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This study introduces a novel movie recommender system utilizing a Semantic-Enhanced Variational Graph 
Autoencoder for Movie Recommendation (SeVGAER) architecture. The system harnesses additional infor-
mation from movie plot summaries scraped from the internet, transformed into semantic vectors via a large 
language model. These vectors serve as supplementary features for movie nodes in the SeVGAER-based rec-
ommender. The system incorporates an encoder-decoder structure, operating on a user-movie bipartite graph, 
and employs GraphSAGE convolutional layers with modified aggregators as the encoder to extract latent rep-
resentations of the nodes, and a Multi-Layer Perceptron (MLP) as the decoder to predict ratings with addition-
al graph-based features. To address overfitting and improve model generalization, a novel training strategy is 
introduced. We employ a random data splitting approach, dividing the dataset into two halves for each training 
instance. The model then generates outputs on each half of the data, and a new loss function is introduced to 
ensure consistency between these two outputs, a strategy that can be seen as a form of contrastive learning. The 
model’s performance is optimized using a combination of this new contrastive loss, graph reconstruction loss, 
and KL divergence loss. Experiments conducted on the Movielens100k dataset demonstrate the effectiveness 
of this approach in enhancing movie recommendation performance.
KEYWORDS: Variational graph autoencoder, recommender system, graph neural network, semantic vectors, 
deep learning, contrastive learning.

1. Introduction
The proliferation of social media platforms, stream-
ing services, and e-commerce websites in the digital 
age has revolutionized the way humans interact with 
a wide range of content [30]. As these platforms at-
tract an increasingly diverse user base, the demand 
for robust personalized movie recommendation sys-
tems has reached unprecedented levels. These sys-
tems have become a cornerstone for enhancing users’ 
engagement and satisfaction [15].
The movie recommender system plays a crucial role 
in various streaming platforms, greatly improving 
user experience by suggesting movies that align with 
their interests. While traditional recommender sys-
tems primarily rely on user-movie interaction data, 
such as ratings or viewing history, the incorporation 
of additional movie information can further enhance 
their effectiveness.
In recent years, the rise of deep learning has prompt-
ed numerous studies exploring the use of neural net-
works in recommender systems. Among these, graph-
based models have garnered significant attention due 
to their ability to capture complex relationships in in-
teraction data. However, the potential of these mod-
els can be further harnessed by integrating additional 
movie information, such as plot summaries, into the 
graph structure.
In this context, our paper introduces a novel approach 
to movie recommender systems by leveraging a Vari-

ational Graph Autoencoder (VGAE), plot summary 
semantic vectors, and graph structural features such 
as node degrees and adjacency matrix. The VGAE, a 
generative model that learns latent representations 
of nodes in a graph, allows for the capture of complex 
user-movie interactions, offering a pathway for more 
personalized movie recommendations. Moreover, to 
address overfitting and improve model generaliza-
tion, we introduce a novel training strategy involving 
random data splitting and a new loss function that en-
sures consistency between model outputs. This strat-
egy, inspired by contrastive learning, helps to further 
enhance the model’s performance.
We term this adapted model as Semantic-Enhanced 
Variational Graph Autoencoder for Movie Recom-
mendation (SeVGAER). The novelty of our work ex-
tends beyond the mere application of VGAE in movie 
recommendations. We innovate further by adapting 
the original VGAE architecture to better suit our spe-
cific use case. Specifically, we replace the Graph Con-
volutional Networks (GCN) in the encoder, which are 
unsuitable for bipartite graphs and exhibit limited 
scalability, with the more scalable GraphSAGE con-
volutional layers. This modification enables the ex-
traction of more meaningful latent representations 
of the nodes, thereby enhancing the quality of recom-
mendations. Additionally, we remake the decoder of 
VGAE by replacing the simple inner product oper-
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ation with a Multi-Layer Perceptron (MLP), which 
integrates additional graph-based features, including 
node degrees and adjacency matrix, allowing for a 
more flexible and complex interaction between user 
and movie latent representations.
Another significant innovation of our SeVGAER 
model is the integration of additional information as 
features. Unlike traditional models that utilize only 
user-movie interaction data, our system leverages 
movie plot summaries, transformed into semantic 
vectors using a large language model, and graph struc-
tural information, such as node degrees and adjacen-
cy matrix. This multi-source feature integration pro-
vides additional context and nuance that significantly 
enhance the recommender system’s performance.
In essence, this paper presents a novel, enhanced 
movie recommender system that employs a modified 
VGAE structure, integrates supplementary infor-
mation, and applies a unique training strategy. This 
combination improves the system’s performance and 
sets a new precedent for future research in the field of 
movie recommender systems.
The paper is organized as follows: Section 2 discuss-
es related work, Section 3 presents the methodology, 
Section 4 reports experiments and results, and Sec-
tion 5 concludes the paper and outlines future re-
search directions.

2. Related Work
2.1. Recommender Systems
Recommender systems can be categorized into three 
types based on their working method: content-based, 
collaborative filtering (CF)-based, and hybrid sys-
tems [1, 32].
Content-based recommendation algorithms utilize 
auxiliary information such as texts, images, and vid-
eos to provide personalized recommendations by 
comparing items and users. These algorithms focus 
on user characteristics and item attributes, suggest-
ing items similar to users’ past interactions [34]. For 
example, a movie website employing a content-based 
approach considers each user’s viewing history and 
search preferences to recommend movies. 
CF models aim to provide personalized recommen-
dations by leveraging users’ rating history for items. 
Instead of relying solely on a user’s few ratings, CF 

introduces the concept of a “neighborhood,” which 
enables recommendations based on community rat-
ings. It suggests items that users are likely to enjoy 
and predicts their potential interests. This CF rec-
ommendation algorithm utilizes a rating matrix that 
incorporates the item ratings of a user’s community 
neighbors [34]. The critical step in CF involves com-
puting the similarity between users or items [25]. No-
tably, CF encompasses various algorithms, including 
Matrix Factorization and Deep Learning, which use 
known community ratings to predict unknown ones. 
However, CF-based recommendation suffers from 
data sparsity and cold start problems [27].
Hybrid models are recommender systems that inte-
grate multiple recommendation strategies [4].
In addition to these three types of recommender sys-
tems, there have been other parallel lines of research 
that utilize different types of information or have dif-
ferent purposes. For example, some researchers have 
approached recommendation as a sequential predic-
tion task by considering the temporal dynamics of 
users’ behaviors [7, 31]. Chen and Huang [5] further 
proposed a model that integrates this idea with tradi-
tional methods, resulting in improved performance. 
This perspective allows us to classify recommender 
systems into static models and dynamic models based 
on whether they incorporate dynamic information.
In contrast, our proposed model, SeVGAER, focuses on 
integrating plot summary information and a contras-
tive learning strategy into the recommendation pro-
cess. While our model and the dynamic models belong 
to different sub-domains of recommendation systems, 
they both contribute to the broader goal of providing 
better personalized movie recommendations.

