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In the pedestrian detection task, the excessive depth of the convolutional network in YOLOv7 results in an 
abundance of background feature information, thereby posing challenges for the model to accurately locate and 
detect pedestrians, particularly in small-scale or heavily occluded scenarios. To handle this problem, we pro-
pose a pedestrian detection model called YOLOv7-PD, to strengthen the accuracy of detecting small-scale pe-
destrians and occluded pedestrians. First of all, we propose an improved module called DE-ELAN, an improve-
ment on the existing E-ELAN module, which is based on Omni-Dimensional Dynamic Convolution (ODConv). 
This module leverages four complementary attention types to enhance feature extraction, capturing rich con-
textual information. Then, we propose a lightweight receptive field enhancement module called light-REFM, 
which constructs a pyramid structure and acquires fine-grained multi-scale information through dilated con-
volutions of different sizes. Finally, we propose an improved regression loss function based on the Normalized 
Wasserstein Distance (NWD) that combines NWD with Complete-IoU (CIoU), enabling precise position and 
feature capture for small targets. On the Citypersons dataset, YOLOv7-PD outperforms YOLOv7, improving the 
average precision (AP) by 7% and reducing the miss rate by 2.58%. Experiments on three challenging pedestri-
an detection datasets demonstrate a balance between precision and speed, achieving excellent performance.
KEYWORDS: Pedestrian detection, YOLOv7, ODConv, CIoU, NWD.
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1. Introduction
Pedestrian detection is a crucial detection task within 
the domain of computer vision and has a broad range 
of applications in the area of autonomous cars [26, 
41]. Pedestrian detection is a method of automatically 
identifying the location and dimensions of pedestri-
ans within a picture or video using computer vision 
methods. Pedestrians are one of the main participants 
in the road traffic environment, they are not fixed like 
rigid objects but have changeable shapes. Pedestrians 
can have different postures and different appearanc-
es, and the background environment is also diverse, 
which makes the difficulty of pedestrian detection 
greatly increased. At present, pedestrian detection 
faces the challenges associated with precise recog-
nition and the precise location of small-scale object 
targets and occluded object targets [14, 23, 30, 36]. 
Over the past few years, YOLOv7 [44] has received 
widespread acknowledgment due to its outstanding 
detection speed and high-precision object detection. 
However, the YOLOv7 continues to face two prob-
lems with pedestrian detection. 1) Excessively deep 
convolutional networks in YOLOv7 can lead to an 
overabundance of background feature information, 
making it challenging for the model to precisely lo-
cate and detect pedestrians in situations involving 
small scales and severe occlusions. 2) For pedestrians 
of different sizes, the sensitivity of IoU varies greatly. 
For small target pedestrians, a slight position devia-
tion results in a significant reduction in IoU.
To solve this issue, we present a pedestrian detection 
model referred to as YOLOv7-PD. We propose an im-
proved E-ELAN module (DE-ELAN), which enhanc-
es feature extraction performance and contributes to 
a better capture of rich contextual information. Then, 
we propose a lightweight-receptive field enhance-
ment module (light-REFM) to obtain fine-grained 
multiscale information. Last, we propose an upgraded 
method for regression loss function to boost the small 
target pedestrian’s detection accuracy.
This paper makes an important contribution to solv-
ing the above problems, and the summary is as fol-
lows:
1 We propose an improved E-ELAN module (DE-

ELAN) that leverages four complementary types 
of attention and progressively applies attention to 
various dimensions of the convolutional operation. 

This significantly improves feature extraction per-
formance, resulting in a better capture of rich con-
textual information.

2 We propose a lightweight-receptive field enhance-
ment module (light-REFM) designed to construct 
a pyramid structure and capture fine-grained 
multi-scale spatial information of various chan-
nels using dilated convolution of different sizes.

3 We propose an improved regression loss function 
method, we introduced the Normalized Wasser-
stein Distance (NWD) [45] into the regression loss 
function and combined it with the CIoU method 
[9], which alleviates the constraints of CIoU in 
small-target detection.

2. Related Work
In this section, we explore a variety of issues concern-
ing the content of this paper, containing pedestrian 
detection, attention mechanism, and feature pyramid.

