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The rapid development of the Generative Adversarial Network (GAN) makes generated face images more and 
more visually indistinguishable, and the detection performance of previous methods will degrade seriously 
when the testing samples are out-of-sample datasets or have been post-processed. To address the above prob-
lems, we propose a new relational embedding network based on “what to observe” and “where to attend” from a 
relational perspective for the task of generated face detection. In addition, we designed two attention modules 
to effectively utilize global and local features. Specifically, the dual-self attention module selectively enhances 
the representation of local features through both image space and channel dimensions. The cross-correlation 
attention module computes similarity between images to capture the global information of the output in the 
image. We conducted extensive experiments to validate our method, and the proposed algorithm can effectively 
extract the correlations between features and achieve satisfactory generalization and robustness in generating 
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face detection. In addition, we also explored the design of the model structure and the inspection performance 
on more categories of generated images (not limited to faces). The results show that RENet also has good detec-
tion performance on datasets other than faces.
KEYWORDS: Image forensics; forgery detection; GAN-generated face detection; generative adversarial net-
works; relational networks.

1. Introduction
The Generative Adversarial Network (GAN) [18] has 
been gradually applied to many fields since it was pro-
posed [34, 39, 57]. With its rapid development, the 
generated images are becoming more and more real-
istic, as shown in Figure 1 for the face images gener-
ated by GAN. Such GAN-generated face images are 
difficult to distinguish from human eyes and can be 
easily generated by ordinary people. If they are used 
for malicious purposes, it may adversely affect some 
individuals’ reputations and even social security eth-
ics. Therefore, the detection of GAN-generated face 
images has become increasingly necessary.
In recent years, some researchers [27, 50, 51] have 
verified the authenticity of images by actively embed 
watermarks to the images. Besides, many passive 
forensic methods have been proposed. In [1, 7, 16, 
19, 23, 45, 49, 59] they detect natural and generated 
faces by exploring the differences in the image for-
mation process. They combine traditional forensic 
methods to generated face detection. However, when 
confronted with fake face images where only local 
areas are generated, searching for feature differenc-
es directly on the entire generated face image may 
lead to detection failure. Therefore, [4, 5, 8, 38] also 
combine local information such as artifacts to assist 
in detection. Although the methods described above 
achieve relatively high detection accuracy, they suf-
fer from poor generalization and a lack of interpret-
ability [21]. [21, 22, 26, 64] try to make the results 
interpretable by looking for inconsistencies in the 
physiology-based methods. However, with the con-
tinuous innovation of GAN, the difference between 
generated images and natural images in the spatial 
domain becomes increasingly difficult to detect [68]. 
As a consequence, [6, 9, 13, 14, 17, 37, 43, 68] turned 
their attention to the frequency domain, which im-
proves the detection generalization performance by 
fusing features from the spatial and frequency do-
mains. But their methods cannot adaptively capture 
the most dis-criminative features.

To address the above challenges, we propose a method 
that is inspired by relational networks [56] and com-
bines both dual-self attention (DSA) and cross-cor-
relation attention (CCA) to learn “what to observe” 
and “where to attend” from an image relations per-
spective. We achieve this goal by utilizing relational 
patterns within and between images through the Re-
lational Embedding Network (RENet).
The DSA module learns its own feature associations 
for the purpose of enriching semantic in-formation. 
The CCA module calculates the correlations between 
images so that they can have global information. Our 
contribution can be summarized as follows:
1 We propose a Relation Embedding Network (REN-

et) with a multi-attention mechanism to improve 
the ability of detecting GAN-generated face.

2 We design dual-self attention and cross-correla-
tion attention to enhance the local spatial and 
channel-wise correlated features within an image, 
and to link global relationships between images, 
respectively.

3 We conduct extensive experiments to verify the 
proposed method has excellent generalization 
ability and robustness to common post-processing 
operations.

Figure 1 
Some samples in the experimental datasets. From left to 
right, the columns are the fake faces generated by ProGAN 
[30], StyleGAN [31], StyleGAN2 [32], StarGAN [11], 
BeGAN [2], LsGAN [46], WgGANGP [20], RelGAN [42] 
respectively. The generated faces are indistinguishable by 
human eyes
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2. Related Work
Fake face detection. With the development of GAN 
technology and fake face technology, researchers 
have proposed many methods to detect fake faces. Hu 
et al. [26] and Guo et al. [21] found that the highlight 
of the two eyes in GAN-generated faces are inconsis-
tent. Guo et al. [22] found that the pupil shape of real 
faces should be close to circular or elliptical, while 
the pupils of generated faces show irregular and in-
consistent shapes. Although physiology-based incon-
sistency detection is interpretable, accuracy is great-
ly reduced if the inconsistencies are occluded or the 
scene angle is biased. Nataraj et al. [49] extracted the 
co-occurrence matrices on the RGB channels of the 
image and input them into a neural network for clas-
sification. Barni et al. [1] reported a significant impact 
of the correlation between color channels on detec-
tion effectiveness. Besides individual RGB channels, 
they also calculated the co-occurrence matrices from 
pairwise combinations of channels. The experimen-
tal results showed that multiple channels can further 
improve the robustness of detection compared to us-
ing single color channel information. However, the 
accuracy and robustness of detection only in the RGB 
domain are far from satisfactory. Chen et al. [7] com-
bined dual color spaces and designed an improved 
Xception network model to increase detection ro-
bustness. Guo et al. [23] adaptive convolution to pre-
dict manipulation traces in an image, and then max-
imized manipulation artifacts by updating weights 
through backpropagation. Liu et al. [45] analyzed that 
it was more robust to detect fake faces by texture, so 
they proposed GramNet to capture long-range tex-
ture information to improve the robustness and gen-
eralization of the model. Despite the commendable 
detection performance exhibited by previous meth-
ods, relying solely on the spatial domain still presents 
limitations [14]. Moreover, the frequency domain of 
images has been widely applied in various fields [10, 
54, 69, 71, 72]. Frank et al. [14] found that there are 
significant differences in the DCT spectra of real and 
fake images, and the DCT spectrum is more robust 
for detecting image manipulation than the RGB spec-
trum. Liu et al. [43] argued that upsampling is a nec-
essary step in most face-forgery techniques, which 
leads to significant changes in the frequency domain, 
particularly the phase spectrum. Thus, they captured 
upsampling artifacts in face-forgery by combining 

spatial images with phase spectra, achieving a good 
detection result. Luo et al. [67] discovered that noise 
in face regions is continuously distributed in real im-
ages, while in manipulated images, it appears smooth-
er or sharper. Therefore, they employed the high-pass 
filter SRM to extract high-frequency noise for detect-
ing face forgery. Le et al. [35] utilized frequency-do-
main knowledge distillation to retrieve the removed 
high-frequency components in the student network 
for enhancing the detection accuracy of low-resolu-
tion images. Although analyzing in other domains can 
improve the accuracy and robustness of detection, 
they focus on the global features of the image and 
are typically difficult to detect subtle local tamper-
ing. Chai et al. [4] proposed the patchCNN network, 
which truncates the entire network to focus on local 
artifacts. Experiments have shown that local texture 
information can enhance the model’s generalization 
ability.  Jia et al. [28] designed a dual-branch network 
for predicting image-level and pixel-level fake labels 
based on inter-image and intra-image inconsistency, 
which is processed by stable wavelet decomposition. 
Ju et al. [5] introduced the FPN modules into Xcep-
tion and reduced the number of convolutional lay-
ers in the network to detect locally generated face. 
The model has good performance for detecting faces 
with small generated regions. However, they overem-
phasized local features and ignored the relationship 
between global and local features. In contrast to the 
above, we integrate both global and local features, 
making the framework more robust and demonstrat-
ing better generalization ability.
Attention model. The human visual nerve receives 
more data than it can process, so it requires the hu-
man brain to weigh the inputs and focus only on the 
necessary information [24]. For this reason, the 
researchers used a similar concept in their experi-
ments. Vaswani et al. [58] first proposed a self-atten-
tion mechanism and applied it to machine transla-
tion, which reveals concerns about image structure 
through similarities within a domain. Recent work 
[40, 41, 48, 52, 62] has shown that the self-attention 
mechanism can effectively capture contextual rela-
tionships and improve the intra-class compactness 
of images. In addition to focusing on the connections 
between images, the relationships between images 
have been used to form a central part of various prob-
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lems in computer vision. It calculates the relationship 
between two images and applies to video action rec-
ognition, few-shot classification, semantic segmenta-
tion, medical image segmentation, style transfer, etc. 
Recently, some GAN-generated detection algorithms 
[5, 7] have adopted self-attention mechanisms to en-
hance semantic information, but they have not ac-
counted for connections between images. Inspired by 
Wu et al. [63], we introduce not only self-attention in 
each image but also cross-attention between images 
to enhance the ability to classify relevant regions.
Relation Network. The relational network [56] is a 
metric-based network structure with the core idea of 
mapping images to a learnable embedding function to 
extract features of interest and then distinguishing 
different classes by measuring the similarity of fea-
tures between samples. Thus, attention can be used 
to correct and strengthen the feature regions of inter-
est. In this paper, multiple attention mechanisms that 
are employed post the embedding function to rectify 
the network’s focus on relevant areas and boost the 
expression of pertinent regions This approach pro-
motes the network’s generalization and robustness.

