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This study suggests an integrated circuit (IC) pin welding defect detection algorithm based on improved 
YOLOv5x to address the issues of low detection accuracy caused by small target size and dense pin arrangement 
in IC pin welding defects identification. The ability of the network to extract features is improved by effective 
fusing of features with various receptive fields through the inclusion of the D-SPP module to merge different 
channel information. The introduction of the mask self-attention mechanism module increases the network’s 
capacity to recognize global feature correlations and raises the algorithm’s detection precision. In order to 
speed up the model’s convergence and tackle the issue of sample imbalance in BBox regression, the Focal-EIoU 
loss function is applied. The detection accuracy and speed are increased by using the k-means++ clustering 
algorithm to create nine clustering centers to figure out the size of the prior box. According to the results of the 
experiment, the new method achieves average precisions for short-circuit, missing pin, pin-cocked, and little tin 
faults in IC pin welding of 96.7%, 94.5%, 95.6%, and 93.3%, respectively. The mean average precision increases 
to 95.0% at a threshold of 0.5, which is 13.3% and 8.9% greater than YOLOv3 and YOLOv5x, respectively. A 
reference value for IC pin welding defect identification is provided by the improved algorithm, which has a 
detection time of 0.142 seconds per image. This meets the speed requirements of IC quality inspection.
KEYWORDS: IC pin welding defect detection, YOLOv5x, D-SPP module, Mask self-attention mechanism, 
Focal-EIoU, k-means++.

1. Introduction
With the rapid development of information technol-
ogy, the integration level of electronic products is in-
creasing, and they are gradually becoming smaller, 

more intelligent, and more integrated. IC has become 
increasingly important in the information industry 
and are widely used in the fields of electronics, semi-
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conductors, and artificial intelligence [23]. After the IC 
chip and other electronic components go through pro-
cesses such as silk screen printing and surface mount 
technology (SMT), they are welded on the printed cir-
cuit board (PCB) and ultimately used to implement 
corresponding functions in electronic products [30]. 
Whether various electronic products can operate 
normally and the length of their service life are close-
ly related to the quality of the PCB. The quality of the 
PCB depends on the welding quality of its electronic 
components. If PCBs with welding problems enter the 
market for assembly and production, they may cause 
equipment damage during use, which could result in 
significant economic losses and even endanger per-
sonal safety in severe cases [28]. Therefore, it is nec-
essary to perform fast and accurate detection of PCB 
defects in the production process, among which IC pin 
welding defect detection is one of the most important 
detections in PCB defect detection. IC pin welding de-
fect detection can effectively prevent defective circuit 
boards from entering subsequent processes and mini-
mize losses as much as possible.

2. Related Works
Traditional PCB defect detection methods include vi-
sual inspection, online testing, and functional testing 
[22]. Among them, visual inspection relies on human 
eyesight to directly observe the circuit board through 
equipment such as magnifying glasses. Its main ad-
vantages are low cost and no need for fixtures or other 
equipment. However, its disadvantages are that it is 
easily affected by subjective factors such as the work 
experience and emotions of the personnel, leading to 
lower accuracy and efficiency in defect detection. The 
main method of online testing is flying probe testing, 
which has the advantages of flexibility and fast test-
ing. However, it belongs to contact measurement and 
may cause secondary damage to the circuit board to 
a certain extent. Functional testing is based on the 
principle of automated testing and uses various test-
ing equipment to test specific boards or units. Its dis-
advantages are slow testing speed and lack of support 
for parameter measurement.
Machine vision is a non-contact and non-destructive 
automatic inspection technology [24], which has de-
veloped rapidly in recent years and has been widely 
applied in industrial quality inspection. The applica-