2.1. Pedestrian Detection
Pedestrian detection mainly determines whether 
there is a pedestrian target through the given static 
image or dynamic video by the computer [26]. If there 
is a pedestrian, the bounding box is employed to label 
the specific location of the pedestrian and give the 
confidence score [6,9]. With the vigorous advance-
ment of artificial intelligence technology, pedestri-
an detection has shown a broad spectrum of appli-
cation scenarios in the arena of automatic driving, 
human-computer interaction, intelligent video sur-
veillance, and urban street view [12, 29]. In the ear-
ly, pedestrian detection methods for manual feature 
extraction. Dalal et al. [11] proposed the Histogram 
of Oriented Gradients (HOG) method, utilizing edge 
direction and intensity information to characterize 
the overall visual representation of pedestrians. Gen-
erally speaking, manual feature extraction methods 
have certain advantages in the realm of pedestrian 
detection, however, the extraction steps are cumber-
some. Over the years, deep learning techniques have 
achieved significant breakthroughs in computer vi-
sion tasks [53, 54, 55, 56], especially in pedestrian de-
tection [38, 39]. Pedestrian detection algorithms that 
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utilize deep learning approaches have improved the 
accuracy of detection algorithms, which can be sorted 
as either two-stage detection approaches or one-stage 
detection approaches [52]. The two-stage detection 
approaches have high accuracy, however the speed of 
detection is significantly sluggish. The Faster R-CNN 
proposed by Girshick et al. [18], utilizes the Region 
Proposal Network (RPN) network to directly produce 
region proposals. The SA-FastRCNN proposed by Li 
et al. [25], incorporates a unified structure by com-
bining two parallel large subnetworks into an inte-
grated architecture, supplying confidence scores for 
different classes and object bounding box regression 
for various sizes. The one-stage detection approach-
es have advantages in terms of speed, simplicity, and 
real-time performance, rendering them appropriate 
for many computer vision applications, particularly 
those with high-speed processing requirements. Liu 
et al. [33] proposed SSD, which is directly detected 
using CNN. Bochkovskiy et al. [44] proposed YOLOv7. 
The backbone of the YOLOv7 model is primarily con-
structed with convolutional layers, E-ELAN modules, 
and MPConv modules. In particular, the E-ELAN 
module, building upon the original ELAN, modifies 
the computation block while preserving the transi-
tional layer architecture of the initial ELAN design. It 
boosts the network’s learning capacity by incorporat-
ing the ideas of expanding, shuffling, and merging car-
dinality without disrupting the existing gradient path.

2.2. Attention Mechanism
The attention mechanism is a crucial technology in 
deep learning that aims to enable models to distribute 
different attention or weights to different parts of in-
put data, allowing them to concentrate on important 
information during data processing, thereby improv-
ing model performance. The key point of the attention 
mechanism is similar to the attention focus in human 
perception processes, enabling adaptive concentration 
on different parts when processing sequences, images, 
or other types of data [2, 37]. Hu et al. [22] proposed 
SENet, utilizing a breakthrough channel attention 
module named “Squeeze and Excitation” (SE) to lever-
age the interdependencies between convolutional fea-
ture channels. Taking inspiration from the SE block, 
the ECA block is proposed by Wang et al. [46], offering 
a more effective channel attention design by taking 
the place of the initial fully connected layer of SE with 

cost-effective 1D convolutions and reducing an exten-
sive set of parameters. Woo et al. [47] proposed a light-
weight module of attention called CBAM, combining 
the channel attention module with the spatial atten-
tion module. Misra et al. [35] proposed an attention 
module that has three branches called Triplet Atten-
tion, which is conditioned on features that rotate along 
three different dimensions. The attention mechanism 
aids the model in concentrating pivotal regions in the 
image, thereby enhancing the performance of object 
detection and localization tasks. By incorporating at-
tention within convolutional layers, the network can 
autonomously learn to selectively emphasize critical 
objects or areas.

2.3. Feature Pyramid
The scale variation in complex road scenes signifi-
cantly affects the accuracy of pedestrian detection. 
The feature pyramid is a multi-scale feature represen-
tation method used in computer vision tasks. Its main 
goal is to process information at different scales and 
capture both local details and the global context of an 
object in an image [27]. Inspired by SPP [19], Chen et 
al. [5] proposed the ASPP module, employing multiple 
parallel dilated convolution layers with varying sam-
pling rates. Features gathered at various sampling 
rates are subsequently treated in separate branches 
and merged to produce the ultimate result. The mod-
ule creates convolution kernels with varying recep-
tive fields by various dilation rates, aiming to capture 
multi-scale object information. The RFB module was 
proposed by Songtao Liu et al [31]. This module simu-
lates a range of observations similar to human vision 
to augment the network’s feature extraction efficien-
cy. It combines different receptive fields by using dif-
ferent convolutional kernels and different step sizes, 
uses 1 × 1 convolutions for dimensionality reduction, 
and ultimately constructs a hybrid superposition of 
varying receptive fields.

3. The Proposed Method
Due to differences in the shape, size, and other attri-
butes of pedestrians in complex road environments, 
as well as possible occlusion, the original YOLOv7 
network may not be able to accurately locate and de-
tect pedestrians. Therefore, we propose the YOLOv7-
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Figure 1
The overall architecture of YOLOv7-PD

PD network. The network initially enhances the back-
bone of the YOLOv7, proposing the DE-ELAN module 
based on Omni-dimensional Dynamic Convolution 
that optimizes the original E-ELAN module. This 
aims to boost the network’s learning capacity for pe-
destrian targets with different shapes, sizes, and oc-
clusion levels to capture richer feature information. 
Secondly, in the Head network, we propose the light-
weight receptive field enhancement module (light-
REFM), which enhances the precision of multi-scale 
pedestrian detection and identification. Thirdly, 
the Normalized Wasserstein Distance (NWD) loss 
is integrated into the regression loss function and 
combined with the CIoU method to boost the effec-

tiveness of YOLOv7 in the small target pedestrian 
detection task. Figure 1 illustrates the overall archi-
tecture of YOLOv7-PD.

