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Abstract. This paper proposes a robust intelligent technique to produce the initial population close to the optimal 

solution for the job-shop scheduling problem (JSSP). The proposed technique is designed by a new heuristic based on 

an intelligent skip from the primal point of the solution space to a better one that considers a new classification of jobs 

on machines. This new classification is named mPlates-Jobs. The main advantages of the proposed technique are its 

capability to produce any size of the initial population, its proximity to the optimal solution, and its capability to observe 

the best-known solution in the generated initial population for benchmark datasets. The comparison of the experimental 

results with those of Kuczapski’s, Yahyaoui’s, Moghaddam and Giffler’s, and Thompson’s initialization techniques, 

which are considered the four state-of-the-art initialization techniques, proves the abovementioned advantages. In this 

study, the proposed intelligent initialization technique can be considered a fast and intelligent heuristic algorithm to solve 

the JSSP based on the quality of its results. 

Keywords: Job-shop scheduling; population-based algorithms; initialization procedures; approximation algorithms; 

intelligent techniques. 

 

1. Introduction 

The job-shop scheduling problem (JSSP) is one of 

the most difficult  non-deterministic polynomial hard 

combinatorial complexity optimization problems [1, 2]. 

Since the mid-50s, research on JSSP has continued 

given its widespread applications in industry, manage-

ment, transportation, business, and service sectors. Its 

history is characterized by the proposal of exact 

methods, such as branch and bound algorithms [3] and 

integer programming [4]. Although exact algorithms 

for very small-size instances of combinatorial optimi-

zation problems are guaranteed to find an optimal 

solution in bounded time, an exact algorithm to solve 

JSSP in polynomial time is unavailable. Current 

algorithms are applicable only for small-size instances. 

Thus, researchers focused on heuristic and meta-

heuristic algorithms as approximation methods. These 

algorithms, namely, memetic algorithm [5], genetic 

algorithm [6, 7], bee colony optimization [8], ant 

colony optimization [9], particle swarm optimization 

[10], artificial immune system [11], electromagnetic-

like mechanism [12], chemical reaction optimization 

[13], DNA computing [14], and others [15–17], are 

mostly population-based algorithms. These algorithms 

require the production of an initial population to start 

the exploration and exploitation of the solution space. 

A high-quality initial population would speed up these 

algorithms, but the attention of researchers is often 

focused on other steps of the meta-heuristic algorithm. 

Thus, studies on the subject are limited. 

The initialization of JSSP has been performed using 

various methods, such as random methods, priority 

rules, and heuristic algorithms. Based on published 

literature, most of the previous researchers used 

random techniques, such as random keys, to produce an 

initial population ([6], [18], [10], [14], and [19]). 

However, the quality of the random points produced is 

far below that of optimal points. Algorithms that use 

random initialization require more computation time to 

reach an optimal solution than those that use guided 

techniques in the initialization section. Priority 

dispatching rules simulated by Moghaddam and 

Daneshmand [20] and Canbolat and Gundogar [21] are 

ranked second in the initialization techniques, 

according to the number of their applications in 

previous literature. Considering that priority rules are 

easy to execute and have low requirements for 

computational power, they have fascinated many 

researchers. Giffler and Thompson’s (G&T) algorithm 
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[22] is one of the most important and original 

executions of priority rules. Kuczapski et al. [7] 

proposed an efficient initialization procedure to 

enhance genetic algorithm by generating near-optimal 

initial populations. Yahyaoui et al. [23] also proposed a 

heuristic initialization procedure based on integer linear 

programming; their results are comparable with those 

of other proposed initialization procedures [24].  

This paper proposes a novel intelligent initialization 

technique to enhance population-based algorithms by 

generating initial populations close to the optimal 

solution in an acceptably short computational time. To 

achieve this goal, a novel heuristic is designed to 

generate any size of the initial population. A new 

intelligent skipping strategy (ISS) is embedded in the 

proposed heuristic to enable skipping from a primal 

point of solution space to a better one. The ISS is 

designed by first introducing a new classification of 

jobs, called mPlates-Jobs, to machines based on the 

operation number of jobs. Second, a novel set of rules, 

namely, the activator rules of mPlates (ARs), is 

designed to activate the mPlates-Jobs. Finally, ISS–

ARs is produced based on the ISS and ARs of mPlates.  

The rest of the paper is organized as follows: 

Section 2 describes and formulates JSSP. Section 3 

presents the pre-processing of JSSP. Section 4 proposes 

a generic heuristic to produce an initial population and 

elaborates on the ISS embedded in the proposed 

heuristic. Section 5 reports the experimental and 

comparative results. Section 6 discusses the 

conclusions and future work. 

2. JSSP Description 

A JSSP, which is considered in this study, can be 

formulated as follows: A set of jobs 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛} is 
provided on a set of machines 𝑀 = {𝑀1, 𝑀2, … ,𝑀𝑚}. 

The operations of the jobs 𝑂 = {𝑂𝑖𝑗 , 𝑖 = 1,2, … ,

𝑛 & 𝑗 = 1,2, … ,𝑚}  have to be processed in the 

machines under three types of constraints, namely, 

precedence, capacity, and release and due date 

constraints. Precedence constraints include three 

limitations: each job should be processed through the 

sequence of machines in a predetermined order (𝑆𝑂𝐽); 
the machine orders among different jobs are 

unconfined; and no precedence constraints exist among 

the operations of different jobs. Capacity constraints 

comprise five restraints: machines are independent of 

one another; machines cannot remain idle while an 

operation is waiting for processing; each machine can 

only handle at most one operation at a time; each job 

can be processed only once on a given machine; and 

jobs are independent of one another. Finally, release 

and due date constraints contain three restrictions. First, 

no negative starting time is observed. Second, the 

processing time of operations is given a length. Finally, 

the processing of each operation must not be 

interrupted. Therefore, to satisfy these constraints and 

to achieve the objective of JSSP, the starting time of the 

processing operation is considered the decision variable 

of JSSP. A feasible schedule is assigned time slots on 

the machines for operations by satisfying the 

constraints of the problem and by finding a sequence of 

jobs on machines (𝑆𝐽𝑀 ); the corresponding schedule 

should minimize the maximum completion time of the 

last completed operation (makespan/𝐶𝑚𝑎𝑥) [25] as the 

standard objective function of JSSP. Therefore, the 

problem target is in finding a sequence of jobs on 

machines (𝑆𝐽𝑀 ) whereby its corresponding schedule 

satisfies all constraints and, at the same time, minimizes 

the makespan. 

3. Pre-processing of the JSSP 

One of the key issues in successfully applying 

meta-heuristics to JSSP is in encoding a schedule to 

search space [26], that is, a suitable selection of 

encoding scheme is extremely important in enhancing 

the search effectiveness of any meta-heuristic. In 

addition, all of the encoding schemes proposed for the 

JSSP can generate an active schedule through the 

decoder. 

3.1. Encoding Solution Space 

In this study, a modified version of the preference 

list-based representation [26] is considered in a matrix 

format as the encoding scheme. One condition is 

designed over the encoded points to satisfy the 

feasibility and escape the loop of consecutive 

operations. Thus, the sequence of jobs on machines 

matrix, called  𝑆𝐽𝑀 , is considered as the encoding 

scheme that represents the points of the solution space. 

Each row of the 𝑆𝐽𝑀 matrix represents a permutation 

of jobs to be processed in a given machine. Therefore, 

the entries of 𝑆𝐽𝑀  are jobs. Each job on each row 

(machine) has to be viewed only once. This limitation 

comes from precedence and capacity constraints (i.e., 

processing of each operation must not be interrupted, 

and each job can be processed only once on a given 

machine). 

