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To meet the requirement of 3D object detection task, an efficient point cloud correlation enhancement RCN-
N(EPCE-RCNN) is proposed. The proposed method reduces the computational complexity and time con-
sumption of the network through a lightweight proposal generation module, and accelerates the generation of 
the 3D proposal box. Meanwhile, during region of interest feature coding, the relevance among different grid 
points is enhanced through an efficient self-attention pooling module, so that the limitation that the pooling 
operation is influenced by the radius of a neighborhood query sphere is addressed. In addition, the combination 
of an attention mechanism and a feedforward network ensures the nonlinearity of the model, so that the model 
can perform feature expression better. Thus, the synchronous improvement of the network detection efficiency 
and the detection precision is realized. On the KITTI dataset, the detection accuracy of three difficulty levels 
reaches 89.99%, 81.69% and 77.17% respectively. Compared with the baseline Voxel-RCNN, the detection effi-
ciency of EPCE-RCNN is improved by 12%. To verify the generalization and application value of the proposed 
method, a power equipment dataset with 3D label information is constructed, the 3D label frame information 
of the YCB dataset is also supplemented. Experiments are carried out on these datasets. In the experimental 
results of the validation set, the mAP of a mug, gelatin box, single clip, wedge clip and C clip can reach 37.67%, 
40.06%, 35.63%, 30.01% and 37.31% respectively. Compared with the baseline, the proposed algorithm has a 
significant improvement and its generalization has been fully verified.
KEYWORDS: 3-D Object Detection, Lightweight Proposal, Self-Attention, Point Cloud, Autonomous Driving.

1. Introduction
With the rapid development of intelligent driving, 
intelligent manufacturing and other related fields, 
3D object detection with point cloud data is faced 
with more and more challenging requirements. In 
the realm of intelligent driving, autonomous vehi-
cles need to identify the surrounding environment 
timely. Similarly, in intelligent production, 3D object 
detection technology should provide effective guid-
ance for robots to accurately identify and grasp un-
known objects. Existing 3D object detection methods 
with point cloud can be categorized into Point-based 
methods [36, 37, 18, 26, 28, 43] and Grid-based meth-
ods [42, 27, 44, 35, 51, 17, 6]. 
The Point-based methods take original point cloud as 
input directly, utilizing techniques such as multi-lay-
er perceptron [13] and abstract aggregation to achieve 
high detection accuracy. However, a limitation of 
Point-based methods is their inability to well capture 
the relevance of feature space in point cloud. 
On the other hand, The Grid-based methods parti-
tion the point cloud into regular grids, which are more 
suitable for convolutional neural network feature ex-
traction compared to the irregular structure of origi-
nal point cloud. Nevertheless, the general Grid-based 
methods do not recover the 3D structure information 
after projecting the 3D voxel features to the 2D bird’s-
eye view, which will cause more information loss. 

To solve this problem, Shi et al. proposed Voxel-RCNN 
[4]. The structure of Voxel-RCNN is consistent with 
the basic structure of the conventional two-stage de-
tection network, and only has Grid-based branches. 
A novel voxel query operator is used to directly ex-
tract the Region of Interest (RoI) features from voxel 
features, which compensates the loss of 3D structural 
information in the process of projecting the voxel to 
the bird’s-eye view. 
The main function of voxel query is to find K and,neigh-
boring voxels within a certain distance range, which 
is similar to Ball query in PointNet++ [23]. Here, Man-
hattan distance is used to calculate the extent for the 
queried voxels: ( ),mD i i j j k kα β α β α βα β = − + − + −

 
 

 

Figure 1  

Schematic diagram of the ball query and voxel query. 

 
 

The process of Voxel-RCNN aggregating the 
voxel features within the neighborhood can be 
expressed as: max 1,2, , {ψ([ )}]k k

i i ik K v g φ= = −η
i 

, 

where k
iv represents the center coordinate of the 

non-empty voxel, ig  represents the grid point 
coordinate of the voxel, k

iφ  represents the voxel 
feature vector, ψ represents the multilayer 
perceptron, and iη  represents the fused feature 
vector. In fact, Voxel-RCNN extracts the voxel 
features in the last two layers of 3D sparse 
convolution [42], then fuses the voxel features 
within each layer using two different 
Manhattan distances. Finally, the voxel features 
obtained from each layer through different 
Manhattan distances are fused as the features of 
RoI (Region of Interest). After extracting and 
fusing voxel features, the Voxel-RCNN network 
projects these features to a 2D bird's eye view. 

However, the 2D backbone of Voxel-RCNN is 
stacked by traditional convolution, which has a 
lot of redundant computation, it directly affects 
the generation speed of proposal box. In 
addition, when RoI Pooling is performed, the 
encoding feature of each RoI grid point by the 
network is limited to the size of the query 
sphere, the interdependence relationship 
among different voxel grid points is also 
lacking. 

To solve the above problems, this paper 
improves the two-dimensional backbone 
network and RoI pooling of Voxel-RCNN, 
proposes EPCE-RCNN (Efficient point cloud 
correlation enhancement RCNN for 3D object 
detection). 

The main contributions of this paper are as 
follows:  

1. A lightweight proposal generation module 
(LWPG) is proposed. In this module, few 
convolution kernels are use when an original 
feature graph is generated, the feature graph is 

complemented through cheap linear 
calculation, the module is built in a bottleneck 
connection mode, so that the calculation 
amount is further reduced. 

2. This paper proposes an efficient Self-
Attention Pooling Module (ESA). By exploiting 
the dependencies between grid points during 
ROI pooling, the problem of RoI grid point 
feature encoding limited by query sphere size is 
solved, and the key information in the data is 
captured by dynamically adjusting the weights. 
Meanwhile, a feed-forward network (FFN) 
structure is introduced to make the whole 
module nonlinear and better model 
representation.  

3. To meet the perceptual needs of industrial 
robots, we reconstructed the YCB dataset with 
3D information and built a power component 
dataset based on the common annotation 
format of KITTI dataset. Compared with the 
benchmark algorithm on these datasets, the 
advantages of the proposed algorithm are 
proved, it can reach or approach the effect of 
SOTA in many evaluation indexes. 

2. Related Works 
2.1 Object Detection Algorithm Based on 
Voxelization of Point Cloud 

The general point-based method has high 
precision but large feature calculation amount, 
and Voxel-RCNN [4] is more suitable for 
feature extraction. In the object detection 
algorithm based on point cloud voxelization, 
the proposal of VoxelNet [53] breaks through 
the bottleneck of manually defining voxel 
feature information [3, 31, 1, 32]. In view of the 
defects of large amount of calculation and poor 
speed, SECOND [42] introduces sparse 3D 
convolution to replace the 3D convolution layer 
in VoxelNet, which improves the detection 
speed and memory utilization. Unlike regular 
2D convolution, 3D sparse convolution uses a 
three-dimensional convolution kernel to 
perform convolution and pooling operations in 
three-dimensional space, taking into account 
the depth, height, and width of the data to 
enable the network to capture spatial 
information. Sparse refers to the characteristic 
of the data that only a small number of points 
or voxels in the data contain meaningful 
information, while the majority of the region is 
empty or devoid of information. 3D Sparse 
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 represents the fused 
feature vector. In fact, Voxel-RCNN extracts the voxel 
features in the last two layers of 3D sparse convolution 
[42], then fuses the voxel features within each layer 
using two different Manhattan distances. Finally, the 
voxel features obtained from each layer through dif-
ferent Manhattan distances are fused as the features 
of RoI (Region of Interest). After extracting and fus-
ing voxel features, the Voxel-RCNN network projects 
these features to a 2D bird’s eye view.
However, the 2D backbone of Voxel-RCNN is stacked 
by traditional convolution, which has a lot of redun-
dant computation, it directly affects the generation 
speed of proposal box. In addition, when RoI Pooling 
is performed, the encoding feature of each RoI grid 
point by the network is limited to the size of the query 
sphere, the interdependence relationship among dif-
ferent voxel grid points is also lacking.
To solve the above problems, this paper improves the 
two-dimensional backbone network and RoI pooling 
of Voxel-RCNN, proposes EPCE-RCNN (Efficient 
point cloud correlation enhancement RCNN for 3D 
object detection).
The main contributions of this paper are as follows: 
1 A lightweight proposal generation module (LWPG) 

is proposed. In this module, few convolution ker-
nels are use when an original feature graph is gen-
erated, the feature graph is complemented through 
cheap linear calculation, the module is built in a 
bottleneck connection mode, so that the calcula-
tion amount is further reduced.