2.2. Autoencoder-based Recommender 
Models
Autoencoder-based recommender models have 
gained significant attention in recent years due to 
their ability to effectively capture complex patterns 
and latent representations in user-item interaction 
data. These models leverage the power of autoencod-
ers, a type of neural network that is trained to recon-
struct its input, to learn low-dimensional representa-
tions of users and items. By doing so, they can uncover 
meaningful latent features that are often not explicit-
ly available in the original data.
AutoRec [26] is one of the successful autoencoders 
that takes user partial vectors or item partial vectors 
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as input and aims to reconstruct them in the output 
layer. Darban et al. [6] developed a similarity map to 
extract relevant user feature information, which they 
then integrated with the user’s basic attributes such 
as age and gender. They further employed an autoen-
coder to reduce the dimensionality of the extracted 
features. By applying a clustering method, they uti-
lized this model, named GHRS, to make personalized 
recommendations for users.
Autoencoder-based recommender models have abil-
ity to handle the sparsity and high dimensionality of 
typical recommendation datasets, and can effectively 
encode the missing values and fill in the gaps by learn-
ing a dense representation of the data. 
In addition to handling sparsity, autoencoder-based 
recommender models also offer flexibility in mod-
eling user preferences and the ability to incorporate 
side information, such as item attributes or user de-
mographics, into the recommendation process. 
Figure 1 illustrates a classic structure of recommend-
er models based on autoencoder [32].

Figure 1
Classic deep collaborative filtering framework based on 
autoencoder
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2.3. Graph Neural Network 
In recent years, graph neural network (GNN) 
variants have exhibited remarkable performance in 
various tasks involving graph data, including 
physical systems [3], protein structure [8], and 
knowledge graphs [9]. 
In the context of graph data, the fundamental 
concept behind GNNs is to iteratively gather 
feature information from neighboring nodes and 
incorporate this aggregated information into the 
current representation of the central node during 
the propagation process. GNNs employ multiple 
propagation layers that encompass aggregation 
and update operations. 
Graph convolutional network (GCN) [16] and 
GraphSAGE (Graph Sample and Aggregated) [10] 
are two popular graph neural network layers used 
for processing graph data. 
GCN is a type of graph neural network layer that 
operates on a graph structure. It leverages a 
neighborhood aggregation strategy to propagate 
information from neighboring nodes to the central 
node. This process is achieved by performing a 
linear transformation on the feature vectors of 
neighboring nodes and combining them with the 
central node's feature vector. 
GraphSAGE, on the other hand, is a graph neural 
network layer that focuses on sampling and 
aggregating information from the neighborhood 
nodes. It employs a sampling mechanism to select 
a subset of nodes from the neighborhood and 
aggregates their feature vectors. This aggregated 
information is then combined with the central 
node's feature vector to update its representation.  
While GCN has proven effective in many 
applications, it has certain limitations when it 
comes to scalability. Specifically, GCN applies the 
same transformation to all nodes in the graph, 
regardless of their unique context or 
characteristics. This not only leads to high 
computational costs for large-scale graphs but also 
limits the model's flexibility in learning diverse 
node representations. 
GraphSAGE, by contrast, offers a more scalable 
and flexible solution. Unlike GCN, GraphSAGE 
employs a sampling mechanism that selects a 
subset of nodes from the neighborhood, which 
significantly reduces the computational cost for 
large-scale graphs. Moreover, GraphSAGE 
updates the representation of each node based on 
its local neighborhood, allowing for more diverse 
and context-specific node representations. This 
feature makes GraphSAGE particularly well-
suited for tasks involving large and heterogeneous 
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GCN is a type of graph neural network layer that oper-
ates on a graph structure. It leverages a neighborhood 
aggregation strategy to propagate information from 
neighboring nodes to the central node. This process 
is achieved by performing a linear transformation on 
the feature vectors of neighboring nodes and combin-
ing them with the central node’s feature vector.
GraphSAGE, on the other hand, is a graph neural net-
work layer that focuses on sampling and aggregating 
information from the neighborhood nodes. It employs 
a sampling mechanism to select a subset of nodes 
from the neighborhood and aggregates their feature 
vectors. This aggregated information is then com-
bined with the central node’s feature vector to update 
its representation. 
While GCN has proven effective in many applications, 
it has certain limitations when it comes to scalability. 
Specifically, GCN applies the same transformation 
to all nodes in the graph, regardless of their unique 
context or characteristics. This not only leads to high 
computational costs for large-scale graphs but also 
limits the model’s flexibility in learning diverse node 
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GraphSAGE, by contrast, offers a more scalable and 
flexible solution. Unlike GCN, GraphSAGE employs 
a sampling mechanism that selects a subset of nodes 
from the neighborhood, which significantly reduces the 
computational cost for large-scale graphs. Moreover, 
GraphSAGE updates the representation of each node 
based on its local neighborhood, allowing for more di-
verse and context-specific node representations. This 
feature makes GraphSAGE particularly well-suited for 
tasks involving large and heterogeneous graphs, such 
as movie recommendation systems.
Figure 2 illustrates the workflow of the GraphSAGE 
network.
By adopting GraphSAGE in our proposed SeVGAER 
model, we can effectively address the scalability issue, 
allowing for more efficient processing of user-movie 
interaction data and more personalized movie recom-
mendations.
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Variational Graph Autoencoder (VGAE) [17] is an-
other popular graph neural network model that fo-
cuses on learning low-dimensional representations 
of graph data. VGAE combines the power of graph 
convolutional layers with a variational autoencoder 
framework. It aims to capture the underlying latent 
structure of the graph by reconstructing the adjacen-
cy matrix. VGAE utilizes an encoder network to map 
the graph’s nodes into a lower-dimensional latent 
space, and a decoder network to reconstruct the ad-
jacency matrix based on the learned latent represen-
tations. 
One of the key innovations of VGAEs is their utili-
zation of variational inference, which offers a prob-
abilistic approach to model the inherent uncertain-
ty in the process of encoding graph data. Instead of 
directly embedding inputs, VGAE assumes that the 
latent representations follow a normal distribution 
and generates the mean and variance of the latent 
representation accordingly. In addition to the recon-
struction loss, VGAE incorporates a Kullback-Leibler 
(KL) divergence loss that quantifies the discrepancy 
between the learned distribution of the latent vari-
ables and the normal distribution. By incorporating 
these components, VGAE effectively learns mean-
ingful representations that capture both the topolog-
ical and relational information of the graph. Notably, 
VGAE has demonstrated promising results in various 
graph-related tasks, including link prediction, node 
clustering, and graph generation.
Figure 3 shows the architecture of VGAE.
Most autoencoder-based recommender systems uti-
lize autoencoders to reconstruct input users or items 

Figure 2
Illustration of GraphSAGE

Figure 3
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Figure 4
Overall structure of SeVGAER