JSSP has (𝑛!)𝑚  different 𝑆𝐽𝑀𝑠  with 𝑚  machines 

and 𝑛 jobs. Some of these 𝑆𝐽𝑀𝑠 do not have a feasible 
schedule because they have at least one loop of 

operations. If an 𝑆𝐽𝑀 does not have at least one of the 

first processed operations of jobs (𝑂𝑖1 ) with the lowest 

order (the first to process) on each machine as the 

source operation and does not have at least one of the 

last processed operations of jobs (𝑂𝑖𝑚 ) with the highest 

order (the last to process) on each machine as the sink 

operation, then at least one loop from operations is 

created in 𝑆𝐽𝑀. There are ((𝑛 − 2)(𝑛 − 1)!)
𝑚
different 

𝑆𝐽𝑀𝑠  with at least one loop from operations; these 

types of 𝑆𝐽𝑀 are rejected. 

3.2. Decoder Algorithm 

An encoded point is not a schedule, but it has a 

corresponding active feasible schedule. A feasible 

schedule that includes no idle time is called active. 
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Constructing another schedule with at least one 

operation finishing earlier and that with no operation 

finishing later is not possible [27]. Therefore, a decoder 

algorithm should be designed to construct an active 

feasible schedule that corresponds to a given encoding. 

The most famous decoder algorithm was proposed by 

Giffler and Thompson [22] and later improved by many 

other researchers [10, 19, 28]. In the present study, a 

new heuristic decoder algorithm, called the switching 

function, is designed to construct an active feasible 

schedule that corresponds to a given 𝑆𝐽𝑀 . The 

algorithm has a simple structure and guarantees the 

satisfaction of all constraints. A brief outline of the 

switching function is as follows: 

Step 0: 0 → 𝑖 and 0 → 𝑗. 

Step 1: Consider operations of jobs (𝑂𝑖𝑗  , 𝑖 = 1,… , 𝑛 

and 𝑗 = 1,… ,𝑚) one by one. If (𝑖 = 𝑛 and 𝑗 =
𝑚), then terminate the progress; else if (𝑖 ≠ 𝑛 

and 𝑗 = 𝑚), then 𝑖 + 1 → 𝑖; else 𝑗 + 1 → 𝑗. 

Step 2: 𝑖 → 𝑖′ and 𝑗 → 𝑗′ 

Step 3: If 𝑂𝑖′𝑗′  is not processed, then proceed to 

Step 4, else return to Step 1. 

Step 4: Let 𝛺′  be the set of operations of 𝐽𝑖′   with 

smaller index than 𝑗′  that have not been 

processed. Consider 𝑀𝑘  as the machine to 

process 𝑂𝑖′𝑗′  , and let 𝛺  be the set of 

operations with jobs (that have not been 

processed) having lower order to be processed 

on 𝑀𝑘 compared with 𝐽𝑖′ . 

Step 5: If 𝛺 and 𝛺′ are empty, evaluate 𝑂𝑖′𝑗′ based on 

its constraints with the earliest possible 

starting time and proceed to Step 6. else if 𝛺 is 

non-empty and 𝛺′ is empty, then consider the 

operation with the minimum order to process 

in 𝛺  (for example, it is 𝑂𝑟𝑠  ) instead of 𝑂𝑖′𝑗′  

(i.e., 𝑟 → 𝑖′  and 𝑠 → 𝑗′), and return to Step 4. 

else if 𝛺  is empty and 𝛺′  is non-empty, then 

consider 𝑂𝑖′𝑗′−1  instead of 𝑂𝑖′𝑗′   (i.e., 𝑗′ −

1 → 𝑗′), and return to Step 4. 

Step 6: If 𝑖 = 𝑖′ and 𝑗 = 𝑗′ , then return to Step 1, else 

𝑖 → 𝑖′, 𝑗 → 𝑗′, then return to Step 4. 

For a better presentation of the procedure of the 

switching function, a small instance, including three 

jobs and three machines, is considered in Table 1. 

Table 1. Original data for the small instance 

Machine (Processing Time) 

 Operation 

Job 1 2 3 

1 3(1) 1(3) 2(6) 

2 2(3) 3(5) 1(7) 

3 3(5) 2(4) 1(3) 

The predetermined sequence of operations (𝑆𝑂𝐽) of 
the instance is as follows:  

𝑆𝑂𝐽 = [
3 1 2
2 3 1
3 2 1

]. (1) 

A feasible encoded point of solution space (𝑆𝐽𝑀1) 

is arbitrarily (randomly) considered: 

𝑆𝐽𝑀1 = [
1 3 2
3 2 1
1 3 2

].  (2) 

The procedure of the algorithm for generating the 

corresponding feasible active schedule of 𝑆𝐽𝑀1  is 

explained in Table 2 and Fig. 1. Table 2 shows that 

𝑆𝑇(𝑂𝑖𝑗) is a starting time of 𝑂𝑖𝑗. 

4. Initialization Technique 

4.1. Heuristic to Generate an Initial Population 

In this study, a new heuristic is proposed to generate 

the initial population. The algorithm of the heuristic is 

elaborated in Fig. 2, where two main parts are included. 

The first part, which uses the priority rule (shortest 

remaining time first, SRTF) generates one primal 

𝑆𝐽𝑀1. The literature on constructing initial schedules 

directly uses the priority rules, but in the present study, 

these rules are used in generating the primal 𝑆𝐽𝑀1. The 

rule used to design 𝑆𝐽𝑀1 is the SRTF. The second step 

includes producing the remaining 𝑆𝐽𝑀𝑖 , where  𝑖 =
2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒. The second part considers the 

calculation of the remaining 𝑝𝑜𝑝  𝑠𝑖𝑧𝑒 − 1  of 𝑆𝐽𝑀 s, 

the 𝑆𝐽𝑀𝑖−1  generated earlier, as a source or primal 

𝑆𝐽𝑀. The ISS is then performed to find an 

improved  𝑆𝐽𝑀  on two machines of the primal 

𝑆𝐽𝑀consecutively. Before running ISS, a machine (or a 

row of 𝑆𝐽𝑀𝑖−1) is randomly selected from all machines 

(called 𝛼) by randomly drawing a number from among 
[1…  𝑚]. The ISS is designed based on a new 
classification of jobs on machines (mPlates-Jobs) and 

the AR of mPlates as an activator of mPlates. The ISS 

aims to find a new 𝑆𝐽𝑀 with better quality and more 

difference than the primal 𝑆𝐽𝑀𝑖−1. ISS focuses on 𝑀𝛼, 

which is located in row 𝛼  of 𝑆𝐽𝑀𝑖−1 . ISS will then 

modify the orders of jobs on 𝑀𝛼  and the other 

machines. Next, the 𝑆𝐽𝑀𝑖 reconsiders the primal 𝑆𝐽𝑀 

to generate further 𝑆𝐽𝑀 by randomly selecting another 

machine, except 𝑀𝛼, and performing ISS on the 𝑆𝐽𝑀𝑖. 