2 This paper proposes an efficient Self-Attention 
Pooling Module (ESA). By exploiting the depen-
dencies between grid points during ROI pooling, 
the problem of RoI grid point feature encoding 
limited by query sphere size is solved, and the key 
information in the data is captured by dynamically 
adjusting the weights. Meanwhile, a feed-forward 
network (FFN) structure is introduced to make 
the whole module nonlinear and better model rep-
resentation. 

3 To meet the perceptual needs of industrial ro-
bots, we reconstructed the YCB dataset with 3D 
information and built a power component dataset 
based on the common annotation format of KITTI 
dataset. Compared with the benchmark algorithm 
on these datasets, the advantages of the proposed 
algorithm are proved, it can reach or approach the 
effect of SOTA in many evaluation indexes.

2. Related Works

2.1. Object Detection Algorithm Based on 
Voxelization of Point Cloud
The general point-based method has high preci-
sion but large feature calculation amount, and Vox-
el-RCNN [4] is more suitable for feature extraction. 
In the object detection algorithm based on point cloud 
voxelization, the proposal of VoxelNet [53] breaks 
through the bottleneck of manually defining voxel fea-
ture information [3, 31, 1, 32]. In view of the defects of 
large amount of calculation and poor speed, SECOND 
[42] introduces sparse 3D convolution to replace the 
3D convolution layer in VoxelNet, which improves 
the detection speed and memory utilization. Unlike 
regular 2D convolution, 3D sparse convolution uses 
a three-dimensional convolution kernel to perform 
convolution and pooling operations in three-dimen-
sional space, taking into account the depth, height, 
and width of the data to enable the network to capture 
spatial information. Sparse refers to the characteris-
tic of the data that only a small number of points or 
voxels in the data contain meaningful information, 
while the majority of the region is empty or devoid 
of information. 3D Sparse convolution is also widely 
used because of its high efficiency in processing point 
cloud data [27, 51]. Pointpillars [17] is an achievement 
produced in the industrial field, by mapping the point 
cloud into 2D pseudo-image and then using the 2D 
objects detection mode to detect 3D targets, its detec-
tion speed is far ahead of other schemes at that time, 
and it is widely used in the industrial field. In particu-
lar, PV-RCNN [25] simultaneously adopts the hybrid 
expression form of point cloud and voxel, reduces the 
calculation consumption through voxel and sparse 
convolution, and adds the information obtained from 
point-based operations in the proposal frame refining 
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process to retain more accurate position information. 
Similar to PV-RCNN, HVPR [22] also emphasizes 
the strengths and avoids the weaknesses of the two 
types of data. It first extracts voxel-based and point-
based features respectively on the two branches, and 
then carries out weighting and interaction between 
the two. However, such hybrid methods bring great-
er computational overhead, which brings challenges 
to the timeliness of detection. Through the custom-
ized multi-scale attention module, a single-stage ob-
ject detection network is realized. At the same time, 
some works first assign semantic information to 
point cloud and then voxelize and detect them, such 
as Pointpainting [34]. These methods significantly 
improve the detection accuracy of the algorithm, but 
the introduction of semantic segmentation brings 
greater computational overhead. For the real-time 
requirement of automatic driving task, the balance 
between detection accuracy and time is of great sig-
nificance. To improve the efficiency of detection, 
sparse convolution is applied to the skeleton network 
of Voxel-RCNN to extract features from the original 
point cloud. However, there is still redundancy in the 
calculation of the skeleton network of Voxel-RCNN 
for 2D data processing, so it is necessary to design a 
structure to further improve its detection speed.

2.2. Attention Mechanisms
Treisman et al. [21] believe that the attention mech-
anism strengthens the influence of key parts of input 
on output by assigning weights to input data. The At-
tention mechanism has certain been widely used in 
various fields, a large number of studies have shown 
that the self-attention mechanism [33] is beneficial 
to improve the performance of networks, especially 
convolution modules [33, 45, 38].
To address the challenges inherent to 3D semantic 
segmentation, such as vast scenes and heterogeneous 
anisotropic distributions, Qingyong et al. [15] inte-
grated local spatial coding with an attention pooling 
module to facilitate autonomous learning of key local 
features. In the field of 3D object perception, Li et al. 
introduced a graph attention module designed to as-
sign different weights to different feature spaces for 
different nodes, which is achieved by evaluating the 
degree of relationship, and the module is applied it-
eratively across multiple layers to merge features 
and dynamically adjust node states [19]. When deal-

ing with sparse and disordered point cloud for 3D 
object detection, Wu and Ogai [41] utilized a self-at-
tention mechanism to amplify salient features while 
suppressing irrelevant ones. Similarly, Xie et al. [39] 
designed two attention modules and a feature fusion 
module to provide comprehensive contextual infor-
mation at all layers to enhance 3D object detection.
Due to the disorder and irregularity of point cloud, the 
information acquisition of relevance between points 
is insufficient for processing point cloud data. The 
self-attention mechanism can be used to enhance the 
information acquisition, researchers found that the 
attention mechanism has also achieved gratifying re-
sults in the field of point cloud.

2.3. Acceleration Method of Convolution 
Layer
In fact, the characteristic images of many channels 
are highly similar when the traditional convolutional 
neural network is used for calculation, and more cal-
culation redundancy will be generated if all channels 
are completely calculated. In view of the computa-
tional redundancy in the traditional convolution op-
eration process, MobileNet [14] uses deep separable 
convolution to approximate the full convolution layer, 
which achieve the purpose of compressing the num-
ber of parameters and reducing the weight. Through 
point-by-point grouping convolution and channel 
rearrangement, ShuffleNet [50] greatly reduces the 
calculation overhead under the condition of ensuring 
accuracy. GhostNet [9] uses traditional convolution 
to obtain part of feature maps, then complements 
the feature maps of other channels through simple 
linear transformation, which effectively reduces the 
parameter quantity and calculation complexity with-
out changing the dimension of output feature maps. 
These strategies are referred to as lightweight convo-
lution modules.

3. EPCE-RCNN for 3D Object 
Detection
The structure of EPCE-RCNN is shown in Figure 2, 
which contains two proposed modules, i.e., (a) a light-
weight proposal generation module (LWPG) and (b) 
an efficient self-attention pooling module (ESA). The 
whole network is a two-stage network based on vox-
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els. After the original point cloud is divided into reg-
ular cubes in the three-dimensional coordinate sys-
tem, the average values of all the points in non-empty 
voxels are taken as the features of the voxel. Then, the 
voxel features are processed by three-dimensional 
sparse convolution, and the three-dimensional voxel 
information is transformed into a two-dimension-
al aerial view representation. After that, the LWPG 
efficiently obtains the feature information of the 2D 
bird’s-eye view through accelerated convolution-
al layers with bottleneck connection structure, and 
generates 3D proposal box based on these feature in-
formation through an anchor frame-based approach. 
Based on the scope of the 3D proposal box, the ESA 
directly extracts RoI features from the correspond-
ing 3D voxel features. Overcoming the voxel query 
operator size limitations and the data complexity, the 
ESA focus on the connection between grid points and 
the key information in the features through the rede-
signed attention mechanism at a low computational 
cost, finally realizes the refinement of the proposal 
box based on the RoI features in the second stage of 
the detection head.