3.1. E-ELAN Module Based on  
Omni-dimensional Dynamic Convolution
In pedestrian detection, the posture, shape, and size of 
pedestrians may vary due to different shooting angles 
and distances. Thus, by incorporating full-dimension-
al dynamic convolutions into the backbone network’s 
E-ELAN module and gradually introducing different 
attention mechanisms in various dimensions (such 
as position, channel, filters, and convolution kernels) 
into the convolution operation, the convolution pro-
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cess can better adapt to differences across various 
aspects of input data. Consequently, it can more effec-
tively capture rich contextual information for pedes-
trians of different scales. Therefore, we designed an 
improved E-ELAN module (DE-ELAN) to replace the 
last CBS module in the E-ELAN in YOLOv7’s feature 
extraction network with an improved OCBS module. 
The OCBS module based on Omni-dimensional Dy-
namic Convolution is displayed in Figure 2.

Figure 2
The structure of OCBS

In the OCBS module, we introduce ODConv (Om-
ni-dimensional Dynamic Convolution) [24], which 
uses a parallel strategy to employ a multi-dimension-
al attention mechanism along four dimensions in the 
kernel space for learning more flexible and comple-
mentary attention. It simultaneously considers ac-
count dynamics across dimensions including spatial, 
input channels, output channels, etc., to capture rich 
contextual information. This multi-dimensional ma-
nipulation can improve the model’s capability to ana-
lyze data, enhance its perception of different features, 
and contribute to better performance on complex 
tasks. The OCBS can be described in the following:

 11 1 1 1Z k c s kn cnfn snf nK K x           ,    ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ (1)

where βkiϵR represents the attention scalar for the 
convolutional kernel Ki; βsiϵRk×k, βciϵRcin and βfiϵRcout rep-
resent attention points that are applied across the 
spatial, input channel, and output channel dimen-
sions respectively. These points are calculated across 

the spatial, input channel, and output channel dimen-
sions of the convolution kernel Wi. ⊙ represents the 
multiplication of various dimensions along the kernel 
space. βsi, βci, βfi and βki are calculated using a multi-
head attention model πi(x). Traditional convolution 
still plays a certain role in pedestrian detection, es-
pecially for pedestrians with moderate sizes and rel-
atively normal postures. However, its adaptability is 
limited when dealing with pedestrians with irregular 
shapes and significant variations in posture. There-
fore, we designed the DE-ELAN module to boost the 
ability to capture details of small-sized pedestrians. 
The DE-ELAN module is depicted in Figure 3.

Figure 3
The structure of DE-ELAN

3.2. Lightweight-Receptive Field 
Enhancement Module

Because different sizes of receptive fields imply dif-
ferent abilities to capture remote dependencies, cover 
more of the surrounding area, and capture richer con-
textual information. We propose a lightweight recep-
tive field enhancement module called Light-REFM, 
which captures the spatial details of the input feature 
maps on multiple scales through parallel dilated con-
volution to obtain feature maps that should contain 
contextual information. The composition of the mod-
ule is displayed in Figure 4.
Zhang et al. [48] proposed group convolution as a 
technique to extract features across various scales. 
The method enabling the processing of channels in 
groups to capture multi-scale information may suffer 
from reduced parameter efficiency as the convolu-
tion kernel dimensions grow. The erode operation is 
often used to improve detection results by removing 
small false detection areas in the image due to factors 
such as noise or background interference. However, 
the erode operation may eliminate important feature 
details when the pedestrian part is not clearly visible 
or resembles the background. For small target pedes-
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trians, the erode operation may reduce their effective 
scale, thereby limiting the flexibility of the model and 
accuracy in handling pedestrians of different scales. 
The dilated convolution keeps the size of the feature 
map while increasing the spatial resolution of the fea-
ture map, which is beneficial for preserving detailed 
features. Therefore, we employ dilated convolutions 
with different dilation rates to capture feature infor-
mation across different scales. In the Light-REFM 
module, the input feature map f is first partitioned 
into four parts based on the arrangement order of fea-
ture channels, resulting in [F0, F1, F2, F3] grouped by 
the channel dimension. The quantity of channels in 
each grouping section is C`=C/4, where C should be a 
multiple of 4. After each grouping, the resulting fea-
ture map is represented as Fjϵ RC`×H×W, where j =0,1,2,3. 
We retain the original features in the first feature 
channel group F0 without introducing additional di-
lated convolutions, ensuring that the network can 
capture low-resolution fine details and thus preserve 
the original information. In the remaining three fea-
ture channel groups F1, F2, and F3. We employed di-
lated convolutions with different dilation rates to 

Figure 4
The structure of Light-REFM

different features at varying scales. Therefore, ex-
panding the receptive field and enabling the network 
to more effectively capture features of varying scales 
within the image. Finally, by concatenating the out-
puts of these four distinct branches, the model 
merges feature information from different scales and 
resolutions. This helps the model achieve a stronger 
representational capacity, thus enabling it to better 
capture multi-scale information and contextual rela-
tionships. Simultaneously, it controls the number of 
parameters, avoiding excessive computational bur-
den. The entire multi-scale feature map F is:

  

capture multi-scale information and contextual 
relationships. Simultaneously, it controls the number 
of parameters, avoiding excessive computational 
burden. The entire multi-scale feature map F is: 

  , 0,1, 2,3jF concat F j 
,                         (2) 

where Fϵ RC`×H×W denotes the resulting multi-scale 
feature map, and contact denotes the act of 
concatenation.   

