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System logs are instrumental in understanding computer system behavior and ensuring system stability and 
reliability, making anomaly detection in system logs crucial. However, with the increasing scale and complex-
ity of modern software systems, log data is growing exponentially, rendering traditional manual log inspec-
tion methods inefficient. Moreover, the evolution of log messages over time results in a lower accuracy rate 
for anomaly detection. To address these issues, this paper proposes a log anomaly detection method based on 
multi-scale temporal convolution networks and multi-head attention. This method utilizes temporal convolu-
tion networks to extract temporal information from log data and extracts hidden features of logs through differ-
ent receptive fields of multi-scale convolution kernels. By integrating the multi-head attention mechanism, the 
sequential dependencies of logs can be better captured. We conducted repeated experiments on the authorita-
tive public HDFS and BGL log datasets to evaluate their detection accuracy and robustness. The experiments 
demonstrate that MTCNLog outperforms existing anomaly detection methods and is robust to the continuous 
evolution of logs.
KEYWORDS: Anomaly detection, System log, Log analysis, Deep learning, Neural networks.
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1. Introduction
Ensuring high availability and reliability is of utmost 
importance for large-scale systems that are heavily 
reliant on software [15]. These systems are designed 
to serve a broad spectrum of users, providing a wide 
array of services. Even the slightest malfunction 
can lead to user dissatisfaction, which could po-
tentially translate into significant economic losses. 
Hence, it is imperative for these systems to main-
tain continuous operation, typically on a 24x7 basis. 
The implementation of precise and efficient detection 
methods can mitigate system failures that are trig-
gered by anomalous events. Consequently, anomaly 
detection emerges as a pivotal component in guaran-
teeing the quality assurance of complex, software-in-
tensive systems. It is through such mechanisms that 
the robustness and reliability of these systems can be 
upheld, thereby ensuring seamless service delivery to 
the end-users. 
Software-intensive systems are known to document 
runtime information through the generation of con-
sole logs. The scale and complexity of these systems 
often result in the production of substantial volumes 
of logs. These logs, which serve as a comprehensive 
record of the system’s operational status, are exten-
sively utilized for anomaly detection. Take, for exam-
ple, Alibaba’s cloud computing system, which gener-
ates an astounding 30-50 GB of trace logs every hour, 
equivalent to approximately 120-200 million lines. 
Each entry in a log file is essentially a semi-structured 
text message, originating from a log statement. This 
message comprises predefined event templates along 
with several dynamic parameters, offering a detailed 
insight into the system’s functioning [9]. A log mes-
sage can be deconstructed into a log event, with each 
log event embodying the template or the constant 
component of the message. Each log entry is time-
stamped, marking the time of its occurrence. As such, 
a log file can be viewed as a log sequence, comprising 
a vast number of log entries organized in the order of 
system execution. Log anomalies can be categorized 
into two types: individual log anomalies and log se-
quence anomalies. Individual log anomalies docu-
ment abnormal states and are typically perceived as 
outliers. However, given the varied abnormal behav-
iors across different systems, detecting individual log 
anomalies can be challenging without prior knowl-

edge of the target system’s abnormal behavior. Our 
focus, therefore, shifts to log sequence anomalies, 
which allow us to identify abnormalities arising from 
an abnormal execution order or incomplete execu-
tion patterns within the log sequence. The automatic 
analysis of logs, aimed at identifying anomalous sys-
tem behaviors, is becoming increasingly crucial in 
managing modern complex systems. Consequently, 
log anomaly detection has emerged as a vibrant area 
of research in both academic and industrial settings.
Traditional methods of log anomaly detection are of-
ten deemed inefficient [19]. These methods typically 
hinge on domain knowledge and utilize techniques 
such as regular expression matching or keyword 
searches to pinpoint anomalies. While these meth-
ods are capable of detecting anomalies, they require 
substantial time and financial investment. In the con-
text of software-intensive systems, the application of 
traditional log anomaly detection methods is imprac-
tical. The scale and complexity of these systems ne-
cessitate a more efficient and cost-effective approach 
to anomaly detection. This highlights the need for in-
novative solutions that can effectively identify anom-
alies in log sequences, thereby enhancing the reliabil-
ity and performance of these systems.
In recent years, a multitude of data-driven approach-
es have been introduced to automate the detection of 
system anomalies. A variety of log sequence anomaly 
detection methods have been devised using tradition-
al machine learning techniques. These include logistic 
regression [8], support vector machines and principal 
component analysis. These techniques extract valu-
able features from log sequences and train binary clas-
sifiers, with or without labels, to identify system anom-
alies. While these traditional machine learning-based 
methods have demonstrated high accuracy, they fall 
short in capturing the temporal information embedded 
within log sequences due to manual feature extraction. 
To address this limitation, deep learning-based meth-
ods such as DeepLog [7], LogAnomaly [17], PLELog 
[26], LogRobust [27] and HitAnomaly [14] have been 
extensively employed for log sequence anomaly detec-
tion. Most of these methods leverage recurrent neural 
networks (RNNs) to capture comprehensive bidirec-
tional contextual information. Despite the commend-
able performance of previous methods, both machine 
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learning and deep learning-based, in log sequence 
anomaly detection, there remain challenges in model-
ing and analyzing log data. 
Semantic Information: Current methods predominant-
ly employ sequential vectors or quantitative vectors to 
represent log sequences. However, these approaches 
tend to overlook the semantic information inherent in 
logs, which can result in an inadequate capture of log 
features. The semantic content of logs, which provides 
valuable insights into the system’s behavior, is thus of-
ten underutilized in anomaly detection. 
Dependency: The detection of anomalies in log se-
quences relies heavily on both global and local depen-
dencies between logs. Previous methods have often 
utilized Long Short-Term Memory  networks to cap-
ture the dependency information within log sequenc-
es. However, due to the sequential nature of LSTM, it 
falls short in effectively capturing global dependen-
cies. Moreover, its capacity to capture local depen-
dencies is also somewhat limited due to the absence 
of interactive relationships.
Log Template Updating: The intricacy of software 
functions and the regular updates to business process-
es lead to more frequent alterations to log templates, 
thereby significantly increasing the diversity of log 
templates. This could disrupt the correlation between 
logs in the log sequence learned by the model, making 
it challenging to adapt to the constantly changing situ-
ations encountered in real-world scenarios. 
To address the aforementioned challenges, we intro-
duce a novel approach, MTCNLog, for handling log 
sequences. First, we employed the popular log pars-
ing approach IPLoM [18] to extract log templates, and 
performed post-processing operations to mitigate the 
adverse effects of redundant templates, thereby facil-
itating subsequent feature extraction. Subsequently, 
log templates are represented using weighted seman-
tic vectors based on Word2Vec, facilitating the capture 
of semantic information hidden within the log tem-
plates. Upon obtaining the semantic vector sequences, 
MTCNLog employs an improved TCN [4] based on 
multiple scales and a multi-head attention mechanism 
to learn hidden patterns within the log sequences and 
predict whether the log sequence is anomalous. 
The proposed method encompasses multiple mod-
ules, including a multi-scale convolution module, di-
lated convolution, residual blocks, and a multi-head 

attention module. Due to the inherent limitations of a 
single Temporal Convolutional Network in extracting 
information across different time scales, the multi-
scale feature extraction module in this study employs 
multiple convolutional kernels of varying sizes to 
capture diverse local information. This approach ef-
fectively circumvents the need for deep stacking of 
the model. Moreover, the TCN, when combined with 
a multi-head attention mechanism, can effectively 
integrate the contextual information of log state-
ments. The attention mechanism assigns weights to 
more significant events, thereby facilitating more ac-
curate and rapid detection. Past methods have com-
monly employed Long Short-Term Memory (LSTM) 
networks for detecting anomalies in log data. LSTM 
captures sequence information through recursive 
formulas. However, as information in LSTM can only 
flow from one time step to the next, such sequential 
networks struggle to effectively uncover dependen-
cies between distant log entries in the log sequenc-
es. In addition, LSTM is unable to learn the intrinsic 
connection features of log sequences from a global 
perspective. In log anomaly detection tasks, both local 
correlations between adjacent log entries and long-
range dependencies between distant log entries can 
greatly impact the final anomaly judgments. There-
fore, methods relying solely on LSTM still have some 
limitations in log anomaly detection tasks. Compared 
to LSTM, our MTCNLog model exhibits superior ca-
pability in extracting long-term dependency features. 
Our method is particularly suited for handling system 
log data, which displays distinct temporal patterns 
and long-term dependencies, making it more effec-
tive than the LSTM model. The main contributions 
are summarized as follows:
1 By incorporating the post-processing step into IP-

LoM, we have effectively addressed the issue of in-
sufficient accuracy in existing log templates. This 
enhancement not only facilitates subsequent fea-
ture extraction but also lays a solid foundation for 
the efficacy of log anomaly detection.