3. Methodology
3.1. Problem Definition
Movie recommendation is a quintessential problem in 
the field of recommender systems, which aims to pre-
dict the ratings that a user would give to unseen movies 
based on historical interactions. The goal is to provide 
users with personalized movie recommendations, 
which could significantly enhance the user experience.
Formally, let us denote U= {u1, u2, ..., um} as the set of us-
ers and M = {m1, m2, ..., mn} as the set of movies. Each user 
has a history of interactions with some movies in M. 
These interactions could take the form of explicit feed-
back (e.g., ratings) or implicit feedback (e.g., viewing 
history). The historical interactions can be represented 
as a bipartite graph G =(U, M, E), where E represents 
the edges or interactions between users and movies. 
Each edge eij =(ui, mj)∈ E is associated with a weight wij, 
which represents the rating given by user ui to movie mj. 
The aim is to predict the unseen interactions or ratings 
by learning from the known interactions in the graph G:
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3.2. Overview of the Proposed Approach 
Our proposed SeVGAER model sets out to address the 
limitations of traditional movie recommender systems 
by effectively integrating graph-based learning with 
additional movie information, such as plot summary 
semantic vectors and graph structural features. The 
overall structure of our model is depicted in Figure 4. 
SeVGAER is built upon the foundation of graph-based 
generative models, enabling it to capture the intricate 
relationships within user-movie interaction data 
represented as a bipartite graph.  
To enhance the performance and scalability of our 
model, we have made several modifications to the 
conventional graph autoencoder architecture. In 
particular, we replaced the unsuitable and less scalable 
Graph Convolutional Networks (GCN) in the encoder 
with GraphSAGE convolutional layers. This adjustment 
not only enhances the scalability of our model but also 
enables the extraction of more meaningful latent node 
representations. In the decoder, we opt for a Multi-
Layer Perceptron (MLP) instead of the standard inner 
product operation, allowing for a more complex 
interaction between user and movie latent 
representations. 
One of the most innovative aspects of our approach is 
the introduction of a unique training strategy. We 
randomly split the dataset for each training instance and 
ensure consistency between model outputs on each half. 
This strategy, inspired by contrastive learning, further 
strengthens the performance of our model. 
In sum, our SeVGAER model presents a 
comprehensive, enhanced solution to movie 
recommendation by effectively integrating user-movie 
interaction data, additional movie information, and a 
unique training strategy within a graph-based model. 
The subsequent sections will delve deeper into the 

specifics of the SeVGAER model, our innovative 
modifications, and the process of obtaining and 
integrating plot summary semantic vectors. 

3.3. SeVGAER  
This section will detail the function of our model: 
data preprocessing, encoder design, and decoder 
design. 

3.3.1. Data Preprocessing 
The first step in our approach involves 
preprocessing the input data, mainly movie plot 
texts. We use a Large Language Model (LLM) to 
embedding all plots into fixed length vectors. 
These semantic vectors are then concatenated with 
original movie features to form the complete 
movie node features. 
For example, a movie node m's features are 
transformed from original hm to hm⊕Sm where Sm 
is the plot text of m and ⊕ is the concatenation 
operation. 

3.3.2. Encoder 
The encoder of the proposed SeVGAER model 
plays a pivotal role in extracting meaningful 
representations from both user and movie nodes. 
The encoder is structured into two analogous 
sections, each specifically designed to handle two 
types of relationships: user rating movie and 
movie being rated by user. 

Each section of the encoder, corresponding to each 
relationship type, comprises three GraphSAGE 
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layer, and σ is an activation function. The first 
layer of GraphSAGE operates on the input 
features of the nodes, converting them into a 
preliminary form. The original GraphSAGE tries 
three aggregation methods including mean 
operator, LSTM and pooling. 
Sun et al. [28] observed that some recent models 
assigned identical scores to multiple items, 
severely limiting the model's generalization ability 
on diverse datasets. They traced this issue back to 
the Rectified Linear Unit (ReLU) activation 
function, which zeros out an excessive number of 
neurons. 
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system, this would translate to similar scores 
being assigned to distinctly different movies, 
limiting the diversity and personalization of the 
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graphs, such as movie recommendation systems. 
Figure 2 illustrates the workflow of the GraphSAGE 
network. 
By adopting GraphSAGE in our proposed SeVGAER 
model, we can effectively address the scalability issue, 
allowing for more efficient processing of user-movie 
interaction data and more personalized movie 
recommendations. 
Figure 2 
Illustration of GraphSAGE 

 
Variational Graph Autoencoder (VGAE) [17] is another 
popular graph neural network model that focuses on 
learning low-dimensional representations of graph data. 
VGAE combines the power of graph convolutional 
layers with a variational autoencoder framework. It aims 
to capture the underlying latent structure of the graph by 
reconstructing the adjacency matrix. VGAE utilizes an 
encoder network to map the graph's nodes into a lower-
dimensional latent space, and a decoder network to 
reconstruct the adjacency matrix based on the learned 
latent representations.  
One of the key innovations of VGAEs is their utilization 
of variational inference, which offers a probabilistic 
approach to model the inherent uncertainty in the 
process of encoding graph data. Instead of directly 
embedding inputs, VGAE assumes that the latent 
representations follow a normal distribution and 
generates the mean and variance of the latent 
representation accordingly. In addition to the 
reconstruction loss, VGAE incorporates a Kullback-
Leibler (KL) divergence loss that quantifies the 
discrepancy between the learned distribution of the 
latent variables and the normal distribution. By 
incorporating these components, VGAE effectively 
learns meaningful representations that capture both the 

topological and relational information of the 
graph. Notably, VGAE has demonstrated 
promising results in various graph-related tasks, 
including link prediction, node clustering, and 
graph generation. 
Figure 3 
Illustration of VGAE architecture 

 
Figure 3 shows the architecture of VGAE. 
Most autoencoder-based recommender systems 
utilize autoencoders to reconstruct input users or 
items and learn their latent representations. 
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directly reconstructs the graph. However, the 
original VGAE model is not specifically designed 
to handle user-item bipartite graphs, as it cannot 
effectively handle the heterogeneity present in 
such graphs using GCNs. To address this 
limitation and improve the performance of movie 
recommender systems, we propose the SeVGAER 
model. By modifying the VGAE architecture and 
integrating semantic features and graph structural 
information, SeVGAER offers a solution to the 
recommendation problem in the context of user-
item bipartite graphs. 