3.3 Regression Loss Function Design 

In YOLOv7, the CIoU method is used as an 
evaluation metric to compute the overlap region 
between the predicted box and the ground truth box. 
Compared to the traditional IoU (Intersection over 
Union) measurement method, the CIoU method 
takes into account the normalized differences in the 
center-point distance, width, and height of the 
bounding box, making it more robust regarding the 
bounding box position and size [57]. However, in 
pedestrian detection, there are pedestrians with 
different target sizes. For small target pedestrians, 
the bounding box is relatively small, and even a 
small positional deviation can lead to a notable 
change in the IoU value. Although CIoU loss 
enhances the stability of IoU loss by considering the 
distance between the centers of bounding boxes and 
the aspect ratio, these improvements may still not be 
enough to completely overcome the instability of the 
IoU. For small targets, a slight offset in the bounding 
box can lead to a significant increase in the loss 
value, making the model overly sensitive to the 
position of small targets, thereby affecting the 
stability of training and the final performance of the 
model. In addition, sensitivity to size changes in 
CIoU loss is particularly prominent on small targets. 
This may lead the model to be overly sensitive to 
size changes when dealing with small targets while 
ignoring other important features such as appearance 
and contextual information. The NWD is a novel 
approach for small object detection [45], which uses 
a novel metric based on Wasserstein distance to 
calculate bounding box similarity, substituting the 
conventional IoU measurement method. First, this 
method models bounding boxes by utilizing two-
dimensional Gaussian distributions. Then, 
Wasserstein distances are used to calculate the 
resemblance between the corresponding Gaussian 
distributions. Because this distance can calculate the 
similarity of distributions even when overlaps are 
ignored. Furthermore, this method is insensitive to 
multi-scale objects, making it well-suited for 
measuring small objects. 

We integrate the NWD into the regression loss 
function alongside the CIoU method to harness the 
strengths of both in pedestrian detection. CIoU 
excels in measuring spatial location and overlaps, 
making it particularly effective for medium to large-
scale pedestrians where precision in bounding box 

alignment is crucial. On the other hand, NWD 
demonstrates remarkable robustness in handling 
small-scale pedestrians by effectively capturing the 
distributional characteristics of the target without 
being overly sensitive to scale. Its strength lies in 
recognizing the subtle distributional nuances of 
small targets, often overlooked by conventional 
methods. Therefore, by combining CIoU's precision 
in spatial alignment with NWD's sensitivity to 
distributional attributes, we significantly boost the 
model's robustness and accuracy across multiple 
scales. This fusion allows for a more comprehensive 
and nuanced capture of the position and features of 
pedestrians, significantly boosting detection 
performance, especially in scenarios where targets 
vary widely in size. The formulation of this 
regression loss function is expressed as: 

             1reg NWD CIoUL LL    ,                 (3) 

where Lreg is the regression loss function, γ is a 
weighting factor used to equilibrium the contribution 
of NWD and CIoU in the regression loss. The value 
of γ is usually between 0 and 1. It has been verified 
that the optimal result is achieved when γ = 0.7. The 
CIoU loss function is specified as: 

 2

2
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, gt
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b b

v
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
    ,   (4) 

where IoU is used to assess the level of overlap 
between the predicted bounding box b and the 
ground truth bounding box bgt. ρ2(b,bgt) calculates 
the Euclidean distance between the center point of 
the predicted box and the ground truth box. c denotes 
the diagonal distance of the smallest enclosed area 
that can encompass both the prediction box and the 
ground truth box. α serves as the trade-off parameter, 
which employs the importance of the center distance 
in the loss function. v serves as the function that 
quantifies the aspect ratio metric. 
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In Equation (5), w and h represent the height and 
width of the prediction box. wgt and hgt represent the 
height and width of the ground truth box. The NWD 
loss function is specified as: 
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where c is a constant that has a strong correlation 
with the dataset, W2 2(𝒩𝒩a, 𝒩𝒩b) is a distance metric. 

, (2)

where Fϵ RC`×H×W denotes the resulting multi-scale fea-
ture map, and contact denotes the act of concatenation.  

3.3. Regression Loss Function Design
In YOLOv7, the CIoU method is used as an evaluation 
metric to compute the overlap region between the 
predicted box and the ground truth box. Compared 
to the traditional IoU (Intersection over Union) mea-
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surement method, the CIoU method takes into ac-
count the normalized differences in the center-point 
distance, width, and height of the bounding box, mak-
ing it more robust regarding the bounding box posi-
tion and size [57]. However, in pedestrian detection, 
there are pedestrians with different target sizes. For 
small target pedestrians, the bounding box is rela-
tively small, and even a small positional deviation can 
lead to a notable change in the IoU value. Although 
CIoU loss enhances the stability of IoU loss by con-
sidering the distance between the centers of bound-
ing boxes and the aspect ratio, these improvements 
may still not be enough to completely overcome the 
instability of the IoU. For small targets, a slight offset 
in the bounding box can lead to a significant increase 
in the loss value, making the model overly sensitive 
to the position of small targets, thereby affecting 
the stability of training and the final performance of 
the model. In addition, sensitivity to size changes in 
CIoU loss is particularly prominent on small targets. 
This may lead the model to be overly sensitive to size 
changes when dealing with small targets while ig-
noring other important features such as appearance 
and contextual information. The NWD is a novel ap-
proach for small object detection [45], which uses a 
novel metric based on Wasserstein distance to calcu-
late bounding box similarity, substituting the conven-
tional IoU measurement method. First, this method 
models bounding boxes by utilizing two-dimensional 
Gaussian distributions. Then, Wasserstein distances 
are used to calculate the resemblance between the 
corresponding Gaussian distributions. Because this 
distance can calculate the similarity of distributions 
even when overlaps are ignored. Furthermore, this 
method is insensitive to multi-scale objects, making 
it well-suited for measuring small objects.
We integrate the NWD into the regression loss function 
alongside the CIoU method to harness the strengths of 
both in pedestrian detection. CIoU excels in measur-
ing spatial location and overlaps, making it particularly 
effective for medium to large-scale pedestrians where 
precision in bounding box alignment is crucial. On the 
other hand, NWD demonstrates remarkable robust-
ness in handling small-scale pedestrians by effectively 
capturing the distributional characteristics of the tar-
get without being overly sensitive to scale. Its strength 
lies in recognizing the subtle distributional nuances of 
small targets, often overlooked by conventional meth-