2 We propose a deep learning model for log anomaly 
detection that fully exploits the strengths of multi-
scale feature extraction modules, temporal con-
volutional networks, and multi-headed attention 
mechanisms for handling time-series data. The 
multi-scale feature extraction module enhances 
the model’s learning capacity via a multi-reso-
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lution receptive field. TCN can effectively distill 
hidden information and temporal relationships 
within features while eliminating redundant traits. 
Multi-headed attention captures complex global 
dependencies of log anomalies and spotlight criti-
cal information. By automatically learning salient 
features and uncovering latent sequential depen-
dencies, the model achieves performant and flexi-
ble anomaly detection.

3 We have conducted numerous comparative and 
robustness experiments on two authoritative 
log datasets, HDFS and BGL, to validate the per-
formance of the MTCNLog model in system log 
anomaly detection. The experimental results 
demonstrate that MTCNLog exhibits commend-
able accuracy and robustness in system log anom-
aly detection.

The rest structure of this paper is outlined as follows: 
the related work is introduced in Section 2. Section 3 
describes the proposed log anomaly detection meth-
od MTCNLog, including the overall detection frame-
work, log processing, and anomaly detection model. 
Finally, in Section 4, we conducted experiments to 
evaluate the performance of the proposed model, and 
Section 5 summarizes our work in this paper.

2. Related Work
The process of log anomaly detection involves three 
crucial stages: log parsing, feature extraction, and 
anomaly detection. Each stage has its specific meth-
ods and tools, and there exists a close relationship be-
tween them. In the following, we will review the relat-
ed work for each stage.

2.1. Log Parsing
Log parsing is typically the initial step in log anomaly 
detection frameworks [1]. It acts as a preprocessing 
tool, and its accuracy has a significant influence on 
the outcomes of log anomaly detection. Log parsing 
involves the conversion of semi-structured log data 
into structured data [2]. Logs are unstructured and 
comprise both fixed and variable components. The 
goal of log parsing is to segregate the constant and 
variable parts in the raw logs, thereby extracting uni-
formly formatted log templates. An illustration of log 
parsing is depicted in Figure 1.

Log parsing solutions primarily fall into three catego-
ries: clustering-based approaches, frequent pattern 
mining-based approaches, and heuristic approaches. 
Some log parsers leverage traditional clustering algo-
rithms. For instance, LogMine [10] is a representative 
clustering-based solution that utilizes a single-pass 
clustering algorithm to scan all log messages, thereby 
generating dense clusters. 
Certain log parsers make use of frequent pattern min-
ing, a well-established technique in data mining, to un-
cover patterns that go beyond a set support threshold. 
LogCluster uses hash tables to pinpoint words that oc-
cur frequently. It extracts all frequent words from each 
log message to form or update potential groups. 
A number of log parsers utilize a variety of heuristic 
algorithms for log template extraction. Drain [11] is a 
representative heuristic approach that groups origi-
nal log messages using a parsing tree of fixed depth, 
with each group converging at leaf nodes. Predefined 
filtering rules guide the search for suitable leaf nodes. 
Spell is another widely used log parsing method that 
is based on the longest common subsequence. It pro-
cesses log messages in a streaming manner into struc-
tured templates and variables. IPLoM parses logs in 
three steps: it scans and partitions logs by length, di-
vides partitions using token frequency and bijection, 
and extracts templates where unique tokens are con-
stants and others are variables. In this study, IPLoM 
was selected as the log parsing method, transforming 

Figure 1 
Overview of log parsing 

  

model exhibits superior capability in extracting 
long-term dependency features. Our method is 
particularly suited for handling system log data, 
which displays distinct temporal patterns and long-
term dependencies, making it more effective than 
the LSTM model. The main contributions are 
summarized as follows: 

1. By incorporating the post-processing step into 
IPLoM, we have effectively addressed the issue of 
insufficient accuracy in existing log templates. This 
enhancement not only facilitates subsequent 
feature extraction but also lays a solid foundation 
for the efficacy of log anomaly detection. 

2. We propose a deep learning model for log 
anomaly detection that fully exploits the strengths 
of multi-scale feature extraction modules, temporal 
convolutional networks, and multi-headed 
attention mechanisms for handling time-series 
data. The multi-scale feature extraction module 
enhances the model's learning capacity via a multi-
resolution receptive field. TCN can effectively 
distill hidden information and temporal 
relationships within features while eliminating 
redundant traits. Multi-headed attention captures 
complex global dependencies of log anomalies and 
spotlight critical information. By automatically 
learning salient features and uncovering latent 
sequential dependencies, the model achieves 
performant and flexible anomaly detection. 

3. We have conducted numerous comparative and 
robustness experiments on two authoritative log 
datasets, HDFS and BGL, to validate the 
performance of the MTCNLog model in system log 
anomaly detection. The experimental results 
demonstrate that MTCNLog exhibits 
commendable accuracy and robustness in system 
log anomaly detection. 

The rest structure of this paper is outlined as 
follows: the related work is introduced in Section 2. 
Section 3 describes the proposed log anomaly 
detection method MTCNLog, including the overall 
detection framework, log processing, and anomaly 
detection model. Finally, in Section 4, we 
conducted experiments to evaluate the 
performance of the proposed model, and Section 5 
summarizes our work in this paper. 

 

2. Related Work 

The process of log anomaly detection involves 
three crucial stages: log parsing, feature 
extraction, and anomaly detection. Each stage 
has its specific methods and tools, and there 
exists a close relationship between them. In 
the following, we will review the related work 
for each stage. 

2.1. Log Parsing 

Log parsing is typically the initial step in log 
anomaly detection frameworks [1]. It acts as a 
preprocessing tool, and its accuracy has a 
significant influence on the outcomes of log 
anomaly detection. Log parsing involves the 
conversion of semi-structured log data into 
structured data [2]. Logs are unstructured and 
comprise both fixed and variable components. 
The goal of log parsing is to segregate the 
constant and variable parts in the raw logs, 
thereby extracting uniformly formatted log 
templates. An illustration of log parsing is 
depicted in Figure 1. 

Figure 1  
Overview of log parsing  

 
Log parsing solutions primarily fall into three 
categories: clustering-based approaches, 
frequent pattern mining-based approaches, 
and heuristic approaches. Some log parsers 
leverage traditional clustering algorithms. For 
instance, LogMine [10] is a representative 
clustering-based solution that utilizes a single-
pass clustering algorithm to scan all log 
messages, thereby generating dense clusters.  

Certain log parsers make use of frequent 
pattern mining, a well-established technique 
in data mining, to uncover patterns that go 
beyond a set support threshold. LogCluster 



817Information Technology and Control 2024/3/53

semi-structured log data into structured log events 
and generating log templates. To enhance the accu-
racy of log parsing, post-processing operations were 
also applied.