The ISS procedure on 𝑀𝛼  states that if a new 

improved 𝑆𝐽𝑀  cannot be found after 𝑅𝑒𝑥𝑝𝑒𝑐𝑡  times, 

where 𝑅𝑒𝑥𝑝𝑒𝑐𝑡  relates to the number of jobs, then the 

value of 𝛼  is randomly reselected from [1…  𝑚]  by 
excluding the current value of 𝛼. Next, the ISS is re-run 
based on the new value of 𝛼. Reselecting the value of 𝛼 
is valid depending on the number of machines, and it is 

signified by 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 . If the procedure for finding a new 

improved 𝑆𝐽𝑀𝑖  by reselecting the value of  𝛼  is 
unsuccessful after 𝑅𝑟𝑒𝑝𝑒𝑎𝑡  times, 𝑆𝐽𝑀𝑖−2 is considered  
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Table 2. Sample of the procedure of the switching function 

algorithm 

Proc. Operations Note 

Step 1 1 → 𝑖, 1 → j  

Step 2 1 → 𝑖′, 1 →  𝑗′  

Step 3 
𝑆𝐽𝑀(1,1) → 𝑂12 

𝑆𝑂𝐽(𝑂12) = 1:  𝑀1 

𝑂12 is not processed 

and go to Step 4 

Step 4 𝛺′ = {𝑂11},  𝛺 = ∅  

Step 5 

𝑂11 = 𝑆𝐽𝑀(3,1) 

3 → 𝑖′,  1 → 𝑗′ 

𝑆𝑂𝐽(𝑂11) = 3:  𝑀3 

Consider 𝑂11 instead 

𝑂12 and go to Step 4 

Step 4 𝛺′ = ∅,  𝛺 = ∅  

Step 5 

𝑆𝑇(𝑂11) = 0 

𝑆𝑇(𝑂11) = 1 

𝑆𝐽𝑀(3,1) processed 

Evaluate 𝑂11 

Figure 1.a 

Step 6 

Due to 𝑖 ≠ 𝑖′ 
So 𝑖 → 𝑖′, 𝑗 → 𝑗′ and 

Return to Step 4 

𝑆𝐽𝑀(1,1) → 𝑂12 

𝑆𝑂𝐽(𝑂12) = 1:  𝑀1 

Step 4 𝛺′ = ∅,  𝛺 = ∅  

Step 5 

𝑆𝑇(𝑂12) = 1 

𝑆𝑇(𝑂12) = 4 

𝑆𝐽𝑀(1,1) processed 

Evaluate 𝑂12 

Figure 1.b 

Step 6 
Duo to 𝑖 = 𝑖′ & 𝑗 = 𝑗′ 

So go to Step 1 
 

Step 1 2 → 𝑖, 1 → 𝑗  

Step 2 2 → 𝑖′, 1 →  𝑗′  

Step 3 
𝑆𝐽𝑀(2,1) → 𝑂32 

𝑆𝑂𝐽(𝑂32) = 2:  𝑀2 
𝑂32 is not processed 

and go to Step 4 

Step 4 𝛺′ = {𝑂31},  𝛺 = ∅  

Step 5 

𝑂31 → 𝑆𝐽𝑀(3,2) 

3 → 𝑖′,  2 → 𝑗′ 

𝑆𝑂𝐽(𝑂31) = 3:  𝑀3 

Consider 𝑂31 instead 

𝑂32 and go to Step 4 

Step 4 𝛺′ = ∅,  𝛺 = ∅  

Step 5 

𝑆𝑇(𝑂31) = 1 

𝑆𝑇(𝑂31) = 6 

𝑆𝐽𝑀(3,2) processed 

Evaluate 𝑂31 

Figure 1.c 

Step 6 

Due to 𝑖 ≠ 𝑖′ & 𝑗 ≠ 𝑗′ 
So 𝑖 → 𝑖′, 𝑗 → 𝑗′ & 

Go to Step 4 

𝑆𝐽𝑀(2,1) → 𝑂32 

𝑆𝑂𝐽(𝑂32) = 2:  𝑀2 

Step 4 𝛺′ = ∅,  𝛺 = ∅  

Step 5 

𝑆𝑇(𝑂32) = 6 

𝑆𝑇(𝑂32) = 10 

𝑆𝐽𝑀(2,1) processed 

Evaluate 𝑂32 

Figure 1.d 

Step 6 
Duo to 𝑖 = 𝑖′ & 𝑗 = 𝑗′ 

So go to Step 1 
 

Step 1 3 → 𝑖, 1 → 𝑗  

Step 2 3 → 𝑖′, 1 →  𝑗′  

Step 3 𝑆𝐽𝑀(3,1) → 𝑂11 
𝑂11 is processed and 

go to Step 1 

⋮ ⋮ ⋮ 

Step 1 3 → 𝑖, 3 → 𝑗  

Step 2 3 → 𝑖′, 3 →  𝑗′  

Step 3 𝑆𝐽𝑀(3,3) → 𝑂22 
𝑂22 is processed and 

go to Step 1 

Step 1 Terminate the progress 
Terminate when 𝑖 =

3 & 𝑗 = 3 

 

 

Figure 1. Procedure of the switching function on 𝑆𝐽𝑀1  

the primal 𝑆𝐽𝑀 to generate 𝑆𝐽𝑀𝑖. If 𝑖 equals 2 (𝑖 = 2), 
then the primal 𝑆𝐽𝑀 is generated by the priority rule, 

which has not yet been applied in the construction 

procedure. For example, 𝑆𝐽𝑀1 is produced by SRTF. In 

addition, unsuccessful 𝑅𝑟𝑒𝑝𝑒𝑎𝑡   times occur when 

finding a new improved 𝑆𝐽𝑀2 by reselecting the value 

of  𝛼 . Thus, a new primal 𝑆𝐽𝑀  is generated by the 

earliest due date. The abovementioned procedure is 

completed to produce 𝑆𝐽𝑀𝑖 , given that the new 

sequence of jobs can be found on two machines/rows 

of the primal 𝑆𝐽𝑀. The new concept of mPlates-Jobs is 

first explained in the rest of this section. Next, the ARs 

of mPlates are designed, and finally, a brief outline of 

𝑖′ = 3,  𝑗′ = 2,    

𝑆𝑂𝐽(𝑂31) = 3:  𝑀3 

𝛺′ = ∅,  𝛺 = ∅ 

𝑖′ = i,  𝑗′ = j,    

𝑆𝐽𝑀(2,1) → 𝑂32 

𝑆𝑂𝐽(𝑂32) = 2:  𝑀2 

𝛺′ = ∅,  𝛺 = ∅ 

𝑀2 

𝑀1 

𝑀3 

1 

a: Evaluating 𝑂11  

𝑀2 

𝑀1 

𝑀3 

1 4 

b: Evaluating 𝑂12  

𝑀2 

𝑀1 

𝑀3 

1 4 6 

c: Evaluating 𝑂31  

𝑀2 

𝑀1 

𝑀3 

1 4 6 10 

d: Evaluating 𝑂32  

e: Corresponding feasible active schedule of 𝑆𝐽𝑀1  
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ISS based on the first generation rules of mPlates (ISS–

ARs) is described. The procedure of the heuristic 

algorithm to produce an initial population is presented 

in Fig. 2. The items used in Fig. 2 are explained in 

Table 3. 

Table 3. Items used in Figure 1 

Items Description 

Θ 

Set of machines that is used to 

generate 𝑆𝐽𝑀𝑖 based on the primal 

SJM. 

r_index 
It shows that the primal SJM is 

improved twice on two machines. 

k_index 

It presents that the primal SJM is 

improved while ISS–AR runs on 

α. 

primal_index 

It presents the index number of 

SJM that is considered as primal 

SJM. 

𝑓 (
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑
 𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀

) 

The quality (makespan) of the 

corresponding active feasible 

schedule to the exchanged primal 

SJM, which is obtained from 

running ISS–AR on 𝛼. 

𝑓( 𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀) 

The quality (makespan) of the 

corresponding active feasible 

schedule to the primal SJM. 

