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Sparselnst is an efficient real-time instance segmentation model, but redundant background features will be gen-
erated in multi-scale feature fusion, which will cause feature loss for small objects with low resolution and sim-
ilar pixels to the background. To address the issue, we propose a real-time instance segmentation model named
AMPF-Sparselnst (Attention-guided Multi-Scale Feature Sparselnst), which can effectively highlight the most
critical features of small objects from cluttered backgrounds. Firstly, we design a pyramid pooling module (called
SimAM-ASPP), which consists of some depthwise separable convolutions with three different expansion rates
and a 3D attention mechanism (called SimAM). It can capture contextual information from different receptive
fields and focus on small object features. Secondly, we designed the Lite -BiFPN module to associate and inte-
grate different levels of semantic information from top to bottom and from bottom to bottom. Finally, we propose
a feature enhancement module FEM, which uses N3 and N5 respectively to reweight fusion features in spatial
and channel dimensions to enhance the effective information of multi-scale fusion features. Experimental results
demonstrate the superiority of AMF-Sparselnst over the benchmark on COCO 2017 test-dev. Specifically, the
AMPF-Sparselnst makes a 3.6% improvement in overall segmentation accuracy, while increasing speed by 2.5 FPS.
Moreover, it achieves a favorable balance between accuracy and speed on the Cityscapes validation set.
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1. Introduction

Instance segmentation aims at classifying, detect-
ing and segmenting objects of interest in an image,
and thus is widely used in various domains. Recent
works [1-2, 27, 10, 30-31] have produced impressive
results on large-scale benchmarking, such as COCO
[21]. However, real-time and efficient instance seg-
mentation models still pose challenges and urgency,
especially in the field of autonomous driving and
robotics.

Asthemostrepresentativetwo-stagemethodinrecent
years, Mask R-CNN [10] is the first to use a detector
to recognize the object category and its region in the
image, then performs pixel-level semantic segmenta-
tion within specific region. While those methods [10,
17, 26] yield high quality masks, it faces challenges
in complex scenes with multi-scale objects. Because
the network needs to generate a large number of re-
gion proposals in the early stage, and the Non-Maxi-
mum Suppression (INMS) in the later stage becomes
time-consuming. Additionally, the algorithms are not
easily deployable to edge/embedded devices due to
the use of ROI-Align on region features. Therefore,
researchers have explored one-stage approaches, like
YOLACT [2], which parallelizes the detection and
segmentation tasks and eliminate region proposals
and post-processing techniques. These approaches
[2, 27, 6] enable faster inferring and offers flexibility
in segmentation mask shape and size. However, while
YOLACT pays attention to the speed of reasoning, the
segmentation accuracy is not outstanding. Since the
mask is obtained by clipping after synthesis, it lacks
the ability to suppress noise outside the proposals.
Consequently, false detection and missing detection
of the mask may occur, especially if the anchor box-
es are localized or when similar instances with large
scale differences are far apart.

Real-time instance segmentation is critical for many
application scenarios, such as autonomous driving,
robot vision, and monitoring systems, which need to
quickly and accurately identify and segment differ-
ent objects in a scene. To overcome the limitations of
slow inference and low accuracy in multi-scale mask
segmentation, this paper presents a novel one-stage
and anchor-free approach for instance segmenta-
tion. Sparselnst [4] is one of the latest methods of
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real-time instance segmentation, it ranks first in the
CVPR list in 2022. Sparselnst provides a decentral-
ized set of features, such as activating new object
representation maps that effectively highlight the in-
formation area of each rendered object. By employing
the bipartite-matching algorithm [45], Sparselnst
achieves one-to-one prediction of the object mask,
eliminating the need for post-processing NMS and
striking a balance between accuracy and real-time
performance. Most importantly, Sparselnst serves
as a baseline architecture that gives us a powerful
and efficient starting point to further investigate and
optimize the real-time instance segmentation task.
Therefore, for this contribution, we adopted Spar-
selnst as the baseline architecture, but Sparselnst
still has two problems with instance segmentation.
1) Sparselnst has poor segmentation quality and
low efficiency for images containing multi-scale ob-
jects. 2) Sparselnst is usually disturbed by complex
background, which generates a large amount of re-
dundant background information and overwhelms
small object information, resulting in a large number
of missed detections. To solve the above problems,
we propose a model named Attention-guided Multi-
Scale Feature Sparselnst, which combines with the
module AMF. The focus of our work is to enhance the
model’s perception of effective features inmulti-scale
fusion features, so that it can improve the robustness
of instance segmentation for multi-scale objects and
small objects. To do this, we use attention modules on
the network backbone and the output of the feature
pyramid network at multiple scales. In addition, we
use technology optimization capabilities to explore
the advantages of the connectivity of the feature pyr-
amid network. The main contributions of our work
can be summarized as follows:

1 We design the SimAM-ASPP (Atrous Spatial Pyr-
amid Pooling module with SimAM attention), and
introduce the atrous depthwise separable convo-
lution and SimAM attention mechanism to ob-
tain the correlation features of different receptive
fields, while reducing the number of model param-
eters and enhancing the effectiveness of small ob-
ject features.
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2 We propose the FEM (Feature Enhancement
Module) to improve channel attention and purify
the fused multi-scale features from the spatial and
channel dimensions to enhance the extraction of
effective information.