2.2. Feature Extraction
The subsequent stage in the log anomaly detection 
process involves feature extraction from the logs, 
which necessitates representing the logs in a format 
that complies with the requirements of the anomaly 
detection model. 
Log representation techniques take semi-structured 
raw log data or parsed log data as input and generate 
representations at different levels of abstraction [20]. 
Specifically, it is necessary to extract relevant features 
from log templates to input them into deep learning 
models for detection. The advancement of Natural 
Language Processing (NLP) techniques has provided 
methodologies for feature representation on log tem-
plates in this context. Currently, there are three main 
representation formats: sequential vectors, quantita-
tive vectors, and semantic vectors. Sequential vectors 
reflect the order of log events in a window. For example, 
DeepLog indexes each log event and subsequently cre-
ates sequential vectors for corresponding log windows. 
Quantitative vectors, similar to log count vectors, are 
used to capture the occurrences of each log event in a 
log window. Semantic vectors, on the other hand, are 
used to capture the meaning of each log event in a log 
window. Semantic vectors are generated by applying 
NLP techniques such as word embedding or topic mod-
eling on log templates. LogAnomaly utilizes sequential 
vectors and quantitative vectors to detect anomalies.
In log anomaly detection, semantic vectors from lan-
guage models are used to capture log event semantics. 
These vectors provide a dual-layered representation: 
token-level and event-level. A log message is essen-
tially a token string, each represented as embeddings 
via a pre-trained language model like Word2Vec. 
Logsy [19], for example, labels preprocessed log mes-
sages and generates token embeddings from the log 
template. These representations, along with token 
position encoding, are input into a transformer-based 
architecture, refining token-level representations 
through training. Event-level embeddings, vector 
representations encoding individual log templates, 
are obtained by aggregating token-level embeddings 
using various pooling methods. LogRobust employs a 

pre-trained FastText model to compute semantic vec-
tors for log events. Moreover, certain language mod-
els are capable of directly generating such represen-
tations. For example, Swisslog [16] uses a pre-trained 
BERT as the sentence encoder to directly produce se-
quence-level embeddings for log templates. In our re-
search, we have adopted a weighted vector represen-
tation method that combines Word2Vec and TF-IWF 
to extract significant features from log templates.

2.3. Anomaly Detection
The task of detecting anomalies in logs can be viewed 
as a binary classification problem, where the goal is to 
classify a log sequence as either normal or anomalous. 
Methods for log anomaly detection that have been 
proposed recently can be broadly divided into two 
categories: those based on data mining techniques 
and those that utilize deep learning approaches.
Log anomaly detection methods, based on data min-
ing, are broadly classified into supervised and unsu-
pervised learning techniques. Supervised techniques 
use labeled log data to train models, learning fixed pat-
terns corresponding to different log labels. Common 
models include support vector machines, finite state 
automatons [6], decision trees [5], logistic regression 
[20], among others. These methods typically achieve 
higher detection accuracy but require labor-intensive 
and costly manual labeling. Their performance varies 
across different datasets and applications. A key lim-
itation is their inability to effectively model sequen-
tial dependencies and semantic contexts among log 
events. For instance, PCA and clustering treat each 
log message independently, ignoring their occurrence 
order. Pattern mining learns correlation but lacks 
generalization. To overcome these limitations, recent 
research focuses on deep learning techniques, capa-
ble of capturing complex sequential and structural log 
data information.
Indeed, deep learning has garnered considerable at-
tention over the past decade due to its superior ca-
pabilities in model representation and performance. 
Numerous studies have leveraged deep learning for 
the detection of anomalies in log sequences.
Brown et al. [3] introduced an RNN model that incor-
porates an attention mechanism for the detection of 
anomalous patterns in system logs. Zhang et al., on 
the other hand, proposed a unique anomaly detection 
model for the automatic analysis of console logs. This 
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model leverages the Long Short-Term Memory net-
work to capture the sequential characteristics of log 
sequences, marking the first application of the LSTM 
model in the field of log anomaly detection. This has led 
to numerous studies exploring the use of LSTM models 
and their variants for log anomaly detection. OC4Seq 
utilizes a multi-scale RNN framework that takes into 
account the imbalanced nature of log data. This allows 
for the capture of different levels of sequence patterns 
by embedding discrete event sequences into a latent 
space, facilitating relatively straightforward anomaly 
detection. Compared to LSTM and RNN, the Tempo-
ral Convolutional Network is a novel method for time 
series prediction that can capture long-term depen-
dencies. He et al. [12] utilized a TCN model, trained on 
normal sequences, to forecast trends across a series of 
time steps. They then fitted the errors from these pre-
dictions to a Gaussian distribution to determine if the 
sequence was anomalous.
Despite the impressive achievements of many meth-
ods in log data anomaly detection, the increasing 
quantity and complexity of log data in software-in-
tensive systems have made it more challenging to de-
tect anomalies in real log sequences. In this study, we 
primarily utilized the TCN model, multi-head atten-
tion mechanism, and multi-scale convolution archi-
tecture to develop a deep learning-based system log 
anomaly detection model. This model can effectively 
handle longer log sequences, automatically learn the 
importance of various log event sequences, discover 

hidden dependencies in the sequences, and improve 
the accuracy of anomaly detection.

3. Methodology
In this section, we provide a detailed description of the 
proposed MTCNLog method. We begin by introduc-
ing the framework of MTCNLog. After presenting the 
framework, we propose an improved step for IPLoM, 
which parses raw logs into log templates. Following 
this, we employ language models in conjunction with 
TF-IWF weighting to represent log templates as se-
mantic vectors. Finally, we utilize a TCN model that 
integrates a multi-head attention mechanism and a 
multi-scale feature extraction module to learn the 
long-term dependencies of log sequences and carry 
out log anomaly detection. This approach allows us 
to effectively capture the intricate patterns within log 
data and enhance the accuracy of anomaly detection.

3.1. MTCNLog Framework
Our MTCNLog framework aims to leverage the se-
mantic relationships in log sequences for better log 
processing. Moreover, by automatically learning 
the correlation of various log event sequences, the 
framework uncovers hidden dependencies within 
the sequences, thereby improving the accuracy of log 
anomaly detection. The MTCNLog framework is il-
lustrated in Figure 2.

Figure 2
The framework of MTCNLog 

 

 

 
 

3.2. Log Parser (IPLoM) 

Effective log analysis begins with log parsing, 
transforming unstructured raw log messages into 
structured log events. Raw logs contain runtime 
information like timestamps and verbosity levels. 
For instance, in the raw log “Jun 22 04:11:42 com-bo 
pam_unix 17037 session closed for user news”, the 
log header is “Jun 22 04:11:42 combo supam_unix 
17037”, and the content is “session closed for user 
news”. Log parsers aim to convert raw messages 
into structured log templates by preserving 
constant words and replacing variable words with 
wildcards (e.g., “<*>”). This process enhances the 
efficiency and effectiveness of log analysis. 

Transforming dynamic, unstructured logs into a 
structured format can improve anomaly detection 
accuracy. Traditional log parsing, performed 
manually by developers using regular expressions, 
relies heavily on expert knowledge and experience 
but lacks active learning capabilities. Recently, 
more efficient log parsers like IPLoM have been 
proposed. The IPLoM algorithm is a log data 
clustering algorithm that operates by iteratively 
partitioning a set of log messages. While IPLoM is 

currently a competent log parsing tool, 
parsing errors can still occur. If IPLoM is used 
directly to construct log templates for 
anomaly detection, achieving optimal 
detection results can be challenging. This is 
because IPLoM sometimes parses many 
additional log events, which impedes the 
performance of the anomaly detection model 
detection. As shown in Table 1, the HDFS log 
templates parsed by the IPLoM method 
resulted in 42 different types of HDFS log 
templates. However, some log templates were 
found to be repetitive. For instance, the four 
log event templates in {E9,E10,E11} are 
similar, and E9 may encompass the other two 
templates. Directly converting these 
templates into semantic vectors could 
significantly impact the reliability of log 
anomaly detection. In this study, to enhance 
the accuracy of log parsing, we made certain 
improvements to the IPLoM method. We 
incorporated a post-processing operation into 
the IPLoM method. After IPLoM extracts the 
templates, we further optimize the log parsing 
effect to achieve a higher level of detection.  

