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By detecting the position of maintenance components in real-time, maintenance guidance information can be 
superimposed and important operational guidance can be provided for maintenance personnel. The YOLOv5-
OBB-CR real-time detection algorithm is proposed for maintenance component with orientation bounding box 
based on improved YOLOv5-OBB. The C3 module in the original network is improved to CReToNeXt, which 
can more effectively enhance the network’s ability to learn image features. Considering that the network learn-
ing is the labeled rotation box information, the original Loss function CIoU is improved to SIoU with angle loss 
information, and the improved Loss function can more effectively describe the regression of the target box. The 
demonstration shows that the mAP@.5 0.95 of YOLOv5-OBB-CR-s (SIoU) is 85.6%, which is 6.7% higher than 
the original YOLOv5 OBB algorithm.
KEYWORDS: YOLOv5-OBB, maintenance component, YOLOv5-OBB-CR, SIoU, position real detection.

1. Introduction
In the process of complex product maintenance, due to 
the complexity of operating objects and process flow, 
maintenance personnel often make various mainte-
nance mistakes. By detecting the name and location of 
maintenance targets in real-time, and using augment-
ed reality technology to guide the maintenance process 
and operation process, the efficiency and accuracy of 
maintenance operations can be improved. For exam-
ple, Castellanos et al. [2] developed an interactive elec-

tronic manual-based AR assisted maintenance and 
repair system for vertical centrifugal deep well pumps, 
which effectively reduced the workload and mainte-
nance costs of operators. Chen et al. [3] developed the 
augmented reality detection and maintenance system 
BIM AR FSE for fire equipment based on the Build-
ing information modeling (BIM). This system com-
bines Building information modeling and real objects 
through augmented reality technology, and can timely 
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and effectively present maintenance and inspection 
information to staff. Due to the varying sizes of the 
maintenance targets, ranging from millimeter to meter 
scales, and the fact that the maintenance targets are 
easily obstructed by other external structures, there 
are significant technical challenges in ensuring both 
high accuracy and real-time performance.
Traditional maintenance object detection mainly 
uses image feature based methods, which require ex-
tracting Planar or three-dimensional features of the 
target image, and then performing template matching 
for recognition [10, 12]. These methods have played 
a good role in certain situations, but due to the com-
plexity of the actual maintenance scene objects and 
the large number of feature points, real-time detec-
tion performance and robustness are often difficult to 
ensure.
With the development of deep learning technology and 
the improvement of computer hardware computing 
ability, Convolutional neural network (CNN) gradually 
occupies a dominant position in the field of computer 
vision. Researchers apply a large number of related 
technologies to target detection, which can extract 
more abstract and deeper feature information, make 
the model more generalized, and thus greatly improve 
robustness and accuracy. CNN has been widely applied 
in fields such as autonomous driving [18], facial recog-
nition [13], and defect detection [15, 17].
The YOLO series is a typical representative of CNN 
object detection algorithms [1, 5, 14, 20]. YOLOv3 is 
improved on the basis of YOLOv1 and YOLOv2, and 
the basic classification network is improved to Dark-
net-53. The classifier abandons the original Softmax, 
and the classification loss function uses the binary 
Cross entropy loss. Compared with R-CNN and Fast 
R-CNN, its reasoning speed has been improved by 
leaps and bounds. The YOLOv5 algorithm integrates 
the advantages of previous versions, further improv-
ing detection accuracy and speed [8, 16, 21].
YOLOv5-OBB’s real-time detection algorithm for 
maintenance parts is an Orientated Bounding Box 
detection algorithm. Compared with HBB (Horizon-
tal Bounding Box) detection algorithm. it can not only 
capture the central point of the parts more accurate-
ly, but also adapt to the changes in the position and 
orientation of the target in space, so as to obtain a 
more compact and accurate bounding box. However, 
during the detection process, the generalization abili-

ty of the network is limited, in addition, there are still 
many issues such as missed detections and low fea-
ture extraction ability [4]. Therefore, a new real-time 
detection algorithm for maintenance components, 
YOLOv5-OBB-CR [9], is proposed. YOLOv5-OBB-CR 
[22] algorithm improves the original C3 module into 
CReToNeXt module, and improves the original Loss 
function to SioU [4], effectively enhancing the net-
work feature extraction ability. Both of the improved 
algorithms are applied to the detection of mainte-
nance components in the YN92 marine diesel engine, 
the experimental results show that YOLOv5-OBB-
CR algorithm has stronger feature extraction ability 
and higher detection accuracy in maintenance com-
ponent detection compared to the original YOLOv5-
OBB algorithm [11].