3. Approach
In this section, we will introduce the Relational Em-
bedding Network (RENet), which is used to solve 
the problem of poor generalization and robustness 

in GAN-generated face detection. In Figure 2, the 
overall architecture consists of three modules: a basic 
representation module, a feature augmentation mod-
ule, and a representation comparison module. The 
network parameters of feature augmentation module, 
and a representation comparison module are shown 
in Table 2 The basic representation module and the 
representation comparison module are similar to the 
modules of the relational network. On this basis, we 
add a feature enhancement module, which is com-
posed of dual-self attention (DSA) and cross-correla-
tion attention (CCA). We provide a brief overview of 
the overall RENet in Section 3.1. Then, we introduce 
the implementation details of DSA and CCA in Sec-
tion 3.2 and Sec. 3.3, respectively.

3.1. Architecture Overview
In this paper, we treat real images from the same da-
taset or fake images generated by same type of GAN 
as one domain, which is similar to the setting of oth-
er related tasks [19, 58]. The training set for each 
domain is denoted Dtrain, and the test set is denoted 
Dtest. Both Dtrain and Dtest are divided into multiple ep-
isodes for training, each of them contains a query set  
Q = (Iq, yq) and a support set S = {(IS

L, yS
L)}NK

L=1 with N cat-
egories and K images per category. 
As shown in Figure 2, given a pair of support and query 
set images {IS

L, Iq}, each of them has a size of C×H×W. 
They pass through a shared embedding network and 
generate corresponding features fs

1, ..., fS
NK and fq.The 

Figure 2 
Overall architecture of RENet. We feed fS and fq from shared embedding network into the DSA module to obtain locally 
enhanced features fs

Dual and fq
Dual. Following CCA, we can obtain FS and Fq, both of which contain global information. Finally, 

they are concatenated along the channel and the category with the highest score determines the classification result
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support set features fs
1, ..., fS

NK from the same domain 
will be ∈ denoted as fs via element-wise sum. The DSA 
module first applies self-attention over them to gen-
erate self-attentive features {As

Dual, Aq
Dual} ∈ ℝC×H×W. 

and multiplies them by their corresponding weights 
before adding them to the input features to obtain fs-
Dual and fq

Dual, respectively. The resulting features are 
then processed by the CCA module to generate {As

Cross, 
Aq

Cross) ∈ ℝC×H×W, which operates similarly to the DSA 
module. From there, output feature Fs and Fq are com-
puted for the classification score by representation 
comparison, with Fs being calculated as follows:

  

Overall architecture of RENet. We feed 𝑓𝑓� and 𝑓𝑓� from shared embedding network into the DSA module to obtain 
locally enhanced features 𝑓𝑓�

���� and 𝑓𝑓�
����. Following CCA, we can obtain 𝐹𝐹� and 𝐹𝐹�, both of which contain global 

information. Finally, they are concatenated along the channel and the category with the highest score determines the 
classification result. 
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query set images{𝐼𝐼�
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work and generate corresponding features 
𝑓𝑓�

�, … , 𝑓𝑓�
�� and 𝑓𝑓� .The support set features 

𝑓𝑓�
�, … , 𝑓𝑓�

��  from the same domain will be∈ denoted 
as 𝑓𝑓� via element-wise sum. The DSA module first 
applies self-attention over them to generate self-atten-
tive features{A�

���� , A�
Dual } ∈ ℝ� ×� × � . and multi-

plies them by their corresponding weights before add-
ing them to the input features to obtain 𝑓𝑓�

���� and 
𝑓𝑓�

���� , respectively. The resulting features are then 
processed by the CCA module to generate {A�

����� ,
A�

Cross} ∈ ℝ� ×� × � , which operates similarly to the 
DSA module. From there, output feature 𝐹𝐹� and 𝐹𝐹� 
are computed for the classification score by represen-
tation comparison, with 𝐹𝐹�  being calculated as fol-
lows: 

�  𝑓𝑓�
���� =  𝑓𝑓� + 𝜆𝜆� × 𝐴𝐴�

����

𝐹𝐹� =  𝑓𝑓�
���� + 𝜃𝜃� × 𝐴𝐴�

�����                                      (1) 

where λ�  and θ�  are learnable parameters for as-
signing weights, which gradually learn a weight from 
0. The output features have their own local enhance-
ments as well as correlation information between im-
ages. 𝐹𝐹� is calculated in a similar way to 𝐹𝐹�. 

3.2. Dual-Self Attention (DSA) 
Self-Position Attention(SPA)  Global texture fea-
tures help to detect GAN-generated faces and can im-
prove model detection ability by capturing long-range 
texture information[15]. However, [16, 17] show that 
generated face detection relies more on subtle details 
in the hair or background when performing cross da-
taset detection, so focusing on local detailed features 
can effectively enhance the generalization ability of 

detection. In order to pay more attention to local de-
tailed features, we introduce the self-position atten-
tion module, which lets local features establish links 
in contextual relationships, thereby enhancing the net-
work's expression of local features. 
As shown in the upper part of Figure 3, given the fea-
ture 𝑓𝑓 ∈ ℝ� ×� × �, it is first fed into a 1x1 convolu-
tional layer to generate 𝑓𝑓� ∈ ℝ��× � × �, where (𝐶𝐶� <
 𝐶𝐶 ). We then reshape 𝑓𝑓�  and 𝑓𝑓  into 𝑓𝑓�

� ∈
 ℝ�� × � and 𝑓𝑓�

� ∈  ℝ� × �, where 𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊 in the 
SPA module. Next, 𝑓𝑓�

�  is transposed to 𝑓𝑓�
�� ∈

 ℝ � × �� , and the matrix multiplication is performed 
between 𝑓𝑓�

� and 𝑓𝑓�
�� to obtain their relationship, de-

noted by 𝑔𝑔�𝑓𝑓�
�, 𝑓𝑓�

���. After softmax layer, we will ob-
tain position attention maps 𝑆𝑆 ∈  ℝ� × � . From the 
spatial position，𝑖𝑖 of 𝑓𝑓�

� and 𝑗𝑗 of 𝑓𝑓�
��, we respec-

tively get two spatial points {  𝑓𝑓��
�  , 𝑓𝑓��

� � } ∈
 ℝ�� ,where 𝑖𝑖 ∈ {1, … , 𝑁𝑁}，𝑗𝑗 ∈ {1, … , 𝑁𝑁} . We fur-
ther denote the pointwise calculation of 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
��) as 

𝑔𝑔���𝑓𝑓��
� , 𝑓𝑓��

� ��, and have the following equation: 

𝑠𝑠�� =
�����������

�  , ���
� �

��

∑  �
��� ��� ��������

�  , ���
� �

��
 =  

�������
�  ⋅ ���

� �
�

∑  �
��� ��� ����

�  ⋅ ���
� �

�
     (2) 

where 𝑠𝑠�� ∈  ℝ� × �  represents feature at position i 
impact on position j. The more correlated the features 
at the two positions are, the larger 𝑠𝑠��  is. Then, after 
multiplying with the matrix 𝑓𝑓��

� ∈  ℝ� × � , we sum 
them to obtain the correlation of all features in column 
i, 𝐸𝐸� ∈  ℝ� × � : 

𝐸𝐸�  =  �  (�
��� 𝑠𝑠�� ⋅  𝑓𝑓��

� ).                    (3) 

Finally, we aggregate the features of all points and re-
shape to get the final output 𝐸𝐸�  ∈ ℝ� × � × �, i.e.: 

(1)

where λ1 and θ1 are learnable parameters for assigning 
weights, which gradually learn a weight from 0. The 
output features have their own local enhancements as 
well as correlation information between images. Fq is 
calculated in a similar way to Fs.

3.2. Dual-Self Attention (DSA)
Self-Position Attention(SPA). Global texture fea-
tures help to detect GAN-generated faces and can im-

prove model detection ability by capturing long-range 
texture information [15]. However, [16, 17] show 
that generated face detection relies more on subtle 
details in the hair or background when performing 
cross dataset detection, so focusing on local detailed 
features can effectively enhance the generalization 
ability of detection. In order to pay more attention to 
local detailed features, we introduce the self-position 
attention module, which lets local features establish 
links in contextual relationships, thereby enhancing 
the network’s expression of local features.
As shown in the upper part of Figure 3, given the fea-
ture f ∈ ℝC×H×W, it is first fed into a 1x1 convolutional 
layer to generate f1 ∈ ℝC'×H×W where (C'<C ). We then 
reshape f1 and f into f1' ∈ ℝC'×N and f2'∈ ℝC×N, where  
N = H × W in the SPA module. Next, f1' is transposed 
to f1'T∈ ℝN×C', and the matrix multiplication is per-
formed between f1' and f1'T to obtain their relation-
ship, denoted by g(f1', f1'T ). After softmax layer, we 
will obtain position attention maps S ∈ ℝN×N. From 
the spatial position, i of f1' and j of f1'T, we respective-
ly get two spatial points {f1i', f1j'

T} ℝC',where i ∈ {1, ..., 
N}, j ∈ {1, ..., N} . We further denote the pointwise 
calculation of g(f1', f1'T ) as gij(f1i', f1j'

T ), and have the 
following equation:

Figure 3
The details of DSA. Features are fed to the self-position attention (SPA, upper) and self-channel attention (SCA, below) 
modules, which output  Ep and Ec, respectively. They then fuse into features ADual with positional attention and channel 
attention. DSA aims to make the network better understand “what to observe”



413Information Technology and Control 2024/2/53

  

Overall architecture of RENet. We feed 𝑓𝑓� and 𝑓𝑓� from shared embedding network into the DSA module to obtain 
locally enhanced features 𝑓𝑓�

���� and 𝑓𝑓�
����. Following CCA, we can obtain 𝐹𝐹� and 𝐹𝐹�, both of which contain global 

information. Finally, they are concatenated along the channel and the category with the highest score determines the 
classification result. 