𝑅𝑒𝑥𝑝𝑒𝑐𝑡 
The upper bound on the number of 

iterations to find an improved 

SJM. while ISS–AR runs on 𝛼. 

𝑅𝑟𝑒𝑝𝑒𝑎𝑡 
The upper bound on the number of 

iterations to find a new improved 

SJM based on the primal SJM. 

SRTF 
The priority rule of the shortest 

remaining time first. 

EDD 
The priority rule of the earliest due 

date. 

LPT 
The priority rule of the longest 

processing time. 

 

4.2. Plates-Jobs and mPlates-Jobs 

Two new job classifications are proposed, namely, 

Plates-Jobs and mPlates-Jobs, which are based on the 

concepts and structures of 𝑆𝑂𝐽 and 𝑆𝐽M, respectively. 

In these classifications of jobs, the dependent rules, 

which are presented in the next subsection, create a 

range of candidates of processing orders for each job in 

𝑆𝐽𝑀.  The range reduces the dimension of the search 

space; thus, a better and new 𝑆𝐽𝑀 can be determined in 

a shorter period. In Plates-Jobs, jobs are classified 

based on machine number and should be processed in 

the same operation. The classification of jobs in Plates-

Jobs is obtained from 𝑆𝑂𝐽. Each row of Plates-Jobs is 
assigned to a given operation. Each available machine 

in a given operation creates one class of jobs, which is 

named Plate-Jobs, and includes at least one job. Each 

Plate-Jobs is indexed through the generated machine 

number. The classification of jobs generated in Plates-  

 

Generating Initial Population Procedure ( ) 

1  for 𝑖 = 1 ∶  𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 

2   if (𝑖 == 1) 

3      Generate 𝑆𝐽𝑀𝑖 based on the priority rule (SRTF) 

4    else 

5     Consider 𝑆𝐽𝑀𝑖−1 as the primal 𝑆𝐽𝑀 

6      𝑖 − 1 → primal_index 

7     1 → 𝑗 

8     ∅ → Θ 

9     while (𝑗 ≤ 2) 

10     1 → 𝑟 

11     0 → r_index 

12     Select a machine randomly from [1. . . 𝑚]/𝛩 →  𝛼 

13      𝛼 ∪ Θ → Θ 

14      while ((𝑟 ≤ 𝑅𝑟𝑒𝑝𝑒𝑎𝑡)&( 𝑗 ≤ 2)) 

15        1 → 𝑘 

16        0 → k_index 

17        while ((𝑘 ≤ 𝑅𝑒𝑥𝑝𝑒𝑐𝑡)&( 𝑗 ≤ 2)) 

18           Run the ISS–ARs on 𝛼 from the primal 𝑆𝐽𝑀 

19           if (𝑓(𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀) 

                                                     < 𝑓(𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀)) 

20              The exchanged primal 𝑆𝐽𝑀 → the primal 𝑆𝐽𝑀 

21               𝑅𝑒𝑥𝑝𝑒𝑐𝑡 + 1 → 𝑘 

22                𝑗 + 1 → 𝑗 

23               1 → k_index 

24                𝑅𝑟𝑒𝑝𝑒𝑎𝑡 + 1 → 𝑟 

25                1 → r_index 

26           else 

27                𝑘 + 1 → 𝑘 

28           end if 

29        end while 

30        if (k_index=0) 

31           Select a machine randomly from [1. . . 𝑚]/𝛩 → 𝛼 

33           𝛼 ∪ Θ → Θ 

34           𝑟 + 1 → 𝑟 

35         else 

36           𝑅𝑟𝑒𝑝𝑒𝑎𝑡 + 1 → 𝑟 

37           1 → r_index 

38         end if 

39       end while      

40       if (r_index = 0) 

41          if (primal_index> 1) 

42              𝑆𝐽𝑀𝑝𝑟𝑖𝑚𝑎𝑙 𝑖𝑛𝑑𝑒𝑥−1 → the primal 𝑆𝐽𝑀 

43               primal_index-1 → primal_index 

44           else if (primal_index = 1) 

45                Generate the primal 𝑆𝐽𝑀 based on EDD 

46                primal_index-1 → primal_index 

47           else if (primal_index = 0) 

48               Generate the primal 𝑆𝐽𝑀 based on LPT 

49               primal_index-1 → primal_index 

50           else 

51               drop generating initial population and go to 56 

52           end if 

53        end if 

54     end while 

55   end if 

56 end for 

Figure 2. Heuristic algorithm to produce an initial 

population 
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Generating Plates-Jobs and mPlates-Jobs Procedure 

1  for  𝑗 = 1 𝑡𝑜 𝑚           (Operations) 

2    1 → 𝑏𝑒𝑡𝑎(𝑗)  

3    1 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗)) 

4    for 𝑖 = 1 𝑡𝑜 𝑛               (Jobs) 

5       if (𝑖 == 1) 

6          ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗)) → 𝑡 

7          𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{1,1} 

8          𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{2, 𝑡}   
9          1 + 𝑡 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗))  

10        1 + 𝑏𝑒𝑡𝑎(𝑗) → 𝑏𝑒𝑡𝑎(𝑗)             

11     else 

12        0 → 𝑖𝑛𝑑𝑒𝑥 

13        1 → 𝑘  

14         while (𝑘 ≤ 𝑏𝑒𝑡𝑎(𝑗) − 1) 

15             if (𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑘}{1,1} == 𝑆𝑂𝐽(𝑂𝑖𝑗)) 

16                1 + 𝑖𝑛𝑑𝑒𝑥 → 𝑖𝑛𝑑𝑒𝑥 

17                𝑘 → 𝑎𝑙𝑝ℎ𝑎 

18                𝑘 + 𝑏𝑒𝑡𝑎(𝑗) + 1 → 𝑘 

19             else 

20                𝑘 + 1 → 𝑘 

21             end if 

22          end while 

23          if (𝑖𝑛𝑑𝑒𝑥 == 0) 

24              ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗)) → 𝑡 

25              𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{1,1} 

26               𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{2, 𝑡}   
27              1 + 𝑡 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗))  
28              1 + 𝑏𝑒𝑡𝑎(𝑗) → 𝑏𝑒𝑡𝑎(𝑗)                 

29          else 

30              ℎ(𝑗, 𝑎𝑙𝑝ℎ𝑎)  → 𝑡 

31              𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑎𝑙𝑝ℎ𝑎}{1,1} 

32               𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑎𝑙𝑝ℎ𝑎}{2, 𝑡}   
33              1 + 𝑡 → ℎ(𝑗, 𝑎𝑙𝑝ℎ𝑎)  
34          end if 

35       end if 

36    end for 

37 end for 

38 for  𝑗 = 1 𝑡𝑜 𝑚                (Machines) 

39    1 → 𝑝ℎ𝑖(𝑗) 

40    1 → 𝑟_𝑜𝑟𝑑𝑒𝑟 

41    for 𝑘 = 1 𝑡𝑜 𝑚                 (Operations) 

42       1 → 𝑖  
43       while (𝑖 ≤ 𝑏𝑒𝑡𝑎(𝑘) − 1) 

44          if (𝑃𝑙𝑎𝑡𝑒𝑠{𝑘, 𝑖}{1,1} == 𝑀𝑗) 

45            𝑂𝑘 → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{1,1} 
46            for 𝑡 = 1 𝑡𝑜 ℎ(𝑘, 𝑖) − 1 