ods. Therefore, by combining CIoU’s precision in spa-
tial alignment with NWD’s sensitivity to distributional 
attributes, we significantly boost the model’s robust-
ness and accuracy across multiple scales. This fusion 
allows for a more comprehensive and nuanced capture 
of the position and features of pedestrians, significantly 
boosting detection performance, especially in scenari-
os where targets vary widely in size. The formulation of 
this regression loss function is expressed as:
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alignment is crucial. On the other hand, NWD 
demonstrates remarkable robustness in handling 
small-scale pedestrians by effectively capturing the 
distributional characteristics of the target without 
being overly sensitive to scale. Its strength lies in 
recognizing the subtle distributional nuances of 
small targets, often overlooked by conventional 
methods. Therefore, by combining CIoU's precision 
in spatial alignment with NWD's sensitivity to 
distributional attributes, we significantly boost the 
model's robustness and accuracy across multiple 
scales. This fusion allows for a more comprehensive 
and nuanced capture of the position and features of 
pedestrians, significantly boosting detection 
performance, especially in scenarios where targets 
vary widely in size. The formulation of this 
regression loss function is expressed as: 
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where c is a constant that has a strong correlation 
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multi-scale objects, making it well-suited for 
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We integrate the NWD into the regression loss 
function alongside the CIoU method to harness the 
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excels in measuring spatial location and overlaps, 
making it particularly effective for medium to large-
scale pedestrians where precision in bounding box 

alignment is crucial. On the other hand, NWD 
demonstrates remarkable robustness in handling 
small-scale pedestrians by effectively capturing the 
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recognizing the subtle distributional nuances of 
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vary widely in size. The formulation of this 
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small targets, often overlooked by conventional 
methods. Therefore, by combining CIoU's precision 
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model's robustness and accuracy across multiple 
scales. This fusion allows for a more comprehensive 
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pedestrians, significantly boosting detection 
performance, especially in scenarios where targets 
vary widely in size. The formulation of this 
regression loss function is expressed as: 
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multi-scale objects, making it well-suited for 
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function alongside the CIoU method to harness the 
strengths of both in pedestrian detection. CIoU 
excels in measuring spatial location and overlaps, 
making it particularly effective for medium to large-
scale pedestrians where precision in bounding box 
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demonstrates remarkable robustness in handling 
small-scale pedestrians by effectively capturing the 
distributional characteristics of the target without 
being overly sensitive to scale. Its strength lies in 
recognizing the subtle distributional nuances of 
small targets, often overlooked by conventional 
methods. Therefore, by combining CIoU's precision 
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distributional attributes, we significantly boost the 
model's robustness and accuracy across multiple 
scales. This fusion allows for a more comprehensive 
and nuanced capture of the position and features of 
pedestrians, significantly boosting detection 
performance, especially in scenarios where targets 
vary widely in size. The formulation of this 
regression loss function is expressed as: 
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weighting factor used to equilibrium the contribution 
of NWD and CIoU in the regression loss. The value 
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recognizing the subtle distributional nuances of 
small targets, often overlooked by conventional 
methods. Therefore, by combining CIoU's precision 
in spatial alignment with NWD's sensitivity to 
distributional attributes, we significantly boost the 
model's robustness and accuracy across multiple 
scales. This fusion allows for a more comprehensive 
and nuanced capture of the position and features of 
pedestrians, significantly boosting detection 
performance, especially in scenarios where targets 
vary widely in size. The formulation of this 
regression loss function is expressed as: 
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In Equation (5), w and h represent the height and 
width of the prediction box. wgt and hgt represent the 
height and width of the ground truth box. The NWD 
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where c is a constant that has a strong correlation 
with the dataset, W2 2(𝒩𝒩a, 𝒩𝒩b) is a distance metric. 
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where c is a constant that has a strong correlation 
with the dataset, W2 2(𝒩a, 𝒩b) is a distance metric. 
𝒩a, 𝒩b is a Gaussian distribution modeled by bound-
ary boxes A(cxa, cya, wa, ha) and B(cxb, cyb, wb, hb).

4. Experiments
In this section, we utilize three various datasets from 
CityPersons [50], Caltech [13], and CrowdHuman 
[40] for training, validation, and testing of our mod-
el. We conducted ablation experiments to compute 
the performance of our proposed method. Finally, we 
compared our method with the most advanced pedes-
trian detection methods.