tion of machine vision for PCB defect detection has also 
received much attention. Keenan et al. [9] developed a 
non-invasive technique for photographing the compo-
nent circuits of ICs and used infrared laser beam detec-
tion technology to inspect flaws in integrated circuits 
on PCBs. Yamada et al. [29] used high-sensitivity micro 
eddy current probes along with image processing tech-
nologies. By using differential and filtering operations 
between standard images and test images of PCBs, 
Ibrahim et al. [6] successfully reduced the noise pro-
duced during image preprocessing, minimizing errors 
or uneven binarization. In order to fully detect PCB 
defects, Kumar et al. [10] suggested picture enhancing 
techniques as color plane extraction and LUT transfor-
mation, as well as a standard data creation approach. 
In order to efficiently identify flaws in bare PCBs such 
etching, short circuits, and open circuits, Kaur et al. 
[8] proposed applying image differential operations. 
Gaidhane et al. [3] used a similarity measurement 
technique that allowed for the direct quantification of 
similarity between scene photos of PCB surfaces and 
reference images without the need for image feature 
computations. In summary, methods based on tradi-
tional image processing and machine vision have some 
progress, with basic steps such as feature extraction 
and template matching. However, for different PCBs, 
re-modeling is required, which has the shortcomings 
of being time-consuming and cumbersome.
In recent years, with the successful application of deep 
learning models in fields such as face recognition, de-
fect detection and object tracking [27, 31, 15], deep 
learning-based PCB defect detection has also devel-
oped rapidly. Park et al. [17] developed the Mars-Net 
construction, which improves the Dilated Residual 
Network (DRN) to increase feature map resolution. 
Additionally, they created Horizontal Vertical Pool-
ing (HVP) to improve pooling efficiency by obtaining 
positioning data from the feature maps. In order to 
improve PCB defect detection performance, Ding et 
al. [2] created a Tiny Defect Detection Network (TDD-
Net) based on Faster R-CNN. This network improves 
the connections between feature maps at different 
levels. A cascaded CNN network was utilized by Cai 
et al. [1] to identify SMT welding junctions. Two other 
CNN networks received the input image and the adap-
tive image learning results from one CNN network. 
This approach eliminates the requirement to extract 
low-level features by simply completing the detection 
operation. Ran et al. [18] proposed a PCB defect detec-
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tion and recognition algorithm based on SSD, which 
customizes different scale bounding boxes using 
multi-scale feature mapping, predicts classification 
results and boundary box information using small 
convolution kernels, and optimizes the detection re-
sults using NMS algorithm. The Edge and Multi-scale 
Reverse Attention Network (EMRA-Net), created by 
Lin et al. [11], incorporates a new Pyramid Edge Mod-
ule and a Multi-scale Fusion (MSF) module in the 
feature extraction procedure. These modules are used 
to obtain features with different resolutions and siz-
es. A CNN-based two-stage object detection frame-
work was developed by Luo et al. [16]. They used a 
Locally Non-Local (LNL) module to improve defect 
classification accuracy and a Multi-Hierarchical Ag-
gregation (MHA) module to improve the localization 
accuracy of non-prominent faults. While the above 
networks enhance the accuracy of defect detection 
to a certain extent, they are not without limitations. 

Particularly, in cases where the dataset is large, the 
excessive computation can significantly impact both 
the learning process of the model and the detection 
speed. Consequently, they fail to meet the real-time 
detection requirements.

3. Our Approach
3.1. Testing Process
In order to solve the difficulty in detection of small 
and dense IC pins, this paper proposes an improved 
YOLOv5x algorithm to detect defects in IC pin weld-
ing. The detection process diagram is given in Figure 
1, and the specific procedure of model establishment 
can be divided into the following four steps:
a Firstly, annotate the collected IC pin welding de-

fect images and create a dataset in Pascal VOC for-
mat.

Figure 1
Detection flow chart  
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3.2 Network Model Algorithm 

Deep learning-based object detection algorithms can be 
broadly categorized into two types: two-stage detection 
algorithms and one-stage detection algorithms. On the one 
hand, two-stage object detection algorithms divide the 
detection task into two stages. First, they identify candidate 
regions where objects may be present and make 
preliminary judgments about whether they contain objects. 
Then, they classify and regress these candidate regions to 
refine their positions and ultimately output the object's 
category. Representative algorithms in this category 
include R-CNN [4], Fast R-CNN [5], and Faster R-CNN 
[21]. 
On the other hand, one-stage object detection algorithms 
do not have a separate stage for generating candidate 
regions. Instead, they directly output the probability of 
object categories along with the corresponding position 
coordinates. Representative algorithms in this category 
include YOLO [19], YOLOv3 [20], SSD [14], and others. 