 
3. Methodology 
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Figure 4 
Overall structure of SeVGAER 

systems by effectively integrating graph-based learn-
ing with additional movie information, such as plot 
summary semantic vectors and graph structural fea-
tures. The overall structure of our model is depicted 
in Figure 4.
SeVGAER is built upon the foundation of graph-based 
generative models, enabling it to capture the intricate 
relationships within user-movie interaction data rep-
resented as a bipartite graph. 
To enhance the performance and scalability of our 
model, we have made several modifications to the 
conventional graph autoencoder architecture. In par-
ticular, we replaced the unsuitable and less scalable 
Graph Convolutional Networks (GCN) in the encoder 
with GraphSAGE convolutional layers. This adjust-
ment not only enhances the scalability of our model 
but also enables the extraction of more meaningful 
latent node representations. In the decoder, we opt 
for a Multi-Layer Perceptron (MLP) instead of the 
standard inner product operation, allowing for a more 
complex interaction between user and movie latent 
representations.
One of the most innovative aspects of our approach 
is the introduction of a unique training strategy. We 
randomly split the dataset for each training instance 
and ensure consistency between model outputs 
on each half. This strategy, inspired by contrastive 
learning, further strengthens the performance of 
our model.
In sum, our SeVGAER model presents a comprehen-
sive, enhanced solution to movie recommendation by 
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effectively integrating user-movie interaction data, 
additional movie information, and a unique training 
strategy within a graph-based model. The subsequent 
sections will delve deeper into the specifics of the 
SeVGAER model, our innovative modifications, and 
the process of obtaining and integrating plot summa-
ry semantic vectors.

3.3. SeVGAER 

This section will detail the function of our model: data 
preprocessing, encoder design, and decoder design.

3.3.1. Data Preprocessing
The first step in our approach involves preprocess-
ing the input data, mainly movie plot texts. We use a 
Large Language Model (LLM) to embedding all plots 
into fixed length vectors. These semantic vectors are 
then concatenated with original movie features to 
form the complete movie node features.
For example, a movie node m’s features are trans-
formed from original hm to hm⊕Sm where Sm is the plot 
text of m and ⊕ is the concatenation operation.

3.3.2. Encoder
The encoder of the proposed SeVGAER model plays 
a pivotal role in extracting meaningful representa-
tions from both user and movie nodes. The encoder is 
structured into two analogous sections, each specif-
ically designed to handle two types of relationships: 
user rating movie and movie being rated by user.
Each section of the encoder, corresponding to each 
relationship type, comprises three GraphSAGE con-
volutional layers. GraphSAGE operates based on the 
following formula:
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plays a pivotal role in extracting meaningful 
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The encoder is structured into two analogous 
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Each section of the encoder, corresponding to each 
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x at the (k-1)th layer, 𝑁𝑁(𝜈𝜈) represents the 
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aggregation function at the kth layer which we 
could customize, Wk is the weight matrix at the kth 
layer, and σ is an activation function. The first 
layer of GraphSAGE operates on the input 
features of the nodes, converting them into a 
preliminary form. The original GraphSAGE tries 
three aggregation methods including mean 
operator, LSTM and pooling. 
Sun et al. [28] observed that some recent models 
assigned identical scores to multiple items, 
severely limiting the model's generalization ability 
on diverse datasets. They traced this issue back to 
the Rectified Linear Unit (ReLU) activation 
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recommendations. Therefore, to address this issue 
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Movie recommendation is a quintessential problem in 
the field of recommender systems, which aims to 
predict the ratings that a user would give to unseen 
movies based on historical interactions. The goal is to 
provide users with personalized movie 
recommendations, which could significantly enhance 
the user experience。 

Formally, let us denote 𝑈𝑈 = {𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑚𝑚 } as the set 
of users and 𝑀𝑀 = {𝑚𝑚1, 𝑚𝑚2, … ,𝑚𝑚𝑛𝑛} as the set of movies. 
Each user has a history of interactions with some 
movies in M. These interactions could take the form of 
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(e.g., viewing history). The historical interactions can be 
represented as a bipartite graph 𝐺𝐺 = (𝑈𝑈,𝑀𝑀, 𝐸𝐸), where E 
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movies. Each edge 𝑒𝑒𝑖𝑖𝑖𝑖 = (𝑢𝑢𝑖𝑖,𝑚𝑚𝑖𝑖) ∈ 𝐸𝐸  is associated 
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3.2. Overview of the Proposed Approach 
Our proposed SeVGAER model sets out to address the 
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by effectively integrating graph-based learning with 
additional movie information, such as plot summary 
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Layer Perceptron (MLP) instead of the standard inner 
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modifications, and the process of obtaining and 
integrating plot summary semantic vectors. 
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is the plot text of m and ⊕ is the concatenation 
operation. 

3.3.2. Encoder 
The encoder of the proposed SeVGAER model 
plays a pivotal role in extracting meaningful 
representations from both user and movie nodes. 
The encoder is structured into two analogous 
sections, each specifically designed to handle two 
types of relationships: user rating movie and 
movie being rated by user. 

Each section of the encoder, corresponding to each 
relationship type, comprises three GraphSAGE 
convolutional layers. GraphSAGE operates based 
on the following formula: 

ℎ𝑁𝑁(𝜈𝜈)𝑘𝑘 = 𝐴𝐴𝐺𝐺𝐺𝐺𝐴𝐴𝐸𝐸𝐺𝐺𝐴𝐴𝐴𝐴𝐸𝐸𝑘𝑘(ℎ𝑥𝑥𝑘𝑘−1, ∀𝑥𝑥 ∈ 𝑁𝑁(𝜈𝜈)) (2) 

ℎ𝜈𝜈𝑘𝑘 = 𝜎𝜎 (𝑊𝑊𝑘𝑘 ⋅ 𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐴𝐴𝐴𝐴(ℎ𝜈𝜈𝑘𝑘−1, ℎ𝑁𝑁(𝜈𝜈)𝑘𝑘 )) . (3) 

Here, ℎ𝑥𝑥𝑘𝑘−1 refers to the feature vector of the node 
x at the (k-1)th layer, 𝑁𝑁(𝜈𝜈) represents the 
neighborhood of node ν, AGGREGATEk is the 
aggregation function at the kth layer which we 
could customize, Wk is the weight matrix at the kth 
layer, and σ is an activation function. The first 
layer of GraphSAGE operates on the input 
features of the nodes, converting them into a 
preliminary form. The original GraphSAGE tries 
three aggregation methods including mean 
operator, LSTM and pooling. 
Sun et al. [28] observed that some recent models 
assigned identical scores to multiple items, 
severely limiting the model's generalization ability 
on diverse datasets. They traced this issue back to 
the Rectified Linear Unit (ReLU) activation 
function, which zeros out an excessive number of 
neurons. 
In the context of our movie recommendation 
system, this would translate to similar scores 
being assigned to distinctly different movies, 
limiting the diversity and personalization of the 
recommendations. Therefore, to address this issue 
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where erf(·) is the Gauss error function. 