4.1. Dataset and Evaluation Indicators

The Citypersons dataset is a portion of the CityScapes 
dataset [10], containing annotations for pedestrian 
objects in images captured near roads using onboard 
vehicle cameras. This dataset includes street scenes 
captured in 27 different cities, featuring diverse pe-
destrian samples. It is partitioned into a training set 
including 2975 images, 500 images for a validation 
set, and 1525 images for a test set. The Citypersons 
dataset is displayed in Figure 5.
CrowdHuman dataset is a dataset for pedestrian de-
tection released by Megvii (Face++) and contains 
mostly images obtained from Google searches. Com-
pared to other datasets, the CrowdHuman dataset ex-
hibits a denser characteristic. The average number of 
objects per picture is significantly higher in this data-
set compared to other datasets. 
This dataset comprises 15,000 training pictures, 
4,370 validation pictures, and 5,000 testing pic-
tures. The training and validation images contained 
470,000 instances, each picture contains an average 
of 23 individuals. However, the test pictures had no 
accompanying annotations. The Crowdhuman data-
set is displayed in Figure 6.
The Caltech dataset is one of the datasets used for pe-
destrian detection tasks. This dataset is constitutive 
of 640x640 resolution, 30Hz videos captured in var-
ious scenes, including urban streets and campuses, 
etc. The training set comprises 42,782 images, and the 
test set comprises 4024 images. Figure 7 illustrates 
the Caltech dataset.

Figure 5
Partial data set display of Citypersons

Figure 6
Partial data set display of CrowdHuman

Figure 7
Partial data set display of Caltech
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We use log-average miss rate based on false positives 
per image (FPPI) to calculate the proposed method’s 
performance, which is determined by computing the 
geometric average of miss rates at 9 evenly spaced 
FPPI thresholds within the logarithmic range, specif-
ically in the range of FPPI values from 0.01 to 1, the 
log-average miss rate determined by computing the 
mean is referred to as MR-2. A lower value indicates 
superior model performance. When assessing model 
accuracy, the paper employs Precision (P), Recall (R), 
Average Precision (AP) index, AP@0.5(average accu-
racy at IoU=0.5), AP@0.5:0.95 (IoU between 0.5-0.95, 
step size 0.5), these equations are as shown below:
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Where TP refers to True Positive, FP refers to False 
Positive, FN refers to False Negative.

4.2. Experimental Setup
The training method presented in this paper is as de-
picted: The initial learning rate is set to 10-2, the learn-
ing rate is adjusted through cosine annealing decay, 
the optimization is performed using the SGD opti-
mizer, and the batch size is configured as 32. The mo-
mentum is 0.937, and decay is configured as 0.0005. 

Table 1
The contribution of every component, evaluated on the CityPersons dataset [50] under IoU=0.5, MR-2lower is better

Method DE-ELAN Light-REFM NWD CIoU MR-2(%) Parameters(Mb)

YOLOv7 16.41 37.19

P 14.85 37.65

P 14.63 37.69

P 15.65 37.19

P P 14.17 38.15

P P 14.30 37.69

P P 14.45 37.65

P P P 13.83 38.15

During the data preprocessing stage, random crop-
ping is applied to the original images to obtain fixed-
sized input images, followed by scaling and padding of 
the processed images.

4.3. Ablation Studies
In this section, to assess the influence of added com-
ponents on the overall model and its effectiveness, we 
conducted ablation experiments utilizing the Cityp-
ersons datasets and evaluated its performance using 
MR-2. The outcomes of the ablation test results for 
every component are displayed in Table 1.
To evaluate the impact of combining NWD with CIoU 
on pedestrian detection performance, and to find the 
optimal way of combining them, we tried for the first 
time to use NWD as a loss function instead of the tradi-
tional IoU. However, this change did not lead to an im-
provement in any performance. Therefore, we decided 
to continue using CIoU while fine-tuning it by adjust-
ing the weight ratio between IoU loss and NWD. To 
achieve this objective, we designed six sets of compar-
ison experiments and recorded the results in Table 2.
From Table 2, it is evident that different ratio rela-
tionships have meaningful effects on the detection 
performance of YOLOv7. The best detection results 
are achieved when the weight ratio of CIoU Loss to 
NWD is set to 0.7 and 0.3, respectively.
To verify the superiority of combining NWD and 
CIoU as the regression loss function, we employed 
several prevalent loss functions for comparison with 
our method on the YOLOv7 model. The experimental 
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Table 2
The outcomes of the various weight ratios between different 
CIoU Loss and NWD on the CityPersons dataset [50]

CIoU NWD AP50(%) AP50:95(%)

1 0 61.93 36.18

0 1 50.62 25.54

0.5 0.5 64.31 39.18

0.6 0.4 65.48 39.75

0.4 0.6 58.32 33.82

0.7 0.3 66.54 41.15

results are presented in Table 3. These results clear-
ly illustrate that integrating NWD and CIoU into the 
regression loss function can lead to a substantial en-
hancement in the model ability, effectively proving 
the validity of our method.