In 2020, Jocher et al. [7] introduced the YOLOv5 
algorithm. YOLOv5 comprises five different models, 
namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x. These five models share a common internal 
structure but differ in their depth and width factors. 
Consequently, the models vary in size, parameter count, 
network depth, detection accuracy, and detection speed. 
Notably, YOLOv5x exhibits exceptional detection 
accuracy. Therefore, this paper selects the YOLOv5x 
model for the design of the IC pin welding defect detection 
algorithm. 

3.2.1 YOLOv5x Network Model 

The network structure of IC pin welding defect detection 
based on YOLOv5x is shown in Figure 2. The backbone 
network is the CSPDarknet53 network [26], the neck 
network is a combination of Feature Pyramid Networks 
(FPN) [12] and Path Aggregation Network (PAN) [13], and 
the detection head has outputs in three different scales. The 
IC pin welding defect detection network based on 
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b Secondly, partition the dataset into a training set, a 
validation set, and a test set in a 6:2:2 ratio.

c Next, input the training set and validation set into 
the improved YOLOv5x network for iterative opti-
mization of network parameters to accelerate net-
work convergence.

d Finally, after completing the model training, eval-
uate the network’s ability to detect new defect im-
ages using the test set. If the model’s performance 
meets the requirements, apply the model to the 
online detection system; otherwise, optimize the 
network and continue training.

3.2. Network Model Algorithm
Deep learning-based object detection algorithms 
can be broadly categorized into two types: two-stage 
detection algorithms and one-stage detection algo-
rithms. On the one hand, two-stage object detection 
algorithms divide the detection task into two stages. 
First, they identify candidate regions where objects 
may be present and make preliminary judgments 
about whether they contain objects. Then, they clas-
sify and regress these candidate regions to refine their 
positions and ultimately output the object’s category. 
Representative algorithms in this category include 
R-CNN [4], Fast R-CNN [5], and Faster R-CNN [21].
On the other hand, one-stage object detection algo-
rithms do not have a separate stage for generating 

Figure 2
The network structure diagram of IC pin welding defect detection based on YOLOv5x

candidate regions. Instead, they directly output the 
probability of object categories along with the corre-
sponding position coordinates. Representative algo-
rithms in this category include YOLO [19], YOLOv3 
[20], SSD [14], and others.
In 2020, Jocher et al. [7] introduced the YOLOv5 al-
gorithm. YOLOv5 comprises five different models, 
namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5x. These five models share a common 
internal structure but differ in their depth and width 
factors. Consequently, the models vary in size, param-
eter count, network depth, detection accuracy, and 
detection speed. Notably, YOLOv5x exhibits excep-
tional detection accuracy. Therefore, this paper se-
lects the YOLOv5x model for the design of the IC pin 
welding defect detection algorithm.

3.2.1. YOLOv5x Network Model
The network structure of IC pin welding defect de-
tection based on YOLOv5x is shown in Figure 2. The 
backbone network is the CSPDarknet53 network 
[26], the neck network is a combination of Feature 
Pyramid Networks (FPN) [12] and Path Aggregation 
Network (PAN) [13], and the detection head has out-
puts in three different scales. The IC pin welding de-
fect detection network based on YOLOv5x includes 
two types of CSP structures: CSP1_x and CSP2_x. The 
CSP1_x, Focus, and SPP structures are used to im-
prove the backbone network, while the CSP2_x, FPN, 
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YOLOv5x includes two types of CSP structures: CSP1_x 
and CSP2_x. The CSP1_x, Focus, and SPP structures are 
used to improve the backbone network, while the CSP2_x, 
FPN, and PAN are combined to form the neck network, 

which strengthens the fusion of features at different scales 
and enhances the network's ability to extract features of IC 
pin welding defects. 
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3.2.2 Improved YOLOv5x Network Model 

The algorithm presented in this paper is an enhancement 
built upon the foundation of the YOLOv5x algorithm. The 
following sections provide an introduction to the 
modifications made in three aspects: D-SPP, Masked Self-
Attention Mechanism, and Loss Function. 