GELU is a recently proposed activation function that 
has gained popularity in deep learning. It is a smooth 
approximation of the ReLU activation function. The 
GELU function has a non-monotonic, sigmoid-like 
shape that provides a better gradient flow during 
backpropagation compared to ReLU. The GELU 
function has been shown to improve the performance of 
neural networks on a variety of tasks, including item 
recommendation and classification. By adopting the 
GELU function in our model, we aim to improve the 
diversity and personalization of our movie 
recommendations, thereby enhancing the overall 
performance of our system. 
Following this, the second GraphSAGE layer generates 
the mean of a distribution from these transformed 
features, essentially forming the latent representation of 
the nodes. Meanwhile, the third GraphSAGE layer 
computes the standard deviation of this distribution. 
The design of the encoder, inspired by the VGAE 
framework, considers the latent representation as a 
distribution defined by its mean μ and standard 
deviation σ, rather than a single point. 
One distinguishing aspect of our approach lies in the 
modification of the GraphSAGE aggregation function. 
While the original GraphSAGE model offers three 
aggregation methods - mean operator, LSTM, and 
pooling - we have customized our aggregator to better 
fit our task. Specifically, we employ a multi-aggregation 
method that merges three softmax aggregations, initially 
proposed in [14], with varying learnable temperatures 
for the first hidden layer and the mean layer. 
The softmax aggregator, defined by the following 
formula, controls the softness of the softmax during 
aggregation over a set of features χ using a temperature 
parameter t. The softmax aggregator serves as a 
generalized mean-max aggregation function and adjusts 
between mean or max aggregator based on the 
temperature value (operating as a mean for small t and 
as a max for larger t). This makes it more expressive 
than the original aggregation functions and more 
flexible with a learnable t. 
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Moreover, to further enhance the encoder’s ability, we 
concatenate multiple aggregators. 
For the standard deviation layer, we utilize a softmax 
aggregator combined with a standard deviation 
aggregator, which informs the encoder of variables’ 
deviation when predicting embedding deviation. 

𝑠𝑠𝑠𝑠𝑠𝑠(𝜒𝜒) = √𝑣𝑣𝑠𝑠𝑒𝑒(𝜒𝜒)
= 𝑠𝑠𝑒𝑒𝑠𝑠𝑚𝑚({ℎ𝑥𝑥2 : ℎ ∈ 𝜒𝜒}) − 𝑠𝑠𝑒𝑒𝑠𝑠𝑚𝑚(𝜒𝜒)2.

(6) 

This approach enables us to capture various 
aspects of the data, thereby enhancing the 
robustness and accuracy of our model. 
In essence, the encoder effectively converts the 
input features of both user and movie nodes into 
encapsulated vectors of the same dimensions. The 
resulting architecture allows the model to harness 
the inherent semantics of the data, making it a 
robust tool for movie recommendation tasks.  

3.3.3. Decoder 
In the decoder component of our model, we 
deviate from the traditional approach of 
employing an inner product operation. Instead, we 
utilize a MLP to predict user-to-movie ratings. 
This modification fosters a more intricate and 
flexible interaction between user and movie latent 
representations, ultimately resulting in more 
precise rating predictions. 
To further capture the nuanced interplay between 
user and movie nodes, the decoder accepts not 
only the latent representations of these two types 
of nodes but also their differences and element-
wise products. This approach enables the model to 
incorporate both the individual characteristics of 
users and movies, and their relational dynamics. 
Additionally, we incorporate graph features of the 
nodes as supplementary information. These graph 
features are composed of two parts: the degree of 
the nodes and their adjacency vectors. The 
inclusion of these features adds another layer of 
context, providing the model with a more 
comprehensive view of the graph structure. 
The complete decoder function can be represented 
as: 

�̃�𝑦𝑢𝑢𝑢𝑢 = 𝑀𝑀𝐺𝐺𝑀𝑀(𝑧𝑧𝑢𝑢 ⊕ 𝑧𝑧𝑢𝑢 ⊕ (𝑧𝑧𝑢𝑢 − 𝑧𝑧𝑢𝑢) ⊕ (𝑧𝑧𝑢𝑢 ⊙ 𝑧𝑧𝑢𝑢)
⊕ 𝐷𝐷𝑢𝑢 ⊕ 𝐷𝐷𝑢𝑢 ⊕𝐴𝐴𝑠𝑠𝐴𝐴𝑢𝑢 ⊕ 𝐴𝐴𝑠𝑠𝐴𝐴𝑢𝑢),
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where zu and zm are the latent representations of 
user and movie nodes, respectively, Du and Dm 
represent the degree of user and movie nodes, and 
Adju and Adjm are their adjacency vectors. The 
MLP is trained to predict the rating yum from user 
u to movie m based on this input vector. 
Our decoder leverages a specific architecture 
inspired by the "expansion-and-contraction" 
design. This architecture is characterized by an 
initial expansion of the output dimensionality, 
followed by a contraction. This design is 
prominent in the Transformer model's fully 
connected layers and has proven to be effective 
[29]. 
The first layer of the MLP doubles the 
dimensionality of the input, enabling the model to 
explore a wide array of possible feature 
interactions. This "expansion" phase provides the 
MLP with a larger hypothesis space to capture 
complex patterns and dependencies. Same to the 
encoder, we choose GELU as activation function 

(4)

where erf(·) is the Gauss error function.
GELU is a recently proposed activation function that 
has gained popularity in deep learning. It is a smooth 
approximation of the ReLU activation function. The 
GELU function has a non-monotonic, sigmoid-like 
shape that provides a better gradient flow during 
backpropagation compared to ReLU. The GELU func-
tion has been shown to improve the performance of 
neural networks on a variety of tasks, including item 
recommendation and classification. By adopting the 
GELU function in our model, we aim to improve the 
diversity and personalization of our movie recom-
mendations, thereby enhancing the overall perfor-
mance of our system.
Following this, the second GraphSAGE layer gen-
erates the mean of a distribution from these trans-
formed features, essentially forming the latent 
representation of the nodes. Meanwhile, the third 
GraphSAGE layer computes the standard deviation 
of this distribution.
The design of the encoder, inspired by the VGAE 
framework, considers the latent representation as a 
distribution defined by its mean μ and standard devi-
ation σ, rather than a single point.
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One distinguishing aspect of our approach lies in 
the modification of the GraphSAGE aggregation 
function. While the original GraphSAGE model of-
fers three aggregation methods - mean operator, 
LSTM, and pooling - we have customized our aggre-
gator to better fit our task. Specifically, we employ a 
multi-aggregation method that merges three soft-
max aggregations, initially proposed in [14], with 
varying learnable temperatures for the first hidden 
layer and the mean layer.
The softmax aggregator, defined by the following for-
mula, controls the softness of the softmax during ag-
gregation over a set of features χ using a temperature 
parameter t. The softmax aggregator serves as a gen-
eralized mean-max aggregation function and adjusts 
between mean or max aggregator based on the tem-
perature value (operating as a mean for small t and as 
a max for larger t). This makes it more expressive than 
the original aggregation functions and more flexible 
with a learnable t.
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input features of both user and movie nodes into 
encapsulated vectors of the same dimensions. The 
resulting architecture allows the model to harness 
the inherent semantics of the data, making it a 
robust tool for movie recommendation tasks.  