Figure 8 
The results obtained by training on the Citypersons dataset

Table 3
Comparison of results using various loss functions on 
YOLOv7

Method AP (%) FPS

SIoU[17] 65.67 112

EIoU[51] 64.87 85

WIoU[43] 64.57 113

CIoU[57] 61.93 121

NWD-CIoU 66.54 116

Furthermore, to achieve better compute the impact 
of addition components on the overall model accu-
racy. Figure 8 shows Precision, Recall, P-Rcurve, 
mAP@0.5, mAP@0.5:0.95, box loss, and object loss 
results obtained by our training on the Citypersons 
dataset. Compared to YOLOv7, YOLOv7-PD shows an 
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improvement of 5.51% in Precision, a 7.71% improve-
ment in Recall, a 7.01% improvement in mAP@0.5, 
and a 6.88% improvement in mAP@0.5:0.95. YOLOv7-
PD’s box loss is consistently lower than the other 
three versions, indicating that YOLOv7-PD is more 
precise in locating the bounding boxes of objects. 
During training, YOLOv7-PD’s object loss decreases 
relatively quickly and remains at a low. A lower box 
loss typically suggests that the model performs well

Figure 9
The visualization outcomes of Grad-CAM

in predicting the size and position of the targets. This 
indicates that YOLOv7-PD is more accurate in deter-
mining the presence of objects in images.
In Figure 9, we verify the effectiveness of YOLOv7-PD 
using Grad-CAM. The results are computed from the 
penultimate convolutional layer. To the left of every 
input image, the ground truth labels are displayed, and 
the distribution of the heatmap exhibits the distribu-
tion of interests within the network. We compared the 

Input images YOLOv7 YOLOv7-PD
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visualizations of YOLOv7 and YOLOv7-PD, and these 
results were obtained by analyzing the penultimate 
convolutional layer. To the left side of every input pic-
ture, we displayed the ground truth labels, while the 
distribution of the heatmap reflected the spatial dis-
tribution of areas of interest within the network. The 
research findings indicate that YOLOV7-PD places 
more emphasis on the center of a pedestrian’s torso. 
Furthermore, for smaller pedestrian targets, the focus 
area typically covers the entire body region. Compared 
to YOLOv7, our method exhibits superior performance 
in learning small pedestrian targets.

4.4. Comparison with the State-of-the-Art
In this section, we will assess the performance of the 
YOLOv7-PD model with some representative mod-
els on the Caltech, CityPersons, and CrowdHuman 
datasets. We will use consistent parameters, environ-
ment, and data processing techniques to compute the 
respective evaluation metrics. 
For the purpose of validating the detection capabil-
ities of YOLOv7-PD on pedestrian targets of vary-
ing scales, we chose several outstanding pedestrian 
detection models for comparison on subsets of the 
Caltech dataset separated into different scales. These 
include MSCM-ANet [34], which is designed with 
multi-scale convolution modules for extracting fea-
tures at varying scales. RPN+BF [49] utilizes a Re-
gion Proposal Network to propose regions of interest, 
which are then processed by the backbone feature 
network to extract features relevant to subsequent 
object detection or classification tasks. TA-CNN 
[42] reduces the variance between datasets through 
a multi-task deep model. MHN [4] proposes a multi-
branch and high-level semantic network that uses 
cross-layer connections to add context to a relative-
ly smaller receptive field branch. It also incorporates 
and incorporates dilated convolutions to increase the 
output feature map’s resolution. The Coupled Net-
work [32] uses a gated multi-layer feature extraction 
subnetwork and a deformable region of interest pool 
to deal with occlusion issues in pedestrian detec-
tion. MS-CNN [3] proposes a multi-scale neural 
network for fast multi-scale target detection. SA-Fas-
tRCNN [25] solves the problem of multi-scale target 
detection by jointly training two networks for the de-
tection of both large and small pedestrian targets. As 
displayed in Figure 10, when we tested on the reason-

able subset of Caltech, YOLOv7-PD achieved an MR 
value of 15%, which is 2% lower than the second-best 
model. On the subsets with pedestrian heights of 
(30,80) and (80,inf ), the MR values are 18% and 3% 
individually, which are at the forefront when com-
pared to other methods. The MR value on the subset 
of pedestrian heights of (0, 30) is 21%, which is 1% 
lower than the sub-optimal model, demonstrating 
excellent performance. This achievement is mainly 
attributed to our design of the Light-REFM module, 
which finely captures multi-scale information by 
building a pyramid structure and employing dilation 
convolutions of different sizes. This structure enables 
the model to effectively recognize and process tar-
gets at different scales and is particularly good at de-
tecting small targets and partial occlusion situations. 
This combination not only significantly improves the 
model’s localization capability. In addition, we adopt 
a refined regression loss function derived from NWD 
and combine it with CIoU, an innovation that further 
enhances the model’s performance concerning local-
ization accuracy. But is also particularly effective for 
accurate detection and feature capture of small tar-
gets, thus ensuring efficient performance in complex 
scenes.
To evaluate the detection capability of YOLOv7-PD 
on pedestrian targets with different occlusion lev-
els, we partitioned the CityPersons dataset into four 
subsets based on the level of occlusion. Reasonable 
subset: Pedestrians in this subset have a visibility 
range from 65% to 100%, encompassing individu-
als who are mostly visible with possible partial oc-
clusions. Heavy Subset: The subset includes pedes-
trians with visibility less than 65%, representing 
significant occlusion or very challenging detection 
conditions. Partial subset: This subset is for pedes-
trians with visibility between 65% and 90%, indi-
cating moderate occlusion. Bare subset: This subset 
includes pedestrians who are almost entirely visible, 
with visibility ranging between 95% and 100%. Us-
ing the same parameters, we compared YOLOv7-PD 
with the above methods. The results are present-
ed in Table 4, In the bare subset, our method MR-2 

achieves 6.7%. In the partial occlusion subset, our 
method  MR-2 reaches 22.5%. In the heavy occlusion 
subset, our method MR-2 reaches 36.2%. The results 
indicate that YOLOv7-PD plays a significant role in 
detecting occluded pedestrian objects.
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Table 4
Comparisons of YOLOv7-PD and other state-of-the-art methods on four Citypersons subsets