3 Building upon SimAM-ASPP and FEM, we en-
hance the FPN connection and design a network
named AMF-SparseInst. Thorough experiments
on COCO 2017 and Cityscapes dataset demon-
strate that AMF-Sparselnst exhibits improved
segmentation performance for small objects.

2. Related Works

2.1. Overview of Deep Learning

Deep learning is the core of machine learning and
artificial intelligence, which processes data using
deep neural networks by simulating the human
brain. Without manual feature engineering, deep
learning can automatically extract features from
large data sets for end-to-end processing. In the
field of computer vision, deep learning is widely
used, including data dimensionality reduction, pat-
tern recognition, etc., and has achieved remarkable
results. Zheng’s many research achievements [39-
43]inthe field of deep learning have provided useful
enlightenment and reference for computer vision
tasks such as instance segmentation. The training
process involves data preprocessing, model con-
struction, forward propagation prediction, back-
propagation calculation gradient, parameter updat-
ing, iterative optimization of the model to improve
the prediction accuracy.

2.2. Real-Time Instance Segmentation

Although extensive research has been conducted on
real-time object detection and semantic segmenta-
tion, there remains a scarcity of studies focusing on
real-time instance segmentation. The challenge lies
in the complexity of the instance segmentation task,
which involves localizing the position of an object in
an image, segmenting all salient objects at the pixel
level, and distinguishing different instances of the
same class. Currently, real-time methods typically
employ one-stage models that detect and segment
branches in parallel, performing localization, classi-
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fication, and segmentation simultaneously in a sin-
gle phase. In general, we call current state-of-the-art
models [8] when they can be reasonably pioneering
in the field of instance segmentation, obtain the
highest AP values on several public datasets, such as
COCO, and are not only highly accurate but also suf-
ficiently efficient in several segmentation tasks. In
recent years, with the development of deep learning
research, the state-of-the-art models (e.g., YOLACT
[2], CondInst [27], QueryInst [6]) that perform on
the COCO dataset tend to be faster, highly applicable
and easy to deploy on edge/embedded devices than
the two-stage models (e.g., Mask R-CNN [10], MS
R-CNN [17]).

However, the anchor-free detector [6] that use the
center pixel to represent the object and its bounding
box can be limited. Additionally, exploring various
methods for object contour representation (e.g., Po-
larmask [33], ESE-Seg [34]) has revealed deficien-
cies in segmenting objects with hollow regions or
multiple parts, making it challenging to distinguish
between different object instances. Table 1 lists the
advantages and disadvantages of different instance
segmentation algorithms.

Several real-time instance segmentation algorithms,
including YOLACT [2], YOLACT++ [1], CondInst
[27], SOLO [30], and SOLOv2 [31], have shown prog-
ress in generating instance masks using different
techniques. YOLACT [2] and YOLACT++ [1] assem-
ble mask coefficients and prototype masks to gener-
ate instance masks. CondInst [27] employs dynamic
convolution and absolute positional coordinates to
generate instance-aware convolution kernels, while
SOLO [30] and SOLOV2 [31] use absolute positional
coordinates to define instance categories.

Despite the advancements, there still exists a consid-
erable segmentation accuracy gap when compared
to Mask R-CNN [10]. To address this, Sparselnst [4]
introduces a novel approach using a sparse set of in-
stance activation mappings, representing objects
based on salient regions and features. Sparselnst
predicts objects on a one-to-one basis using a binary
matching algorithm [45], which eliminates the need
for NMS in post-processing. As a result, this method
significantly improves segmentation accuracy and
accelerates inference speed.



Table 1

Comparisons the advantages and limitations of different instance segmentation algorithms
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method year technology
Combination of Faster RCNN, ResNet-
?fgfk R-CNN | 5017 | FPN, ROI Align, the mask branch of
FCN
?f,?] R-CNN 2019 | Modify the evaluation criteria of mask
Bottom-up feature path, adaptive
PANet [29] 2019 fusion ROI pooling
YOLACT [2]/ 2019 Fusion prototype drawing and
YOLACT++ [1] inspection box
Anchor-free detector that use the
Feos [26] 2019 center pixel to represent the object
SOLO [30]/ 2019 Extract the point features of the target,
SOLOV2[31] divide the grid, Matrix NMS
Polarmask [33] | 2020 | Polar coordinate modeling mask
CondInst [27] 2020 T'he dynamic network output mask
directly
[Clzr]werMask 2020 | Decompose into local and global masks
Dynconvt’”“k, integrated object queries
QuerylInst [6] 2021 | and Hungarian matching, transformer
Multi-head attention module
CenterPoly Polygon regression head and the vertex
2021 .
[23] selection strategy
Sparselnst[4] | 2022 Novel object representation by instance

activation maps, bipartite matching

advantages

Completes two tasks
of target detection and

segmentation in parallel

Evaluate the mask
result reasonably

Enhance information
fusion and feature
utilization between
different scales

Real-time instance

segmentation

Simple structure, easy
to adapt to other tasks

Fast speed, high
accuracy
Novel method

High speed and high
accuracy

Balancing speed and
accuracy

High accuracy

Fast and lightweight,
can run at real-time
speed

Better balance accuracy

and speed
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limitations

Dependent on target
detection results

The network is huge and
time-consuming to train

The correlation between the
proposal and the different
levels of features is not
strong