3.1. Voxel Grid Downsampling
Inspired by the work of [42, 53], in order to ensure 
the lightweight of the model, the point cloud filtering 

Figure 2
EPCE-RCNN network structure. (a) The lightweight proposal generation module (LWPG), (b) The efficient  
self-attention pooling module (ESA)
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3.1 Voxel Grid Downsampling 
Inspired by the work of [42, 53], in order to ensure 
the lightweight of the model, the point cloud 
filtering method in the data preprocessing stage 
will not be used, but the convolution filter will be 
used to filter the features extracted by the VFE 
(Voxelwise Feature Extractor) coding layer. Our 

voxel downsampling method will traverse all 
the original point cloud and establish the 
corresponding relationship between each 
point cloud and voxels. We prepare a hash 
table before traversing with reference to [53]. 
If the voxel related to the point does not 
exist, a voxel is created, and if so, a 

method in the data preprocessing stage will not be 
used, but the convolution filter will be used to filter 
the features extracted by the VFE (Voxelwise Fea-
ture Extractor) coding layer. Our voxel downsampling 
method will traverse all the original point cloud and 
establish the corresponding relationship between 
each point cloud and voxels. We prepare a hash table 
before traversing with reference to [53]. If the voxel 
related to the point does not exist, a voxel is created, 
and if so, a corresponding relationship is added. At the 
same time, the maximum number of points in each 
voxel needs to be specified in advance to avoid exces-
sive computation. Finally, we will significantly reduce 
the amount of point cloud and obtain voxel informa-
tion (voxel coordinates, the number of voxel interi-
or points per voxel and the coordinates of the point 
cloud) to support voxel-level feature extraction in 
subsequent VFE layers. The specific settings during 
voxel downsampling will be mentioned in Section 4.2.

3.2. Backbone
After voxel downsampling, we build our Backbone us-
ing a design similar to the [42, 53] network.
Voxel-level feature extraction: first, the voxels are 
processed one by one through the VFE coding layer 
designed by [53], all the point cloud in the same voxel 
are taken as inputs, and the point cloud-level features 
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are obtained point by point through the fully connect-
ed network, then the aggregate features of each voxel 
are obtained by using MaxPooling layer [42] for ag-
gregation features. Finally, the aggregation features 
are spliced with the point cloud level features. After 
all, the global point cloud will be transformed into the 
global voxel-level features of the grid format. In ad-
dition, all voxels share the same fully connected net-
work to reduce the number of parameters.
Efficient sparse convolution filter: the voxel fea-
tures extracted by VFE will be further processed by 
the sparse convolution structure proposed in [42]. 
First of all, sparse convolution structure designs 
an efficient rule generation algorithm through GPU 
rules, and constructs the input-output index matrix. 
After that, the sparse convolution layer aggregates 
the input sparse voxel features into dense features, 
and 3D convolution directly slides and filters on the 
dense features, self-learning for extracting important 
features and smoothing noise between neighboring 
features, which obtain dense output features. Then 
the dense output features are mapped back to the 
sparse output features through the input-output in-
dex matrix, thus the efficient voxel feature extraction 
is realized. After that, the features will flow to LWPG 
and ESA structures respectively, and the features in 
LWPG will be aggregated into 2D image features on 
the z-axis, the 2D detection similar to image object 
detection will be performed. Moreover, voxel features 
will be further filtered in the ESA structure based on 
the results of 2D detection.

3.3. Lightweight Proposal Generation Module
The processing network of bird’s-eye view features in 
Voxel-RCNN is stacked by traditional two-dimension-
al convolutional neural networks. Let the input feature 
be c h wX R × ×∈ , where c  is the number of channels of the 
input feature, h  and w  denote the height and width of 
the input feature graph, respectively. For traditional 
convolution layer, the operation process of generating 
the feature map can be expressed as follows:

Y X f b= ∗ + , (1)

wherein, h w nY R ′ ′× ×∈  is an output characteristic graph 
containing channels, c k k nf R × × ×∈  represents a convo-
lution kernel, h′  and w′  respectively represent the 
height and width of the output characteristic graph, 
k k×  represents the size of the kernel in the convo-
lution kernel f . ∗  is the convolution operator, X f∗  
means the output after 2D convolution operation on 
feature X using convolution kernel f , b is a deviation 
term. The amount of parameters involved in the en-
tire convolution process is large. Inspired by Ghost-
Net, this paper proposes a lightweight proposal gen-
eration module, which uses traditional convolution to 
get a part of feature graphs, then maps them by simple 
linear transformation to complement the rest of fea-
ture graphs. At the same time, the bottleneck struc-
ture is used to reduce the dimension of the input fea-
ture, finally the feature dimension is restored to the 
specified feature dimension, so as to further reduce 
the parameter quantity during calculation.

Figure 3
Lightweight proposal generation module

 
 

 

 

Assuming that the conventional convolution only 
generates m  original feature maps, the output 

( )h w mY R m n′ ′× ×′∈ ≤  can be expressed as: 

Y X f b= ∗ ′ +′ , (2) 

where c k k mf R × × ×′∈  represents a convolution kernel. 
To fill the number of characteristic graphs from m  
to n , a simple linear operation can be performed 
on Y ′ : 

'
, ,( , 1, , 1, ,)ij i j iy y i m j s= ϕ ∀ = … = … , (3) 

where, s  is the total number of feature graphs 
generated by linear operation, '

iy  represents the i-
th original feature graph in Y ′ , and ,i jϕ  represents 
the -thj  linear operation based on the -thi  original 
feature graph. It can be seen from the equation 
that '

iy  can map multiple feature graphs 1{ }s
ij jy = . By 

simple linear operation, n m s= ×  characteristic 
graphs can be obtained ( 11 12,...,[ , ]msY y y y= ). The 
linear operation is actually to perform grouping 
operation on the convolution channels, and the 
number of groups is consistent with the number of 
channels, so that the parameter quantity of the 
linear operation is: ' ' ( / ) ( '/ )w h c s c s s× × × × , where c  
is the number of channels of the input feature, 'c  
is the number of channels of the output feature. 
The parameter quantity using the conventional 
convolution is convG , and the operation quantity 
using the lightweight convolution is lightG , as 
shown in Equation (4), where (0,1)µ∈  is a scaling 
coefficient of the parameter quantity. 

light convμG G= . (4) 

To further reduce the computational complexity, 
we use two 1×1 lightweight convolutions and one 
3×3 lightweight convolution (Bottleneck Structure) 
to build a lightweight proposal generation 
module. One unit with a kernel size of 1×1 is used 
for dimension reduction to reduce the amount of 
computation, the other units are used for 

dimension increase to restore to the specified 
output dimension. Taking the traditional 
two-dimensional convolution as an example, 
if the convolution kernel size is 3×3, c  is the 
number of input channels, r is the proportion 
of feature dimension reduction, when the 
input and output dimensions are the same, 
the parameter quantity can be simplified 
from 29c  to 2 2(2 9 )r r c+ × , when the value of r  
is 0.25, the amount of the parameter is 
reduced to 21.0625c . For intuitive expression, 
let convG  be the parameter quantity using the 
conventional convolution, and bottleG  be the 
operation quantity using the bottleneck 
structure, as shown in Equation (5), where 
σ (0,1)∈  is the proportional coefficient of the 
parameter quantity. 

bottle convσG G= . (5) 

According to the equation, the parameter 
quantity LWMG  of the lightweight proposal 
generation module is: 

LWM convσ( )G G= µ . (6) 

As shown in Figure 3, our LWPG module is 
designed at the 2D backbone of the model, 
which accelerates the computation of the 
convolutional layers in the 2D backbone by 
replacing the traditional convolutional layers 
with lightweight convolution, and organizes 
the transformed convolutional layers with 
bottleneck connections to truncate the data 
through the downscaling of 1×1 
convolutional kernel, after which a 3×3 
convolutional kernel is used to capture the 
features with a relatively large sensory field, 
then upscaling is carried out with 1×1 
convolutional kernel again, and each 
convolutional layer carries a nonlinear 
activation function to enhance the feature 
expression capability. The lightweight 
feature of LWPG can greatly reduce the 
computational parameters, accelerate the 
production of the proposal box in the first 
stage, and improve the detection efficiency of 
the algorithm while guaranteeing the quality 
of the proposal box. 