1) D-SPP Module 

The YOLOv5x algorithm uses the SPP module in the 
backbone network to obtain information at different 
receptive field sizes. However, the SPP module cannot 
fully integrate local and global information, which may 
result in information loss. This paper proposes the D-SPP 
module, as shown in Figure 3. The structure adopts a 
method similar to spatial attention to embed SPP into SPPF 
to generate adaptive weights for features at different scales. 
By combining information from different channels, 
features from different receptive fields can be efficiently 
fused, enhancing feature representation capacity. 
 

 
 
 

Figure 3 
D-SPP structure diagram 

 
 

The D-SPP module generates adaptive spatial weights for 
features with different receptive fields through a 
combination of convolutional and pooling operations. 
Initially, it employs pooling branches with fixed scales and 
then utilizes the SPP module to extract information, 
embedding spatial details. By weighting and fusing 
contextual features, it generates new features enriched with 
multiscale contextual information. These newly generated 
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Figure 3
D-SPP structure diagram

and PAN are combined to form the neck network, 
which strengthens the fusion of features at different 
scales and enhances the network’s ability to extract 
features of IC pin welding defects.

3.2.2. Improved YOLOv5x Network Model
The algorithm presented in this paper is an enhance-
ment built upon the foundation of the YOLOv5x 
algorithm. The following sections provide an intro-
duction to the modifications made in three aspects: 
D-SPP, Masked Self-Attention Mechanism, and Loss 
Function.
1 D-SPP Module
The YOLOv5x algorithm uses the SPP module in the 
backbone network to obtain information at different 
receptive field sizes. However, the SPP module can-
not fully integrate local and global information, which 
may result in information loss. This paper proposes 
the D-SPP module, as shown in Figure 3. The struc-
ture adopts a method similar to spatial attention to 
embed SPP into SPPF to generate adaptive weights 
for features at different scales. By combining infor-
mation from different channels, features from differ-
ent receptive fields can be efficiently fused, enhancing 
feature representation capacity.
The D-SPP module generates adaptive spatial weights 
for features with different receptive fields through a 
combination of convolutional and pooling operations. 
Initially, it employs pooling branches with fixed scales 
and then utilizes the SPP module to extract informa-
tion, embedding spatial details. By weighting and fus-
ing contextual features, it generates new features en-
riched with multiscale contextual information. These 
newly generated feature maps, obtained through two 
successive max-pooling operations, are subsequently 
fused with the previously obtained feature maps.
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2 Masked Self-Attention Mechanism
This paper introduces a Masked Self-Attention Mech-
anism module [25] to enhance the network’s ability 
to capture global feature relationships. The module 
is embedded after the output of the effective feature 
layer and before the input of the prediction layer in 
the neck network. The Masked Self-Attention Mech-
anism operates on feature maps of three sizes: large, 
medium, and small, to detect IC pin welding defects at 
multiple scales, thereby improving detection accuracy 
of the algorithm. The structure of Masked Self-Atten-
tion Mechanism module is shown in Figure 4.

