G. SwissLog: Robust
Anomaly Detection and Localization for Interleaved
Unstructured Logs. IEEE Transactions on Dependable
Secure Computing, 2023, 20, 2762-2780. https://doi.
org/10.1109/TDSC.2022.3162857

17. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen,
Y., Zhang, R., Tao, S., Sun, P., Zhou, R. LogAnomaly: Un-
supervised Detection of Sequential and Quantitative
Anomalies in Unstructured Logs. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, Macao, China, August 2019, 4739-
4745. https://doi.org/10.24963/ijcai.2019/658

18. Makanju, A., Zincir-Heywood, A.N., Milios, E.E. A
Lightweight Algorithm for Message Type Extraction in
System Application Logs. IEEE IEEE Transactions on
Knowledge and Data Engineering, 2012, 24, 1921-1936.
https://doi.org/10.1109/TKDE.2011.138

Information Technology and Control 2024/3/53832

19. Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J.,
Kao, O. Self-Attentive Classification-Based Anomaly
Detection in Unstructured Logs. In Proceedings of the
2020 IEEE International Conference on Data Mining
(ICDM), Sorrento, Italy, 2020, 1196-1201. https://doi.
org/10.1109/ICDM50108.2020.00148

20. Qin, T., Gao, Y., Wei, L., Liu, Z., Wang, C. Potential
Threats Mining Methods Based on Correlation Analy-
sis of Multi-type Logs. IET Networks, 2018, 7, 299-305.
https://doi.org/10.1049/iet-net.2017.0188

21. Vaarandi, R., Pihelgas, M. LogCluster - A Data Clustering
and Pattern Mining Algorithm for Event Logs. In Proceed-
ings of the 2015 11th International Conference on Network
and Service Management (CNSM), Barcelona, Spain,
2015, 1-7. https://doi.org/10.1109/CNSM.2015.7367331

22. Wang, Z., Chen, Z., Ni, J., Liu, H., Chen, H., Tang, J. Multi-
Scale One-Class Recurrent Neural Networks for Discrete
Event Sequence Anomaly Detection. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, Virtual Event Singapore, 2021,
3726-3734. https://doi.org/10.1145/3447548.3467125

23. Wang, Z., Tian, J., Fang, H., Chen, L., Qin, J. LightLog: A
Lightweight Temporal Convolutional Network for Log
Anomaly Detection on the Edge. Computer Networks 2022,
203, 108616. https://doi.org/10.1016/j.comnet.2021.108616

24. Wang, R., Li, J. Bayes Test of Precision, Recall, and F1
Measure for Comparison of Two Natural Language

Processing Models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, Association for Computational Linguistics, Flor-
ence, Italy, 2019, 4135-4145. https://doi.org/10.18653/
v1/P19-1405

25. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. I.
Detecting Large-Scale System Problems by Mining
Console Logs. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles,
Big Sky Montana USA, 2009, 117-132. https://doi.
org/10.1145/1629575.1629587

26. Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong,
X., Zhang, W. PLELog: Semi-Supervised Log-Based
Anomaly Detection via Probabilistic Label Estimation.
In Proceedings of the 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), Madrid, ES,
2021, 230-231. https://doi.org/10.1109/ICSE-Compan-
ion52605.2021.00106

27. Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y.,
Xie, C., Yang, X., Cheng, Q., Li, Z., Chen, J., He, X., Yao,
R., Lou, J.-G., Chintalapati, M., Shen, F., Zhang, D. Ro-
bust Log-Based Anomaly Detection on Unstable Log
Data. In Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software En-
gineering, Tallinn Estonia, 2019, 807-817. https://doi.
org/10.1145/3338906.3338931

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