 
 

As shown in Figure 2, given a pair of support and 
query set images{𝐼𝐼�

� , 𝐼𝐼�}, each of them has a size of 
C×H×W. They pass through a shared embedding net-
work and generate corresponding features 
𝑓𝑓�

�, … , 𝑓𝑓�
�� and 𝑓𝑓� .The support set features 

𝑓𝑓�
�, … , 𝑓𝑓�

��  from the same domain will be∈ denoted 
as 𝑓𝑓� via element-wise sum. The DSA module first 
applies self-attention over them to generate self-atten-
tive features{A�

���� , A�
Dual } ∈ ℝ� ×� × � . and multi-

plies them by their corresponding weights before add-
ing them to the input features to obtain 𝑓𝑓�

���� and 
𝑓𝑓�

���� , respectively. The resulting features are then 
processed by the CCA module to generate {A�

����� ,
A�

Cross} ∈ ℝ� ×� × � , which operates similarly to the 
DSA module. From there, output feature 𝐹𝐹� and 𝐹𝐹� 
are computed for the classification score by represen-
tation comparison, with 𝐹𝐹�  being calculated as fol-
lows: 

�  𝑓𝑓�
���� =  𝑓𝑓� + 𝜆𝜆� × 𝐴𝐴�

����

𝐹𝐹� =  𝑓𝑓�
���� + 𝜃𝜃� × 𝐴𝐴�

�����                                      (1) 

where λ�  and θ�  are learnable parameters for as-
signing weights, which gradually learn a weight from 
0. The output features have their own local enhance-
ments as well as correlation information between im-
ages. 𝐹𝐹� is calculated in a similar way to 𝐹𝐹�. 

3.2. Dual-Self Attention (DSA) 
Self-Position Attention(SPA)  Global texture fea-
tures help to detect GAN-generated faces and can im-
prove model detection ability by capturing long-range 
texture information[15]. However, [16, 17] show that 
generated face detection relies more on subtle details 
in the hair or background when performing cross da-
taset detection, so focusing on local detailed features 
can effectively enhance the generalization ability of 

detection. In order to pay more attention to local de-
tailed features, we introduce the self-position atten-
tion module, which lets local features establish links 
in contextual relationships, thereby enhancing the net-
work's expression of local features. 
As shown in the upper part of Figure 3, given the fea-
ture 𝑓𝑓 ∈ ℝ� ×� × �, it is first fed into a 1x1 convolu-
tional layer to generate 𝑓𝑓� ∈ ℝ��× � × �, where (𝐶𝐶� <
 𝐶𝐶 ). We then reshape 𝑓𝑓�  and 𝑓𝑓  into 𝑓𝑓�

� ∈
 ℝ�� × � and 𝑓𝑓�

� ∈  ℝ� × �, where 𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊 in the 
SPA module. Next, 𝑓𝑓�

�  is transposed to 𝑓𝑓�
�� ∈

 ℝ � × �� , and the matrix multiplication is performed 
between 𝑓𝑓�

� and 𝑓𝑓�
�� to obtain their relationship, de-

noted by 𝑔𝑔�𝑓𝑓�
�, 𝑓𝑓�

���. After softmax layer, we will ob-
tain position attention maps 𝑆𝑆 ∈  ℝ� × � . From the 
spatial position，𝑖𝑖 of 𝑓𝑓�

� and 𝑗𝑗 of 𝑓𝑓�
��, we respec-

tively get two spatial points {  𝑓𝑓��
�  , 𝑓𝑓��

� � } ∈
 ℝ�� ,where 𝑖𝑖 ∈ {1, … , 𝑁𝑁}，𝑗𝑗 ∈ {1, … , 𝑁𝑁} . We fur-
ther denote the pointwise calculation of 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
��) as 

𝑔𝑔���𝑓𝑓��
� , 𝑓𝑓��

� ��, and have the following equation: 

𝑠𝑠�� =
�����������

�  , ���
� �

��

∑  �
��� ��� ��������

�  , ���
� �

��
 =  

�������
�  ⋅ ���

� �
�

∑  �
��� ��� ����

�  ⋅ ���
� �

�
     (2) 

where 𝑠𝑠�� ∈  ℝ� × �  represents feature at position i 
impact on position j. The more correlated the features 
at the two positions are, the larger 𝑠𝑠��  is. Then, after 
multiplying with the matrix 𝑓𝑓��

� ∈  ℝ� × � , we sum 
them to obtain the correlation of all features in column 
i, 𝐸𝐸� ∈  ℝ� × � : 

𝐸𝐸�  =  �  (�
��� 𝑠𝑠�� ⋅  𝑓𝑓��
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Finally, we aggregate the features of all points and re-
shape to get the final output 𝐸𝐸�  ∈ ℝ� × � × �, i.e.: 

(2)

where sij ∈ ℝ1×1 represents feature at position i impact 
on position j. The more correlated the features at the 
two positions are, the larger sij  is. Then, after multiply-
ing with the matrix f2i' ∈ ℝ1×N, we sum them to obtain 
the correlation of all features in column i,  Ej ∈ ℝ1×N:

  

Overall architecture of RENet. We feed 𝑓𝑓� and 𝑓𝑓� from shared embedding network into the DSA module to obtain 
locally enhanced features 𝑓𝑓�

���� and 𝑓𝑓�
����. Following CCA, we can obtain 𝐹𝐹� and 𝐹𝐹�, both of which contain global 

information. Finally, they are concatenated along the channel and the category with the highest score determines the 
classification result. 

 
 

As shown in Figure 2, given a pair of support and 
query set images{𝐼𝐼�

� , 𝐼𝐼�}, each of them has a size of 
C×H×W. They pass through a shared embedding net-
work and generate corresponding features 
𝑓𝑓�

�, … , 𝑓𝑓�
�� and 𝑓𝑓� .The support set features 

𝑓𝑓�
�, … , 𝑓𝑓�

��  from the same domain will be∈ denoted 
as 𝑓𝑓� via element-wise sum. The DSA module first 
applies self-attention over them to generate self-atten-
tive features{A�

���� , A�
Dual } ∈ ℝ� ×� × � . and multi-

plies them by their corresponding weights before add-
ing them to the input features to obtain 𝑓𝑓�

���� and 
𝑓𝑓�

���� , respectively. The resulting features are then 
processed by the CCA module to generate {A�

����� ,
A�

Cross} ∈ ℝ� ×� × � , which operates similarly to the 
DSA module. From there, output feature 𝐹𝐹� and 𝐹𝐹� 
are computed for the classification score by represen-
tation comparison, with 𝐹𝐹�  being calculated as fol-
lows: 
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where λ�  and θ�  are learnable parameters for as-
signing weights, which gradually learn a weight from 
0. The output features have their own local enhance-
ments as well as correlation information between im-
ages. 𝐹𝐹� is calculated in a similar way to 𝐹𝐹�. 

3.2. Dual-Self Attention (DSA) 
Self-Position Attention(SPA)  Global texture fea-
tures help to detect GAN-generated faces and can im-
prove model detection ability by capturing long-range 
texture information[15]. However, [16, 17] show that 
generated face detection relies more on subtle details 
in the hair or background when performing cross da-
taset detection, so focusing on local detailed features 
can effectively enhance the generalization ability of 

detection. In order to pay more attention to local de-
tailed features, we introduce the self-position atten-
tion module, which lets local features establish links 
in contextual relationships, thereby enhancing the net-
work's expression of local features. 
As shown in the upper part of Figure 3, given the fea-
ture 𝑓𝑓 ∈ ℝ� ×� × �, it is first fed into a 1x1 convolu-
tional layer to generate 𝑓𝑓� ∈ ℝ��× � × �, where (𝐶𝐶� <
 𝐶𝐶 ). We then reshape 𝑓𝑓�  and 𝑓𝑓  into 𝑓𝑓�

� ∈
 ℝ�� × � and 𝑓𝑓�

� ∈  ℝ� × �, where 𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊 in the 
SPA module. Next, 𝑓𝑓�

�  is transposed to 𝑓𝑓�
�� ∈

 ℝ � × �� , and the matrix multiplication is performed 
between 𝑓𝑓�

� and 𝑓𝑓�
�� to obtain their relationship, de-

noted by 𝑔𝑔�𝑓𝑓�
�, 𝑓𝑓�

���. After softmax layer, we will ob-
tain position attention maps 𝑆𝑆 ∈  ℝ� × � . From the 
spatial position，𝑖𝑖 of 𝑓𝑓�

� and 𝑗𝑗 of 𝑓𝑓�
��, we respec-

tively get two spatial points {  𝑓𝑓��
�  , 𝑓𝑓��

� � } ∈
 ℝ�� ,where 𝑖𝑖 ∈ {1, … , 𝑁𝑁}，𝑗𝑗 ∈ {1, … , 𝑁𝑁} . We fur-
ther denote the pointwise calculation of 𝑔𝑔(𝑓𝑓�
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impact on position j. The more correlated the features 
at the two positions are, the larger 𝑠𝑠��  is. Then, after 
multiplying with the matrix 𝑓𝑓��

� ∈  ℝ� × � , we sum 
them to obtain the correlation of all features in column 
i, 𝐸𝐸� ∈  ℝ� × � : 
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Finally, we aggregate the features of all points and re-
shape to get the final output 𝐸𝐸�  ∈ ℝ� × � × �, i.e.: 
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Finally, we aggregate the features of all points and re-
shape to get the final output Ep ∈ ℝC×H×W, i.e.:

 

 

Figure 3 
The details of DSA. Features are fed to the self-position attention (SPA, upper) and self-channel attention (SCA, below) 
modules, which output 𝐸𝐸�  and 𝐸𝐸� , respectively. They then fuse into features 𝐴𝐴����  with positional attention and 
channel attention. DSA aims to make the network better understand "what to observe”. 
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where 𝐸𝐸�  selectively aggregates the context based 
on the position attention map. Similar semantic fea-
tures are correlated with each other, thereby improv-
ing intra-class compactness and semantic consistency. 
Self-Channel Attention (SCA). Each channel of 
high-level semantic features can be considered a par-
ticular class of response, and the different semantic 
responses are interrelated [15]. As a consequence, we 
add a self-channel attention module to build depend-
encies between channels. 
As shown in the lower half of Figure 3, unlike the 
SPA module, before computing the relationship be-
tween the two channels, we directly reshape the input 
features to obtain 𝑓𝑓�

� ∈  ℝ� × � and 𝑓𝑓�
� ∈ ℝ� × �  in-

stead of feeding them into the convolutional layer, as 
this maintains the relationship between different 
channel mappings. 𝑓𝑓�

� is multiplied by its transposed 
feature map to produce channel attention feature map 
𝑋𝑋 ∈  ℝ� × �. The subsequent calculation is similar to 
equations (2), (3), and (4), the final output 𝐸𝐸�  ∈
ℝ� × � × � can be obtained by matrix multiplication 
of X and 𝑓𝑓�

�, i.e.: 

𝐸𝐸�  =  ∑  �
��� � (𝑥𝑥�� ⋅  𝑓𝑓��

� ) .�
���                 (5) 

Finally, in order to fully fuse the local detail features 
between position and channel, we sum the features 
from these two attention modules to obtain fusion fea-
ture 𝐴𝐴����. The DSA module does not add too many 
parameters to the network but effectively enhances 
the local representation of the features, allowing the 
network to better understand "what to observe." 

3.3.  Cross-Correlation Attention (CCA) 
The GAN model concentrates on learning local fea-
tures and uses an upsampling process to produce vis-
ually enhanced images. However, this local-to-global 
structure deviates fundamentally from the global gen-
eration pattern of natural images, resulting in GAN-
generated images frequently lacking global features. 
Such images may appear indistinguishable to the hu-
man eye, but in reality, they are merely a composite 
of uncorrelated local features. 
After applying the DSA module, a pair of features that 
aggregate local information can be obtained. How-
ever, since there is no correlation between these two 
features, neglecting global information could poten-
tially impact the detection results. Consequently, we 
integrated the CCA into the pipeline after the DSA 
module to establish inter-image links, facilitating de-
tection and classification. 
As shown in Figure 4, the features 𝑓𝑓�

���� and 𝑓𝑓�
���� 

are fed into a 1x1 convolution network to adjust the 
channel size. The output is then reshaped such that 
𝑓𝑓�

� ∈  ℝ�� × �� and 𝑓𝑓�
� ∈  ℝ� × �� ,where 𝐶𝐶� <  𝐶𝐶 , 

𝑁𝑁� = 𝐻𝐻� × 𝑊𝑊�, 𝑁𝑁� = 𝐻𝐻� × 𝑊𝑊� (Note, in this paper, 
𝑁𝑁� = 𝑁𝑁�. Here we write separately to better illustrate 
the processes involved). Denote the relationship be-
tween 𝑓𝑓�

�  and 𝑓𝑓�
�  as 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
�) , we can compute 

their cross-attention graph maps 𝑨𝑨 ∈ ℝ� �×  �� . Sim-
ilar as SPA module, 𝑖𝑖 of 𝑓𝑓�

�  and j of 𝑓𝑓�
�  , we re-

spectively get two spatial points { 𝑓𝑓��
�  ,  𝑓𝑓��

� } ∈
 ℝ�� ,where 𝑖𝑖 ∈ {1, … , 𝑁𝑁�}， 𝑗𝑗 ∈ {1, … , 𝑁𝑁�} and de-
note the pointwise calculation of 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
� ) as 

𝑔𝑔���𝑓𝑓��
�  , 𝑓𝑓��

� �. We choose the cosine similarity  

(4)

where Ep selectively aggregates the context based on 
the position attention map. Similar semantic features 
are correlated with each other, thereby improving in-
tra-class compactness and semantic consistency.
Self-Channel Attention (SCA). Each channel of 
high-level semantic features can be considered a par-
ticular class of response, and the different semantic 
responses are interrelated [15]. As a consequence, we 
add a self-channel attention module to build depen-
dencies between channels.
As shown in the lower half of Figure 3, unlike the 
SPA module, before computing the relationship 
between the two channels, we directly reshape the 
input features to obtain f3' ∈ ℝC×N and f2' ∈ ℝC×N in-
stead of feeding them into the convolutional layer, 
as this maintains the relationship between different 
channel mappings. f3' is multiplied by its transposed 
feature map to produce channel attention feature 
map X ∈ ℝC×C.  The subsequent calculation is simi-
lar to equations (2), (3), and (4), the final output EC 
∈ ℝC×H×W can be obtained by matrix multiplication of 
X and f2', i.e.:

 

 

Figure 3 
The details of DSA. Features are fed to the self-position attention (SPA, upper) and self-channel attention (SCA, below) 
modules, which output 𝐸𝐸�  and 𝐸𝐸� , respectively. They then fuse into features 𝐴𝐴����  with positional attention and 
channel attention. DSA aims to make the network better understand "what to observe”. 
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where 𝐸𝐸�  selectively aggregates the context based 
on the position attention map. Similar semantic fea-
tures are correlated with each other, thereby improv-
ing intra-class compactness and semantic consistency. 
Self-Channel Attention (SCA). Each channel of 
high-level semantic features can be considered a par-
ticular class of response, and the different semantic 
responses are interrelated [15]. As a consequence, we 
add a self-channel attention module to build depend-
encies between channels. 
As shown in the lower half of Figure 3, unlike the 
SPA module, before computing the relationship be-
tween the two channels, we directly reshape the input 
features to obtain 𝑓𝑓�

� ∈  ℝ� × � and 𝑓𝑓�
� ∈ ℝ� × �  in-

stead of feeding them into the convolutional layer, as 
this maintains the relationship between different 
channel mappings. 𝑓𝑓�

� is multiplied by its transposed 
feature map to produce channel attention feature map 
𝑋𝑋 ∈  ℝ� × �. The subsequent calculation is similar to 
equations (2), (3), and (4), the final output 𝐸𝐸�  ∈
ℝ� × � × � can be obtained by matrix multiplication 
of X and 𝑓𝑓�

�, i.e.: 
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��� � (𝑥𝑥�� ⋅  𝑓𝑓��
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Finally, in order to fully fuse the local detail features 
between position and channel, we sum the features 
from these two attention modules to obtain fusion fea-
ture 𝐴𝐴����. The DSA module does not add too many 
parameters to the network but effectively enhances 
the local representation of the features, allowing the 
network to better understand "what to observe." 

3.3.  Cross-Correlation Attention (CCA) 
The GAN model concentrates on learning local fea-
tures and uses an upsampling process to produce vis-
ually enhanced images. However, this local-to-global 
structure deviates fundamentally from the global gen-
eration pattern of natural images, resulting in GAN-
generated images frequently lacking global features. 
Such images may appear indistinguishable to the hu-
man eye, but in reality, they are merely a composite 
of uncorrelated local features. 
After applying the DSA module, a pair of features that 
aggregate local information can be obtained. How-
ever, since there is no correlation between these two 
features, neglecting global information could poten-
tially impact the detection results. Consequently, we 
integrated the CCA into the pipeline after the DSA 
module to establish inter-image links, facilitating de-
tection and classification. 
As shown in Figure 4, the features 𝑓𝑓�

���� and 𝑓𝑓�
���� 

are fed into a 1x1 convolution network to adjust the 
channel size. The output is then reshaped such that 
𝑓𝑓�

� ∈  ℝ�� × �� and 𝑓𝑓�
� ∈  ℝ� × �� ,where 𝐶𝐶� <  𝐶𝐶 , 

𝑁𝑁� = 𝐻𝐻� × 𝑊𝑊�, 𝑁𝑁� = 𝐻𝐻� × 𝑊𝑊� (Note, in this paper, 
𝑁𝑁� = 𝑁𝑁�. Here we write separately to better illustrate 
the processes involved). Denote the relationship be-
tween 𝑓𝑓�

�  and 𝑓𝑓�
�  as 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
�) , we can compute 

their cross-attention graph maps 𝑨𝑨 ∈ ℝ� �×  �� . Sim-
ilar as SPA module, 𝑖𝑖 of 𝑓𝑓�

�  and j of 𝑓𝑓�
�  , we re-

spectively get two spatial points { 𝑓𝑓��
�  ,  𝑓𝑓��

� } ∈
 ℝ�� ,where 𝑖𝑖 ∈ {1, … , 𝑁𝑁�}， 𝑗𝑗 ∈ {1, … , 𝑁𝑁�} and de-
note the pointwise calculation of 𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
� ) as 
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Finally, in order to fully fuse the local detail features 
between position and channel, we sum the features 
from these two attention modules to obtain fusion 
feature ADual. The DSA module does not add too many 
parameters to the network but effectively enhances 

the local representation of the features, allowing the 
network to better understand “what to observe.”