Figure 4
Structure diagram of Masked Self-Attention Mechanism
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In Figure 4, the input feature map X is multiplied by 
convolution kernels WQ, WK and WV to generate query 
vector matrix Q, key vector matrix K and value vector 
matrix V, respectively. By performing inner product 
operations on query vector matrix Q and key vector matrix 
K through scaled dot-product, attention scores are obtained 
through Softmax activation function normalization. The 
attention scores are then subject to mask calculation, and 
finally multiplied by value vector matrix V to obtain the 
output of self-attention. The output of the Masked Self-
Attention module is shown in Equation (1). 
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boundary box regression loss. The confidence loss and 
classification loss are calculated using binary cross-
entropy loss function, while the boundary box regression 
loss is calculated using Focal-EIoU. In Focal-EIoU Loss, 
the width and height losses directly minimize the 
difference between the widths and heights of target box 
and anchor box, which speeds up convergence and solves 
the vague definition problem of CIoU aspect ratio. 
Furthermore, Focal Loss is added to address the sample 
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(3). The complete loss function is shown in Equation (4). 
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plied by value vector matrix V to obtain the output of 
self-attention. The output of the Masked Self-Atten-
tion module is shown in Equation (1).
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3 Loss Function
The loss function of the improved YOLOv5x algo-
rithm consists of confidence loss, classification loss 
and boundary box regression loss. The confidence 
loss and classification loss are calculated using bina-
ry cross-entropy loss function, while the boundary 
box regression loss is calculated using Focal-EIoU. In 
Focal-EIoU Loss, the width and height losses direct-
ly minimize the difference between the widths and 
heights of target box and anchor box, which speeds up 
convergence and solves the vague definition problem 
of CIoU aspect ratio. Furthermore, Focal Loss is add-
ed to address the sample imbalance problem in BBox 
regression. The formulas for calculating Focal-EIoU 
Loss are shown in Equations (2)-(3). The complete 
loss function is shown in Equation (4).
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In Equation (4), Lij
obj and Lij

noobj represent the probabilities 
of the j th anchor box in the i th grid containing and not 
containing defects, respectively. The value is 1 when the 
box contains defects, and 0 otherwise. Ci  represents the 
confidence level of the j th predicted box in the i th grid, 
while Ci represents the confidence level of the truth box. 
pi represents the probability value of the predicted box for 
its class, and pi represents the probability value of the truth 

box for its class. 

3.3 Evaluation Indicators 

In the task of detecting defects in IC pin welding, the 
performance of the algorithm is mainly evaluated based on 
its detection accuracy and speed. The detection accuracy 
mainly includes Average Precision (AP) and Mean 
Average Precision (mAP). Detection speed is generally 
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the motion controller controlled the PCB to move on 
the track and stop at the specified position. Then the 
light source was turned on, and the camera captured 
the image of the IC, which was then stored in the com-
puter. A total of 1000 images were collected.

4.2. Data Enhancement
When the number of training samples is limited, 
the use of deep learning algorithms can often lead 
to overfitting, making it challenging to train robust 
models. Data augmentation is a commonly employed 
technique that mitigates overfitting and facilitates 

Figure 5
Sample examples of data augmentation for IC pin welding defect images
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with strong generalization capabilities, thereby enhancing 
defect recognition. Consequently, in this paper, seven data 
augmentation methods were used to expand the IC data 
samples, in order to enhance the richness of the data. The 
data augmentation methods are as follows: translation, 
horizontal flip, vertical flip, rotation, scaling 

transformation, contrast transformation, and brightness 
transformation. After data augmentation, a total of 10,000 
images were obtained, and all the images were resized to 
640×640. Data augmentation examples are illustrated in 
Figure 5, as shown below. 

Figure 5 
Sample examples of data augmentation for IC pin welding defect images 

(a) Original image (b) Translation (c) Horizontal Flip 

(d) Vertical Flip (e) Rotation (f) Scaling Transformation 1 

   

(g) Scaling Transformation 2 (h) Contrast Transformation (i) Brightness transformation 

4.3 Dataset Production 

In order to make the collected image data more standard 
during model training and testing, the image data after data 
augmentation were made into a Pascal VOC format dataset. 
There are four types of IC pin welding defects obtained 

from the captured images, namely short circuit, missing 
pin, pin cocked, and little tin. LabelImg was selected to 
label the defects, and for each labeled image, a 
corresponding XML-format annotation file was generated. 
This file contains information such as the name and size of 
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the training of models with strong generalization 
capabilities, thereby enhancing defect recognition. 
Consequently, in this paper, seven data augmentation 
methods were used to expand the IC data samples, in 
order to enhance the richness of the data. The data 
augmentation methods are as follows: translation, 
horizontal flip, vertical flip, rotation, scaling trans-
formation, contrast transformation, and brightness 
transformation. After data augmentation, a total of 
10,000 images were obtained, and all the images were 
resized to 640×640. Data augmentation examples are 
illustrated in Figure 5, as shown below.
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4.3. Dataset Production
In order to make the collected image data more stan-
dard during model training and testing, the image 
data after data augmentation were made into a Pascal 
VOC format dataset. There are four types of IC pin 
welding defects obtained from the captured images, 
namely short circuit, missing pin, pin cocked, and lit-
tle tin. LabelImg was selected to label the defects, and 
for each labeled image, a corresponding XML-for-
mat annotation file was generated. This file contains 
information such as the name and size of the image, 
the name of the defect, and the position information 
of the defect annotation box. The ratio of training set, 
validation set, and test set is 6:2:2.