2. YOLOv5-OBB-CR Algorithm
The YOLOv5-OBB-CR algorithm is improved on 
the basis of the rotating object detection network 
YOLOv5-OBB. Next, the OBB bounding box, network 
structure improvement, Loss function of YOLOv5-
OBB-CR algorithm are introduced in detail [7].

2.1. The OBB Bounding Box
The bounding boxes for HBB and OBB detection are 
shown in Figure 1. The target box representation of 
the YOLOv5 algorithm is HBB (x, y, w, h), where (x, y)
represents the center coordinate of HBB, w represents 
the width of HBB, and h represents the height of HBB. 
As shown in Figure 2, the target box of  YOLOv5-OBB 
algorithm can be represented using the 5 parameter 
long edge representation Dle. The representation of Dle 
is (xle, yle, wle, hle, θle), where (xleh, yle) is the center coor-
dinate of the OBB, wle is the longest edge of OBB, hle is 
the adjacent edge of wle, θle represents the x-axis and 
the longest edge wle, where θle∈ [–
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Figure 2
The 5 parameter long edge representation method of Dle
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of 440 images, a validation set of 49 images, and a test 
set that is recollected according to actual needs. Next, 
the improved algorithm is used for model training and 
obtain corresponding experimental results.

3.1. The Train Parameters
The model is trained using the deep learning worksta-
tion shown in Table 1. Train models with three differ-
ent width and depth factors: s, m, and l. Select the SGD 
optimizer with a learning momentum of 0.937 and a 
weight attenuation of 0.0005. In the first three gen-
erations of training (three epochs), the learning rate 
increases from 0.0033 to 0.01, and then decreases to 
0.001 through cosine attenuation.
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The location Loss function uses SIoU, and the classi-
fication loss uses Cross entropy loss. For the geomet-
ric distortion, set the translation, scaling, fliplr, and 
flipup to 0.1, 0.25, 0.5, and 0.5, respectively. Image data 
augmentation uses Mosaic data augmentation and 
Cutmix data augmentation, with parameters of 0.75 

Table 1
Deep learning workstation configuration

Software 
configuration

System: Windows 11

Frame: Pytorch 1.9.0

Version: CUDA 11.1

Develop environment: Pycharm 2022

Hardware 
configuration

CPU: Intel Core i7-10875H

Memory: 32.0G

Graphics card: RTX 2080 Super

Graphics memory: 8G

Table 2
Different YOLOv5- OBB-CR and model factors

Model depth_factor width_ factor

YOLOv5-OBB-CR-s

YOLOv5-OBB-CR-m

0.33

0.67

0.50

0.75

YOLOv5-OBB-CR-l 1.00 1.00

and 0.1, respectively. The models are all trained us-
ing RTX2080 Super, with 8GB of GPU memory. The 
batch size is set reasonably based on the model size, 
and all models are trained with 300 epochs.

3.2. Results 
Table 3 presents the training results of the rotat-
ing target dataset YN92 data OBB. It can be seen 
that the improved YOLOv5-OBB-CR algorithm has 
different degrees of improvement compared with 
the original YOLOv5-OBB algorithm in the index 
mAP@.5:0.95. When SIoU is used to locate the Loss 
function mAP@.5, the performance of the 0.95 indi-
cator is the best, in which YOLOv5-OBB-CR-s (SIoU) 
is 6.7% higher than YOLOv5-OBB-s, YOLOv5-OBB-
CR-m (SIoU) is 2.8% higher than YOLOv5-OBB-m, 
and YOLOv5-OBB-CR-l (SIoU) is 3.1% higher than 
YOLOv5-OBB-l. The algorithm proposed in this ar-
ticle has more advantages in the accuracy of rotation 
detection of maintenance components.
Figures 9(a)-(b) use YOLOv5-OBB-s and YOLOv5-
OBB-CR-s (SIoU) models for comparison. Figures 
9(c)-(d) use YOLOv5-OBB-m and YOLOv5-OBB-
CR-m (SIoU) models for comparison. Figures 9(e)-(f ) 
use YOLOv5-OBB-l and YOLOv5-OBB-CR-l (SIoU) 
models for comparison. In terms of category detection 
confidence, except for a few categories, the improved 
algorithm is higher than the original YOLOv5-OBB 
algorithm, and the improved algorithm is closer to the 
real object box in the target detection box, which can 
better describe the rotation features of the real object 
(marked by the red arrow).