Table 1 

Log templates obtained by parsing HDFS logs through the IPLoM 

Event Id Log Template 

E1 Receiving block<*>src:<*>dest:<*> 

E2 BLOCK* NameSystem.allocateBlock: <*> <*> 

… … 
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3.2. Log Parser (IPLoM)
Effective log analysis begins with log parsing, trans-
forming unstructured raw log messages into struc-
tured log events. Raw logs contain runtime infor-
mation like timestamps and verbosity levels. For 
instance, in the raw log “Jun 22 04:11:42 com-bo 
pam_unix 17037 session closed for user news”, the log 
header is “Jun 22 04:11:42 combo supam_unix 17037”, 
and the content is “session closed for user news”. Log 
parsers aim to convert raw messages into structured 
log templates by preserving constant words and re-
placing variable words with wildcards (e.g., “<*>”). 
This process enhances the efficiency and effective-
ness of log analysis.
Transforming dynamic, unstructured logs into a 
structured format can improve anomaly detection ac-
curacy. Traditional log parsing, performed manually 
by developers using regular expressions, relies heav-
ily on expert knowledge and experience but lacks ac-
tive learning capabilities. Recently, more efficient log 
parsers like IPLoM have been proposed. The IPLoM 
algorithm is a log data clustering algorithm that oper-
ates by iteratively partitioning a set of log messages. 
While IPLoM is currently a competent log parsing 
tool, parsing errors can still occur. If IPLoM is used 
directly to construct log templates for anomaly de-
tection, achieving optimal detection results can be 
challenging. This is because IPLoM sometimes pars-
es many additional log events, which impedes the per-

Table 1
Log templates obtained by parsing HDFS logs through the IPLoM

formance of the anomaly detection model detection. 
As shown in Table 1, the HDFS log templates parsed 
by the IPLoM method resulted in 42 different types 
of HDFS log templates. However, some log templates 
were found to be repetitive. For instance, the four 
log event templates in {E9,E10,E11} are similar, and 
E9 may encompass the other two templates. Direct-
ly converting these templates into semantic vectors 
could significantly impact the reliability of log anom-
aly detection. In this study, to enhance the accuracy 
of log parsing, we made certain improvements to the 
IPLoM method. We incorporated a post-processing 
operation into the IPLoM method. After IPLoM ex-
tracts the templates, we further optimize the log pars-
ing effect to achieve a higher level of detection. 
To enhance the accuracy of parsing, it is crucial to 
merge redundant templates that are similar and elim-
inate invalid templates through the post-processing 
operations of IPLoM. Specifically, IPLoM will ex-
amine the log event set one by one to identify which 
event templates originate from the same event. Since 
the variables have been replaced by “<*>” in the pre-
vious processing, we first replace consecutive wild-
cards “<*>” with a single wildcard “<*>”. Next, we se-
lect some representative log entries that match each 
log template and check for duplication. Based on the 
frequency of the log templates, if duplication is found, 
the final event template is extracted using the longest 
common subsequence algorithm. The post-process-

Event Id Log Template

E1 Receiving block<*>src:<*>dest:<*>

E2 BLOCK* NameSystem.allocateBlock: <*> <*>

… …

E9 writeBlock <*> received exception <*>

E10 writeBlock <*> received exception java.io.IOException

E11 writeBlock <*> received exception java.io.InterruptedIOException

… …

E21 Exception in receiveBlock for block <*> <*>

E22 Exception in receiveBlock for block <*> java.io.IOException:

… …

E42 Deleting block <*> file <*>
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Table 2
Updated HDFS log templates

EventId Log Template

E1 Receiving block<*>src:<*>dest:<*>

… …

E6 Changing block file offset of block<*>from<*>to<*>meta file offset to<*>

… …

E18 Unexpected error trying to delete block<*>BlockInfo not found in volumeMap<*>

… …

E30 Deleting block<*>file<*>

ing results of the log events are displayed in Table 2. 
This approach ensures a more accurate and reliable 
log parsing process, thereby improving the overall ef-
fectiveness of log anomaly detection.

3.3. Log Represent
The second stage of the log analysis process involves 
feature extraction. After log parsing, MTCNLog uses 
a combination of Word2Vec and TF-IWF to con-
vert each log event into a semantic vector, as shown 
in Figure 3. Word2Vec, an unsupervised language 
model, learns semantic knowledge from extensive 
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Temporal Convolutional Network model, and intro-
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effectively extract features without requiring a large 
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between hierarchical log events, the TCN model can 
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effectively capture the temporal dependencies in log 
data, and the multi-head attention can pay attention 
to dependencies at different positions in the log se-
quence simultaneously. This comprehensive model-
ing of interactions between logs is conducive to learn-
ing the semantic information of logs. This mechanism 
computes potential dependencies between logs and 
learns from them, enabling the model to capture in-
tricate relationships within log data. By focusing on 
different aspects of the log simultaneously, this model 
can effectively detect anomalies that might otherwise 
be overlooked. The overall structure of the model is 
depicted in Figure 4. 
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3.4.2. TCN
In the fields of computer vision and natural lan-
guage processing, Convolutional Neural Networks 
have demonstrated excellent performance in fea-
ture learning. Subsequently, methods such as Long 
Short-Term Memory networks have emerged for 
learning from time series data. However, the ef-
fectiveness of CNN is limited by its receptive field. 
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Therefore, Bai et al. [4] proposed a special type of 
convolutional neural network—Temporal Convolu-
tional Network  for sequence modeling tasks. TCN 
improves upon the basic CNN model and exhibits 
superior performance in handling time series prob-
lems. TCN can effectively analyze the relationships 
between data, with more stable gradients and higher 
computational efficiency. TCN is mainly composed 
of dilated convolution, causal convolution, and re-
sidual connections. 

3.4.3. Casual Convolution
The causal convolution, as depicted in Figure 5, is a 
crucial component of the Temporal Convolutional 
Network structure. A system is deemed causal if its 
output is solely dependent on current and past inputs, 
and is independent of future inputs. In a similar vein, 
a convolution is considered causal if the output at a 
given time is influenced only by the current and previ-
ous inputs, and not by future inputs. Unlike the typical 
bidirectional structure, the causal convolution has a 
unidirectional structure, where the current output is 
determined by the current and past inputs. This char-
acteristic of causal convolution addresses the issues 
of time leakage and inconsistent input-output lengths 
in sequence feature extraction. Specifically, for an in-
put X = (x0, x1, x2,…,xt,…,xT ), the corresponding output 
yt is related to the current input xt and a period (xt-1, xt-

2,…,xt-k) without the introduction of future inputs (xt+1, 
xt+2,…,xt+T ). This ensures that the model’s predictions 
are based solely on relevant and chronologically ap-
propriate data, enhancing the accuracy and reliability 
of the anomaly detection process.

Figure 5
Structure of the causal convolution
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on a pure multi-scale convolutional structure and 
Temporal Convolutional Network model, and 
introduces a multi-head attention mechanism into 
the anomaly detection model to enhance its ability to 
accurately detect anomalies. This model leverages 
the sparse connections of the convolutional structure 
to effectively extract features without requiring a 
large amount of computational resources. Its design 
combines the advantages of a multi-scale 
convolutional structure, TCN model, and multi-head 
attention mechanism. The multi-scale convolutional 
structure enables the model to capture the 
relationships between hierarchical log events, the 
TCN model can effectively capture the temporal 
dependencies in log data, and the multi-head 
attention can pay attention to dependencies at 
different positions in the log sequence 
simultaneously. This comprehensive modeling of 
interactions between logs is conducive to learning 
the semantic information of logs. This mechanism 
computes potential dependencies between logs and 
learns from them, enabling the model to capture 
intricate relationships within log data. By focusing 
on different aspects of the log simultaneously, this 
model can effectively detect anomalies that might 
otherwise be overlooked. The overall structure of the 
model is depicted in Figure 4.  

3.4.2 TCN 

In the fields of computer vision and natural language 
processing, Convolutional Neural Networks have 
demonstrated excellent performance in feature 
learning. Subsequently, methods such as Long Short-
Term Memory networks have emerged for learning 
from time series data. However, the effectiveness of 
CNN is limited by its receptive field. Therefore, Bai 
et al. [4] proposed a special type of convolutional 
neural network—Temporal Convolutional Network  
for sequence modeling tasks. TCN improves upon 
the basic CNN model and exhibits superior 
performance in handling time series problems. TCN 
can effectively analyze the relationships between 
data, with more stable gradients and higher 
computational efficiency. TCN is mainly composed 
of dilated convolution, causal convolution, and 
residual connections.  

3.4.3 Casual Convolution 

The causal convolution, as depicted in Figure 5, is a 
crucial component of the Temporal Convolutional 
Network structure. A system is deemed causal if its 

output is solely dependent on current and past 
inputs, and is independent of future inputs. In 
a similar vein, a convolution is considered 
causal if the output at a given time is influenced 
only by the current and previous inputs, and 
not by future inputs. Unlike the typical 
bidirectional structure, the causal convolution 
has a unidirectional structure, where the 
current output is determined by the current and 
past inputs. This characteristic of causal 
convolution addresses the issues of time 
leakage and inconsistent input-output lengths 
in sequence feature extraction. Specifically, for 
an input X = (x0, x1, x2,…,xt,…,xT ), the 
corresponding output yt is related to the 
current input xt and a period (xt-1, xt-2,…,xt-k) 
without the introduction of future inputs (xt+1, 
xt+2,…,xt+T ). This ensures that the model’s 
predictions are based solely on relevant and 
chronologically appropriate data, enhancing 
the accuracy and reliability of the anomaly 
detection process. 