5. Experiment and Analysis
5.1. Experimental Environment
The computational platform utilized for this study 
exhibits the following specifications: The CPU is 
Intel(R) Core(TM) i7-7700@3.60GHz; the GPU is 
NVIDIA GeForce GTX 1070; the system is equipped 
with 16 GB of RAM; the operating system employed 
is Windows 10. In terms of software components, the 
deep learning framework employed is PyTorch 1.8.0 
(with torchvision 1.9.0), CUDA version 10.2, CUDNN 
version 7.6, and the programming language utilized is 
Python 3.7.

5.2. Configure Training Parameters
The dataset consists of 10,000 images, divided into 
6,000 images for the training set, 2,000 images for the 
validation set, and 2,000 images for the test set. The 
combined size of the training and validation sets is 
8,000 images. With a batch size of 20, this results in 
400 batches and the input image size is 640×640. The 
initial learning rate is set to 0.00125, and the momen-
tum parameter is set to 0.9. The entire training pro-
cess is divided into 100 epochs, resulting in a total of 
40,000 iterations.
YOLOv5x predicts defects using three feature maps of 
different scales, and each feature map contains three 
prediction values. Therefore, there are nine anchor 
parameters. The size and aspect ratios of the targets 
in different datasets vary. To more accurately identi-
fy the defects in the dataset created in this paper, an 
improved algorithm uses the k-means++ clustering 

algorithm to cluster all defect box sizes, resulting in 
nine cluster centers: (19,60), (18,76), (72,21), (59,30), 
(56,38), (38,58), (49,84), (52,85), and (85,60).

5.3. Experimental Results and Analysis
To verify the performance of the improved network, 
under the same experimental conditions, the same IC 
pin welding defect dataset was applied to YOLOv3, 
YOLOv5x, and the improved network for 100 epochs, 
then the comparison of the loss value curves is shown 
in Figure 6.
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curve of the YOLOv3 algorithm has a large oscilla-
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loss value curve of the YOLOv5x algorithm has oscil-
lation, but the decrease rate is faster than YOLOv3. 
The improved algorithm has the fastest decrease 
rate, and converges after about 30 rounds of training. 
After 100 epochs of iterative training, the loss value 
of the YOLOv3 algorithm is around 0.2, the loss val-
ue of the YOLOv5x algorithm converges to 0.14, and 
the loss value of the improved algorithm converges to 
0.1. Compared with the other two algorithms, the im-
proved algorithm has the smallest loss convergence 
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value. In conclusion, the loss curve of the improved 
algorithm has the smallest convergence value and 
tends to be stable, indicating that its training results 
are better than the other two algorithms.
During training, the validation set was used to verify 
the model performance every round of training. The 
comparison of the mean average precision (mAP) 
curve is shown in Figure 7.

Figure 7
The comparison of the mAP curves of 3 models
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outperforms the other two models, offering faster detection 
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Table 1  
Comparison of detection performance of three models 

Algorithm 
AP (%) mAP@

0.5 
(%) 

detection 
speed 

(s/piece) 

FPS 
(piece/s) short_ 

circuit 
missing_ 

pin 
pin_ 

cocked 
little 
_tin 

YOLOv3 89.5 82.7 84.4 70.1 81.7 0.257 4 
YOLOv5x 90.6 86.9 88.7 78.3 86.1 0.208 5 
Improved 96.7 94.5 95.6 93.3 95.0 0.142 7 

To provide a more intuitive visualization of the 
performance of the three models in IC pin welding defect 
detection, each of the three models was employed to detect 

defects in two IC pin welding images. The results are 
illustrated in Figures 8-10. 
  