3.4 Efficient Self-Attention Pooling 
Module 

The 2D proposal boxes generated by the 
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operation based on the -thi  original feature graph. It 
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ij jy = . By simple linear opera-
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( 11 12,...,[ , ]msY y y y= ). The linear operation is actually to 
perform grouping operation on the convolution chan-
nels, and the number of groups is consistent with the 
number of channels, so that the parameter quantity of 
the linear operation is: ' ' ( / ) ( '/ )w h c s c s s× × × × , where 
c  is the number of channels of the input feature, 'c  is 
the number of channels of the output feature. The pa-
rameter quantity using the conventional convolution 
is convG , and the operation quantity using the light-
weight convolution is lightG , as shown in Equation (4), 
where (0,1)µ ∈  is a scaling coefficient of the parameter 
quantity.
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To further reduce the computational complexity, 
we use two 1×1 lightweight convolutions and one 
3×3 lightweight convolution (Bottleneck Structure) 
to build a lightweight proposal generation 
module. One unit with a kernel size of 1×1 is used 
for dimension reduction to reduce the amount of 
computation, the other units are used for 

dimension increase to restore to the specified 
output dimension. Taking the traditional 
two-dimensional convolution as an example, 
if the convolution kernel size is 3×3, c  is the 
number of input channels, r is the proportion 
of feature dimension reduction, when the 
input and output dimensions are the same, 
the parameter quantity can be simplified 
from 29c  to 2 2(2 9 )r r c+ × , when the value of r  
is 0.25, the amount of the parameter is 
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let convG  be the parameter quantity using the 
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operation quantity using the bottleneck 
structure, as shown in Equation (5), where 
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According to the equation, the parameter 
quantity LWMG  of the lightweight proposal 
generation module is: 
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As shown in Figure 3, our LWPG module is 
designed at the 2D backbone of the model, 
which accelerates the computation of the 
convolutional layers in the 2D backbone by 
replacing the traditional convolutional layers 
with lightweight convolution, and organizes 
the transformed convolutional layers with 
bottleneck connections to truncate the data 
through the downscaling of 1×1 
convolutional kernel, after which a 3×3 
convolutional kernel is used to capture the 
features with a relatively large sensory field, 
then upscaling is carried out with 1×1 
convolutional kernel again, and each 
convolutional layer carries a nonlinear 
activation function to enhance the feature 
expression capability. The lightweight 
feature of LWPG can greatly reduce the 
computational parameters, accelerate the 
production of the proposal box in the first 
stage, and improve the detection efficiency of 
the algorithm while guaranteeing the quality 
of the proposal box. 
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Module 
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As shown in Figure 3, our LWPG module is designed 
at the 2D backbone of the model, which accelerates 
the computation of the convolutional layers in the 2D 
backbone by replacing the traditional convolutional 
layers with lightweight convolution, and organizes 
the transformed convolutional layers with bottleneck 
connections to truncate the data through the down-
scaling of 1×1 convolutional kernel, after which a 3×3 
convolutional kernel is used to capture the features 
with a relatively large sensory field, then upscaling is 
carried out with 1×1 convolutional kernel again, and 
each convolutional layer carries a nonlinear activa-
tion function to enhance the feature expression ca-
pability. The lightweight feature of LWPG can great-
ly reduce the computational parameters, accelerate 
the production of the proposal box in the first stage, 
and improve the detection efficiency of the algorithm 
while guaranteeing the quality of the proposal box.

3.4. Efficient Self-Attention Pooling Module

The 2D proposal boxes generated by the LWPG mod-
ule will be used as ROI in ESA module, thus features 
outside the ROI will be filtered. Voxel-RCNN uses 
voxel query to aggregate 3D voxel features into RoI 
grid points to refine the proposal boxes, but the fea-
tures encoded at each RoI grid point in this method 
are limited to the size of the sphere query. Generally 
speaking, self-attention mechanisms can be used to 
focus on the correlation between different grid points, 
while self-attention mechanisms are conducive to fo-
cusing on key information in complex data. In point 
cloud data, due to the influence of the acquisition en-
vironment and equipment, there is a lot of noise and 
interference, focusing on important information is 
conducive to enhancing the anti-interference ability 
of the model, thus improving the robustness of the 
model. Since the calculation method of the self-atten-
tion is a matrix product of T( ) N NQK R ×φ ∈  and value 
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vector matrix, the time consumption and the video 
memory complexity of the self-attention mechanism 
have a quadratic relationship with the resolution N  of 
the input feature. Traditional self-attention mecha-
nism is shown by Equation (7), d  represents the di-
mension of the feature, Q , K  and V  are query, key and 
value vector matrix respectively, which are obtained 
from the input feature N CX R ×∈  through linear trans-
formation, N represents the resolution of the input 
feature, C  represents the number of channels, and the 
Softmax()  represents the softmax activation function. 

T

Q K V

( ) Softmax( / )
, ,

A X QK d V
Q XW K XW V XW

=
= = =

. (7)

To address the complexity problem of self-attention 
mechanism, we propose an efficient self-attention 
pooling module, as shown in Figure 4. Inspired by 
UFO-ViT [30], the Softmax operator is replaced by a 
simple L2 norm, and the computational complexity of 
the attention module is reduced by a simple associa-
tive law of matrix multiplication. Then, the structure 
of feedforward layer is adopted, and the activation 
function is introduced for nonlinear mapping [49].
To reduce the computational complexity of the 
self-attention mechanism, the XNorm operator is 
used instead of Softmax. The improved self-attention 
mechanism is shown in Equation (8), where γ  is a 
learning parameter, and h represents embedding di-
mensions. XNorm is in fact a conventional L2 norm, 
and is applicable to both the spatial dimensn of TK V  

and the channel dimension of Q , so XNorm is also 
called cross-normalization. Next, the associative law 
of matrix multiplication is adopted, the key and the 
value are multiplied first, then the key and the query 
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Because the matrix multiplication in the self-atten-
tion mechanism is linear, the ability to express data is 
limited. In this paper, a feed-forward network (FFN) 
is designed for nonlinear transformation of features. 
The FFN consists of two linear layers containing 
nonlinear activation functions. The first level extends 
the embedding dimension of the input feature from 

md  to fd , and the second level reduces the embed-
ding dimension of the feature from fd  to md . FFN is 
expressed as Equation (9), where 1W  and 2W  are the 
weights of the two linear layers, 1b  and 2b  are the bias 
terms, and ()ψ  is the RELU activation function:
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FFN( ( ) ) ( )EO A X X A X X= + + + . (10)

In summary, as shown in Figure 4, after the aggrega-
tion operation of 3D voxels by voxel query, the features 
are fed into the self-attention mechanism modified 
using the Xnorm operator, and its processed features 
are output to the next structure after passing through 
the involved nonlinear structure. Our design allows 
the XNorm operator to improve the computational 
efficiency of the attention mechanism, and the non-
linear feedforward network enhances the feature rep-
resentation of the ESA module. ESA focuses on the 
correlation between different mesh points through 
the attention mechanism, and realizes the refinement 
of the proposal frames by dynamically adjusting the 
weights to capture the more critical features in the 
complex point cloud data.

3.5. Loss Function
When the data is input to the detection head, EPCE-
RCNN will perform detection and output a series of 
detection boxes with class probability distribution. 
After screening the detection bounding boxes with 
the Non-Maximum Suppression [4], we design the 
following loss function to measure the inconsistency 
between the test results and the real value.
The loss function of the RPN in the first stage of gen-
erating the proposal includes two parts, namely, clas-
sification loss and detection box regression loss, as 
shown in Equation (11).
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where fgN  is the number of anchor points in the fore-
ground, a

ip  is the output of the classification task,  *
ic  is 

the label of the classification task,  a
iξ  is the output of 

the regression task, and *
it  is the label of the regression 

task. *( 1)icΓ ≥  means the regression loss calculated by 
using only the foreground anchor frame. clsL () uses 
Focal loss, while regL ()  uses Huber loss.
Loss function of the second stage detector: This sec-
tion first calculates the value of the confidence pre-
diction, as shown in Equation (12).