 
Figure 5 
Structure of the causal convolution 
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Traditional CNNs use standard convolution 
kernels, with small ones offering low 
complexity but potentially missing data 
variations, and large ones providing a large 
receptive field but high computational load. 
Temporal Convolutional Networks address this 
by using dilated convolution, expanding the 
receptive field without significantly increasing 
complexity. The dilation factor in dilated 
convolution influences the input interval’s 
sampling range during convolution. The 
combination of causal convolution and dilated 
convolution, as depicted in Figure 6, can 
enhance the receptive field of the convolution 

3.4.4. Dilated Convolution
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tially missing data variations, and large ones pro-
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field without significantly increasing complexity. The 
dilation factor in dilated convolution influences the 
input interval’s sampling range during convolution. 
The combination of causal convolution and dilated 
convolution, as depicted in Figure 6, can enhance the 
receptive field of the convolution layer and obtain 
more information based on strict time constraints. 
For the sequence input X = (x0, x1, x2,...,xt ,...,xT ) and the 
filter W = (w0, w1, w2,...,wn), the dilated convolution at 
xt (1 ≤ t ≤ T) with dilation rate equal to d is defined as:
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Due to the linear increase of the dilation factor with 
network depth, the receptive field of the output layer 
can be effectively expanded. As a result, the entire 
model can extract information from longer. 

3.4.5 Multi-scale Feature Extraction 

It is well established that simply increasing the depth 
of convolutional neural networks is the most 
straightforward approach to improve their 
performance. However, deeper models also run the 
risk of overfitting and lead to substantially higher 
computational costs. To mitigate this issue, the 
proposed MTCNLog incorporates a multi-scale 
feature extraction module based on a fully 
convolutional structure. Through sparse 
connections, this module enables extracting local 
features at different granularities from the log 
sequences. Specifically, it comprises three parallel 
causal convolution layers with kernels of varying 
sizes - the large-scale kernels aim at capturing long-
term dependencies between logs while the small-
scale kernels target short-term relationships. By 
focusing the distinct convolution kernels onto 
temporal patterns across different scales, the features 
can be deeply fused to output more enriched 
representations. Without markedly increasing 
complexity, such a configuration expands the 
number of feature channels and facilitates more 
comprehensive processing of multi-timescale 
sequences for extracting highly abstract 

characteristics. Compared to a single causal 
convolution kernel, the multi-scale module 
significantly empowers the model with the 
capacity to gather features and patterns across 
different ranges of the log events. The extraction 
flexibility of a solitary kernel is confined by its 
receptive field size. By contrast, the proposed 
module fully exploits multi-grained 
information in the sequence via the joint use of 
varying receptive fields, thereby enhancing the 
overall expression ability and generalization of 
the model. Consequently, the final model can 
learn a greater diversity of temporal features 
from the log data and achieve improved 
anomaly detection performance. The 
architecture of the multi-scale feature extraction 
module is illustrated in Figure 7. 
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3.4.6 Residual Connection 

TCN adopts residual structures [13] that can 
mitigate the vanishing and exploding gradient 
issues when training deep neural networks. 
Specifically, residuals enable preserving the 
training dynamics of models during iterative 
optimization. In TCN, two residual blocks are 
chained to construct the overall architecture. As 
illustrated in Figure 8, each constituent block 
contains a causal dilated convolution layer, 
weight normalization, activation functions, and 
dropout, connected in a channel-wise manner. 
The residual connection facilitates gradient 
propagation through the depth of the network. 
By doing so, TCN is able to incorporate the 
temporal convolutions in a very deep topology 
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3.4.5. Multi-scale Feature Extraction
It is well established that simply increasing the depth 
of convolutional neural networks is the most straight-
forward approach to improve their performance. How-
ever, deeper models also run the risk of overfitting and 
lead to substantially higher computational costs. To 
mitigate this issue, the proposed MTCNLog incorpo-
rates a multi-scale feature extraction module based on 
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a fully convolutional structure. Through sparse con-
nections, this module enables extracting local features 
at different granularities from the log sequences. Spe-
cifically, it comprises three parallel causal convolution 
layers with kernels of varying sizes - the large-scale 
kernels aim at capturing long-term dependencies be-
tween logs while the small-scale kernels target short-
term relationships. By focusing the distinct convolu-
tion kernels onto temporal patterns across different 
scales, the features can be deeply fused to output more 
enriched representations. Without markedly increas-
ing complexity, such a configuration expands the num-
ber of feature channels and facilitates more compre-
hensive processing of multi-timescale sequences for 
extracting highly abstract characteristics. Compared 
to a single causal convolution kernel, the multi-scale 
module significantly empowers the model with the ca-
pacity to gather features and patterns across different 
ranges of the log events. The extraction flexibility of 
a solitary kernel is confined by its receptive field size. 
By contrast, the proposed module fully exploits multi-
grained information in the sequence via the joint use of 
varying receptive fields, thereby enhancing the over-
all expression ability and generalization of the model. 
Consequently, the final model can learn a greater diver-
sity of temporal features from the log data and achieve 
improved anomaly detection performance. The archi-
tecture of the multi-scale feature extraction module is 
illustrated in Figure 7.

Figure 7
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3.4.6. Residual Connection
TCN adopts residual structures [13] that can mitigate 
the vanishing and exploding gradient issues when 
training deep neural networks. Specifically, residuals 
enable preserving the training dynamics of models 
during iterative optimization. In TCN, two residual 
blocks are chained to construct the overall architec-
ture. As illustrated in Figure 8, each constituent block 
contains a causal dilated convolution layer, weight 
normalization, activation functions, and dropout, 
connected in a channel-wise manner. The residual 
connection facilitates gradient propagation through 
the depth of the network. By doing so, TCN is able to 
incorporate the temporal convolutions in a very deep 
topology for effectively capturing long-term depen-
dencies in sequential data.

Figure 8
Structure of the residual connection block

  

for effectively capturing long-term dependencies in 
sequential data. 
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By utilizing diluted convolutions and Multi-scale 
feature extraction structures, MTCNLog can attain a 
broader receptive field compared to vanilla TCNs, 
enabling it to capture longer-range dependencies in 
log sequences. Meanwhile, stacking multiple layers 
is imperative for MTCNLog to achieve compelling 
detection accuracy through learning highly abstract 
input representations over depth. Addressing 
performance degradation from vanishing or 
exploding gradients, TCN constructs a deep feature 
extractor using chained residual blocks. Each block 
contains a causal dilated convolution channel, 
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malization, activation functions, and dropout. The 
multi-scale feature extraction module and dilated 
causal convolution use causal dilated convolution as 
a fundamental unit. A supplementary 1×1 convolution 
branch matches dimensions for element-wise addi-
tion. Weight normalization regularizes the parameter 
space, enhancing training speed, while dropout miti-
gates overfitting associated with deep topologies.
The classic TCN model uses the ReLU activation func-
tion for data transformation. However, outliers can 
cause neuron “death” and abnormal network parame-
ter updates. Negative values, forced to 0, significantly 
impact sequential feature extraction in log sequences. 
The ReLU function is depicted in Figure 9(a), with its 
mathematical expression in Equation (3).
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The difference between the two lies in whether the 
parameters are learnable. Among them, λ is a learn-
able parameter, while a is a fixed value. Although each 
PReLU only needs to learn a small number of param-

eters, each residual structure after the improvement 
contains 3 activation functions. If we improve the ac-
tivation function to PReLU, after multiple layers of 
network transformation, a large number of parameters 
need to be learned. Therefore, we choose LeakyReLU 
as the activation function in the residual structure.