Figure 7 shows that with the increase of training ep-
ochs, the mAP curves of the three models generally 
show an upward trend. The mAP curve of YOLOv3 al-
gorithm fluctuates and has the slowest increase rate. 
After 100 rounds of training, it is about 80%. The mAP 
curve of the YOLOv5x algorithm has a faster increase 
rate than YOLOv3, and after 80 rounds of training, 
the model’s mAP stabilizes at around 86%. The mAP 
curve of the improved algorithm has the fastest con-
vergence speed. After 50 rounds of training, the mAP 
stabilizes at around 90%.
A detailed comparison of the detection performance 
of the three models is provided in Table 1. It is notable 
that the YOLOv3 model exhibits a significant decrease 
in AP of 19.4% for short circuit and little tin defect, in-
dicating a substantial drop in model performance as 
defect complexity increases. In contrast, the YOLOv5x 
model demonstrates a 12.3% decrease in AP for short 
circuit and little tin defect, suggesting an enhanced ca-
pability to recognize complex defects. The improved 
algorithm exhibits a maximum AP difference of 3.4% 
across the four defect categories, indicating a more bal-
anced average detection accuracy for each defect type 
and a significant overall improvement in model per-
formance. Under a threshold of 0.5, the mAP of the im-
proved model reaches 95.0%, representing an increase 
of 13.3% and 8.9% when compared to YOLOv3 and 
YOLOv5x, respectively. Regarding detection speed, the 
improved model outperforms the other two models, of-
fering faster detection capabilities.

Table 1 
Comparison of detection performance of three models

Algorithm
AP (%) mAP@0.5 

(%)
detection speed 

(s/piece)
FPS

(piece/s)short_circuit missing_pin pin_cocked little_tin

YOLOv3 89.5 82.7 84.4 70.1 81.7 0.257 4

YOLOv5x 90.6 86.9 88.7 78.3 86.1 0.208 5

Improved 96.7 94.5 95.6 93.3 95.0 0.142 7

To provide a more intuitive visualization of the per-
formance of the three models in IC pin welding defect 
detection, each of the three models was employed to 
detect defects in two IC pin welding images. The re-
sults are illustrated in Figures 8-10.

The detection results are summarized and presented 
in Tables 2-3. It is evident from the results that the 
YOLOv3 algorithm missed one missing pin in the left 
image and incorrectly identified one little tin. While 
in the right image, it missed one pin cocked and false-
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Figure 8
Visualization of detection results of YOLOv3 algorithm

Figure 9
Visualization of detection results of YOLOv5x algorithm
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ly detected one little tin. Similarly, the YOLOv5x al-
gorithm missed one little tin in the left image and 
one pin cocked in the right image. In contrast, the 
improved algorithm accurately detected all defects in 

Table 2
Detection results for the left image

Algorithm
Real 

number of 
defects

Left image detection results

Correct Missed False

YOLOv3 4 2 1 1

YOLOv5x 4 3 1 0

Improved 4 4 0 0

Table 3
Detection results for the right image

Algorithm
Real 

number of 
defects

Right image detection results

Correct Missed False

YOLOv3 4 2 1 1

YOLOv5x 4 3 1 0

Improved 4 4 0 0

both images. These observations collectively demon-
strate that the improved algorithm exhibits superior 
recognition performance for IC pin welding defects 
when compared to the other two algorithms.

6. Conclusions
This paper presents an IC pin welding defect detec-
tion method based on an improved YOLOv5x algo-
rithm. The mAP of the improved algorithm reaches 
95.0%, an improvement of 13.3% and 8.9% compared 
to YOLOv3 and YOLOv5x, respectively. The detection 
time for a single image using the improved algorithm 
is 0.142 s, faster than the detection speed of YOLOv3 
and YOLOv5x. This work provides new research ideas 
and methods for IC pin welding defect detection, and 
has important theoretical and reference value for de-
tecting small and dense targets.
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