( )

( ) ( )

*

H

L H L H

L

IoU

1,                                        IoU
IoU / ,  

0,                                        IoU

i i

i

i L i

i

l

IoU
> ϑ

= − ϑ ϑ − ϑ ϑ ≤ < ϑ
 < ϑ

( )

( ) ( )

*

H

L H L H

L

IoU

1,                                        IoU
IoU / ,  

0,                                        IoU

i i

i

i L i

i

l

IoU
> ϑ

= − ϑ ϑ − ϑ ϑ ≤ < ϑ
 < ϑ

, (12)

where IoUi  is the intersection ratio between the ith 
proposed box and its corresponding actual box, Hϑ  
and Lϑ  are the upper and lower thresholds of the in-
tersection ratio between the foreground and the back-
ground. Here, EPCE-RCNN uses a binary cross-en-
tropy loss function to predict the confidence. The 
box regression uses the Huber loss function. The loss 
function of the detection head is shown in Equation 
(13), wherein sN  represents the number of proposal 
boxes sampled in the training phase, reg(IoU )iΓ ≥ ϑ  
means that only proposal boxes with the intersection 
ratio higher than the threshold are included in the cal-
culation of the loss function.

*
detect cls

s
*

reg reg

( ( )

]

1L [ L , IoU )

( ( , )IoU ) L

i i i i

ii i i

p l
N

tϑ ξ

= +∑

Γ ≥ ∑
(11)

When the calculation of the loss function is completed, 
EPCE-RCNN uses the adam optimizer to update the 
model parameters in order to achieve a smaller value 
of each loss function, so as to correct the inconsistency 
between the detection results and the real values.

4. Experiment and Experimental 
Results
In this section, we first test the proposed EPCE-
RCNN on KITTI dataset and two self-built datasets, 
the self-built datasets are extended YCB dataset and 
power component dataset. Then, we compare and an-
alyze with existing methods. In addition, we validate 
the effectiveness of each part of the EPCE-RCNN 
through ablation experiments.

4.1. Experimental Dataets
KITTI dataset: The KITTI dataset [8] contains 6 cat-
egories of targets in multiple scenes with various de-
grees of occlusion and truncation. In the object detec-
tion task of this dataset, the samples are divided into 
three levels according to the difficulty: Simple, me-
dium and difficult. The target in simple task is com-
pletely visible, and the maximum truncation rate is 
15%. The target of medium task is partially occluded, 
and the maximum truncation rate is 30%. Objects in 
the difficult task are harder to observe, and the maxi-
mum truncation rate is 50%.
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Improved YCB dataset: YCB video dataset [40] is a 
widely used 6d pose annotation dataset, which con-
tains 21 categories of targets. A scene is built by 3-9 ob-
jects selected from these targets, and data acquisition 
is carried out by RGB-D camera. Depth image and RGB 
image are provided in the dataset. Since the proposed 
algorithm is based on point cloud, this paper converts 
the dataset depth image into point cloud data based 
on the mapping relationship between image physical 
coordinates and camera coordinates in advance, and 
independently labels the 3D information of the target, 
and adds the centroid point coordinates (x, y, z), length, 
width and height (l, w, h) and rotation angle θ informa-
tion of the 3D detection frame (refers to the angle be-
tween the long side of the target in the Z-axis direction 
and the X-axis in the defined coordinate axis).
Self-built power component dataset: The main 
scene of proposed self-built dataset is indoor, 500 
samples are taken in total, of which 300 are taken as 
training set and the rest are taken as validation set. 
The dataset includes three types of targets with differ-
ent placement positions and placement angles: Single 
clip, C clip and wedge clip. The acquisition equipment 
is realsense-d435 i depth camera. Different from the 
reconstruction of YCB dataset, we directly convert 
the depth image into 3D point cloud data through the 
built-in function of the camera. In the labeling pro-
cess, we also generate the centroid point coordinates 
(x, y, z), length, width and height (l, w, h) data and rota-
tion angle θ information of the target 3D bounding box.

4.2. Implementation
The algorithms are optimized by ADAM optimiza-
tion algorithm. On three datasets, EPCE-RCNN was 
trained for 80 epochs on three RTX 2080 GPUs with a 
batch size of 6 and an initial learning rate of 0.01.
Figure 6 reflects the change of the two loss functions 
with the number of training periods. From the curve, 
we can see that the rpnL  and detectL  loss functions 
have reached a lower point and converge well, indi-
cating that the training has reached an ideal state.
According to KITTI official metrics [8], the training 
indicators are selected as 3D detection accuracy in-
dicator and average directional similarity [49], which 
are calculated based on multiple recall positions, such 
as represents calculation based on 11 recall locations.
For voxelization, the extent of the point cloud in the 
KITTI dataset is set to (0, 70.4) meters in the X axis, 

Figure 5
Labeling the proposed datasets. The improved YCB dataset 
is (a) and the self-built power component dataset is (b)  
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(-40, 40) meters in the Y axis, and (-3, 1) meters in the 
Z axis, and the size of the voxel grid is set to (0.05, 0.05, 
0.1) meters. In the two self-built datasets, the point 
cloud extent is set to (-2, 2) meters on the X axis, (0, 2) 
meters on the Y axis, and (-2, 2) meters on the Z axis. 
The maximum number of point cloud in each voxel is 5.
EPCE-RCNN is developed and deployed based on 
OpenPCDet and PyTorch framework. It has good com-
patibility with all kinds of GPU devices that support 
CUDA operators, and directly supports distributed 
training or deployment through PyTorch. At the same 
time, with the help of OpenPCDet’s unified dataset for-
mat conversion tools, the network also has broad com-
patibility for datasets with different formats.
We also adopt some data enhancement schemes as 
our regularization strategies, including: random 
sampling, random flipping, random rotation and 
global scale scaling, which can improve the diversity 
of data and improve the generalization ability of the 
model [48].
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4.3. KITTI Dataset Experimental Results
4.3.1. Analysis of Experimental Results on KITTI 
Online Test Set
According to the benchmark of KITTI, this section 
mainly talks about the 3D detection index 40mAP|  and 
direction estimation index 40AOS|  of EPCE-RCNN 
and SOTA methods on the Car class. The results are 
shown in Figure 7 and Table 1. Note that the bench-
mark network Voxel-RCNN does not give perfor-
mance in the Cyclist class, but focuses primarily on 
the performance of the Car class. To ensure the fair-
ness of the comparison, this section only carries out 
the experimental analysis on the Car class. Depend on 
Figure 7 and Table 1, for 3D detection performance, 
EPCE-RCNN outperforms the benchmark algorithm 
Voxel-RCNN in vehicle detection performance in all 
difficulty levels.

Figure 6
Training loss curve. The abscissa represents the epoch 
count, and the ordinate represents the loss value. The 
plot on the first row depicts the  Lcls, while the second row 
represents the Ldetect

Figure 7 shows the RP curves of the 3D detection al-
gorithm EPCE-RCNN and its benchmark algorithm 
Voxel-RCNN. The area enclosed by the curve and the 
coordinate axis is the average accuracy, and the larger 
the area is, the higher the accuracy of the algorithm is.
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the Grid-based method on the moderate and 
difficult levels. The 40mAP|  on moderate 
difficulty increased by at least 0.07% 
compared to the Grid-based method, and the 

40mAP| on hard difficulty increased by at least 
0.10%. (2) EPCE-RCNN draws better 
performance compared to all Point-based 
methods on hard difficulty, and outperforms 
most Point-based methods on moderate 
difficulty. (3) Compared with the method of 
combining point cloud and voxel, the 40mAP|  
of EPCE-RCNN at moderate and hard levels 
reached 81.69% and 77.17%, which were the 
top three levels. 