3.4.7. Multi-head Attention Mechanism
Attention models optimize parameters by leveraging 
data correlations, enhancing model accuracy. Initial-
ly applied in natural language processing, attention 
matches queries with key-value pairs to generate 
weighted outputs. The query, keys, values, and output 
are all d-dimensional vectors. The weight for each val-
ue is determined by the dot product between the que-
ry and the corresponding key. However, large differ-
ences in dot products can lead to vanishing gradients 
when applying softmax normalization. To mitigate 
this, a scaling factor is introduced before dot prod-
ucts for rescaling. The innovation of attention mech-
anisms is multi-head attention, conducting multiple 
independent attention calculations. Each head focus-
es on a different feature subspace, allowing the model 
to integrate information from different granularities. 
To address the issue of sequential models like TCN 
losing precedence information over long sequences, 
multi-head attention is used to mine long-range cor-
relations in data more effectively. Specifically, the 
model constructs a multi-head computational unit 
based on scaled dot product attention, as illustrated 
in Figure 10(a). The calculations are as follows:
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Lawrence Livermore National Laboratory 
(LLNL) gave rise to BGL, which comprises 
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information is presented in Table 3. 

Table 3 

Summary of the datasets 
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4.2 Baselines 

We compared our approach with six distinct 
methods, including unsupervised ones such as 
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are concatenated and another linear transformation is 
applied to obtain the output of multi-head attention.
The integration of multi-head attention, temporal 
convolutional networks, and a multi-scale feature 
extractor forms a robust anomaly detection model. 
This model enhances anomaly detection by highlight-
ing key parts of log sequences and revealing hidden 
inter-log dependencies. Multi-head attention facil-
itates learning cross-log relevance, TCN use layered 
causal dilated convolutions to collect temporal con-
textual signals, and the multi-scale module identifies 
correlated patterns across different ranges. These 
components work together to effectively extract di-
agnostic features sensitive to abnormalities, covering 
both local and global log interactions. 

4. Experiment
In this section, we will first outline the experimen-
tal dataset and evaluation metrics. Following this, 
we will compare the performance of MTCNLog on 
large-scale system log data with existing methods. We 
will also examine the impact of key parameters in the 
model on its performance. Finally, we will verify the 
effectiveness of each module of MTCNLog and its ro-
bustness to unseen logs. 

4.1. Dataset
To assess the performance of MTCNLog, we utilized 
the HDFS and BGL log datasets, which are two widely 
recognized datasets for log anomaly detection. 

Figure 10 
Details of the self-attention mechanism
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The HDFS dataset is a public benchmark dataset fre-
quently used for log-based anomaly detection. It com-
prises 11,175,629 log messages generated from over 
200 Amazon EC2 nodes, of which 288,250 messages 
are abnormal, accounting for less than 2.6%. 
The BlueGene/L supercomputer system at Lawrence 
Livermore National Laboratory (LLNL) gave rise to 
BGL, which comprises 4,747,963 log messages, in-
cluding 348,460 logs identified as anomalies. The spe-
cific information is presented in Table 3.

Table 3
Summary of the datasets

System Time logs Anomalis Templates

HDFS 2 days 11,175,629 16,838 30

BGL 215 days 4,747,963 348,460 378

4.2. Baselines

We compared our approach with six distinct meth-
ods, including unsupervised ones such as PCA and 
Deeplog, semi-supervised LogAnomaly, and super-
vised methods like LogRobust and LightLog.
PCA [31]: Principal Component Analysis is used for 
statistical analysis on log sequences, extracting an 
event count matrix. The count matrix is then decom-
posed using singular value decomposition by PCA to 
obtain ordered features.
LightLog [23]: Lightlog is a lightweight TCN deployed 
on edge devices for the supervised classification of 
temporal log data. It alleviates the substantial compu-
tational load of the downstream processing pipeline 
during both the training and detection phases.
Deeplog [7]: DeepLog, a trailblazing framework for 
system log anomaly detection, uses advanced deep 
learning techniques, specifically recurrent neural 
networks, to model the sequential dependencies in 
logs and identify anomalies. 
LogRobust [27]: LogRobust vectorizes words, com-
putes their TF-IDF, and derives the log template’s se-
mantic vector by summing the weights with the TF-
IDF. 
LogAnomaly [17]: LogAnomaly identifies anomalies 
by using a log template count vector and learning nor-
mal log sequence patterns.
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4.3. Evaluation Metrics
To evaluate the effectiveness of the proposed model 
in anomaly detection, we use Precision, Recall, and 
F1-score as evaluation metrics. These metrics are de-
fined as follows:
Precision is the percentage of anomalies that are cor-
rectly detected among all the detected anomalies by 
the model. The formula is as follows:
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input channels were 300, output channels were 
200, and the number of TCN residual units was 
3. Multi-scale convolution kernel sizes were [1, 
3, 5], multi-head attention heads were 8. 

4.5 Results Analysis 

In our approach, we employ an enhanced 
IPLoM for log template extraction. However, 
there are numerous alternative methods for log 
template extraction available. Therefore, it’s 
essential to validate the effectiveness of our 
method through experiments and assess the 
impact of the log parser on anomaly detection 
performance. In these experiments, we applied 
representative log parsing methods currently 
available, including Drain, Spell, Logram, 
IPLoM and Lenma. The experimental results 
are presented in Table 4. 

Table 4 

Impact of Log Parser on Anomaly Detection 
Performance 

Parser HDFS(%) BGL(%) 
P R F1 P R F1 

Drain 97.94 97.12 97.53 97.68 98.31 97.99 
Spell 96.76 95.11 95.93 98.31 98.45 98.38 

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03 
Logram 96.32 96.78 96.55 98.31 95.42 96.84 
Lenma 96.87 94.10 95.46 98.11 97.87 97.99 
Ours 97.91 98.72 98.31 98.25 98.57 98.41 

The aforementioned log parsers exhibit high-
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9400F processor and 16GB memory, and the GeForce 
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tion iteration rounds lr_step = (30, 40), the LR re-
duction rate lr_decay_ratio = 0.1, dropout was 0.5, the 
batch size batch_size (HDFS) = 24, and the batch size 

batch_size (BGL) = 36. Other hyperparameters were 
set as follows: TCN input channels were 300, output 
channels were 200, and the number of TCN residu-
al units was 3. Multi-scale convolution kernel sizes 
were [1, 3, 5], multi-head attention heads were 8.

4.5. Results Analysis
In our approach, we employ an enhanced IPLoM for 
log template extraction. However, there are numerous 
alternative methods for log template extraction avail-
able. Therefore, it’s essential to validate the effective-
ness of our method through experiments and assess 
the impact of the log parser on anomaly detection 
performance. In these experiments, we applied repre-
sentative log parsing methods currently available, in-
cluding Drain, Spell, Logram, IPLoM and Lenma. The 
experimental results are presented in Table 4.
The aforementioned log parsers exhibit high-perfor-
mance metrics on both the HDFS and BGL datasets, 
suggesting that the impact of the log parser on the 
performance of deep learning-based log anomaly de-
tection is relatively minor. While Drain and Spell have 
the highest Precision metrics on HDFS and BGL, re-
spectively, our method’s Precision is slightly lower. 
However, our method achieves optimal levels for both 
Recall and F1-score, demonstrating its effectiveness. 
When considering overall performance, our method 
outperforms the others, further validating its efficacy.
Furthermore, we evaluated MTCNLog against five 
other anomaly detection techniques: PCA, LightLog, 
Deeplog, LogRobust, and LogAnomaly. The assess-
ment was conducted on a variety of datasets to gauge 
the model’s performance in log anomaly detection. For 
unsupervised techniques like PCA and DeepLog, only 
normal log sequences from the training dataset were 
utilized to construct the anomaly detection model. As 
depicted in Figure 11, it is evident from the Recall that, 
compared to traditional PCA, the recall rate on the 
HDFS dataset has increased by 30.65%, and the recall 
rate on BGL has increased by 28.82%. This suggests 
that the MTCNLog model exhibits a high recall rate on 
both the HDFS and BGL datasets, thereby enhancing 
its ability to accurately detect anomalies. The preci-
sion of the model further underscores its effectiveness 
in detecting abnormal log data. As can be seen from 
the F1-score, our method achieved an impressive F1-
score of 98.65% and 98.34% on the HDFS and BGL 
datasets, respectively, surpassing all other methods.
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Table 4
Impact of Log Parser on Anomaly Detection Performance

Parser
HDFS(%) BGL(%)