The precision is lower than
that of the two-stage methods

The speed is slower than
the one-stage detection
algorithm

Long training time

Edge information ambiguity

Large objects lack
segmentation details

There’s room for
improvement

Low speed on COCO and
Cityscapes

Lack of obtained mask
details, polygon vertex
output is not flexible

Poor performance on small
objects

2.3. Spatial Pyramid Pooling

Spatial Pyramid Pooling (SPP) [12] converts input of
different sizes into output of fixed sizes to avoid infor-
mation loss and distortion of position information.
DeepLab series [3] use multiple parallel atrous con-
volutions with different rates to capture rich contex-
tual information. DSNet [7] proposes a introduces a
Context-Guided Dynamic Sampling (CGDS) module
that adaptively captures useful segmentation infor-
mation in the sampling space by obtaining effective
representations of rich shape and scale information.
ICNet [37] adopts a multi-resolution approach, di-

viding the image into high, medium, and low-resolu-
tion layers. It generates coarse segmentation results
from the low-resolution images through a semantic
segmentation network. Then, it combines cascaded
label guidance and strategies to incorporate high-res-
olution features and iteratively refine the coarse
segmentation results generated before. PSPNet [38]
utilizes a Pyramid Pooling Module (PPM) to aggre-
gate contextual information from different regions,
enhancing its ability to capture global information.
APCNet [9] designs an adaptive context module that
utilizes GLA to compute context vectors at each local
location in order to aggregate contextual information.
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SpineNet-Seg [24] is the first module to capture con-
textual information viathe NAS (Neural Architecture
Search), scale-Perarm web semantic segmentation
discovery. CFPNet [22] uses Channel-wise Feature
Pyramid (CFP) to jointly extract feature mappings
of mutiple scales and reduces the number of param-
eters. Furthermore, MobileNets [14] first proposed
separable convolution with fewer parameters and
fewer computations. ShuffleNet [36] adopts depth-
wise separable convolution to achieve lightweight
feature extraction. MobileNetV3 [15] makes full
use of depthwise separable convolution, possessing
a highly optimized structure and efficient feature
extraction capability, making it an ideal choice for
real-time image recognition and segmentation on
computationally constrained devices. The depthwise
separable convolution decomposes the ordinary con-
volution computation into depthwise and pointwise
convolution processes, is employed in our approach
to reduce the number of parameters in the pyramid
pooling module.

2.4. Multi-Scale Feature Fusion

In instance segmentation tasks, detecting objects
with varying scales requires robust performance
with the use of multiscale features [28]. FPN (Fea-
ture Pyramid Network) [20] is a classical approach
for multiscale feature fusion, combining shallow
detailed features with deep semantic features to im-
prove object detection across different scales. Howev-
er, the long path between deep and shallow features
makes accessing accurate localization information
challenging. To address this, PANet [29] introduces a
bottom-up path aggregation network on top of FPN,
shortening the information access paths and lever-
aging shallow accurate localization information to
enhance the feature pyramid. BiFPN [25] uses a com-
posite scaling method to repeat the PAFPN layers,
eliminating transversal connections that contribute
less to the fused features, and adding a residual edge
in the transversal connection from P4 to P6 to get the
more advanced fusion features. Therefore, in this pa-
per, a lightweight version of BiFPN is utilized to en-
hance the robustness of multi-scale fusion features.

2.5. Attention Mechanisms

In computer vision tasks, the attention mechanism
enables the network to focus on the most relevant
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features. Over time, researchers have continuously
designed various attention modules in convolution-
al neural networks. SE [16] was one of the pioneer-
ing methods that recalibrated original features in
the channel dimension by capturing contextual cues
from a global field of view. However, SE’s two fully
connected layers may cause channel information loss
due to channel reduction. CenterMask [19] proposed
eSE (effective Squeeze-Excitation), using only one
fully-connected layer to effectively avoid channel in-
formation loss. CBAM [32] achieves a reweighting of
channel and spatial dimensions to combine one-di-
mensional attention with two-dimensional attention.
However, it still fails to emulate the attention mecha-
nism of the human brain. To overcome this limitation,
SimAM [35] proposes a uniformly weighted attention
module, assigning unique weights to each informa-
tion-rich neuron based on neuroscience theory. It
achieved 3D attention without parameters. Inspired
by the above, this paper refines features using an im-
proved CBAM module and introduces SimAM into
pyramid pooling networks to extract salient features
of small objects.