For the performance of 3D detection, EPCE-RCNN 
has 2 evaluation indicators (out of 3 indicators) 
ranked in the top three among all comparison algo-
rithms, and the hard difficulty ranks first, as shown in 
Table 1.
Specifically: 
1 EPCE-RCNN outperforms the Grid-based meth-

od on the moderate and difficult levels. The 40mAP|  
on moderate difficulty increased by at least 0.07% 
compared to the Grid-based method, and the 40mAP|  
on hard difficulty increased by at least 0.10%. 

2 EPCE-RCNN draws better performance com-
pared to all Point-based methods on hard difficul-
ty, and outperforms most Point-based methods on 
moderate difficulty. 

3 Compared with the method of combining point 
cloud and voxel, the 40mAP|  of EPCE-RCNN at 
moderate and hard levels reached 81.69% and 
77.17%, which were the top three levels.

For the performance of direction estimation, EPCE-
RCNN has two evaluation indicators that rank among 
the top three among all the comparison algorithms. 
Looking at Table 1, the following conclusions can be 
drawn.
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Table 1
The Performance on the KITTI online Test Server, Red, Green and Blue Represent the First, Second and Third Ranked 
Results Respectively (IoU=0.7)

Method Modality
40mAP| 40AOS|

Easy Moderate Hard Easy Moderate Hard

SASA [2]

Point

88.76 82.16 77.16 96.00 95.29 92.42

Faraway-Frustum [47] 87.45 79.05 76.14 - - -

3DSSD [43] 88.36 79.57 74.55 - - -

EPNet [16] 89.81 79.28 74.59 96.13 94.22 89.68

SSL-PointGNN [7] 87.78 79.36 74.15 38.55 37.21 36.53

PointRCNN [26] 86.96 75.64 70.70 95.90 91.77 86.92

BADet [24]

Grid

89.28 81.61 76.58 98.65 95.34 90.28

SVGA-Net [11] 87.33 80.47 75.91 96.02 94.45 91.54

Part-A2 [27] 87.81 78.49 73.51 95.00 91.73 88.86

TANet [20] 84.39 75.94 68.82 93.52 90.11 84.61

Harmonic- PointPillar [46] 82.26 73.96 69.21 94.23 90.78 87.42

Voxel-RCNN [4] 90.90 81.62 77.06 96.47 94.96 92.24

PointPillars [17] 82.58 74.31 68.99 77.10 58.65 51.92

SA-SSD [10]

Point-Grid 

88.75 79.79 74.16 39.40 38.30 37.07

DVFENet [12] 86.20 79.18 74.58 95.33 94.44 91.55

SE-SSD [52] 91.49 82.54 77.15 96.55 95.17 90.00

PV-RCNN [25] 90.25 81.43 76.82 98.15 94.57 91.85

AFE-RCNN [29] 88.41 81.53 77.03 95.84 94.63 92.07

EPCE-RCNN
(Ours) Grid 89.99 81.69 77.17 96.83 95.13 92.32

(1) EPCE-RCNN outperforms all Grid-based meth-
ods on hard difficulty, and has at least 0.08% improve-
ment in 40AOS| . (2) EPCE-RCNN outperformed all 
point-based methods on easy difficulty by at least 
a 0.7% improvement in 40AOS| . (3) Compared with 
the method combining point cloud and voxel, EPCE-
RCNN outperforms the compared algorithm in the 
hard difficulty, the 40AOS|  is improved by at least 
0.47% compared with the fused method.
As for the improvement of baseline network, EPCE-
RCNN outperformed Voxel-RCNN in 5 tasks except 
easy difficulty of 3D detection, and improved 40mAP|  
by 0.07% and 0.11% respectively in moderate and hard 
difficulty of 3D detection, and improved 40AOS|  by 

0.36%, 0.17% and 0.08% respectively in three tasks of 
direction estimation.
The above experimental results show that EPCE-
RCNN significantly improves the baseline algo-
rithm’s ability to detect 3D objects with a high ac-
curacy, especially in hard difficulty. This may be due 
to that the efficient attention mechanism of EPCE-
RCNN strengthens the correlation between points. 
In the case of severe object masking, the target point 
cloud is sparse and incomplete, while the efficient 
attention mechanism strengthens the ability of the 
algorithm to contact context information, thus ensur-
ing the accuracy of algorithm detection.
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4.3.2. KITTI Validation Set Test Results Analysis
Most of the relevant papers on the KITTI valida-
tion set only provide the calculation of the 3D detec-
tion index 11mAP|  by using 11 recall positions in the 
Car class. This section compares the EPCE-RCNN 
and SOTA methods in Table 2 according to 11mAP| . 
EPCE-RCNN has two indexes in the top three.

Table 2 
3D Detection Results on the Validation Set of KITTI, Red, 
Green and Blue Represent the First, Second and Third 
Ranked Results, respectively (IoU=0.7)

Method
11mAP|

Easy Moderate Hard

PointRCNN [26] 88.88 78.63 77.38

3DSSD [43] 89.71 79.45 78.67

BADet [24] 90.06 85.77 79.00

Part-A2 [27] 89.47 79.47 78.54

Harmonic- PointPillar [46] 87.66 77.76 73.44

TANet [20] 87.52 76.64 73.86

DVFENet [12] 89.81 79.52 78.35

SE-SSD [52] 90.21 86.25 79.22

PV-RCNN [25] 89.34 83.69 78.70

AFE-RCNN [29] 89.61 83.99 79.18

Voxel-RCNN [4] 89.41 84.52 78.93

EPCE-RCNN(Ours) 89.78 84.66 79.13

Considering the number of indexes in the top three, 
the proposed algorithm has more advantages. EPCE-
RCNN does not perform well on all metrics, which 
may be related to the different partitions of the train-
ing and validation sets. Compared with the benchmark 
network, EPCE-RCNN outperforms the benchmark 
network Voxel-RCNN in 11mAP|  at all difficulty levels, 
increasing by 0.37%, 0.14% and 0.20%, respectively. 

4.3.3. Analysis of Algorithm Efficiency and 
Robustness
To verify the efficiency of the proposed algorithm, the 
detection time of EPCE-RCNN on KITTI validation 
set is shown in Table 3. Compared with the reference 
network, the detection time of EPCE-RCNN is re-
duced by 12%, and the parameter quantity is reduced 
by 10%. On the KITTI dataset, EPCE-RCNN achieved 

a detection time of 0.0249 s, which is comparable to 
the single-stage detector SECOND of 0.0243 s. In 
addition, according to Table 3, EPCE-RCNN can im-
prove the operation efficiency and improve the ac-
curacy to a certain extent, which can better meet the 
timeliness requirements of object detection tasks. 
In order to analyze the effect of the number of object 
classes on the efficiency and accuracy of the algorithm 
proposed in this section, experiments on multi-class 
objects are carried out on the KITTI validation set. 
The results are shown in Table 4. The 40mAP|  values of 
EPCE-RCNN were 85.33%, 85.29% and 85.31% respec-
tively. The number of target classes has little effect on 
the performance of the proposed algorithm ( 40mAP| ). 
At the same time, the time consumed by EPCE-RCNN 
of different categories and quantities is almost the 
same, the difference is less than 0.001s. These results 

Table 3
Running Time of the Algorithm on The Validation Set of 
KITTI

Method Runtime(s) Parameters(M)

PointPillars [17] 0.0204 55.40

SECOND [42] 0.0243 61.03

Part-A2 [27] 0.0732 457.47

PV-RCNN [25] 0.0286 150.64

AFE-RCNN [29] 0.0345 156.13

Voxel-RCNN [4] Baseline 0.0249 86.95

EPCE-RCNN (Ours) 0.0221 78.39

Table 4
Experimental Results for Multiple Object Detection on 
the Validation Set of KITTI. IoU =0.7 for Car, IoU =0.5 for 
Cyclist and Pedestrian

Number of 
categories Moderate ( 40mAP| ) Runtime 

(s)

1 class
Car

0.0215
85.30

2 classes
Car Cyclist

0.0221
85.27 72.09

3 classes
Car Cyclist Pedestrian

0.0225
85.27 72.07 59.11



211Information Technology and Control 2025/1/54

show that EPCE-RCNN can 
maintain good efficiency and 
robustness in multi-class ob-
ject detection.