47               𝑃𝑙𝑎𝑡𝑒𝑠{𝑘, 𝑖}{2, 𝑡} → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{2, 𝑡}   
48               𝑟_𝑜𝑟𝑑𝑒𝑟 → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{2, 𝑟_𝑜𝑟𝑑𝑒𝑟} 
49               𝑟_𝑜𝑟𝑑𝑒𝑟 + 1 → 𝑟_𝑜𝑟𝑑𝑒𝑟 

50            end for 

51              𝑝ℎ𝑖(𝑗) + 1 → 𝑝ℎ𝑖(𝑗)  

52              𝑖 + 𝑏𝑒𝑡𝑎(𝑘) → 𝑖 
53          else 

54              𝑖 + 1 → 𝑖 
55          end if 

56       end while      

57    end for 

58 end for 

Figure 3. Algorithm to produce Plates-Jobs  

and mPlates-Jobs 

Jobs is reorganized based on the operation number 

applied over the same machine and is called  

mPlates-Jobs. Each row of mPlates-Jobs is assigned to 

a given machine. Fig. 3 shows the algorithm that 

produces Plates-Jobs and mPlates-Jobs. Lines 1 to 37 

of the algorithm generate Plates-Jobs, and lines 38  

to 58 produce mPlates-Jobs. For a clear presentation of 

the proposed new concepts, a benchmark instance of 

six-job six-machine (Ft06) by Fisher and Thompson 

[25] is considered: 

Table 4. Original data for Ft06 

Machine (Processing Time) 

 Operation 

Job 1 2 3 4 5 6 

1 3(1) 1(3) 2(6) 4(7) 6(3) 5(6) 

2 2(8) 3(5) 5(10) 6(10) 1(10) 4(4) 

3 3(5) 4(4) 6(8) 1(9) 2(1) 5(7) 

4 2(5) 1(5) 3(5) 4(3) 5(8) 6(9) 

5 3(9) 2(3) 5(5) 6(4) 1(3) 4(1) 

6 2(3) 4(3) 6(9) 1(10) 5(4) 3(1) 

 

Based on Table 4, 𝑆𝑂𝐽  of Ft06 can be easily 
presented as follows: 

𝑆𝑂𝐽 =

[
 
 
 
 
 
𝟑 𝟏 𝟐
𝟐 𝟑 𝟓
𝟑 𝟒 𝟔

𝟒 𝟔 𝟓
𝟔 𝟏 𝟒
𝟏 𝟐 𝟓

𝟐 𝟏 𝟑
𝟑 𝟐 𝟓
𝟐 𝟒 𝟔

𝟒 𝟓 𝟔
𝟔 𝟏 𝟒
𝟏 𝟓 𝟑]

 
 
 
 
 

. (3) 

The first column/operation of 𝑆𝑂𝐽 to be considered 
has two machines (𝑀2 𝑎𝑛𝑑 𝑀3 ), and the second has 

four machines (𝑀1 , 𝑀2 ,  𝑀3 , and  𝑀4 ). Thus, 𝑂𝑖1  has 

two Plates-Jobs: one indexed with 𝑀2  that includes 

three jobs (𝐽2, 𝐽4 , and 𝐽6) and another indexed with 𝑀3, 

which has three other jobs (𝐽1, 𝐽3 , and 𝐽5). 𝑂𝑖2 has four 

Plates-Jobs: the first belongs to 𝑀1 and consists of two 

jobs (𝐽1 and 𝐽4); the second depends on 𝑀2 and has only 

one job (𝐽5); the third depends on 𝑀3 and has one job 

(𝐽2); and the last belongs to 𝑀4 and consists of two jobs 

(𝐽3 and 𝐽6). Other Plates-Jobs are created with different 
job numbers for the remaining operations/columns 

of 𝑆𝑂𝐽, as presented in Table 5. For example, 𝑂𝑖5 has 

four Plates-Jobs: the first consists of one job (𝐽1); the 
second, two jobs (𝐽2and 𝐽5); the third, one job (𝐽3); and 
the last, two jobs (𝐽4 and 𝐽6).  

The Plates-Jobs of Ft06 (Table 5) are individually 

reorganized, based on machine numbers, to create 

mPlates-Jobs. In the first step, 𝑀1  is selected. 𝑀1  has 
three Plates-Jobs on 𝑂𝑖2 (𝐽1 and 𝐽4), 𝑂𝑖4 (𝐽3 and 𝐽6), and 
𝑂𝑖5 (𝐽2 and 𝐽5) because these jobs are indexed by 𝑀1. 

These jobs are moved to the first row of mPlates-Jobs. 

This movement is repeated for the rest of the machines 

and their Plates-Jobs (Table 6).  
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Table 5. Plates-Jobs based on 𝑆𝑂𝐽 

Operation Plates-Jobs 

𝑂𝑖1 𝑀3: 𝐽1, 𝐽3, 𝐽5 𝑀2: 𝐽2, 𝐽4, 𝐽6 

𝑂𝑖2 𝑀1: 𝐽1, 𝐽4 𝑀3: 𝐽2 𝑀4: 𝐽3, 𝐽6 𝑀2: 𝐽5 

𝑂𝑖3 𝑀2: 𝐽1 
𝑀5 : 𝐽2, 

𝐽5 
𝑀6 : 𝐽3, 

𝐽6 
𝑀3 : 𝐽4 

𝑂𝑖4 𝑀4: 𝐽1, 𝐽4 𝑀6 : 𝐽2, 𝐽5 𝑀1 : 𝐽3, 𝐽6 

𝑂𝑖5 𝑀6:  𝐽1 
𝑀1 ∶ 𝐽2, 

𝐽5 
𝑀2 ∶ 
𝐽3 

𝑀5 ∶  𝐽4, 
𝐽6 

𝑂𝑖6 𝑀5: 𝐽1,𝐽3 
𝑀4: 𝐽2, 

𝐽5 
𝑀6: 𝐽4 𝑀3: 𝐽6 

 

For example, to create mPlates-Jobs related to 𝑀4, 

Plates-Jobs should be found indexed by 𝑀4  over 

operations on Plates-Jobs (Table 5). Three Plates-Jobs, 

namely, (𝑂𝑖2: 𝐽3 , 𝐽6 ), (𝑂𝑖4: 𝐽1 , 𝐽4 ) and (𝑂𝑖6: 𝐽2 , 𝐽5 ) are 
available to fill up the fourth row of mPlates-Jobs (see 

Table 6). 

Table 6. mPlates-Jobs by reorganizing the Plates-Jobs based 

on the machine numbers 

Machine mPlates-Jobs 

𝑀1 
𝑂𝑖2: 𝐽1, 𝐽4 𝑂𝑖4: 𝐽3, 𝐽6 𝑂𝑖5: 𝐽2, 𝐽5 

      

𝑀2 
𝑂𝑖1: 𝐽2, 𝐽4, 𝐽6 𝑂𝑖2: 𝐽5 𝑂𝑖3: 𝐽1 𝑂𝑖5: 𝐽3 

      

𝑀3 
𝑂𝑖1: 𝐽1, 𝐽3, 𝐽5 𝑂𝑖2: 𝐽2 𝑂𝑖3: 𝐽4 𝑂𝑖6: 𝐽6 

      

𝑀4 
𝑂𝑖2: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽1, 𝐽4 𝑂𝑖6: 𝐽2, 𝐽5 

      

𝑀5 
𝑂𝑖3: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽4, 𝐽6 𝑂𝑖6: 𝐽1,𝐽3 

      

𝑀6 
𝑂𝑖3: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽1 𝑂𝑖6: 𝐽4 

      

 

The number of rows and their elements on the lower 

floor of mPlates-Jobs are similar to those on 𝑆𝐽𝑀. For 

example, mPlate-Jobs1 on 𝑀2 has three jobs (𝐽2, 𝐽4, and 

𝐽6). Three empty cells are found on its lower floor that 

can be loaded by any permutation of these three jobs, 

which are exactly similar to those of the first three cells 

of 𝑆𝐽𝑀  on 𝑀2 /row2. Each mPlate-Jobs represents a 

limitation on the exchange of the processing orders of 

its jobs on 𝑆𝐽𝑀.  