3. The Proposed Method

In this section, we introduce AMF-Sparselnst in
three subsections. Firstly, the SIimAM-ASPP core
component ASPP is used to enhance the capture of
important features of multi-scale objects and small
objects. Secondly, FEM refines the multi-scale fusion
features of the lightweight version of BiFPN output.
The overall structure of AMF-Sparselnst is shown in
Figure 1. Specifically, we first input the image into the
ResNet-5-d-DCN backbone, which is both efficient
and powerful, enhancing the recognition of targets
with complex shapes and poses. Secondly, the fea-
tures of three scales from the backbone are fed into
the SImAM-ASPP module. The SimAM-ASPP mod-
ule is responsible for capturing contextual and global
information of multi-scale targets, with a particular
focus on the features of small targets. To strengthen
the connections between features of different scales,
we borrow the idea from BiFPN and fuse features
through residual connections without increasing
costs, such as connecting C3 to N3 and C4 to N4.
The specific details are shown in the dashed box on
the lower left of the figure. To ensure feature align-
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Figure 1
The overall architecture of AMF-Sparselnst
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ment, we perform 2x upsampling on C5 and N5, and
2x downsampling on C3 and N3, aligning them with
C4 and N4. Subsequently, addressing the multi-scale
and semantic differences in the fused features, we
designed the Feature Enhancement Module (FEM),
which reassesses the importance of features, enhanc-
es key features, and filters out interference informa-
tion, thus improving the quality of the fused features.
Finally, the enhanced features are fed into the Spar-
selnst head structure, and the final segmentation re-
sult is obtained after 4x upsampling.

3.1. Spatial Pyramid Pooling Module

In instance segmentation, predicting objects of mul-
tiple scales can result in information loss and insuf-
ficient contextual understanding when fusing multi-
scale features. Thus, we draw inspiration from ASPP
and introduce SimAM-ASPP to capture contextual
and global information of multi-scale objects. The
architecture and components of SImAM-ASPP are il-
lustrated in Figure 2. Moreover, Figure 3 provides a de-
tailed comparison between ASPP and SimAM-ASPP,
highlighting the specific differences between the
two methods. By leveraging atrous convolution, Si-
mAM-ASPP effectively expands the receptive field

while preserving the resolution of the feature map.
This empowers the model to better comprehend
multi-scale instances, enhancing its performance in
instance segmentation tasks. For the C5 output from
the backbone network, we first input them into the
ASPP consisting of ordinary convolution and atro-
us depthwise separable convolution with different
dilation rates to aggregate multi-scale contextual
information, and then use SimAM attention to em-
phasize the essential features related to small and
multi-scale objects. Unlike ASPP in DeepLabv3+ [3],
we use depthwise convolution to reduce the num-
ber of model parameters, effectively alleviating the
pressure on the number of parameters due to the in-
crease in convolution kernel size. Specifically, we use
an ordinary 3x3 convolution, three atrous depthwise
convolutions with different expansion rates (6, 18,
and 24) and convolution kernel sizes of 3x3 to differ-
entially expand the receptive fields of the C5 features
to capture multi-scale contextual information, and a
global average pooling operation to capture global in-
formation. Next, the feature maps obtained from the
previous steps are stitched together in the channel di-
mension using the Concatenate operation, resulting
in the feature map. Subsequently, these feature maps
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Figure 2
SimAM and Atrous Spatial Pyramid Pooling(SimAM-ASPP)
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undergo a dropout operation to focus on potentially
useful features related to the multiscale objects in
the 3D dimension. Finally, the information between
channels is reduced and interacted using 1x1 convo-
lution to obtain the output feature map.

3.2. Feature Enhancement Module

BiFPN [25] fuses feature of different scales in its
output feature map, but features of different scales
have different semantic differences, directly fusing
them will bring redundant information and interfere
with the model’s performance. Therefore, we design
the Feature Enhancement Module (FEM) module
to reassess the importance of the multi-scale fused
features, further enhance key features, filter the in-
terference information generated by the fusion, and
alleviate the dispersion problem of the small object
features. The details are shown in Figure 4, FEM
consists of two parallel branches, which we call the
channel purification and spatial purification mod-
ules. These branches generate adaptive weights in the
channel and spatial dimensions, respectively, guiding
the features to learn in a more critical direction. SE
[16] a representative channel-attention method com-

Figure 4
Feature Enhancement Module (FEM)
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monly used in CNN architectures, explicitly mod-
els the interdependencies between feature mapping
channels to enhance their representation. However,
the SE module has alimitation: the loss of channel in-
formation due to dimensionality reduction. To avoid
excessive model complexity, the two fully-connected
layers of the SE module need to reduce the channel
dimensions, leading to the loss of channel informa-
tion. CenterMask [19] demonstrated that channel
information can be preserved by using only one fully
connected layer with C channels. Therefore, in the
channel purification part, we adopt the eSE module
and omit the first FC layer that compresses the chan-
nels. Specifically, the input features X, . € RHW~C
are compressed in the spatial dimension to aggregate
the spatial information that represents the global
features of the image. ESE process can be defined as
Equation (1).

Aca()(fusion ): Oy (VVC (Fgap ()(fusion)))’ @
where X, € R?W*C is the output of BiFPN mod-

ule and is multi-scale fusion feature that computed
from splicing operation and 1x1 convolution. And

®

Channel-wise multiplication

w

NS

P e

Channel attention

a,

Channel attention weights

GAP
1X1XC 1XIXC
H
Fusion pooling

Average
pooling

Spatial attention
weights

Convolution
layer

Spatial attention
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1 . .
F.. (X) = Y. X, is channel-wise global average

pooling operation, W, e R®"™" is weight of fully-con-
nected layer, 0, is the Hardsigmoid activation function.
Subsequently, A,,(X,,.,,) € R""° is used as the weight

fusion
coefficient of the channel attention, applied X . to

enhance its features representation via a matrix multi-
plication operation, as shown in Equation (2).