3.3. Cross-Correlation Attention (CCA)
The GAN model concentrates on learning local fea-
tures and uses an upsampling process to produce vi-
sually enhanced images. However, this local-to-glob-
al structure deviates fundamentally from the global 
generation pattern of natural images, resulting in 
GAN-generated images frequently lacking global fea-
tures. Such images may appear indistinguishable to 
the human eye, but in reality, they are merely a com-
posite of uncorrelated local features.
After applying the DSA module, a pair of features that 
aggregate local information can be obtained. How-
ever, since there is no correlation between these two 
features, neglecting global information could poten-
tially impact the detection results. Consequently, we 
integrated the CCA into the pipeline after the DSA 
module to establish inter-image links, facilitating de-
tection and classification.

Figure 4
The details of CCA. Aim to adjust the “focus” of the image 
given during the network test

As shown in Figure 4, the features fs
Dual and fq

Dual  are 
fed into a 1x1 convolution network to adjust the chan-
nel size. The output is then reshaped such that f1' ∈ 
ℝC'×N1 and f2' ∈ ℝC×N2 ,where C'< C, N1 = H1× W1, N2 = 
H2× W2 (Note, in this paper, N1 = N2. Here we write 
separately to better illustrate the processes involved). 
Denote the relationship between f1' and f2' as g(f1', f2'), 
we can compute their cross-attention graph maps 
A∈ℝN1×N2. Similar as SPA module, i of  f1' and j of f2', we 
respectively get two spatial points {f1i', f2j'} ∈ ℝC', where 
i ∈ {1, ..., N1}, j ∈ {1, ..., N2} and denote the pointwise 
calculation of g(f1', f2') as gij(f1i', f2j'). We choose the co-
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sine similarity function to calculate the relationship 
between features:

  

Figure 4 
The details of CCA. Aim to adjust the "focus" of the 
image given during the network test. 

 
 

function to calculate the relationship between fea-
tures: 

𝐴𝐴�� =  𝑔𝑔���𝑓𝑓��
�  , 𝑓𝑓��

� � = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓��
�  , 𝑓𝑓��

� �,                       (6) 

where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠,𝑠) means the cosine similarity between 

two features and 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓��
�  , 𝑓𝑓��

� � =  
���

�  𝑠 ���
�

∥∥���
� ∥∥𝑠 ∥∥���

�
∥∥

 .We 

perform l2-normalization over 𝑓𝑓�
�  and 𝑓𝑓�

� , along 
their channel dimension, then equation (6) can be re-
written as: 
𝐴𝐴 =  𝑔𝑔(𝑓𝑓�

�, 𝑓𝑓�
�) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓�

� , 𝑓𝑓�
�).                (7) 

The feature map contains the cross-correlation be-
tween each position in A and B. After obtaining the 
cross-feature map, it is multiplied by the correspond-
ing matrices of 𝑓𝑓�

� and 𝑓𝑓�
� ,respectively: 

�  𝐴𝐴�
����� =  𝑓𝑓�

�  𝑠  𝑨𝑨
𝐴𝐴�

����� =  𝑓𝑓�
�  𝑠  𝑨𝑨

  .                       (8) 

It can be seen that the output feature 𝐴𝐴�
����� contains 

global information of 𝑓𝑓� for each pixel, and 𝐴𝐴�
����� 

is the same. CCA promotes the generation of more 
discriminative features for semantically similar re-
gions between support and query images, allowing the 
network to adjust its "focus" on the images during 
testing. Finally, the channels of the features are ad-
justed to output features 𝐴𝐴�

����� ∈ ℝ � × �� × ��  and 
𝐴𝐴�

����� ∈ ℝ � × �� × �� . 

 
4. Experiments 
In this section, we first introduce the details of the da-
taset and experiments. Then we conduct a series of 
contrast experiments and ablation experiments to an-
alyze the effectiveness of the pro-posed model and 
modules. Finally, we discuss how to design the RENet 
model structure to achieve the best performance of the 
network. Additionally, we explore the detection effec-
tiveness across various generated image categories, 
including food, animals, landscapes, and more. 
4.1 Datasets 
In the experiment, the real faces CelebA-HQ [44] and 
FFHQ [31] are used as positive samples, and the fake 
faces generated by PGGAN [30] and StyleGAN [31] 
are used as negative samples, i.e. the number of 

categories N = 4. Following [4], we randomly select 
10K images from each of the four datasets and then 
divide the images into training, validation, and testing 
sets in a ratio of 7:1:2. Each image is resized to 256 × 
256. Data augmentation proves to be effective in mit-
igating the overfitting problem in deep learning mod-
els and enhancing their generalization ability [60, 70]. 
Consequently, during training, we exclusively aug-
ment query images to simulate real-world scenarios. 
To assess generalization ability, we randomly select 
2,000 images from commonly used out-of-sample da-
tasets as test sets including StyleGAN2 [33], Star-
GAN [11], BeGAN [2], LsGAN [46], WgGANGP 
[20], RelGAN [42] The details of the corresponding 
generated faces are provided in Table 1 and each im-
age resized to 256 × 256. 
Table 1  
Details of datasets. 

Source Models Resolution 

CelebA 

StarGAN 256x256 
BeGAN 128x128 
LsGAN 128x128 

WgGANGP 128x128 

CelebA-HQ 
ProGAN 1024x1024 
RelGAN 256x256 

FFHQ 
StyleGAN 256x256 

StyleGAN2 1024x1024 

 
4.2.  Implementation Details 
Network architectures. The complete network is 
partitioned into three segments: Base Representation, 
Feature Augmentation, and Representation Compari-
son. In the Base Representation, we discard the final 
average pooling layer and fully connected layer of 
ResNet50 [25] and use the remaining layers as the 
shared embedding network in the RENet. The struc-
tures and parameters of the remaining two segments 
will be thoroughly outlined in Table 2. In Figure 2, 
image 𝑓𝑓 ∈ ℝ� ×��� × ��� is input into the shared em-
bedding network to obtain the feature 𝑓𝑓 ∈
ℝ����×� × �. In the score network, the features are first 
fed into two identical convolutional groups. Each 
group contains a 3x3 convolutional layer with 64 fil-
ters, followed by a BN layer, ReLU layer, and max-
pool layer. The final output is transformed to a range 
of 0 to 1 using two fully connected layers and a sig-
moid function. The class with the highest score is the 
final classification result. In the SPA and CCA mod-
ules, we set 𝐶𝐶�  = 𝐶𝐶𝐶 𝐶 = 256. 
Training and testing details. All experiments are im-
plemented on Pytorch and a GeForce GTX 24GB 
3090 GPU, Silver 4214R CPU. The optimizer is 
Adam [33]. The initial learning rate of 1.0e-5 and a 
decay learning rate of 1.0e-6. Besides a cosine sched-
uler for warm start. Training stops when the learning 
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model structure to achieve the best performance of the 
network. Additionally, we explore the detection effec-
tiveness across various generated image categories, 
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4.1 Datasets 
In the experiment, the real faces CelebA-HQ [44] and 
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faces generated by PGGAN [30] and StyleGAN [31] 
are used as negative samples, i.e. the number of 

categories N = 4. Following [4], we randomly select 
10K images from each of the four datasets and then 
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average pooling layer and fully connected layer of 
ResNet50 [25] and use the remaining layers as the 
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moid function. The class with the highest score is the 
final classification result. In the SPA and CCA mod-
ules, we set 𝐶𝐶�  = 𝐶𝐶𝐶 𝐶 = 256. 
Training and testing details. All experiments are im-
plemented on Pytorch and a GeForce GTX 24GB 
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It can be seen that the output feature A1
Cross contains 

global information of f1 for each pixel, and A2
Cross is 

the same. CCA promotes the generation of more dis-
criminative features for semantically similar regions 
between support and query images, allowing the net-
work to adjust its “focus” on the images during test-
ing. Finally, the channels of the features are adjusted 
to output features A1

Cross ∈ ℝC×H1×W1 and A2
Cross ∈ ℝC×H2×W2.

4. Experiments
In this section, we first introduce the details of the 
dataset and experiments. Then we conduct a series 
of contrast experiments and ablation experiments to 
analyze the effectiveness of the pro-posed model and 
modules. Finally, we discuss how to design the RENet 
model structure to achieve the best performance of 
the network. Additionally, we explore the detection 
effectiveness across various generated image catego-
ries, including food, animals, landscapes, and more.

4.1. Datasets
In the experiment, the real faces CelebA-HQ [44] and 
FFHQ [31] are used as positive samples, and the fake 
faces generated by PGGAN [30] and StyleGAN [31] 
are used as negative samples, i.e. the number of cat-

egories N = 4. Following [4], we randomly select 10K 
images from each of the four datasets and then divide 
the images into training, validation, and testing sets 
in a ratio of 7:1:2. Each image is resized to 256 × 256. 
Data augmentation proves to be effective in mitigat-
ing the overfitting problem in deep learning models 
and enhancing their generalization ability [60, 70]. 
Consequently, during training, we exclusively aug-
ment query images to simulate real-world scenarios.
To assess generalization ability, we randomly select 
2,000 images from commonly used out-of-sample 
datasets as test sets including StyleGAN2 [33], Star-
GAN [11], BeGAN [2], LsGAN [46], WgGANGP [20], 
RelGAN [42] The details of the corresponding gener-
ated faces are provided in Table 1 and each image re-
sized to 256 × 256.