4.3.4. Qualitative Analysis
This section compares the 
visualizations of EPCE-
RCNN, Voxel-RCNN and 
SECOND, as shown in Fig-
ure 8. The red boxes repre-
sent the prediction boxes, 
while the green and yellow 
boxes represent the actual 
labels for the Car class and 
Cyclist class respective-
ly. EPCE-RCNN and Vox-
el-RCNN extract the RoI 
feature from the voxel fea-
ture, which compensates for 
the loss of 3D structure in-
formation in the process of 
voxel projection to bird’s-eye 
view. While SECOND does 
not supplement the 3D infor-
mation, so the coincidence 
ratio between the prediction 
boxes and the actual anno-
tation boxes is not as good 
as the above two methods. 
In addition, EPCE-RCNN 
enhances the dependency 
relationship between grid 
points during feature coding 
of RoI grid points through 
an efficient self-attention 
mechanism, and simultane-
ously enhances the nonlin-
earity of the model through 
a feedforward network, so 
that the model can perform 
better feature expression. 
In this way, EPCE-RCNN 
completes the refinement of 
the proposal box with high 
quality. As can be seen from 
Figure 8, the predicted box 
of EPCE-RCNN is closest to 
the actual labeled box.

Figure 8
Visualization results on KITTI validation set
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4.4. Ablation Experiment Based on KITTI 
Validation Set

Since EPCE-RCNN is proposed on the basis of Vox-
el-RCNN, the performance of Voxel-RCNN is taken 
as a baseline to compare the performance of each 
module. The results of the ablation experiments are 
shown in Table 5. Referring to the metric used in the 
Voxel-RCNN article, this section uses 40mAP|  (calcu-
lated from 40 recall locations) as the evaluation met-
ric. Experimental results show that each module used 
in EPCE-RCNN can bring performance gains to the 
original model.
As shown in Table 5, compared to Voxel-RCNN’s per-
formance, Ours1 had a maximum 40mAP|  improve-
ment of 0.53% on 6 evaluation indicators in three 
difficulty levels.The LWPG module is designed based 
on the acceleration strategy, so its accuracy improve-
ment is limited. The effect of ESA module effectively 
strengthens the correlation between different grid 
points during RoI feature coding, and the accuracy is 
more significant than that of LWPG module. On each 
task in Table 5, the accuracy of Ours2 is higher than 
that of Ours1.
In order to explore the influence of different K values 
on the detection accuracy of EPCE-RCNN, we try to 
compare several K values on the KITTI validation set. 
The experimental results are shown in Table 6. It can 
be seen from Table 6 that there is no obvious relation-
ship between the change of K value and the detection 
accuracy, because the point cloud data in the 3D ob-

Table 5
Ablation Experiment Results (IoU=0.7 for Car, IoU =0.5 for Cyclist)

Method

Module 40mAP|

LWPG ESA
Easy Moderate Hard

Car Cyclist Car Cyclist Car Cyclist

Voxel-RCNN Baseline 92.16 88.81 85.01 71.82 82.48 67.20

Ours

Ours1 √ 92.19 88.78 85.03 72.35 82.49 67.28

Ours2 √ 92.38 90.01 85.27 73.79 82.78 68.85

EPCE-RCNN √ √ 92.48 90.93 85.36 73.81 83.86 69.06

LWPG ESA 40AOS|

Voxel-RCNN Baseline 98.74 96.13 94.79 82.38 92.37 78.11

EPCE-RCNN √ √ 98.87 96.56 94.67 83.29 94.18 79.86

Table 6
Detection Accuracy of EPCE-RCNN. IoU=0.7 for Car, 
IoU =0.5 for Cyclist and Pedestrian. corresponding to 
different K values ( 40mAP| )

K Value Car
(Moderate)

Cyclist
(Moderate)

Pedestrian
(Moderate)

8 83.11 74.10 58.23

16 85.27 72.07 59.11

24 84.23 73.07 59.28

32 82.87 72.35 58.06

64 85.03 74.11 58.73

ject detection data set is not uniformly distributed, 
and accompanied by a lot of noise, too large K value 
may capture more key features, and it is also possible 
to collect more noise (the same reason that K value is 
too small), so the influence of K value change on de-
tection accuracy is uncertain, we need to try the best 
value in practice. We finally choose 16 as the K value, 
which is consistent with the results of Voxel-RCNN, 
and shows better results in Table 6, which we think is 
more appropriate.
In order to test the performance of EPCE-RCNN 
under various conditions, we carried out corruption 
experiments on KITTI validation set with reference 
to the work of [5], and the experimental results are 
shown in Table 7. Compared to the baseline, EPCE-
RCNN outperformed Voxel-RCNN in nine out of ten 
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Table 7
Detection Accuracy under Extreme Conditions. IoU=0.7 for 
Car, IoU =0.5 for Cyclist

Method Corruption Car
(Moderate)

Cyclist
(Moderate)

EPCE- RCNN

Gaussian 
Noise 84.63 72.38

Impulse Noise 84.67 77.21

Density 
Decrease 83.10 72.91

Lidar Crosstalk 
Noise 82.71 73.92

Spatial 
Alignment 48.73 41.40

VOXEL -RCNN

Gaussian 
Noise 83.21 69.98

Impulse Noise 83.07 73.68

Density 
Decrease 83.07 69.49

Lidar Crosstalk 
Noise 82.76 71.78

Spatial 
Alignment 47.28 40.93

metrics, with the highest improvement of 1.60% in the 
Car class and 3.53% in the Cyclist class. These results 
demonstrate the robustness of EPCE-RCNN.

4.5. Analysis of Experimental Results Based 
on Improved YCB Dataset and Power Device 
Dataset
4.5.1. Quantitative Analysis
While IoU=0.7 is taken, EPCE-RCNN has excellent 
performance in the reconstructed YCB dataset and 
power component dataset. The performance on the 
reconstructed YCB dataset is shown in Table 8. Com-
pared with the Voxel-RCNN, the 11mAP|  of EPCE-
RCNN for mugs and gelatin boxes is improved by 
0.66% and 1.04% respectively, and the detection time 
is reduced by 0.0173s. 
The performance of the algorithm on the self-built 
power component dataset is shown in Table 9. Com-
pared with the listed algorithm, the 11mAP|  of Sin-
gle clip, Wedge clip and C clip is improved by 1.14%, 
0.02% and 0.52% respectively compared with the Vox-
el-RCNN, and the detection time is reduced by 0.0148s. 

Experimental results show that EPCE-RCNN has 
the highest detection accuracy on both datasets, 
and the detection accuracy on some tasks is slightly 
lower than that of AFE-RCNN, while the detection 
time of EPCE-RCNN is much shorter than that of 
AFE-RCNN on these tasks, which means that EPCE-
RCNN omits more complex and time-consuming 
feature engineering to improve accuracy to ensure 
lightweight design. Considering the high real-time re-
quirements of actual tasks, EPCE-RCNN has the best 
robustness on workpiece positioning tasks. In a word, 
the improved strategy of EPCE-RCNN is effective, it 
can improve the accuracy while improving the light-
weight. Meanwhile, since there are differences in de-
tection scenarios, target categories, target sizes, and 
target distributions among the datasets, and our algo-
rithm still achieves good results on all three datasets, 
it proves the good generalization ability of our model.