>(ca = Aca (>(fusion) ® )(fusion ° <2)

Furthermore, to enhance the model’s ability to focus
on local details and highlight crucial spatial regions,
we introduce a spatial purification branch in parallel.
Specifically, the fused feature maps are subjected to
maximum pooling and global average pooling to gen-
erate feature descriptors, respectively, as shown in
Equation (3).

C (X) = Concat (Avg (X). Max(X)). )

The two are spliced together to generate spatial atten-
tion maps using 5x5 convolution.

Ass(Xisio) = @, (Conv™® (C (Xn ) @

This attention map is then normalized by a sigmoid
activation function to obtain the spatial attention
weight A (Xfusion) e R"™C vector. Finally, this
weight vector X, ;  isassociated with a matrix mul-
tiply ® operation to get a spatially weighted feature
map. This ensures thatimportant spatial locations are
amplified while unimportant regions are suppressed.
The specific details are shown in Equation (5),

)(sa = Asa (X

fusion

) ® )(fusion' ®)

Among them, o, is the sigmoid activation function.
Finally, we perform softmax operations on N5 and
N3 to obtain the channel attention weighted value
W, and spatial attention weighted value W,, where
W, +Wy =1. Subsequently, matrix products are con-
ducted for and to obtain refined channel and spatial
dimensions for the weighted fusion of feature maps

F. (Xfusion) e R""*C The specific details are depicted
in Equation (6):
Fout = W5 ® )(ca @ VV3® )(sa' (6)
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4. Experiments

We evaluate AMF-Sparselnst’s accuracy and infer-
ence speed on the COCO and Cityscapes dataset.

4.1. Experimental Environment

The model proposed in this paper has been studied
experimentally and the experimental environment
are shown in Table 2.

Table 2
Experimental environment

Name Version
CPU Intel(R) Xeon(R) Gold 5220 CPU @
2.20GHz
RAM 252G
Operating System | Ubuntu 18.04.6
GPU GeForce RTX 2080Ti 8 GPUs
CUDA CUDA11.0
Language Python 3.8.12 detectron2 0.3 PyTorch
Frameworks 171

4.2. Evaluation Metrics

Currently, Average Precision (AP) is commonly sed to
measure the performance of the instance segmenta-
tion model. AP denotes the area enclosed by the P-R
curve with recall (R) and precision(P) as horizontal
and vertical coordinates, and the formulas for recall
and precision are as follows in Equation (7):

pe P
TP+ FP , @
TP !
TP+ FN

where TP (True Positive) is the number of samples
detected as positive, FP (False Positive) is the number
of samples misdetected as positive, FN (FFalse Nega-
tive) is the number of samples missed as positive.
For multiple samples of a certain classification, it is
assumed that it has m positive samples, each positive
sample corresponds to arecall rate R value (1/m, 2/m,
..., 1), calculate the maximum accuracy P for each re-
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call rate, and then calculate the average value of these
m P-values, as shown in the Equation (8):

AP = R = [P(R)dR. ®)

3=
M

1

The above AP is for a particular category, while a
dataset often contains multiple categories. Assuming
that a dataset has C categories of samples, the mAP is
obtained by averaging the AP for all categories in the
dataset, as shown in Equation (9):

C

mAP = %; P . ©)
The evaluation indexes of the whole model are shown
in Table 3. This paper uses the official evaluation
standard of COCO dataset. AP is defined using the
intersection-over-union (IOU) criterion, which is
the overlap of two instance masks. The AP used in
this paper is defaulted to the average accuracy of the
dataset, which is also known as mAP. In Table 2, the
segmentation accuracy of objects of different scales
(large, small and medium) is calculated according to
the area size. APy, AP,;, and AP, correspond to the AP
values of three different scales: small, medium, and
large, respectively.

Table 3
Evaluation index of COCO dataset

Evaluation index Meaning
FPS Frames per second
AP I0U=0.50:0.05:0.95
AP, I0U=0.50
AP, I0U=0.75
APs area < 32°
AP, 32%<area < 96*
AP, area > 96°

4 3. Datasets and Implementation Details

The COCO 2017 dataset [21] is a generalized dataset
for object detection and instance segmentation tasks,
containing a training set (118,287), a test set (5,000),
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a test set (40,670) images and 80 foreground object
categories, and one background category. In our ex-
periments, we used a “polygon” annotation, where the
shortsides of the images were randomly sampled from
416 to 640 pixels with an interval size of 32, while the
long sides were less than or equal to 864 pixels. Unless
otherwise stated, we use the short-edge size 640 to
evaluate speed and accuracy. The initial learning rate
is set to 0.00005, the weight decay is 0.01, the model
optimizer is Adam, the batch size is 64, and the itera-
tions are trained for 270,000 times.