4.2. Implementation Details
Network architectures. The complete network is 
partitioned into three segments: Base Representa-
tion, Feature Augmentation, and Representation 
Comparison. In the Base Representation, we discard 
the final average pooling layer and fully connected 
layer of ResNet50 [25] and use the remaining lay-
ers as the shared embedding network in the RENet. 
The structures and parameters of the remaining two 
segments will be thoroughly outlined in Table 2. In 
Figure 2, image f ∈ ℝ3×256×256 is input into the shared 
embedding network to obtain the feature f ∈ ℝ2048×8×8. 
In the score network, the features are first fed into 
two identical convolutional groups. Each group con-

Table 1 
Details of datasets

Source Models Resolution

CelebA

StarGAN 256x256

BeGAN 128x128

LsGAN 128x128

WgGANGP 128x128

CelebA-HQ
ProGAN 1024x1024

RelGAN 256x256

FFHQ
StyleGAN 256x256

StyleGAN2 1024x1024



415Information Technology and Control 2024/2/53

Table 2
Network parameters of feature augmentation module and representation comparison

Feature 
Augmentation

Name Parameters

AdaptiveAvgPool2d_1 output_size=8

Conv2d_1 out_channels=256, kernel_size=1, 
stride=1

Conv2d_2 out_channels=256, kernel_size=1, 
stride=1

Matrix_Mulitiply_1 (Conv2d_1,Conv2d_2)

Softmax_1 softmax(Matrix_Mulitiply_1)

Conv2d_3 out_channels =2048, kernel_size=1, 
stride=1

Matrix_Mulitiply_2 (Softmax_1, Conv2d_3)

Matrix_Mulitiply_3 (AdaptiveAvgPool2d_1, 
AdaptiveAvgPool2d_1)

Softmax_2 softmax(Matrix_Mulitiply_3)

Matrix_Mulitiply_4 (Softmax_2, Matrix_Mulitiply_3)

Add_S, Add_Q (Matrix_Mulitiply_2,  
Matrix_Mulitiply_4)

Conv2d_4_1, 
Conv2d_4_2

out_channels =256,  
kernel_size=1, stride=1

Conv2d_5_1, 
Conv2d_5_2

out_channels =256,  
kernel_size=1, stride=1

Matrix_Mulitiply_5_1, 
Matrix_Mulitiply_5_2

(Conv2d_4_2, Conv2d_5_1)
(Conv2d_4_1, Conv2d_5_2)

Softmax_3_1, 
Softmax_3_2

Softmax_3_1(Matrix_Mulitiply_5_1), 
Softmax_3_2(Matrix_Mulitiply_5_2)

Matrix_Mulitiply_6_1, 
Matrix_Mulitiply_6_2

(Softmax_3_1,Add_S), 
(Softmax_3_2,Add_Q)

Representation
Comparison

Conv2d_6 out_channels =64, kernel_size=3, 
stride=1, padding=1

MaxPool2d_1 kernel_size=2, stride=2

Conv2d_7 out_channels =64, kernel_size=3, 
stride=1, padding=1

MaxPool2d_2 kernel_size=2, stride=2

AdaptiveAvgPool2d_2 output_size=1

Linear_1 out_features=8

Linear_2 out_features=1

tains a 3x3 convolutional layer 
with 64 filters, followed by a BN 
layer, ReLU layer, and maxpool 
layer. The final output is trans-
formed to a range of 0 to 1 using 
two fully connected layers and 
a sigmoid function. The class 
with the highest score is the fi-
nal classification result. In the 
SPA and CCA modules, we set C' 
= C/8 = 256.
Training and testing details. 
All experiments are implement-
ed on Pytorch and a GeForce 
GTX 24GB 3090 GPU, Silver 
4214R CPU. The optimizer is 
Adam [33]. The initial learning 
rate of 1.0e-5 and a decay learn-
ing rate of 1.0e-6. Besides a co-
sine scheduler for warm start. 
Training stops when the learn-
ing rate is less than 1.0e-7, with 
a patience of 7. We use the mean 
square error (MSE) loss when 
training, where positive sample 
labels are 0 and negative sample 
labels are 1. For each episode, 
we compute with 8 images from 
each category, i.e., K = 8. There-
fore, the experiment is a 4-way 
8-shot, and a total of 32 images 
(4 x 8) are used as a batch for 
training. In addition, to test the 
robustness, we perform differ-
ent post-processing operations 
on the testing set. Details and 
experimental results are given 
in Section 4.3.
Performance metric. We use 
accuracy (ACC) to evaluate the 
experimental results, which is 
calculated using the formula 

 

 

rate is less than 1.0e-7, with a patience of 7. We use 
the mean square error (MSE) loss when training, 
where positive sample labels are 0 and negative sam-
ple labels are 1. For each episode, we compute with 8 
images from each category, i.e., K = 8. Therefore, the 
experiment is a 4-way 8-shot, and a total of 32 images 
(4 x 8) are used as a batch for training. In addition, to 
test the robustness, we perform different post-pro-
cessing operations on the testing set. Details and ex-
perimental results are given in Section 4.3. 
Performance metric. We use accuracy (ACC) to 

using the formula 𝐴𝐴𝐴𝐴𝐴𝐴 =  �����
���

× 100%. Here, TP 

 
Table 2 
Network parameters of feature augmentation module 
and representation comparison. 

 
 
4.3. Comparisons with State-of-the-Art Works 
In this section, several advanced methods have been 
selected for comparison. They are summarized below. 

· Xception [12] performed well in GAN face de-
tection experiments [55]. The optimizer is Adam 
[33]. The initial learning rate is set to 1.0e-5, and 

the learning rate decay is 1.0e-6. Training stops 
when the learning rate is less than 1.0e-7, with a 
patience of 7 and batch size is 16. (Xception) 

· Yao et al. [65] used transfer learning and feature 
fusion module to generated image. The opti-
mizer is SGD optimizer. The model was trained 
for 80 epochs with a batch size of 32. (CGNet) 

· Ju et al. [29] combined global spatial infor-
mation from the whole image and local informa-
tive features from multiple patches selected by 
an adaptation module. The optimizer is Adam 
[33]. The initial learning rate is set to 1.0e-5, and 
the learning rate decay is 1.0e-6. Training stops 
when the learning rate is less than 1.0e-7, with a 
patience of 7 and batch size is 32. (FGLNet) 

· Li et al. [38] detected authenticity by Estimating 
Artifact Similarity. The optimizer is Adam [33]. 
The initial learning rate is set to 10e-5, then the 
model is trained for 200 epochs and optimized 
with Adam. (GaseNet) 

· Chen et al. [7] proposed a method based on dual-
color space to detect differences. The optimizer 
is Adam [33]. The initial learning rate is set to 
1.0e-5, and the learning rate decay is 1.0e-6. 
Training stops when the learning rate is less than 
1.0e-7, with a patience of 7 and batch size is 16. 
(Dual-Color) 

We mix positive samples from different domains into 
one class and negative samples as well, i.e., CelebA-
HQ and FFHQare mixed as one class of positive sam-
ples, and PGGAN and StyleGAN are mixed as one 
class of negative samples, and then binary detection is 
performed. 
Results on original images.  As shown in Table 3, 
in order to verify the in-sample datasets accuracy and 
generalization of the detection methods, we conduct 
comparative experiments on different GAN-gener-
ated face datasets (without any post-processing of the 
images). It can be seen that the proposed RENet out-
performs the previous methods in both inner and out-
of-sample datasets. RENet benefits from the cross-
image relations of relational network, enabling better 
adaptive recognition of image relevance based on 
given sample examples. Additionally, it accurately 
determines the authenticity of images by contrasting 
the attentional differences between images. In Section 
4.4, we will provide more detailed results of ablation 
and comparative experiments. Although GaseNet 
[38] is based on a relational network for detecting ar-
tifacts, the detection performance of RENet is better 
than GaseNet. The ROC curves of StyleGAN2 in Fig-
ure 5 also indicate that RENet can maintain excellent 
discriminative capability at different decision thresh-
olds. 
Furthermore, to better assess the performance of the 
models, we compared the inference times of each al-
gorithm. As shown in Table 4, while FGLNet per-
forms well in generalization, its inference time is  

Feature 
Augmentation 

Name Parameters 
AdaptiveAvgPool2d_1 output_size=8 

Conv2d_1 out_channels =256, kernel_size=1, 
stride=1 

Conv2d_2 out_channels =256, kernel_size=1, 
stride=1 

Matrix_Mulitiply_1 (Conv2d_1, Conv2d_2) 
Softmax_1 softmax (Matrix_Mulitiply_1) 

Conv2d_3 out_channels =2048, kernel_size=1, 
stride=1 

Matrix_Mulitiply_2 (Softmax_1, Conv2d_3) 

Matrix_Mulitiply_3 (AdaptiveAvgPool2d_1, 
AdaptiveAvgPool2d_1) 

Softmax_2 softmax (Matrix_Mulitiply_3) 
Matrix_Mulitiply_4 (Softmax_2, Matrix_Mulitiply_3) 

Add_S, Add_Q (Matrix_Mulitiply_2, 
Matrix_Mulitiply_4) 

Conv2d_4_1,  
Conv2d_4_2 

out_channels =256, kernel_size=1, 
stride=1 

Conv2d_5_1,  
Conv2d_5_2 

out_channels =256, kernel_size=1, 
stride=1 

Matrix_Mulitiply_5_1, 
Matrix_Mulitiply_5_2 

(Conv2d_4_2, Conv2d_5_1)  
(Conv2d_4_1, Conv2d_5_2) 