Method Reasonable Heavy Partial Bare

MSCM-ANet [34] 27.8 53.3 29.3 14.8

Adapt Faster-RCNN [7] 15.4 - - -

RPN+BF [49] 20.1 54.6 36.1 12.2

TA-CNN [42] 22.9 42.7 25.7 10.5

MHN [4] 19.4 42.4 25.4 9.2

Coupled Network [32] 16.1 36.4 23.8 7.8

Ours 15.2 36.2 22.5 6.7

(b)

Figure 10
The MR and FPPI curves of the state-of-the-art method and the proposed YOLOv7-PD on the Caltech test set are presented in four 
different evaluation settings, a. Reasonable, b. Pedestrian height:(0,31), c. Pedestrian height:[31,81), d. Pedestrian height:(80,inf )

(a)

(c) (d)
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Table 5
Comparison between YOLOv7-PD and other one-stage methods on Citypersons dataset

Method Backbone Size FPS AP(%)

RetinaNet [28] ResNet50 640 43 52.23

RetinaNet [28] ResNet101 640 34 54.17

YOLOv4 [1] CSPDarknet53 640 72 59.04

YOLOX [16] CSPDarknet53 640 78 61.52

Ours CSPDarknet53(DE-ELAN) 640 96 69.31

In Table 5, we conducted AP values and FPS tests on 
YOLOv7-PD and some single-stage models to assess 
the models’ effectiveness in pedestrian detection. In 
contrast to other single-stage methods, YOLOv7-PD 
showed a higher AP value, reaching 69.3%. Its FPS is 
96. Our method shows significant advantages in dif-
ferent performance metrics, demonstrating that our 
method achieves excellent detection accuracy while 
sustaining a high processing speed.
To validate the detection capabilities of YOLOv7-PD 
for occluded objects, we opted for the CrowdHuman 
dataset, known for its abundance of occluded objects. 
We compared YOLOv7-PD against advanced methods, 
including RetinaNet [28], YOLOX [16], YOLO-CPD 
[15], GossipNet [20], RelationNet [21], MIP [8]. For as-
sessment, we employed MR-2 and AP for evaluation, as 
depicted in Table 6. Our method AP achieves 83.36% 
and MR-2 achieves 41.2%, both of which reached the 
advanced level in the field of similar detection.
YOLOv7-PD achieves this result mainly due to the 
adoption of the improved DE-ELAN module, which 
utilizes ODConv and four complementary attention-
al mechanisms to effectively capture rich contextual 
information and enhance feature extraction. This en-
hanced feature extraction is essential for accurately 
detecting complex image details, especially in crowd-
ed or complex scenes. When there are extensive in-
ter-class occlusions in the detection, the miss rate 
(MR-2) becomes more crucial for evaluating the model.
In Figure 11, the detection outcomes of both YOLOv7 
and YOLOv7-PD on the CityPersons dataset are dis-
played. We showcase extreme scenarios with small-
scale objects and a high degree of occlusion. YOLOv7 
exhibits challenges in detecting small pedestrian 
targets and those with a significant portion of their 

Table 6
Comparing various crowded detection methods using the 
validation set of CrowdHuman

Method MR-2(%) AP(%)

RetinaNet [28] 63.33 80.8

YOLOX [16] 64.15 77.1

YOLO-CPD [15] 59.03 82.2

GossipNet [20] 49.4 80.4

RelationNet [21] 48.2 81.6

MIP [8] 42.8 86.7

Ours 41.2 83.36

bodies occluded, resulting in missed detections and 
false alarms. In contrast, YOLOv7-PD demonstrates 
exceptional detection capabilities even when dealing 
with highly occluded pedestrians and small-sized pe-
destrians.

5. Conclusion
In this paper, we propose three improvement strate-
gies aimed at enhancing the performance of YOLOv7 
in pedestrian detection. First, we propose the ODConv 
based module DE-ELAN, which considers dynam-
ics in spatial dimensions, input channels, and output 
channels. This module enhances the model’s capa-
bility to extract features, particularly for small-scale 
and occluded pedestrians, by effectively suppressing 
interference noise associated with background fea-
tures and strengthening critical feature information. 
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Figure 11
The detection results of YOLOv7 and YOLOv7-PD using the CityPersons dataset

(a) Input images (b) YOLOv7 (c) YOLOv7-PD

Second, we propose Light-REFM, which groups input 
mappings in channel sequences and extracts features 
through dilated convolutions to obtain richer contex-
tual information. Finally, we combine the traditional 
CIoU method with NWD to enhance the YOLOv7’s 
performance in small object and large  object de-
tection tasks, enabling the model to better adapt to 
different scales of objects. The effectiveness of this 
method has been validated by comparing it to oth-
er excellent methods on three various datasets. The 

research results indicate that our approach demon-
strates a certain level of competitiveness concerning 
accuracy and robustness.
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