3.3.3. Decoder 
In the decoder component of our model, we 
deviate from the traditional approach of 
employing an inner product operation. Instead, we 
utilize a MLP to predict user-to-movie ratings. 
This modification fosters a more intricate and 
flexible interaction between user and movie latent 
representations, ultimately resulting in more 
precise rating predictions. 
To further capture the nuanced interplay between 
user and movie nodes, the decoder accepts not 
only the latent representations of these two types 
of nodes but also their differences and element-
wise products. This approach enables the model to 
incorporate both the individual characteristics of 
users and movies, and their relational dynamics. 
Additionally, we incorporate graph features of the 
nodes as supplementary information. These graph 
features are composed of two parts: the degree of 
the nodes and their adjacency vectors. The 
inclusion of these features adds another layer of 
context, providing the model with a more 
comprehensive view of the graph structure. 
The complete decoder function can be represented 
as: 
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MLP is trained to predict the rating yum from user 
u to movie m based on this input vector. 
Our decoder leverages a specific architecture 
inspired by the "expansion-and-contraction" 
design. This architecture is characterized by an 
initial expansion of the output dimensionality, 
followed by a contraction. This design is 
prominent in the Transformer model's fully 
connected layers and has proven to be effective 
[29]. 
The first layer of the MLP doubles the 
dimensionality of the input, enabling the model to 
explore a wide array of possible feature 
interactions. This "expansion" phase provides the 
MLP with a larger hypothesis space to capture 
complex patterns and dependencies. Same to the 
encoder, we choose GELU as activation function 
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where erf(·) is the Gauss error function. 
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former model’s fully connected layers and has prov-
en to be effective [29].
The first layer of the MLP doubles the dimensionality 
of the input, enabling the model to explore a wide ar-
ray of possible feature interactions. This “expansion” 
phase provides the MLP with a larger hypothesis 
space to capture complex patterns and dependencies. 
Same to the encoder, we choose GELU as activation 
function of the first layer.
Following this, the second layer reduces the dimen-
sionality to one which is the output rating, consolidat-
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panded information, focusing on the most salient fea-
tures and interactions.
This design approach allows the MLP to effectively 
capture intricate relationships in the data, thereby 
enhancing the quality of the movie recommendations 
generated by our model.

3.3.4. Training
In this section, we delve into the details of the training 
process of the SeVGAER model. The training process 
is pivotal to the successful operation of our model, 
as it determines how well the model can capture and 
generalize the intricate user-movie interactions in 
the data.
The training begins with the encoder generating the 
mean and standard deviation of the latent represen-
tation of nodes. These statistical descriptors serve as 
a summary of the distributions of node features in the 
latent space. They are then passed on to the decoder, 
which undertakes the task of reconstructing the orig-
inal user-movie bipartite graph. This reconstruction 
is achieved by predicting the ratings of movies by us-
ers based on the statistical descriptors provided by 
the encoder.
The effectiveness of the reconstruction process is 
evaluated using a loss function, which comprises 
three parts: the reconstruction loss, the KL diver-
gence loss, and a novel contrastive loss.
The reconstruction loss is essentially a measure of 
the accuracy of the ratings predicted by the decoder. It 
measures the deviation between the predicted ratings 
and the actual ones, defined by the mean square error:
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ℒ𝑟𝑟𝑟𝑟𝑟𝑟 =
1
𝑁𝑁 ∑ (�̃�𝑦𝑢𝑢𝑢𝑢 − 𝑦𝑦𝑢𝑢𝑢𝑢)2,

∀(𝑢𝑢,𝑢𝑢)∈𝐸𝐸
(8) 

where yum represents the ground truth rating of user u on 
movie m. 

The KL divergence loss, on the other hand, serves 
a different purpose. It is a fundamental component 
of variational autoencoders, including our 
SeVGAER model, and ensures that the 
distribution of embeddings outputted by the 
model's encoder adheres to a normal distribution. 
This adherence to a normal distribution is based 
on the assumption of variational autoencoders that 
the latent space follows a Gaussian distribution. 
This assumption simplifies the computation and 
allows for an efficient exploration of the latent 
space during the decoding process. 
Moreover, the KL divergence loss acts as a 
regularization term in the loss function, preventing 
overfitting by discouraging the model from 
learning too complex or specific representations 
that might not generalize well. It encourages the 
model to learn more robust and generalized 
representations that capture the overall structure of 
the data rather than the specific details of each 
training example. 
The KL divergence loss is computed as follows: 

ℒ𝐾𝐾𝐾𝐾 = − 1
2𝑁𝑁(∑[1 + 2𝑙𝑙𝑙𝑙𝑔𝑔σ𝑖𝑖 − μ𝑖𝑖

2 − σ𝑖𝑖2]
𝐾𝐾

𝑖𝑖=1
) , (9) 

where μ and σ are the mean and standard deviation 
of the embeddings distribution, outputted by the 
model's encoder. 
To further bolster the model's performance and 
enhance its ability to generalize, we introduce a 
novel training strategy inspired by contrastive 
learning. In this approach, we randomly split the 
dataset for each training instance and introduce a 
contrastive loss to ensure consistency between 
model outputs on each half. This strategy forces 
the model to learn more robust and generalized 
representations that hold true across different 
subsets of the data. The contrastive loss is defined 
as the RMSE between outputs generated by each 
half of dataset: 

ℒ𝑟𝑟𝑐𝑐𝑐𝑐 =
1
𝑁𝑁∑(𝑦𝑦𝑢𝑢𝑢𝑢(1) − 𝑦𝑦𝑢𝑢𝑢𝑢(2))2. (10) 

This contrastive learning process is illustrated in 
Figure 5. 
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The total loss, which guides the training of the mod-
el, is then the weighted sum of the reconstruction 
loss, KL divergence loss, and the contrastive loss. By 
minimizing this comprehensive loss function, the 
SeVGAER model can effectively learn from the data 
and yield accurate and personalized movie recom-
mendations.

  

The total loss, which guides the training of the model, is 
then the weighted sum of the reconstruction loss, KL 
divergence loss, and the contrastive loss. By minimizing 
this comprehensive loss function, the SeVGAER model 
can effectively learn from the data and yield accurate 
and personalized movie recommendations. 

ℒ = λ𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟 + λ𝐾𝐾𝐾𝐾ℒ𝐾𝐾𝐾𝐾 + λ𝑟𝑟𝑐𝑐𝑐𝑐ℒ𝑟𝑟𝑐𝑐𝑐𝑐. (11) 

 
4. Experiments and Analysis 
This chapter presents the experimental evaluation of our 
proposed SeVGAER model. The results of the 
experiments are used to validate the effectiveness of our 
approach. 