Softmax_3_1,  
Softmax_3_2 

Softmax_3_1(Matrix_Mulitiply_5_1),  
Softmax_3_2(Matrix_Mulitiply_5_2) 

Matrix_Mulitiply_6_1, 
Matrix_Mulitiply_6_2 

(Softmax_3_1, Add_S,) 
(Softmax_3_2, Add_Q) 

Representation 
Comparison 

Conv2d_6 out_channels =64, kernel_size=3, 
stride=1, padding=1 

MaxPool2d_1 kernel_size=2, stride=2 

Conv2d__7 out_channels =64, kernel_size=3, 
stride=1, padding=1 

MaxPool2d_2 kernel_size=2, stride=2 
AdaptiveAvgPool2d_2 output_size=1 
Linear_1 out_features=8 
Linear_2 out_features=1 

 

. Here, 
TP and TN are the numbers of 
correctly classified positive and 
negative samples, respectively. 
P and N are the total number of 
positive and negative samples.
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4.3. Comparisons with State-of-the-Art Works
In this section, several advanced methods have been 
selected for comparison. They are summarized below.
 _ Xception [12] performed well in GAN face detec-

tion experiments [55]. The optimizer is Adam [33]. 
The initial learning rate is set to 1.0e-5, and the 
learning rate decay is 1.0e-6. Training stops when 
the learning rate is less than 1.0e-7, with a patience 
of 7 and batch size is 16. (Xception)

 _ Yao et al. [65] used transfer learning and feature fu-
sion module to generated image. The optimizer is 
SGD optimizer. The model was trained for 80 ep-
ochs with a batch size of 32. (CGNet)

 _ Ju et al. [29] combined global spatial information 
from the whole image and local informative fea-
tures from multiple patches selected by an adap-
tation module. The optimizer is Adam [33]. The 
initial learning rate is set to 1.0e-5, and the learning 
rate decay is 1.0e-6. Training stops when the learn-
ing rate is less than 1.0e-7, with a patience of 7 and 
batch size is 32. (FGLNet)

 _ Li et al. [38] detected authenticity by Estimating 
Artifact Similarity. The optimizer is Adam [33]. 
The initial learning rate is set to 10e-5, then the 
model is trained for 200 epochs and optimized with 
Adam. (GaseNet)

 _ Chen et al. [7] proposed a method based on dual-col-
or space to detect differences. The optimizer is 
Adam [33]. The initial learning rate is set to 1.0e-5, 
and the learning rate decay is 1.0e-6. Training stops 

when the learning rate is less than 1.0e-7, with a pa-
tience of 7 and batch size is 16. (Dual-Color)

We mix positive samples from different domains 
into one class and negative samples as well, i.e., Cele-
bA-HQ and FFHQare mixed as one class of positive 
samples, and PGGAN and StyleGAN are mixed as one 
class of negative samples, and then binary detection 
is performed.
Results on original images. As shown in Table 3, in 
order to verify the in-sample datasets accuracy and 
generalization of the detection methods, we conduct 
comparative experiments on different GAN-gener-
ated face datasets (without any post-processing of 
the images). It can be seen that the proposed REN-
et outperforms the previous methods in both inner 
and out-of-sample datasets. RENet benefits from the 
cross-image relations of relational network, enabling 
better adaptive recognition of image relevance based 
on given sample examples. Additionally, it accurately 
determines the authenticity of images by contrasting 
the attentional differences between images. In Section 
4.4, we will provide more detailed results of ablation 
and comparative experiments. Although GaseNet [38] 
is based on a relational network for detecting artifacts, 
the detection performance of RENet is better than 
GaseNet. The ROC curves of StyleGAN2 in Figure 5 
also indicate that RENet can maintain excellent dis-
criminative capability at different decision thresholds.
Furthermore, to better assess the performance of 
the models, we compared the inference times of each 
algorithm. As shown in Table 4, while FGLNet per-

Table 3 
Detection accuracy of the different methods (%), the best results of the experiment in bold

Methods
in-sample datasets out-of-sample datasets

ProGAN StyleGAN StyleGAN2 StarGAN BeGAN LsGAN WgGANGP RelGAN

Xception[57] 98.57 98.70 83.97 53.70 49.37 68.84 80.80 73.27

CGNet[67] 99.85 99.23 92.72 98.46 89.20 91.11 98.47 99.94

FGLNet[68] 99.01 98.85 85.63 99.91 94.31 96.52 99.03 95.68

GaseNet[19] 96.80 96.55 89.38 85.54 77.18 90.51 96.33 93.15

Dual-Color[13] 97.53 97.23 79.83 76.30 54.35 82.80 94.80 92.83

RENet (Proposed) 99.93 99.43 94.83 97.17 93.55 98.20 99.35 99.73



417Information Technology and Control 2024/2/53

Table 4
Detection Average inference time (seconds) comparison of 
six methods for a picture with 256 × 256 resolution

Methods Inference time

Xception [65] 0.026

CGNet [67] 0.029

FGLNet [68] 0.045

GaseNet [19] 0.030

Dual-Color [13] 0.052

RENet (Prposed) 0.032

forms well in generalization, its inference time is in-
creased due to the necessity of adaptively selecting 
local images for fusion, resulting in an excessive num-
ber of parameters. CGNet, on the other hand, sacrific-
es some generalization performance to improve over-
all efficiency. In contrast, RENet maintains excellent 
generalization performance while also preserving 
good inference times, making it more favorable for 
practical applications on real devices.
Results on robustness against post-processing 
operations. In reality, some criminals use GAN to 

Figure 5
ROC curve for different methods in StyleGAN2 

generate faces maliciously and often post-process 
the images to evade detection algorithms. Therefore, 
we assessed the robustness of our system to several 
common attacks. They are JPEG compression (com-
pression factors of 95, 90, 85, 80, 75, 70), Gaussian 
blur (kernel size and standard deviation of [3, 0.5], [3, 
1.0], [3, 1.5], [5, 0.5], [5, 1.0], [5, 1.5]), resizing (scaling 
factors of 40, 60, 80, 120, 140, 160), Gaussian noise 
(standard deviation of 0.01, 0.02, 0.03, 0.04, 0.05), and 
Gamma correction (gamma values of 0.4, 0.6, 0.8, 1.2, 
1.4, 1.6). Our method’s performance was compared to 
other methods on both inner and out-of-sample data-
sets, as shown in Figure 6 and Figure 7, respectively. 
The results indicate that, in most cases, while the per-
formance of other methods decreased significantly or 

Figure 6 
The detection accuracy (%) of different methods on in-sample datasets for various post-processing
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Figure 7 
The detection accuracy (%) of different methods on out-of-sample datasets for various post-processing operations

became ineffective when attacked, our method main-
tained ideal detection performance.
This could be attributed to the fact that, even when 
post-processings cause degradation, the extracted 
features maintain a similarity to the prototype from 
the same category. Reliable detection results can be 

achieved through feature relation. Additionally, we 
visualized the attention points of RENet when pro-
cessing post-processed images. As shown in Figure 8, 
it indicates that when the image is disturbed, RENet 
not only focuses on the intended areas but also pays 
attention to some background edges to assist in dis-
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Figure 8 
Activation maps from the proposed model after post-
processing operations. From left to right, the column shows 
the images after the post-processed images through JPEG 
compression, Gaussian blur, resizing, Gaussian noise and 
Gamma trans

tinguishing authenticity, aligning with what has been 
suggested in [19]. Regarding the suboptimal perfor-
mance of resizing on some datasets, we speculate that 
this is due to pixel loss caused by compressing all im-
ages uniformly to the same resolution before training.

4.4. Ablation Study and Selection of RENet 
Structure

In this section, we investigate four questions: (1) The 
impact of DSA and CCA modules on the effectiveness 
of RENet detection. (2) How does the RENet distin-
guish fake faces in out-of-sample datasets? (3) How to 
design the network architecture to optimize the per-
formance of RENet. (4) What impact will batch size 
and learning rate have on the model?
For the first question, we have conducted ablation ex-
periments in Table 5. The experimental results show 
that the DSA and CCA modules can improve the net-
work’s detection generalization ability, thereby verify-
ing the effectiveness of the proposed modules. The vi-
sualization in Figure 9 demonstrates that the features 
extracted by the network become more precise and 
rational with the addition of the DSA module and CCA 

Figure 9 
The first column on the left is the input query set, and the 
red boxes represent the clearly fake areas. (a), (b), (c) and 
(d) are the feature attention maps without any module, 
with the DSA module, with the CCA module and with the 
DSA+CCA module, respectively

Input (a) (b) (c) (d)

Figure 10
The influence of DSA and CCA on the training loss

Table 5
Ablation experiments of the DSA and CCA modules (%)

ProGAN StyleGAN StyleGAN2 StarGAN BeGAN LsGAN WgGANGP RelGAN

RN 98.6 96.1 93.1 94.2 90.6 97.3 97.6 97.9

RN + DSA 99.9 99.1 94.6 95.7 92.7 98.8 99.3 99.1

RN + CCA 99.5 98.6 93.2 95.4 91.5 93.7 98.6 98.4

RN + DSA + CCA 99.9 99.4 94.8 97.2 93.6 98.2 99.4 99.7

module separately. Especially when combining the two 
modules, the network’s attention accuracy further im-
proves. Besides, during the training process, as shown 
in Figure 10, the network converges more rapidly after 
integrating DSA and CCA. This indicates their success-
ful role in enabling the network to perceive relevant se-
mantic features at different positions, and facilitating a 
more accessible learning process for comparison.
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For the second question, Figure 11 visualizes the pri-
mary focus of RENet on out-of-sample datasets. It 
can be observed that, compared to detecting images 
within the dataset, when detecting images from out-
of-sample datasets, the network tends to focus on de-
tecting artifacts at the edges of faces and background 
hair. It may be due to differences in the strategies of 
different generation models, leading to variations in 
the correlation of facial texture features. 