The empty lower floors of mPlates-Jobs are 

randomly filled up by the available jobs on each 

mPlate. An example is shown in Table 7. 

The SJM randomly produced from the lower floors 

of mPlates-Jobs in Table 7 is presented as follows: 

 

 

Table 7. Loaded mPlates-Jobs by a random permutation of 

available jobs in each mPlate-Jobs 

Machine mPlates-Jobs 

𝑀1 
𝑂𝑖2: 𝐽1, 𝐽4 𝑂𝑖4: 𝐽3, 𝐽6 𝑂𝑖5: 𝐽2, 𝐽5 

𝑱𝟏 𝑱𝟒 𝑱𝟔 𝑱𝟑 𝑱𝟐 𝑱𝟓 

𝑀2 
𝑂𝑖1: 𝐽2, 𝐽4, 𝐽6 𝑂𝑖2: 𝐽5 𝑂𝑖3: 𝐽1 𝑂𝑖5: 𝐽3 

𝑱𝟐 𝑱𝟔 𝑱𝟒 𝑱𝟓 𝑱𝟏 𝑱𝟑 

𝑀3 
𝑂𝑖1: 𝐽1, 𝐽3, 𝐽5 𝑂𝑖2: 𝐽2 𝑂𝑖3: 𝐽4 𝑂𝑖6: 𝐽6 

𝑱𝟑 𝑱𝟏 𝑱𝟓 𝑱𝟐 𝑱𝟒 𝑱𝟔 

𝑀4 
𝑂𝑖2: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽1, 𝐽4 𝑂𝑖6: 𝐽2, 𝐽5 

𝑱𝟑 𝑱𝟔 𝑱𝟒 𝑱𝟏 𝑱𝟐 𝑱𝟓 

𝑀5 
𝑂𝑖3: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽4, 𝐽6 𝑂𝑖6: 𝐽1,𝐽3 

𝑱𝟐 𝑱𝟓 𝑱𝟔  𝑱𝟒 𝑱𝟑 𝑱𝟏 

𝑀6 
𝑂𝑖3: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽1 𝑂𝑖6: 𝐽4 

𝑱𝟔 𝑱𝟑 𝑱𝟐 𝑱𝟓 𝑱𝟏 𝑱𝟒 

 

𝑆𝐽𝑀 =

[
 
 
 
 
 
1 4 6
2 6 4
3 1 5

3 2 5
5 1 3
2 4 6

3 6 4
2 5 6
6 3 2

1 2 5
4 3 1
5 1 4]

 
 
 
 
 

. (4) 

The makespan of the 𝑆𝐽𝑀 based on Eq. (4) is 60, 

whereas the optimal makespan of Ft06 is 55. 𝑆𝐽𝑀 (Eq. 

(4)) is randomly generated based on available real 

processing orders for candidate jobs on their mPlates. 

This finding shows the capability and efficiency of the 

proposed classification of jobs (mPlates-Jobs). 

4.3. The Activators Rules of mPlates (ARs) 

An mPlates-Jobs is designed as a classification of 

jobs over machines based on 𝑆𝑂𝐽  and when matched 

with the structure of 𝑆𝐽𝑀. This classification is gene-

rated just once in the proposed intelligent initialization 

technique and possesses a fixed structure. Three rules 

are proposed to activate and to make up training on the 

mPlates-Jobs. These rules, which are regarded as the 

ARs of mPlates, are as follows: 

Rule 1: Two consecutive mPlates before and two 

consecutive mPlates after for each mPlate that belongs 

to consecutive operations on a given machine (if it 

exists) should combine together and generate a range 

of candidate orders based on three-layer priority, 

namely, central layer (CL), first layer (FL), and second 

layer (SL). 

Rule 2: For jobs on a given machine in SJM based 

on the abovementioned rule, a range of candidates to 

the three-layer priority will exist in which the 

probability of the orders of the CL is higher than those 

of the other layers and can be selected between 55% 

and 75%. For the next layer (FL), the probability is 



M. Abdolrazzagh-Nezhad, S. Abdullah 

224 

between 25% and 40%, and for the last layer (SL), it is 

between 5% and 10%. 

Rule 3: If an mPlate has only one job but does not 

have any consecutive mPlates before or after it with 

consecutive operations, the nearest mPlate before and 

after is considered as the FL by a probability between 

20% and 30%; the probability of selecting the order of 

the CL is between 70% and 80%.  

 

Figure 4. Implementations of the ARs of mPlates on 𝑀3 and 

𝑀6 for 𝐽6 

The range of candidate orders for each job on a 

given machine becomes limited based on the ARs. In 

this range, each order has a different selection probabi-

lity. For example, mPlates-Jobs related to 𝑀6  and 𝑀3 

are considered to explain the ARs (Fig. 4). The 

mPlates-Jobs related to 𝑀6 include four mPlates (𝑂𝑖3, 

𝑂𝑖4 , 𝑂𝑖5, and 𝑂𝑖6), which consecutively operate. With 

regard to Rules 1 and 2, the range of candidate orders 

for 𝐽3 or 𝐽6 on 𝑀6 (the sixth row of 𝑆𝐽𝑀) is (1, 2, 3, 4, 

5) such that orders 1 and 2 have 55% to 75% chances 

of sitting 𝐽3 or 𝐽6 on them. The chances of orders 3 and 

4 to select are 25% to 40%, and order 5 has 5% to 10% 

chance of selecting 𝐽3 or 𝐽6. According to Rule 3, 𝐽6 can 
obtain order 5 with 20% to 30% probability, and it can 

sit on order 6 with 70% to 80% chances. However, the 

mPlates of 𝑂𝑖3  and 𝑂𝑖6  are not consecutive. Reducing 

the search space of the solution space by using ARs 

depends on the dimensions of the dataset (number of 

jobs and machines) and the complexity of the process. 

For datasets with larger dimensions, more reduction in 

the search space from the solution space will occur. For 

instance, the search space of La19 [29] with 10 jobs:10 

machines has to reduce 3.9594e + 64 points to 1.8092e 

+ 40 based on the ARs. 

4.4. ISS Based on the ARs 

The robust intelligent initialization technique is 

completed by designing an ISS based on the ARs. The 

technique is called ISS–ARs. For ISS–ARs, one condi-

tion with two equations (Eqs. (5) and (6)) is considered 

as the threshold for performing ARs. If the jobs on a 

given machine satisfy the thresholds for performing 

ARs, their processing orders are exchanged in relation 

to ARs. Finally, the processing orders of the jobs, which 

have moved, on the other machines are modified. A 

brief outline of ISS–ARs is as follows: 

Step 1: Focus on a given machine/row (𝑀𝛼 ) of the 

primal 𝑆𝐽𝑀 , recognize the current orders of 

jobs on 𝑀𝛼 ,  and identify the mPlates-Jobs, 

which can be combined based on Rule 1. 

Step 2: Classify the list candidate orders of jobs and 

the probability that the jobs will be selected 

based on Rule 2 or Rule 3 in three or two 

layers. 