4.1. Experimental Setup 
In this section, we describe the dataset used for the 
experiments, the evaluation metrics, and the baseline 
methods for comparison. 
The experiments were conducted on the enriched 
MovieLens 100k dataset [12], which includes user-
movie interaction data and additional movie plot 
summaries. MovieLens 100K contains 100,000 ratings 
y∈{1, 2, 3, 4, 5}, 1,682 movies (items) rated by 943 
users. We use the official split of the dataset to train and 
evaluate our model. 
We used widely accepted evaluation metric in the field 
of recommender systems, the Root Mean Square Error 
(RMSE), to evaluate the performance of our model. 
For comparison purposes, we selected several state-of-
the-art methods as baseline models. These models 
represent a variety of recommendation approaches, 
including collaborative filtering methods, deep learning-
based methods, etc.. 
The hyperparameters of SeVGAER during training are 
listed in Table 1. 
Here, dropout rate is used in decoder’s hidden layer. 
“Latent dim” means the dimension of node latent 
representation or node embedding - the encoders’ 
outputs. 
The LLM we used to embedding input plot texts is all-
MiniLM-L6-v2 proposed by [22, 23], a pretrained 
language model that maps sentences or paragraphs to a 
384 dimensional dense vector space. 
Table 1 
The hyperparameters 

Hyperparameter Value 

Optimizer AdamW 

Learning rate 0.001 

λrec 0.5 

λKL 6.5 

λctt 0.5 

Dropout rate 0.85 

Encoder dim 96 

Latent dim 60 

4.2. Experimental Results 

Table 2 
Experimental results 

MODEL RMSE 

Baseline COFILS [2] 0.892 
Kernel PCA COFILS [2] 0.898 
Slope One [20] 0.937 
Regularized SVD [21] 0.989 
SVD++ [18] 0.903 
FM [24] 0.909 
Non-Negative Matrix Factorization [19] 0.944 
NFM [13] 0.910 
AutoSVD [33] 0.901 
AutoSVD++ [33] 0.904 

GLocal-K [11] 0.889 
GHRS [6] 0.887 
JK-DMC [35] 0.906 
T-ULVD [14] 0.892 

SeVGAER 0.885 

This section highlights the experimental results of 
our proposed SeVGAER model, as well as the 
baseline methods. The results are outlined in Table 
2 and will be thoroughly discussed in the 
following sections. 

4.3. Ablation Study 
In order to highlight the significance of our 
proposed modifications and techniques, we 
conduct an ablation study. The ablation study 
involves creating variations of our SeVGAER 
model where certain features or techniques are 
removed, and comparing their performance to that 
of the complete SeVGAER model. Three specific 
features are examined: the contrastive learning 
strategy, the variational mechanism (KL 
divergence), and the custom aggregators. 
The first variation involves removing the 
contrastive learning strategy from the training 
process. In this case, the model is trained using the 
traditional approach, without the random data 
splitting and consistency check between the two 
halves of the dataset. This variation is meant to 
evaluate the contribution of the contrastive 
learning strategy to the overall performance of the 
model. 
The second variation of the SeVGAER model 
does not employ the variational mechanism, 
specifically the KL divergence loss. The model is 
instead trained solely with the graph 
reconstruction loss. This variation is designed to 
assess the contribution of the variational 
mechanism to the model's performance. 
The third variation of the SeVGAER model does 
not use the custom aggregators in the GraphSAGE 
convolutional layers. Instead, it employs the 
standard aggregators provided in the GraphSAGE 
framework. This variation aims to evaluate the 
performance contribution of the custom 
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of the first layer. 
Following this, the second layer reduces the 
dimensionality to one which is the output rating, 
consolidating the information learned in the expansion 
phase. This "contraction" phase helps to synthesize the 
expanded information, focusing on the most salient 
features and interactions. 
This design approach allows the MLP to effectively 
capture intricate relationships in the data, thereby 
enhancing the quality of the movie recommendations 
generated by our model. 

3.3.4. Training 
In this section, we delve into the details of the training 
process of the SeVGAER model. The training process is 
pivotal to the successful operation of our model, as it 
determines how well the model can capture and 
generalize the intricate user-movie interactions in the 
data. 
The training begins with the encoder generating the 
mean and standard deviation of the latent representation 
of nodes. These statistical descriptors serve as a 
summary of the distributions of node features in the 
latent space. They are then passed on to the decoder, 
which undertakes the task of reconstructing the original 
user-movie bipartite graph. This reconstruction is 
achieved by predicting the ratings of movies by users 
based on the statistical descriptors provided by the 
encoder. 
The effectiveness of the reconstruction process is 
evaluated using a loss function, which comprises three 
parts: the reconstruction loss, the KL divergence loss, 
and a novel contrastive loss. 
The reconstruction loss is essentially a measure of the 
accuracy of the ratings predicted by the decoder. It 
measures the deviation between the predicted ratings 
and the actual ones, defined by the mean square error: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟 =
1
𝑁𝑁 ∑ (�̃�𝑦𝑢𝑢𝑢𝑢 − 𝑦𝑦𝑢𝑢𝑢𝑢)2,

∀(𝑢𝑢,𝑢𝑢)∈𝐸𝐸
(8) 

where yum represents the ground truth rating of user u on 
movie m. 

The KL divergence loss, on the other hand, serves 
a different purpose. It is a fundamental component 
of variational autoencoders, including our 
SeVGAER model, and ensures that the 
distribution of embeddings outputted by the 
model's encoder adheres to a normal distribution. 
This adherence to a normal distribution is based 
on the assumption of variational autoencoders that 
the latent space follows a Gaussian distribution. 
This assumption simplifies the computation and 
allows for an efficient exploration of the latent 
space during the decoding process. 
Moreover, the KL divergence loss acts as a 
regularization term in the loss function, preventing 
overfitting by discouraging the model from 
learning too complex or specific representations 
that might not generalize well. It encourages the 
model to learn more robust and generalized 
representations that capture the overall structure of 
the data rather than the specific details of each 
training example. 
The KL divergence loss is computed as follows: 

ℒ𝐾𝐾𝐾𝐾 = − 1
2𝑁𝑁(∑[1 + 2𝑙𝑙𝑙𝑙𝑔𝑔σ𝑖𝑖 − μ𝑖𝑖

2 − σ𝑖𝑖2]
𝐾𝐾

𝑖𝑖=1
) , (9) 

where μ and σ are the mean and standard deviation 
of the embeddings distribution, outputted by the 
model's encoder. 
To further bolster the model's performance and 
enhance its ability to generalize, we introduce a 
novel training strategy inspired by contrastive 
learning. In this approach, we randomly split the 
dataset for each training instance and introduce a 
contrastive loss to ensure consistency between 
model outputs on each half. This strategy forces 
the model to learn more robust and generalized 
representations that hold true across different 
subsets of the data. The contrastive loss is defined 
as the RMSE between outputs generated by each 
half of dataset: 

ℒ𝑟𝑟𝑐𝑐𝑐𝑐 =
1
𝑁𝑁∑(𝑦𝑦𝑢𝑢𝑢𝑢(1) − 𝑦𝑦𝑢𝑢𝑢𝑢(2))2. (10) 

This contrastive learning process is illustrated in 
Figure 5. 
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4. Experiments and Analysis
This chapter presents the experimental evaluation 
of our proposed SeVGAER model. The results of the 
experiments are used to validate the effectiveness of 
our approach.