Table 8
The Results of Algorithm on the Validation Set of YCB 
(IOU=0.7)

Method
11mAP| Detection 

time (s)mug gelatin box

PointRCNN [26] 33.24 35.62 0.3339

SECOND [42] 30.03 31.28 0.0793

PV-RCNN [25] 36.88 38.79 0.1866

AFE-RCNN [29] 37.37 39.91 0.1971

Voxel-RCNN [4] 37.01 39.02 0.1084

EPCE-RCNN(Ours) 37.67 40.06 0.0911

Table 9
The Results of Algorithm on the Validation Set of Electric 
Components Dataset (IOU=0.7)

Method
11mAP|

Detection 
time (s)Single 

clip
Wedge 

clip C clip

PointRCNN [26] 31.04 26.07 33.33 0.3713

SECOND [42] 29.95 24.37 30.01 0.0817

PV-RCNN [25] 34.37 29.23 36.36 0.1466

AFE-RCNN [29] 35.86 30.05 37.68 0.1561

Voxel-RCNN [4] 34.49 29.99 36.79 0.1182

EPCE-RCNN(Ours) 35.63 30.01 37.31 0.1034



Information Technology and Control 2025/1/54214

4.5.2. Qualitative Analysis
The visualization of the improved YCB dataset and 
self-built power component dataset is shown in Fig-
ure 9 and Figure 10, where the red boxes represent the 
prediction boxes. In Figure 9, the green, yellow, and 
blue boxes represent the actual labeled boxes of the 
gelatin box, foam brick, and mug respectively. Due to 
the lack of physical foam tiles, two boxes were used in 
the visualization experiment as an alternative. In Fig-
ure 10, the green, yellow and blue boxes represent the 
actual marking boxes of Single clip, C clip and Wedge 
clip respectively. It can be seen that in the same scene, 
the prediction frame of EPCE-RCNN is more consis-
tent with the actual frame than that of the baseline 
algorithm Voxel-RCNN.

Figure 9
Visualization of the reconstructed YCB validation set

Figure 10
Visualization of self-built power component validation set

4.6. Summary of Experiments
In the KITTI online test set, 3D detection accuracy of 
EPCE-RCNN is better than Voxel-RCNN in medium 
and difficult difficulty levels, and direction detection 
accuracy is better than Voxel-RCNN in all three diffi-
culty levels (Table 1). At the same time, EPCE-RCNN 
is better than the benchmark network Voxel-RCNN 
in all difficulty levels of the KITTI validation set. In 
the two self-constructed datasets (Table 2), Table 
3-4 EPCE-RCNN 8-9 shows that EPCE-RCNN has 
less computing time and fewer parameters. More-
over, in qualitative analysis, Figures 8-10 all indicate 
that EPCE-RCNN is more suitable for the real box 
of the target. In addition, the excellent performance 
of EPCE-RCNN in high occlusion difficulty proves 
the robustness of the algorithm, and the excellent 
performance in many different targets and different 
task scenarios proves that the algorithm has excellent 
generalization ability. In the ablation experiment, we 
verify the effectiveness of each module, and through 
the corruption experiment to further prove the ro-
bustness of EPCE-RCNN under different conditions.

5. Conclusion
To improve the efficiency of 3D object detection, an 
efficient 3D object detection algorithm EPCE-RCNN 
based on point cloud correlation enhancement is pro-
posed in this paper. The network is a two-stage net-
work, which enhances the correlation between dif-
ferent grid points through an efficient self-attention 
pooling module during RoI feature encoding. More-
over, it solves the limitation of the influence of the ra-
dius of neighborhood query sphere during pooling op-
eration. The attention mechanism combined with the 
feedforward neural network ensures the nonlinearity 
of the model, which makes the model better to express 
the features. By the lightweight proposal box genera-
tion module, the computational complexity and time 
consumption of the whole three-dimensional object 
detection network are reduced, then the timeliness 
requirement in the detection task is better met. In ad-
dition, this paper builds the power component dataset, 
and supplements the 3D annotation information of the 
public dataset. Experiments are carried out on a variety 
of scene datasets. The experimental results show that 
EPCE-RCNN has some advantages in location accura-
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model, which makes the model better to 
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computational complexity and time 
consumption of the whole three-dimensional 
object detection network are reduced, then 
the timeliness requirement in the detection 
task is better met. In addition, this paper 
builds the power component dataset, and 
supplements the 3D annotation information 
of the public dataset. Experiments are carried 
out on a variety of scene datasets. The 
experimental results show that EPCE-RCNN 
has some advantages in location accuracy 
and detection speed, which makes the 
algorithm can be applied to time-sensitive 
object detection tasks with a certain accuracy. 
Meanwhile, the good performance on 
multiple datasets also shows that the 
algorithm has good generalization and has 
the potential to be widely applied to various 
scenes and maintain robustness. 

Although the research of 3D object detection 
algorithm based on point cloud has been 
completed in this paper, there are still some 
shortcomings in the research work, which 
need to be further optimized and perfected. 
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RCNN 8-9 shows that EPCE-RCNN has less 
computing time and fewer parameters. Moreover, 
in qualitative analysis, Figures 8-10 all indicate 
that EPCE-RCNN is more suitable for the real box 
of the target. In addition, the excellent 
performance of EPCE-RCNN in high occlusion 
difficulty proves the robustness of the algorithm, 

and the excellent performance in many 
different targets and different task scenarios 
proves that the algorithm has excellent 
generalization ability. In the ablation 
experiment, we verify the effectiveness of 
each module, and through the corruption 
experiment to further prove the robustness of 
EPCE-RCNN under different conditions. 

5.Conclusion 
To improve the efficiency of 3D object 
detection, an efficient 3D object detection 
algorithm EPCE-RCNN based on point cloud 
correlation enhancement is proposed in this 
paper. The network is a two-stage network, 
which enhances the correlation between 
different grid points through an efficient self-
attention pooling module during RoI feature 
encoding. Moreover, it solves the limitation 
of the influence of the radius of 
neighborhood query sphere during pooling 
operation. The attention mechanism 
combined with the feedforward neural 
network ensures the nonlinearity of the 
model, which makes the model better to 
express the features. By the lightweight 
proposal box generation module, the 
computational complexity and time 
consumption of the whole three-dimensional 
object detection network are reduced, then 
the timeliness requirement in the detection 
task is better met. In addition, this paper 
builds the power component dataset, and 
supplements the 3D annotation information 
of the public dataset. Experiments are carried 
out on a variety of scene datasets. The 
experimental results show that EPCE-RCNN 
has some advantages in location accuracy 
and detection speed, which makes the 
algorithm can be applied to time-sensitive 
object detection tasks with a certain accuracy. 
Meanwhile, the good performance on 
multiple datasets also shows that the 
algorithm has good generalization and has 
the potential to be widely applied to various 
scenes and maintain robustness. 

Although the research of 3D object detection 
algorithm based on point cloud has been 
completed in this paper, there are still some 
shortcomings in the research work, which 
need to be further optimized and perfected. 
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cy and detection speed, which makes the algorithm can 
be applied to time-sensitive object detection tasks with 
a certain accuracy. Meanwhile, the good performance 
on multiple datasets also shows that the algorithm has 
good generalization and has the potential to be widely 
applied to various scenes and maintain robustness.
Although the research of 3D object detection algo-
rithm based on point cloud has been completed in 
this paper, there are still some shortcomings in the re-
search work, which need to be further optimized and 
perfected. The summary is as follows:
1 The proposed algorithm uses the anchor frame 

method to generate the detection frame. When 
the object tilts to a certain angle, the anchor frame 
method cannot coordinate this angle well, which 
leads to a large error. Future work will make full 
use of the rotation invariance of point cloud to im-
prove the detection box generation mode.

2 When making the dataset, the scene in the camera 
coordinate system needs to be manually aligned to 
the specified plane, and there are too many human 
errors in this process, which makes the annotation 
work of the dataset have natural errors. In the fu-
ture, it is necessary to optimize the annotation work 
and set a unified alignment coordinate system.

3 The scene of self-built dataset is single, and its per-
formance in complex environment has certain lim-

itations. In addition, compared with mature data 
collection equipment, it is difficult to ensure the 
original data quality only by using depth camera for 
data collection in this paper. In the follow-up work, 
the production mode of dataset will be improved, 
and the combination of laser radar and camera 
will be used for data collection in various working 
scenes. At the same time, the point cloud data ac-
quired by the depth camera in our work actually 
contains the 3D coordinate information and RGB 
color information of each point, but the proposed 
algorithm does not use the RGB information. Fu-
ture work will try to analyze and utilize the valu-
able information in a multi-modal fusion way. 
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