Cityscapes [5] includes street scenes taken from 50
different cities. It provides high-quality annotations
for 5,000 pixel-level frames, of which 2,975 frames
are used for training, 500 for validation, and 1,525 for
testing. In our experiments, we cropped the short edg-
es of the images from 800 to 1024 pixels with a spac-
ing of 32, while the long edges were less than or equal
to 2048 pixels. Unless otherwise stated, we used the
short-edge size 0f 1024 to evaluate speed and accura-
cy. The initial learning rate was set to 0.000006, the
batch size was 8, and 72,000 iterations were trained.

4.4. Ablation Experiments on COCO 2017
Validation Set

To investigate the performance of the SImAM-ASPP
and FEM modules in AMF-Sparselnst, ablation ex-
periments are designed as shown in Table 4. The
experimental results show that when Sparselnst’s
PPM module is replaced by SimAM-ASPP module,
the model speed is increased by 6.9 FPS, the model
can recognize more objects, and the overall segmen-
tation accuracy is increased by 1.5%. In addition, af-
ter changing the FPN connection, although the model
speed is reduced by 2.2 FPS, it can recognize more
small objects, and APs is increased by 1.2 percent. In
addition, by adding FEM without changing the FPN
connection, the model speed is 1 FPS slower and the
AP, is improved by 1.4%, but the small target accu-
racy is not improved much. Therefore, in order to
balance the segmentation speed and improve the seg-
mentation accuracy of small targets, we combine the
three modules to get the final experimental results.

Table 5 shows the effect of modifying the spatial pyra-
mid pooling module on the model. Using ResNet-50-d-
DCNv2 as the backbone, these three different methods
are sequentially added to Sparselnst, trained and eval-
uated in the same way on the COCO dataset. Ordinary
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Table 4
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Contribution of each component under the backbone of ResNet-50-d-DCNv2

baseline SimAM-ASPP Lite-BiFPN = FEM @ FPS
V - - - | 373
v ol - - 442
v ol V - 420
v ol - V| 432
V ol V v | 401
Table 5
Ablation on the SimAM-ASPP
ASPP SimAM AP
conventional conv - 36.6
conventional conv \ 370
depthwise conv N 37.6

encoder [20] are not capable of one-stage prediction. We
use ASPP to expand the receptive field to extract differ-
ent context information, and then extract more multi-
scale features through feature fusion. Notably, small
objects have less feature information in the high level of
CNN, and using SimAM helps to focus on small target
features (AP, +0.8%). In addition, the use of depthwise
convolution not only greatly reduces the inference la-
tency, but also improves the AP, especially for APg.

Based on the SIimAM-ASPP and Lite-BiFPN, we do
ablation experiments on various parts ofthe FEM. Ta-
ble 6 demonstrates the impacts of the modifications to
FEM module on the model. The output of BiFPN [25]
includes low-level and high-level feature informa-
tion, and different levels of features contain different
semantic information. Thus, we design FEM to effec-

Table 6
Ablation on the FEM
CA SA connection AP
J - - 384
- ol - 385
V ol serial 391
v v parallel 39.6

AP AP50 AP75 APS APM APL
36.1 56.7 377 16.3 38.3 55.7
376 579 378 17.3 38.6 56.3
38.3 58.8 38.3 17.8 38.2 57.3
38.9 59.3 384 174 387 58.1
39.6 60.8 38.9 18.7 39.5 59.4

AP, AP, AP T(ms)
57.3 371 16.0 29.2
57.2 374 16.8 264
57.9 37.8 173 22.6

tively fuse the two levels features. The FEM consists
of channel attention (CA) and spatial attention (SA),
and we explore how the two types of attention can be
connected to get better results. As the table shows, us-
ing CA or SA alone causes the model to focus more on
large objects and ignore small ones. It is worth noting
that parallel attention can not only improve the effi-
ciency of the model, but also allow the model to focus
on small and large objects.

To better explain the features of different layers of the
network, we drew the features extracted from the five
stages of the backbone network (from C1 to C5), as
shown in Figure 5. It can be seen that from C1 to C3,
networks mainly focus on low-level features such as
the outline and position of the target, while C4 and C5
networks focus on high-level features such as the con-

AP, AP AP, T(ms)
58.9 173 574 258
594 175 574 25.5
59.6 18.5 59.3 267
60.8 18.7 59.4 24.9
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Figure 5
The heatmap of each stage obtained by Grad-CAM
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textual semantics of the target. In order to more intu-
itively understand the capabilities of our proposed
feature enhancement module, we use Grad-CAM to
make avisual attention heat map fromthe COCO 2017
and Cityscapes dataset, as shown in Figure 6. From
top to bottom: the input images, Sparselnst without
adding any attention, AMF-Sparselnst with CA, SA,
serial (CA, SA), objects into different methods and
get the concerns of several methods. Obviously, us-
ing channel attention and spatial attention in parallel
works best. In feature fusion, it can accurately locate
objects of different scales without being affected by
the background. For large scale objects, the resulting
attention focuses on highlighting particularities, such
as the head, legs, or center of the object. Small scale
objects usually contain entire regions.

In the hyperparameter settings of the SimAM-ASPP
module, we compare the effectiveness of several sets
of atrous convolution kernels with different expansion
rate sizes, as shown in Table 7. It is found that (6,18,24)
achieves the best balance of speed and accuracy.