Table 3
YN92 data OBB for Rotating Dataset

Models GFLOPs mAP@.5 mAP@.5:0.95

YOLOv5-OBB-s 17.4 99.0 77.6

YOLOv5-OBB-CR-s (SIoU) 46.5 99.0 84.3(+6.7%)

YOLOv5-OBB-m 50.3 99.1 82.8

YOLOv5-OBB-CR-m (SIoU) 176.7 99.2 85.6(+2.8%)

YOLOv5-OBB-l 110.9 98.9 83.1

YOLOv5-OBB-CR-l (SIoU) 444.1 99.2 86.2(+3.1%)
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Figure 9
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detection confidence, except for a few 
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than the original YOLOv5-OBB algorithm, and 
the improved algorithm is closer to the real 
object box in the target detection box, which 
can better describe the rotation features of the 
real object (marked by the red arrow).
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4. Conclusion 

To achieve the OBB detection for maintenance 
components, an improved method based on 
YOLOv5-OBB is proposed. The C3 module in 
YOLOv5-OBB algorithm is improved to 
CReToNeXt, resulting in YOLOv5-OBB-CR 
that can more effectively enhance the 
network's ability to learn image features. 
Through experimental comparison, it is found 
that the OBB of YOLOv5 OBB-CR algorithm is 
more compact and accurate. Based on different 
depth_multiple and width_multiple, the 
mAP@.5:0.95 indicators of YOLOv5-OBB-CR-s, 
YOLOv5-OBB-CR-m, and YOLOv5-OBB-CR-l 
are higher than YOLOv5-OBB algorithm, 
among which the mAP@.5 0.95 indicator of 
YOLOv5 OBB CR-s (SIoU) is 85.6%, which is 
6.7% higher than the original algorithm.  

The proposed method can identify the 
position of maintainability test objects and 
perform 3D reconstruction and collision 
detection in virtual space, thus achieving 
virtual and real fusion of physical equipment 
and virtual environment [6, 23]. In addition, 
this method can be used to identify 
maintenance objects and provide relevant 
maintenance knowledge to maintenance 
personnel, thereby reducing the threshold of 
maintenance technology. 
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4. Conclusion
To achieve the OBB detection for maintenance com-
ponents, an improved method based on YOLOv5-
OBB is proposed. The C3 module in YOLOv5-OBB 
algorithm is improved to CReToNeXt, resulting 
in YOLOv5-OBB-CR that can more effectively en-
hance the network’s ability to learn image features. 
Through experimental comparison, it is found that 
the OBB of YOLOv5-OBB-CR algorithm is more 
compact and accurate. Based on different depth_
multiple and width_multiple, the mAP@.5:0.95 indi-
cators of YOLOv5-OBB-CR-s, YOLOv5-OBB-CR-m, 
and YOLOv5-OBB-CR-l are higher than YOLOv5-
OBB algorithm, among which the mAP@.5 0.95 indi-
cator of YOLOv5-OBB-CR-s (SIoU) is 85.6%, which 
is 6.7% higher than the original algorithm. 

The proposed method can identify the position of 
maintainability test objects and perform 3D recon-
struction and collision detection in virtual space, 
thus achieving virtual and real fusion of physical 
equipment and virtual environment [6, 23]. In addi-
tion, this method can be used to identify maintenance 
objects and provide relevant maintenance knowl-
edge to maintenance personnel, thereby reducing the 
threshold of maintenance technology.
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