4.1. Experimental Setup

In this section, we describe the dataset used for the 
experiments, the evaluation metrics, and the baseline 
methods for comparison.
The experiments were conducted on the enriched 
MovieLens 100k dataset [12], which includes us-
er-movie interaction data and additional movie plot 
summaries. MovieLens 100K contains 100,000 rat-
ings y∈{1, 2, 3, 4, 5}, 1,682 movies (items) rated by 943 
users. We use the official split of the dataset to train 
and evaluate our model.
We used widely accepted evaluation metric in the 
field of recommender systems, the Root Mean Square 
Error (RMSE), to evaluate the performance of our 
model.
For comparison purposes, we selected several state-
of-the-art methods as baseline models. These models 
represent a variety of recommendation approaches, 
including collaborative filtering methods, deep learn-
ing-based methods, etc..

The hyperparameters of SeVGAER during training 
are listed in Table 1.

Table 1
The hyperparameters

Hyperparameter Value

Optimizer AdamW

Learning rate 0.001

λrec 0.5

λKL 6.5

λctt 0.5

Dropout rate 0.85

Encoder dim 96

Latent dim 60

Here, dropout rate is used in decoder’s hidden layer. 
“Latent dim” means the dimension of node latent rep-
resentation or node embedding - the encoders’ out-
puts.
The LLM we used to embedding input plot texts is 
all-MiniLM-L6-v2 proposed by [22, 23], a pretrained 
language model that maps sentences or paragraphs to 
a 384 dimensional dense vector space.
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4.2. Experimental Results
This section highlights the experimental results of 
our proposed SeVGAER model, as well as the baseline 
methods. The results are outlined in Table 2 and will 
be thoroughly discussed in the following sections.

Table 2
Experimental results

MODEL RMSE

Baseline COFILS [2] 0.892

Kernel PCA COFILS [2] 0.898

Slope One [20] 0.937

Regularized SVD [21] 0.989

SVD++ [18] 0.903

FM [24] 0.909

Non-Negative Matrix Factorization [19] 0.944

NFM [13] 0.910

AutoSVD [33] 0.901

AutoSVD++ [33] 0.904

GLocal-K [11] 0.889

GHRS [6] 0.887

JK-DMC [35] 0.906

T-ULVD [14] 0.892

SeVGAER 0.885

4.3. Ablation Study
In order to highlight the significance of our proposed 
modifications and techniques, we conduct an ablation 
study. The ablation study involves creating variations 
of our SeVGAER model where certain features or 
techniques are removed, and comparing their per-
formance to that of the complete SeVGAER model. 
Three specific features are examined: the contrastive 
learning strategy, the variational mechanism (KL di-
vergence), and the custom aggregators.
The first variation involves removing the contrastive 
learning strategy from the training process. In this 
case, the model is trained using the traditional ap-
proach, without the random data splitting and con-
sistency check between the two halves of the dataset. 

This variation is meant to evaluate the contribution 
of the contrastive learning strategy to the overall per-
formance of the model.
The second variation of the SeVGAER model does 
not employ the variational mechanism, specifically 
the KL divergence loss. The model is instead trained 
solely with the graph reconstruction loss. This varia-
tion is designed to assess the contribution of the vari-
ational mechanism to the model’s performance.
The third variation of the SeVGAER model does not 
use the custom aggregators in the GraphSAGE con-
volutional layers. Instead, it employs the standard 
aggregators provided in the GraphSAGE framework. 
This variation aims to evaluate the performance con-
tribution of the custom aggregators.
The results of the ablation study are presented in Ta-
ble 3. The performance of each variation is compared 
with that of the complete SeVGAER model to deter-
mine the contribution of each component to the over-
all model performance.

Table 3
Ablation study

MODEL RMSE

SeVGAER-without CL 0.892

SeVGAER-without KL 0.889

SeVGAER-without aggr. 0.889

SeVGAER-complete 0.885

The results of the ablation study clearly underscore 
the importance of each component in enhancing the 
performance of the SeVGAER model. Detailed anal-
ysis of the results is provided in the following section.

4.4. Results Analysis

The results in Table 2 demonstrate the superior per-
formance of the proposed SeVGAER model in com-
parison to the baseline methods. Our model achieves 
the lowest RMSE score of 0.885, outperforming other 
state-of-the-art models. This superior performance 
can be attributed to the innovative modifications and 
techniques incorporated in our model.
Firstly, the SeVGAER model leverages a Seman-
tic-Enhanced Variational Graph Autoencoder, which 



581Information Technology and Control 2024/2/53

effectively captures complex user-movie interac-
tions. This enables the model to provide more person-
alized movie recommendations, thereby improving 
the overall performance.
Secondly, by integrating additional movie informa-
tion such as plot summaries and graph structural 
features, our model gains a richer context for making 
recommendations. This multi-source feature inte-
gration significantly enhances the performance of the 
recommender system.
Finally, the novel training strategy involving random 
data splitting and consistency checking between 
model outputs, inspired by contrastive learning, 
serves to further improve the model’s performance.
The results of the ablation study presented in Table 
3 further substantiate the effectiveness of these com-
ponents. Each variation of the model, where a specific 
feature or technique is removed, performs worse than 
the complete SeVGAER model. This underscores the 
significance of each component in enhancing the per-
formance of the model.
In conclusion, the superior performance of the SeV-
GAER model can be attributed to its innovative ar-
chitecture, the integration of additional movie infor-
mation, and the novel training strategy. These results 
set a new precedent for future research in the field of 
movie recommender systems.

5. Conclusion and Future Work
In this work, we presented the Semantic-Enhanced 
Variational Graph Autoencoder for Movie Recom-
mendation (SeVGAER) model, an innovative approach 
that leverages graph-based learning, plot summary 
semantic vectors, and a unique contrastive learning 

strategy to provide accurate and personalized movie 
recommendations. The SeVGAER model demonstrat-
ed superior performance over state-of-the-art baseline 
models, and the results of our ablation study further 
underscored the importance of each component in en-
hancing the performance of the model.
The key contributions of our work include the in-
tegration of additional movie information into the 
graph structure, the modification of the GraphSAGE 
aggregator to better fit our task, and the introduction 
of a contrastive training strategy that improves mod-
el generalization. The superior performance of our 
model on the Movielens100k dataset highlights its 
potential in effectively addressing the challenges of 
movie recommendation.
Looking forward, there are several potential direc-
tions for future work. First, while we utilized plot 
summaries as additional movie information in this 
study, other sources of information such as movie 
genres, director, actors, and user demographics could 
be integrated to further enhance the system’s perfor-
mance. Of particular note, our model can also attempt 
to incorporate users’ dynamic temporal information 
like in [5]. Second, the proposed model could be ex-
tended to other types of recommendation systems, 
such as music, books, or products, demonstrating its 
versatility. Lastly, the contrastive learning strategy 
could be further explored and optimized to improve 
its effectiveness in enhancing model performance.
In conclusion, our research provides a novel perspec-
tive and sets a new precedent in the field of movie rec-
ommender systems. It demonstrates the potential of 
integrating additional information and novel training 
strategies within a graph-based model, opening up 
new avenues for future research in this area.
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