In the FEM, we set two hyperparameters, W,and W,
which represent the weight sizes of the N3 and N5
features, respectively. Regarding the choice of the two
parameter values, we designed five combinations, and
found that (0.6,0.4) has the least latency and highest
accuracy, as shown in Table 8.

Table 7
Speed-accuracy trade-off of expansion rates in SImAM-ASPP

Expansion rates

in SimAM-ASPP GFLOPs Latency (ms) AP (%)

(6,12,18) 946G 237 36.8
(6,18,24) 954G 22.7 37.6
(6,18,36) 96.6G 231 37.2

Table 8

Speed-accuracy trade-off of FEM
W3, W5 GFLOPs Latency AP (%)
(0.2,0.8) 96.9G 26.3 38.9
(04,0.6) 95.2G 255 39.0
(0.5,0.5) 94.2G 25.2 39.3
(0.6,04) 93.9G 24.9 39.6
(070.3) 947G 24.4 38.9

2024/3/53

4.5. Timing

To more easily understand the efficiency of our pro-
posed method, we evaluated the inference latency of
three modules in AMF-Sparselnst for two types of
backbone. To accurately record the time, we disabled
asynchronous execution in the GPU, which reduces
the model inference speed. As is shown in Table 9,
the backbone and encoder-decoder consume most of
the inference time, while post-processing takes only
2~3ms to process the final segmentation and recogni-
tion results in evaluation.

Table 9
Inference time (ms)

Type Backbone Encoder-decoder | Postprocessing

R-50 8.1(45.3%) 7.5 (42.2%) 2.2 (12.5%)
R-50-d- 11.8 101 31
DCNv2 47.2%) (40.6%) (12.2%)

4.6. Training Loss

The model training Settings include ADAMW op-
timizer, WarmupMultiStepLR learning rate sched-
uling, the initial learning rate is linearly adjusted
by Warmup to 0.00005, the maximum iteration is
300,000 times, and the momentum is 0.9. Weight at-
tenuation is 0.05, bias and normalized layer weight
attenuation is 0.0001 and 0.0, respectively. Each
batch processes 64 images. Figure 7 shows that as

Figure 7
Changes in the number of iterations and total loss during

AMF-Sparseinst training
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the number of iterations increases, both the total loss
and the AMF-Sparseinst training loss gradually de-
crease. The model learns features quickly in the early
stage, and the learning rate decreases ten times after
210,000 iterations, achieving loss reduction. After
250,000 iterations, the training becomes stable. This
process reflects the optimization and steady improve-
ment of model performance.

4.7. Comparison with State-of-the-Art
Methods

‘We compare AMF-SparselInst to some of the most ad-
vanced real-time instance segmentation methods in
terms of accuracy and inference speed, primarily using
the COCO test-dev dataset for validation on a 2080Ti
GPU with cuda version 11.0 and PyTorch version 1.7.1.
‘We provide different backbones for AMF-Sparselnst
to realize the balance between speed and accuracy. We
use ResNet-50 [11] to achieve higher inference speed
and ResNet-d [13] to achieve better accuracy but with
higher latency. In addition, for better comparison with
YOLACT [2], we used simple randomized cropping
and larger weight decay (0.05). For other methods, we
chose the experimental results with the similar input
size and backbone. Due to the limitations of the ex-
perimental environment and time, we did not achieve

Figure 8
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exactly the same parameter Settings as this method for
training and repetition.

At Figure 8, we can see that the proposed AMF-Spar-
selnst with R50-d and DCN [44] obtains better bal-
ance compared with the counterparts and achieves
39.7 FPS and 39.8 AP with 640x input, which outper-
forms most real-time methods (>=30FPS).

The validity of the proposed AMF-Sparselnst is fur-
ther verified by comparing the instance segmentation
effects of AMF-Sparselnst and other representative
and real-time algorithms on the COCO 2017 test-dev
and the Cityscapes dataset. Note that the speeds of all
models are tested on a NVIDIA RTX 2080Ti without
data augmentation. In addition, ¥ means data aug-
mentation (crop in “absolute_range”). If we use data
augmentation, we can improve the accuracy of our
model by 0.6% or so. Moreover, Sparselnst’s exper-
imental data was trained and validated in our envi-
ronment, and there are some differences. The exper-
imental results are shown in Table 10, and it can be
seen that AMF-Sparselnst obtains better segmenta-
tion accuracy and faster speed on the two datasets. On
COCO, although we outperform all real-time methods
on the AP metric, AMF-Sparselnst outperforms the
other real-time methods by a larger margin on the

Intuitive comparison of speed and accuracy of AMF-Sparselnst and some state-of-the-art methods

—~+YOLACT -=-Sparselnst YOLACT++ SOLO
—#CondInst —»-CenterMask ——AMF-Sparselnst ~—Mask R-CNN
40 39.8
37.1
i 36.1 36.9
35.4
35 342
N 34.1 336
< 329
x L]
S 31.2
= -
Qo
S 30
Q 28.2
]
Real-Time:30 FPS
25