P R F1 P R F1

Drain 97.94 97.12 97.53 97.68 98.31 97.99

Spell 96.76 95.11 95.93 98.31 98.45 98.38

IPLoM 95.31 94.22 94.76 96.71 97.35 97.03

Logram 96.32 96.78 96.55 98.31 95.42 96.84

Lenma 96.87 94.10 95.46 98.11 97.87 97.99

Ours 97.91 98.72 98.31 98.25 98.57 98.41
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Comparison of different methods. (a) HDFS dataset. (b) BGL dataset
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Indeed, both PCA and DeepLog employ the log 
template's index for log representation, which may 
overlook the semantic information embedded in the 

templates. Furthermore, during the anomaly 
detection process, DeepLog independently 
models and identifies anomalies in execution 
path types and parameter types, potentially 
neglecting the interrelationships among various 
anomalies.  Notably, compared to LogRobust, 
which is known for its robust detection 
performance, our method’s F1-score increased 
by 1.4% and 0.99%, respectively. We also found 
that supervised methods for anomaly 
prediction significantly surpassed 
unsupervised methods in terms of precision, 
recall, and F1-score, leading us to adopt this 
approach for optimal anomaly detection rates. 
Interestingly, the unsupervised DeepLog also 
demonstrated commendable performance. 
However, further exploration is required to 
significantly enhance the detection 
performance of unsupervised anomaly 
detection methods to meet practical needs.   
MTCNLog integrates Word2vec and TF-IWF to 
better extract semantic information from logs, 
improving anomaly detection accuracy. 
Temporal convolutional networks equipped 
with multi-scale feature extraction modules and 
multi-headed attention perform log anomaly 
detection. High recall and F1-score demonstrate 
the efficacy of this model for detecting 
anomalies in log sequences. Our model exhibits 
robust performance across datasets, precisely 
identifying abnormalities in both the HDFS and 
BGL logs. The amalgamation of semantic-aware 
embeddings and multi-faceted temporal 
modeling enables precise, stable detection of 
anomalies regardless of log source. 
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Indeed, both PCA and DeepLog employ the log tem-
plate’s index for log representation, which may over-
look the semantic information embedded in the tem-
plates. Furthermore, during the anomaly detection 
process, DeepLog independently models and iden-
tifies anomalies in execution path types and param-
eter types, potentially neglecting the interrelation-
ships among various anomalies.  Notably, compared 
to LogRobust, which is known for its robust detec-
tion performance, our method’s F1-score increased 
by 1.4% and 0.99%, respectively. We also found that 
supervised methods for anomaly prediction signifi-
cantly surpassed unsupervised methods in terms 
of precision, recall, and F1-score, leading us to 
adopt this approach for optimal anomaly detection 
rates. Interestingly, the unsupervised DeepLog also 
demonstrated commendable performance. Howev-

er, further exploration is required to significantly 
enhance the detection performance of unsupervised 
anomaly detection methods to meet practical needs.   
MTCNLog integrates Word2vec and TF-IWF to 
better extract semantic information from logs, im-
proving anomaly detection accuracy. Temporal 
convolutional networks equipped with multi-scale 
feature extraction modules and multi-headed atten-
tion perform log anomaly detection. High recall and 
F1-score demonstrate the efficacy of this model for 
detecting anomalies in log sequences. Our model ex-
hibits robust performance across datasets, precisely 
identifying abnormalities in both the HDFS and BGL 
logs. The amalgamation of semantic-aware embed-
dings and multi-faceted temporal modeling enables 
precise, stable detection of anomalies regardless of 
log source.
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Figure 12 
Effect of Multi-scale structure branch number on 
Precision, Recall, and F1-score

To assess the effect of the number of branches in the 
multi-scale feature extraction structure, we began 
with a single causal convolution branch (L=1) and 
incrementally increased the number of convolution 
branches L to 1, 2, 3, 4, and 5. Figure 12 illustrates 
the experimental results of MTCNLog with varying 
branch numbers. As depicted in Figure 12, MTCN-
Log maintains relatively consistent accuracy across 
different branch numbers, but the F1-score exhib-
its significant fluctuations. Despite the increase in 
branch number, MTCNLog’s anomaly detection effi-
ciency does not significantly decline and remains at a 
high level. However, excessively small or large branch 
numbers result in marginally lower recall rates and 
F1-scores, causing the model to miss some anomalies. 
In conclusion, MTCNLog exhibits optimal perfor-
mance when the branch number is 3.
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Furthermore, our experiment examined the impact 
of the number of branches in the multi-scale feature 
extraction structure and the number of multi-head 
attention layers on the model’s performance. We 
conducted tests on the HDFS dataset, altering one 
parameter value while maintaining the default 
values for the others.To observe its influence on 
MTCNLog, we took two as the step size and set the 
number of heads to values within [2,12]. Figure 13 
shows its influence on MTCNLog, from which we 
can find that when the number of heads tends to 
eight, precision, recall, and F1-score all tend to 
stabilize. Therefore, in this experiment, we set the 
number of heads in self-attention to eight. 
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4.6 Ablation Study 

We conducted ablation studies on the HDFS 
dataset to assess the impact of each module on 
the experimental outcomes, as illustrated in 
Figure 14. The results show that the multi-scale 
structure enhances the model’s detection 
performance, validating the effectiveness of 
incorporating the multi-scale convolution 
structure for log sequence processing. The 
introduction of the multi-head attention 
mechanism resulted in an 11 percentage point 
increase in the model’s F1-score. This indicates 
that the multi-head attention module can 
autonomously learn the significance of different 
log sequences and extract higher-level hidden 
features within the sequence, thereby 
significantly boosting the accuracy of anomaly 
detection. Moreover, we attempted to replace 
the TCN with a 1D-CNN in the multi-scale 
feature extraction layer. The results once again 
demonstrated that this module plays a 
significant role in anomaly detection. This is 
due to the fact that TCNs are more sensitive to 
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ablation experiments confirm that every 
module contribute to the model’s performance. 
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performance, validating the effectiveness of 
incorporating the multi-scale convolution 
structure for log sequence processing. The 
introduction of the multi-head attention 
mechanism resulted in an 11 percentage point 
increase in the model’s F1-score. This indicates 
that the multi-head attention module can 
autonomously learn the significance of different 
log sequences and extract higher-level hidden 
features within the sequence, thereby 
significantly boosting the accuracy of anomaly 
detection. Moreover, we attempted to replace 
the TCN with a 1D-CNN in the multi-scale 
feature extraction layer. The results once again 
demonstrated that this module plays a 
significant role in anomaly detection. This is 
due to the fact that TCNs are more sensitive to 
sequence order and can capture dependencies 
over longer distances, whereas 1D-CNNs 
typically only capture local features. These 
ablation experiments confirm that every 
module contribute to the model’s performance. 
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4.7 Robustness and Efficiency 

In this section, we evaluate the robustness of the 
model based on unseen log types. We compare the 
final representations of different block_id log 
sequences to assess the log types. Absolutely, given 
the massive volume of system log data, processing 
time indeed becomes a critical factor. In our 
experiments, we also evaluated the time 
consumption of our model across different log 
datasets, highlighting the efficiency of our approach. 
 
Figure 15 
Distribution of log types for randomly partitioned 
HDFS datasets 

 
In our research, we analyzed the distribution of log 

template quantities in the log dataset to 
examine MTCNLog’s detection effect on new 
types of logs. As depicted in Figure 15, due to 
the inherent instability of log data, an increase 
in the number of logs can introduce new log 
templates. To address this, MTCNLog learns 
the semantic features of logs to identify whether 
new log templates are anomalous. This 
approach allows for more robust and adaptive 
anomaly detection, even in the face of evolving 
log data. 

It is noteworthy that new log templates often 
contain some out-of-vocabulary (OOV) words, 
which makes it difficult to extract the semantic 
information of the log templates. To reduce the 
OOV words, we employ the classic subword 
segmentation method in natural language 
processing to divide an OOV word into several 
subwords that have appeared before. For 
instance, the OOV long word “allocateBlock” is 
split into “allocate” and “Block”, thereby 
reducing the number of OOV words and 
enhancing the effect of semantic feature 
extraction. To further assess the model’s 
effectiveness on new types of logs, we trained 
the model on varying amounts of log sequences 
on the HDFS. Table 5 provides a summary of 
the proportion of new log templates and their 
detection results. The model’s performance 
improves as the training ratio increases. 
Remarkably, even when the proportion of new 
templates is as high as 60%, the F1-score still 
achieves 96.55%. This can be attributed to the 
semantic representation of normal log events. 
Changes in the events can still be represented as 
vectors similar to the original events, while 
vectors of abnormal events and normal events 
differ significantly. Consequently, MTCNLog 
exhibits robustness to variations in log events. 