Step 3: Focus on each of the mPlates of the primal 

𝑆𝐽𝑀  (𝑚𝑃𝑙𝑎𝑡𝑒(𝑀𝛼 , 𝑘) ), and for each job (𝐽𝑟 ) 

on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀𝛼 , 𝑘)  with the 𝑐_𝑜𝑟𝑑𝑒𝑟 𝜌, 
randomly select a new order based on the 

probability of the candidate orders for 𝐽𝑟 as a 

target order 𝜏 . If 𝐽𝑟  and its consecutive jobs 

can satisfy Condition 1 and Eq. (5) or Eq. (6), 

then 𝐽𝑟 is moved to the target order 𝜏. 

To choose the target order randomly, one layer from 

CL, FL, and SL should be selected based on their 

probability. Subsequently, one order from the selected 

layer is kept random. 

Step 4: Simultaneously, move jobs from their current 

order to a new order (Step 3). The movement 

should be made with certainty that the order of 

these jobs in their other operations has settled 

on other machines with the best value. 

Otherwise, exchange the order during its 

mPlate, if jobs satisfy Condition 1 and Eq. (5). 

Steps 3 and 4 are repeated for all mPlates-Jobs on 

𝑀𝛼  and are created as an exchanged version of the 

primal  𝑆𝐽𝑀 . To check the quality of the exchanged 

version of the primal  𝑆𝐽𝑀  after Steps 2 to 4, and to 

determine whether it has improved or not, the switching 

function should be run over the exchanged version of 

the primal 𝑆𝐽𝑀. The initialization procedure that works 

based on this strategy is called ISS–ARs. 

Condition 1: Suppose that the 𝑐_𝑜𝑟𝑑𝑒𝑟  of 𝐽𝑟 with 
operation (𝑂𝑟𝑠) is 𝜌 on the primal 𝑆𝐽𝑀 and the nearest 

𝑟_𝑜𝑟𝑑𝑒𝑟  based on its mPlate equals 𝜏 . To match the 

𝑐_𝑜𝑟𝑑𝑒𝑟  of 𝐽𝑟  with its nearest  𝑟_𝑜𝑟𝑑𝑒𝑟 , 𝐽𝑟  should be 
moved by one unit to the left or right depending on the 

value of 𝜏 . If 𝜌 > 𝜏 , jobs with 𝑐_𝑜𝑟𝑑𝑒𝑟 𝜌 − 2 , 𝜌 − 1, 
and 𝜌 + 1  are 𝐽𝑝  with operation 𝑂𝑝𝑞 , 𝐽𝑖  with operation 

𝑂𝑖𝑗,  and 𝐽𝑎  with operation 𝑂𝑎𝑏  , respectively. If these 

operations satisfy Eq. (5), then the orders of 𝐽𝑟 and 𝐽𝑖 
should be swapped, and the makespan of the exchanged 

primal 𝑆𝐽𝑀  should be recalculated. Subsequently, the 

procedure should be repeated until the current order of 

𝐽𝑟 reaches 𝜏.  

{

𝜃 ≤ 𝐶𝑇(𝑂𝑟𝑠+1)                                                 
𝑎𝑛𝑑                                                                      
𝑚𝑎𝑥(𝐶𝑇(𝑂𝑖𝑗−1), 𝜃) + 𝑃𝑇(𝑂𝑖𝑗) ≤ 𝐶𝑇(𝑂𝑎𝑏)

 (5) 

In the abovementioned equation, 𝜃 =

𝑚𝑎𝑥 (𝐶𝑇(𝑂𝑟𝑠−1), 𝐶𝑇(𝑂𝑝𝑞)) + 𝑃𝑇(𝑂𝑟𝑠)  and CT and 

PT are completion time and processing time, 

respectively.. If no  𝐽𝑎  is found, then 𝐶𝑇(𝑂𝑎𝑏)  equals 
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the makespan of the primal 𝑆𝐽𝑀. If 𝐽𝑝 is not available, 

then 𝐶𝑇(𝑂𝑝𝑞)  equals zero. Conversely, if 𝜌 < 𝜏 , jobs 

with 𝑐_𝑜𝑟𝑑𝑒𝑟 s 𝜌 − 1 , 𝜌 + 1,  and 𝜌 + 2  are 𝐽𝑝  with 

operation 𝑂𝑝𝑞 , 𝐽𝑖  with operation 𝑂𝑖𝑗  , and 𝐽𝑎  with 

operation 𝑂𝑎𝑏 , respectively. If these operations satisfy 

Eq. (6), then the 𝑐_𝑜𝑟𝑑𝑒𝑟 s of 𝐽𝑟  and 𝐽𝑖  should be 
swapped, the makespan of the exchanged primal 𝑆𝐽𝑀 

should be recalculated, and then the procedure should 

be repeated until the current order of 𝐽𝑟 reaches 𝜏. 

{
𝛿 ≤ 𝐶𝑇(𝑂𝑖𝑗+1)                                                    

𝑎𝑛𝑑                                                                        
𝑚𝑎𝑥(𝐶𝑇(𝑂𝑟𝑠−1), 𝛿) + 𝑃𝑇(𝑂𝑟𝑠) ≤ 𝐶𝑇(𝑂𝑎𝑏)

 (6) 

In the abovementioned equation, 𝛿 =

𝑚𝑎𝑥 (𝐶𝑇(𝑂𝑖𝑗−1), 𝐶𝑇(𝑂𝑝𝑞)) + 𝑃𝑇(𝑂𝑖𝑗). If 𝐽𝑎  does not 

exist, then 𝐶𝑇(𝑂𝑎𝑏) equals the makespan of the primal 

𝑆𝐽𝑀. If 𝐽𝑝 is not available, then 𝐶𝑇(𝑂𝑝𝑞) equals zero. 

To illustrate the execution of the ISS–ARs on a given 

machine clearly, a numerical sample is presented as 

follows: 𝑆𝐽𝑀2
𝐹𝑡06 in Eq. (7) with a makespan of 72 is 

supposed as a primal 𝑆𝐽𝑀 for Ft06 and is focused on 

𝑀1: 

𝑆𝐽𝑀2
𝐹𝑡06 =

[
 
 
 
 
 
1 4 5
6 4 2
1 3 5

6 3 2
1 5 3
2 4 6

6 3 1
5 2 1
6 3 1

4 5 2
4 6 3
5 2 4]

 
 
 
 
 

 (7) 

The current orders (𝑐_𝑜𝑟𝑑𝑒𝑟) of jobs on 𝑀1 should 

be recognized in relation to Step 1, and the mPlates, 

which can be combined based on Rule 1 of ARs, should 

be identified. 𝑀1  has three mPlates-Jobs: 

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), which includes 𝐽1  and 𝐽4  and indexed 
by 𝑂𝑖1 ; 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) , which consists of 𝐽3  and 𝐽6 
and is referred to as 𝑂𝑖4; and 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3), which is 
composed of 𝐽2  and 𝐽5  and cited by 𝑂𝑖5 . Given 

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2)  and 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3) , jobs are indexed 
by consecutive operations, and they can be combined 

as the FL. Meanwhile, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), which remains 

as one layer, is the CL. The 𝑐_𝑜𝑟𝑑𝑒𝑟  layer for each 
mPlate and the list of candidate orders with their 

probabilities for jobs based on Rules 2 and 3 of ARs, 

which are in accordance with Step 2, are shown in 

Table 8. 

In Step 3, the first 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1)  includes 𝐽1  and 
𝐽4. Next, order1 and order2 are randomly selected for 𝐽4 
and 𝐽1 , respectively. 𝐽4  and  𝐽1  can be swapped with 
each other (𝐽4 can be moved to order 1) because these 

conditions satisfy Eq. (6). Thus, the exchanged 

sequence of jobs on 𝑀1  is equal to (4 1 5 6 3 2). 