10 20 30

40 50 60

FPS
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Table 10
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Comparisons with state-of-the-art methods of Instance Segmentation on COCO and Cityscapes

method backbone size FPS AP IS AR AP AR AP,
Results on COCO 2017 (the size refers to the shorter side size)
CenterMask [19] R-50-FPN 600 319 32.9 - - 12.9 347 487
CondInst [27] R-50-FPN 800 204 354 56.4 376 184 379 46.9
SOLO [30] R-50-FPN 512 244 34.2 55.9 36.0 - - -
YOLACT [2] R-50-FPN 550 50.6 28.2 46.6 29.2 9.2 29.3 448
YOLACT++ [1] R-50-DCN-FPN 550 386 34.1 53.3 36.2 117 36.1 53.6
Sparselnst [4] R-50 608 446 | 342 F 55.3 36.6 14.3 36.2 50.7
AMF-Sparselnst R-50 608 50.1 369 T - - - - -
Sparselnst [4] R-50 608 446 33.6 - - - - -
Sparselnst [4] R-50-d-DCNv2 608 376 36.0 56.6 37.8 164 381 55.6
Sparselnst [4] R-50-d-DCNv2 640 373 36.1 56.7 377 16.3 383 55.7
AMF-Sparselnst R-50-d-DCNv2 608 401 39.6 60.8 38.9 187 | 39.5 594
AMF-Sparselnst R-50-d-DCNv2 640 397 39.8 60.9 39.0 184 394 59.6
Results on Cityscapes
CenterPoly [23] R-50-DCNv2 512x512 62.5 9.2 22.0 - - - -
CenterPoly [23] R-50-DCNv2 1024x512 434 154 36.9 - - - -
Sparselnst [4] R-50-d-DCNv2 1024x512 226 24.3 45.1 - - - -
Sparselnst [4] R-50-d-DCNv2 1024x2048 127 335 551 - - - -
AMPF-Sparselnst R-50-d-DCNv2 1024x512 277 264 46.2 251 31 191 56.3
AMF-Sparselnst R-50-d-DCNv2 1024x2048 167 36.7 60.7 37.2 8.7 33.3 634

AP, metric. Thisindicates that our maskis very accu-
rate for coarse segmentation, but slightly inaccurate
for very fine segmentation, which can be explained by
the properties of polygons. On Cityscapes, AP metrics
and real-time speed were significantly improved, 5.1%
AP and 2.1 FPS higher than Sparselnst, respectively,
but the real-time speed was much lower than center-
poly [23].

Figure 9 shows a graphical comparison of the segmen-
tation results of SparseInst and AMF-Sparselnst on
the COCO val. The central number annotated on each
instance’s segmentation maskis the confidence score,
and it is evident that the confidence scores in the

AMF-Sparselnst visualizations are generally high. It
can be seen that compared to Sparselnst, AMF-Spar-
selnstrecognizes more objects and can segment more
detail regions and multi-scale.

Meanwhile, since the CityPersons dataset is a subset
of Cityscapes, which contains only personal annota-
tions, we use the CityPersons dataset for visualiza-
tions as Figure 10. We can notice that AMF-Spar-
selnst can accurately segment pedestrian legs, even
very small ones. In addition, we can segment dense
instances of very small objects, which shows that
AMPF-Sparselnst does perform significantly better
instance segmentation for small objects.
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Figure 9
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Comparison of SparseInst and AMF-Sparselnst visualization on COCO 2017 validation set
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5. Conclusion

We design the SImAM-ASPP consisting of depth-
wise convolution and the SimAM attention, which is
used to aggregate contextual information at different
scales. In addition, in order to weaken the interfer-
ence of redundant contextual information in multi-
scale fusion features and alleviate the dispersion
problem of small object features, we design the FEM,
which generates adaptive weights in the channel and
spatial dimensions to guide the features to learn in

a more critical direction. Combining SimAM-ASPP
and FEM, we present an efficient end-to-end frame-
work called AMF-Sparselnst, which solves the small
object feature loss problems. The results on COCO
2017 and Cityscapes show that AMF-Sparselnst ex-
cels in balancing segmentation accuracy and speed,
outperforming other real-time and state-of-the-art
methods. In the future, we will further explore a high-
er balance point for high-precision real-time instance
segmentation from other perspectives, and customize
models of different sizes for different object segmen-
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Figure 10

2024/3/53

Comparison of SparseInst and AMF-Sparselnst visualization on CityPersons dataset

Input image

tation tasks according to the needs of industrial appli-
cations (e.g., autonomous driving and robotics).

5.1. Limitations

The framework proposed in this paper is real-time
and can be used in practical industrial applications.
However, compared with large and medium tar-
gets, the segmentation effect of this framework for
small targets is poorer. We speculate that the lack of
high-resolution images or high-resolution inputs in
the dataset limits the performance of the framework.
In the future, we will continue to study this problem
in combination with super-resolution image tasks
or generative adversarial network strategies such as
Inst-GAN [18]. In addition, the focus of this paper is

effectively combined and improved by SimAM and
parallel CBAM to strengthen spatial and contextu-
al semantic connections between different targets.
However, other perspectives such as the latest atten-
tion mechanism (Transformer) [6], graph neural net-
work or generative adversarial network may be more
clever to establish the connection between the spatial
layout and geometry of the target.
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