Table 5 

Evaluation results of a new type of log for HDFS dataset 

Training log 
sequences 

Num of log 
templates Percentage of new templates (%) Precision Recall F1-score 

4000 13 56.7 0.9454 0.9631 0.9542 

5000 14 53.3 0.9631 0.9645 0.9638 

6000 15 50 0.9714 0.9687 0.9701 

7000 16 46.7 0.9814 0.9832 0.9823 
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the multi-head attention mechanism resulted in an 
11 percentage point increase in the model’s F1-score. 
This indicates that the multi-head attention module 
can autonomously learn the significance of different 
log sequences and extract higher-level hidden features 
within the sequence, thereby significantly boosting the 
accuracy of anomaly detection. Moreover, we attempt-
ed to replace the TCN with a 1D-CNN in the multi-
scale feature extraction layer. The results once again 
demonstrated that this module plays a significant 
role in anomaly detection. This is due to the fact that 
TCNs are more sensitive to sequence order and can 
capture dependencies over longer distances, whereas 
1D-CNNs typically only capture local features. These 
ablation experiments confirm that every module con-
tribute to the model’s performance.

4.7. Robustness and Efficiency
In this section, we evaluate the robustness of the model 
based on unseen log types. We compare the final repre-
sentations of different block_id log sequences to assess 
the log types. Absolutely, given the massive volume 
of system log data, processing time indeed becomes a 
critical factor. In our experiments, we also evaluated 
the time consumption of our model across different log 
datasets, highlighting the efficiency of our approach.
In our research, we analyzed the distribution of log 
template quantities in the log dataset to examine 
MTCNLog’s detection effect on new types of logs. As 
depicted in Figure 15, due to the inherent instability 
of log data, an increase in the number of logs can in-

Figure 15
Distribution of log types for randomly partitioned HDFS 
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reducing the number of OOV words and 
enhancing the effect of semantic feature 
extraction. To further assess the model’s 
effectiveness on new types of logs, we trained 
the model on varying amounts of log sequences 
on the HDFS. Table 5 provides a summary of 
the proportion of new log templates and their 
detection results. The model’s performance 
improves as the training ratio increases. 
Remarkably, even when the proportion of new 
templates is as high as 60%, the F1-score still 
achieves 96.55%. This can be attributed to the 
semantic representation of normal log events. 
Changes in the events can still be represented as 
vectors similar to the original events, while 
vectors of abnormal events and normal events 
differ significantly. Consequently, MTCNLog 
exhibits robustness to variations in log events. 

Table 5 

Evaluation results of a new type of log for HDFS dataset 

Training log 
sequences 

Num of log 
templates Percentage of new templates (%) Precision Recall F1-score 

4000 13 56.7 0.9454 0.9631 0.9542 

5000 14 53.3 0.9631 0.9645 0.9638 

6000 15 50 0.9714 0.9687 0.9701 

7000 16 46.7 0.9814 0.9832 0.9823 

troduce new log templates. To address this, MTCN-
Log learns the semantic features of logs to identify 
whether new log templates are anomalous. This ap-
proach allows for more robust and adaptive anomaly 
detection, even in the face of evolving log data.
It is noteworthy that new log templates often contain 
some out-of-vocabulary (OOV) words, which makes it 
difficult to extract the semantic information of the log 
templates. To reduce the OOV words, we employ the 
classic subword segmentation method in natural lan-
guage processing to divide an OOV word into several 
subwords that have appeared before. For instance, 
the OOV long word “allocateBlock” is split into “al-
locate” and “Block”, thereby reducing the number of 
OOV words and enhancing the effect of semantic fea-
ture extraction. To further assess the model’s effec-
tiveness on new types of logs, we trained the model 
on varying amounts of log sequences on the HDFS. 
Table 5 provides a summary of the proportion of new 
log templates and their detection results. The model’s 
performance improves as the training ratio increases. 
Remarkably, even when the proportion of new tem-
plates is as high as 60%, the F1-score still achieves 
96.55%. This can be attributed to the semantic repre-
sentation of normal log events. Changes in the events 
can still be represented as vectors similar to the origi-
nal events, while vectors of abnormal events and nor-
mal events differ significantly. Consequently, MTCN-
Log exhibits robustness to variations in log events.
In summary, Table 6 shows the time consumption of 
different log anomaly detection methods on various 
datasets. As can be seen, PCA is based on cluster com-
putation and does not involve complex neural network 
weight calculations. LightLog is a lightweight network 
deployed on edge devices that reduces the number of 
model parameters through global average pooling, thus 
their training and testing times are relatively short. 
Among other methods involving neural network mod-
els, our proposed MTCNLog method has shorter train-
ing and testing times than LogAnomaly and Deeplog, 
but slightly higher compared to methods like LogRo-
bust. This is due to the introduction of a pre-trained 
model, which increases the model’s input from 1-di-
mensional to 300-dimensional, leading to an increase 
in model parameters, and the introduction of a multi-
head attention mechanism results in more parame-
ters than LSTM. In conclusion, although our method 
outperforms traditional methods and deep learning 
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Table 5
Evaluation results of a new type of log for HDFS dataset

Training log sequences Num of log templates Percentage of new templates (%) Precision Recall F1-score

4000 13 56.7 0.9454 0.9631 0.9542

5000 14 53.3 0.9631 0.9645 0.9638

6000 15 50 0.9714 0.9687 0.9701

7000 16 46.7 0.9814 0.9832 0.9823

8000 17 43.3 0.9825 0.9844 0.9834

Table 6
Time consumption of different methods on log datasets

Method
HDFS BGL

Training Testing Training Testing

PCA [31] 27 min 1.5 s 13 s 1 s

DeepLog [7] 2 h 25 min 42 min 1 h 6 min 10.5 min

LogAnomaly [17] 2 h 40 min 50 min 2 h 20 min 24 min

LogRobust [27] 1h 13 min 12 min 51 min 7 min

LightLog [23] 29 min 2 min 16 min 1.5 min

MTCNLog (ours) 1 h 45 min 23 min 1 h 30 min 18 min

methods like DeepLog in terms of metric evaluation, 
it is slightly inferior to them in terms of log processing 
timeliness. Therefore, MTCNLog is suitable for tasks 
that require high accuracy in log detection and low 
time consumption. The slightly larger time consump-
tion of MTCNLog is a shortcoming that we will focus 
on researching and improving in the future.

5. Conclusions
Anomaly detection plays a pivotal role in ensuring 
system reliability. In this paper, we introduce MTCN-
Log, a novel deep learning-based framework for log-
based anomaly event detection. This framework en-
hances the accuracy of log parsing by incorporating 
post-processing operations, resulting in more precise 
log templates. Feature extraction is performed using 
the Word2Vec and TF-IWF weighting algorithms, 
yielding weighted sentence embedding vectors. 
These vectors leverage semantic information to gen-
erate more effective feature representations from log 
event sequences. The final anomaly detection model 
is constructed based on multi-head attention mech-

anisms, multi-scale convolution, and temporal con-
volution networks. This model simultaneously learns 
local features and long-distance dependency features 
of logs, enabling it to handle new types of log tem-
plates. We evaluated MTCNLog on the authoritative 
HDFS dataset. The results validate the effectiveness 
of MTCNLog and confirm the utility of the TCN mod-
el, multi-scale convolution module, and multi-head 
attention mechanism for log-based anomaly event 
detection. This paper primarily focuses on semantic 
feature extraction from individual log statements. 
However, in practical production, operators often an-
alyze faults based on multiple logs. Therefore, future 
work will explore the semantic feature representa-
tion of multiple types of logs. As the scale of system 
logs and the number of log templates continue to 
grow, we will also investigate more efficient semantic 
extraction methods to reduce the execution time and 
memory computation costs of log anomaly detection.
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