RENet-1: Instead of element-wise sum, we use ele-
ment-wise avg before feeding the support set features 
into the Feature Augmentation. (2) In RENet-2 and 
RENet-3, we modify the two convolutional kernels 
in the score network to 32 and 128, respectively. (3) 
In RENet-4, we add a convolutional layer to the score 
network, while in RENet-5, we reduce a convolutional 
layer in the score network. To make a fair comparison, 
we keep the other structures the same as the original 
RENet except for the corresponding modifications.
As shown in Table 6, We can draw the following con-
clusion. First, if we change element-wise sum to ele-
ment-wise avg, the inner and out-of-sample datasets’ 
detection accuracy of the network will decrease by 
0.34% and 1.55%. This is attributed to the fact that el-
ement-wise sum effectively amplifies the distinctions 
and commonalities in the extracted features, facil-
itating the network in better contrasting the feature 
associations between the support set and query set.  
On the contrary, element-wise avg diminishes these 
differences, impacting the network’s ability to discern 
their associations. Second, a convolutional kernel of 
64 is more suitable for RENet, and a larger (128) or 
smaller (32) kernel only brings negative improve-
ments, especially when the convolutional kernel is 
128, the generalization accuracy decreases by 3.85%, 
indicating that an appropriately sized convolutional 
kernel can enhance the feature augmentation results 
of DSA. Third, using two convolutional layers before 
score mapping is more stable than using one or three 

Figure 11
The visualization results of feature maps for out-of-sample 
datasets

For the third question, we propose the following veri-
fication directions: (1) After extracting features using 
the shared embedding network, should the multiple 
features of the support set be element-wise sum or el-
ement-wise avg, which is more suitable for GAN gen-
erated face detection? (2) How many kernels should 
the convolutional filtering have in the score network? 
(3) How do the convolutional layers in the score net-
work affect detection ability? 
To explore the above directions, we have made some 
modifications to RENet as shown in Figure 12. (1) 

Figure 12 
The complete RENet network is on the left, and various modified networks are within the dashed lines on the right. The red font 
indicates the modified parameters. (4) and (5) do not modify the parameters but modify the number of convolutional layers
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Figure 13
Above are batch size ablation studies, and below are 
learning rate ablation studies on the RENet

Table 6
The influence of RENet structure selection on accuracy (%)

Models Description in-sample datasets 
average accuracy

out-of-sample datasets 
average accuracy

Proposed

RENet \ 99.68 96.85

RENet-1 change support fusion method 
into average 99.35 (-0.34) 95.30 (-1.55)

RENet-2 change Score Network’s 
kernels into 32 99.58 (-0.1) 95.29 (-1.56)

Modified

RENet-3 change Score Network’s 
kernels into 128 98.99 (-0.69) 93.00 (-3.85)

RENet-4 add one same conv in Score 
Network 99.06 (-0.62) 96.20 (-0.65)

RENet-5 subtract one same conv in 
Score Network 99.11 (-0.57) 94.10 (-2.75)

convolutional layers. Adding a convolutional layer not 
only reduces the detection accuracy, but also increas-
es the network parameters, while reducing a layer 
cannot fully integrate the extracted features, among 
which the impact on generalization accuracy is the 
greatest.
For the fourth question, we conduct two experiments. 
The first one involved training the model with batch 
sizes of 1, 2, 4, 8 (in this paper), and 16, observing the 
accuracy on in-sample and out-of-sample datasets 
when the epoch equals 20. The second experiment 
set the initial learning rates to 10e-4, 10e-5 (in this 
paper), and 10e-6, monitoring the accuracy on the 
validation set at the same step. As shown in Figures 
13 , appropriate batch sizes and learning rates can en-
hance detection accuracy, while excessively small or 
large batch sizes may impact generalization ability.

4.5. Generated Image Detection of Various 
Category
With the continuous evolution and application of 
datasets [5, 61], as well as the ongoing iterations of 
GAN models [3, 53, 55, 73, 74], the range of generated 
images has extended beyond faces. Training solely on 
CelebA-HQ and FFHQ may not comprehensively test 
the performance of the proposed method. To thor-
oughly analyze RENet’s performance across different 
categories, we further expand the testing scope, eval-
uating our proposed method. We employ the experi-
mental settings outlined by Wang et al. [60], which 

crafted to show the generality of a generated image 
detector trained by a special GAN model in identify-
ing other GAN models (not restricted to faces alone). 
Detailed information regarding the generated imag-
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Figure 14 
Some samples in the experimental datasets. The first row represents real images, and the second row corresponds to 
images generated by GAN

Family Models Source Categories

Uncontiditonal GANs

ProGAN LSUN bottle, airplane, chair, horse, etc.

StyleGAN LSUN car, cat, bedroom

StyleGAN2 LSUN car, cat, church, horse

BigGAN ImageNet fish, snake, person, road, etc.

Contiditonal GANs

CycleGAN Style/object transfer apple, orange, zebra, winter, etc.

StarGAN CelebA person

GauGAN COCO bear, truck, spoon, sandwich, etc.

Deepfake FaceForensics++ Videos of faces face

es is presented in Figure 14 and Table 7. We choose 
Lsun [66] as the source for real images and select one 
category (horse) among the 20 classes generated by 
ProGAN as the fake images. Each category comprises 
18,000 fake images and an equal number of real imag-
es. The training settings are the same as those men-
tioned in Section 4. In addition to Accuracy (ACC.), 
we also use the Average Precision (A.P.) as an evalua-
tion metric. The A.P. is calculated using an alternative 
measurement method in method [60], which approx-
imates the area under the precision-recall curve with 
the use of a few thresholds.
We first assessed the detection performance of each 
method across various categories within the in-sample 
datasets. As illustrated in Figure 15, even with training 
limited to a single category, our proposed RENet sur-

passes other methods in detecting unseen categories. 
Notably, in categories like Bus and Motorbike, where 
alternative methods show lower accuracy, RENet 
maintains an accuracy exceeding 90%. This suggests 
that proposed network is capable of effectively finding 
feature connections and semantic information within 
the same GAN model. Additionally, Figure 16 visual-
izes the attention of the proposed model on different 
types of images generated by the same GAN. We ob-
served that, in this scenario, the model primarily fo-
cuses on discerning the authenticity by analyzing the 
content within the objects themselves.
Table 8 shows the comparison results between our 
proposed RENet and other methods. It can be ob-
served that RENet demonstrates better generaliza-
tion capabilities across most GAN models compared 

Table 7
Details of datasets. Generated images are not limited to faces alone
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Figure 15 
Comparison of performance in unknown categories on images generated by ProGAN(%)

Figure 16
Activation maps in various categories after training on horse images generated by ProGAN

Table 8
Classification accuracy (%) with cross-model & unknow category

Methods

Test Models

ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Mean

ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P. ACC. A.P.

Xception 84.3 89.5 74.3 80.1 77.3 87.6 58.1 57.8 60.4 67.1 98.7 99.9 58.0 59.0 54.9 59.0 70.8 75.0

CGNet 93.0 98.9 76.4 96.8 85.2 94.7 71.5 70.1 74.2 80.9 99.8 99.8 52.7 63.1 59.0 70.1 77.2 84.3

FGLNet 87.2 96.1 76.7 85.4 78.4 90.3 64.1 62.9 63.1 70.8 98.1 99.9 48.1 46.3 67.9 72.9 72.9 77.2 

GaseNet 86.5 91.2 72.6 77.4 82.5 80.9 68.0 69.1 71.4 71.1 91.5 94.0 61.4 68.8 62.8 66.2 74.6 77.3

Dual-Color 83.3 95.1 70.1 83.8 77.5 85.5 58.2 60.6 63.5 72.3 84.3 95.6 56.3 55.1 57.8 62.1 68.9 76.3

RENet 94.9 96.2 78.4 81.8 81.6 84.4 71.6 72.2 76.0 80.4 97.8 98.7 63.2 60.5 69.3 69.5 78.1 80.4



Information Technology and Control 2024/2/53424

to other algorithms. This is attributed to the enhanced 
relational network’s ability to perceive semantic fea-
tures and conduct comparisons. However, the gener-
alization performance on GauGAN and Deepfake is 
not satisfactory. This happens due to GauGAN and 
ProGAN have similar semantic features, leading to 
overfitting problems in previous methods. In addi-
tion, the poor performance of the Deepfake model 
is due to the fact that it is not a GAN model and uses 
MSE loss and SSIM loss for training, resulting in a de-
tection accuracy of only 69.3%.

5. Conclusion
In this work, we propose a relational embedding net-
work called RENet for detecting GAN-generated face. 
It combines dual self-attention and cross-attention, 
enhancing both the relevant local features within an 
image and the global feature relationships between im-
ages. In addition, we observe that RENet can better gen-
eralize to unknown datasets by learning the structural 
correlations among features, and bring performance 
improvements to the network for detecting GAN-gen-

erated images. In further work, we will explore the ef-
fect of a relational network combined with an attention 
framework on different image forensics tasks.
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