Moreover, given the movement of 𝐽4 to the right side, 
the current orders of 𝐽4  on other machines should be 

simultaneously controlled. If the condition of Eq. (5) is 

satisfied, then the current orders should be exchanged, 

and the makespan of the exchanged primal 𝑆𝐽𝑀 should 

be recalculated based on Step 4. 𝐽1  should not be 
moved because its target and current orders are similar. 

Newly  exchanged  primal 𝑆𝐽𝑀, a result of  performing 

Table 8. List of candidate orders for jobs on 𝑀1 
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probability 
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candidate 

orders 

current 

order  

of jobs  
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jo
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𝐽1 1 

CL: 1 1, 2 100% 

1 𝑂12 FL: - - - 

SL: - - - 

𝐽2 3 

CL: 3 5, 6 85% 

6 𝑂25 FL: 2 3, 4 15% 

SL: - - - 

𝐽3 2 

CL: 2 3, 4 85% 

5 𝑂34 FL: 3 5, 6 15% 

SL: - - - 

𝐽4 1 

CL: 1 1, 2 100% 

2 𝑂42 FL: - - - 

SL: - - - 

𝐽5 3 

CL: 3 5, 6 85% 

3 𝑂55 FL: 2 3, 4 15% 

SL: - - - 

𝐽6 2 

CL: 2 3, 4 85% 

4 𝑂64 FL: 3 5, 6 15% 

SL: - - - 

 

Steps 3 and 4 on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), has six swaps and is 
presented in 𝑆𝐽𝑀3

𝐹𝑡06 (Eq. (8)) with a makespan of 72. 

The results of the movement to other operations of 𝐽4 
on another machine based on Step 4 are presented  

in Table 9. 

𝑆𝐽𝑀3
𝐹𝑡06 =

[
 
 
 
 
 
4 1 5
4 6 2
1 3 4

6 3 2
1 5 3
5 2 6

6 3 4
5 2 4
6 3 1

1 5 2
1 6 3
5 2 4]

 
 
 
 
 

 (8) 

Table 9. Results of movement of 𝐽4 based on Step 4 
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𝑂41 𝑀2 2 1 Satisfied 72 

𝑂43 𝑀3 

5 4 Satisfied 72 

4 3 Satisfied 72 

3 2 Unsatisfied - 

𝑂44 𝑀4 
4 3 Satisfied 72 

3 2 Unsatisfied - 

𝑂45 𝑀5 
4 3 Satisfied 72 

3 2 Unsatisfied - 

𝑂46 𝑀6 6 5 Unsatisfied - 
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The movements of jobs on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1) are thus 
completed. As such, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) is considered the 
next mPlate. Steps 3 and 4 are repeated for jobs on 

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2), whereas Step 3, executed on 

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2),  begins on 𝐽3 . The target order of 𝐽3  
is chosen from two layers. CL includes order3 and 

order4 with 85% probability, and FL consists of  

order5 and order6 with 15% probability (Table 8). 

Therefore, based on the probability of the orders, 

order3 is randomly selected for 𝐽3. The 𝑐_𝑜𝑟𝑑𝑒𝑟 of 𝐽3 is 
order5. If 𝐽3  and the jobs in the right side can  
satisfy Eq. (5), then first, 𝐽3 should be moved to order4 

and the next one should be moved to order3. Thus, 𝐽3 
and 𝐽6  are swapped with each other (𝐽3  is moved to 

order4) once they satisfy Eq. (5). Subsequently, the 

makespan value is recalculated. Therefore, the 

exchanged sequence of jobs on 𝑀1 equals (4 1 5 3 6 2). 

Next, the order of 𝐽3  on other machines should be 

checked based on Step 4. The results are presented  

in Table 10. 

Table 10. Results of movement of 𝐽3 based on Step 4 
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𝑂31 𝑀3 2 1 Satisfied 72 

𝑂32 𝑀4 2 1 Satisfied 72 

𝑂33 𝑀6 2 1 Satisfied 72 

𝑂35 𝑀2 6 5 Unsatisfied - 

𝑂36 𝑀5 

6 5 Satisfied 72 

5 4 Satisfied 72 

4 3 Unsatisfied - 

 

Step 3 is repeated over 𝐽3 to check the capability of 
𝐽3 to move to order 3. 𝐽3 and the jobs in the right side 
(𝐽5) satisfy Eq. (5) and therefore can be swapped with 
each other. The exchanged sequence of jobs on 𝑀1 

equals (4 1 3 5 6 2). The makespan of the exchanged 

𝑆𝐽𝑀 is 68. Next, the order of 𝐽3 on other machines is 

checked based on Step 4. The results are shown in 

Table 11. 

Table 11. Results of movement of 𝐽3 based on Step 4 
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𝑂31 𝑀3 1 - - - 

𝑂32 𝑀4 1 - - - 

𝑂33 𝑀6 1 - - - 

𝑂35 𝑀2 6 5 Unsatisfied - 

𝑂36 𝑀5 
4 3 Satisfied 68 

3 2 Unsatisfied - 

The implementations of Steps 3 and 4 on 𝐽3  are  
then completed, and 𝐽3  reaches the target order. 𝐽6  
is then considered the next job of 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) ,  
and order 4 is randomly selected as the target order  

for 𝐽6.  The current order of 𝐽6  is order5 on the last 
exchanged version of the primal 𝑆𝐽𝑀 . The results of 

checking the order of 𝐽6  on other machines in Step 4  

are presented in Table 12. The implementations of 

Steps 3 and 4 over jobs on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2)  and 
𝑆𝐽𝑀4

𝐹𝑡06 are completed, and the exchanged version of 

𝑆𝐽𝑀  with a makespan of 67 is available based on 

Eq. (9). 

𝑆𝐽𝑀4
𝐹𝑡06 =

[
 
 
 
 
 
4 1 3
4 6 2
3 1 4

6 5 2
1 5 3
5 6 2

6 3 4
5 2 3
6 3 1

1 5 2
4 6 1
5 2 4]

 
 
 
 
 

 (9) 

Table 12. Results of movement of 𝐽6 based on Step 4 
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𝑂61 𝑀2 2 1 Unsatisfied - 

𝑂62 𝑀4 2 1 Satisfied 68 

𝑂63 𝑀6 2 1 Satisfied 68 

𝑂65 𝑀5 
6 5 Satisfied 67 

5 4 Unsatisfied - 

𝑂66 𝑀3 
6 5 Satisfied 67 

5 4 Unsatisfied - 

 

Finally, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3)  and its jobs ( 𝐽2  and 𝐽5 )  
are considered in Step 2. Orders 5 and 6 are selected  

as the target orders of 𝐽2  and 𝐽5 , respectively. Given  
that the current and target orders of 𝐽2  and 𝐽5  in the  
last exchanged version of the primal 𝑆𝐽𝑀  (𝑆𝐽𝑀4

𝐹𝑡06 )  

are similar, the procedure of ISS–ARs is completed  

for all jobs on 𝑀1. The comparison of 𝑆𝐽𝑀2
𝐹𝑡06 as the 

primal 𝑆𝐽𝑀  with 𝑆𝐽𝑀4
𝐹𝑡06  as the exchanged 𝑆𝐽𝑀 

produces 16 variations (44.4% exchanges based on  

the overall exchanges), although 19 movements (52.8% 

exchanges) occur during the performance of ISS–ARs 

on 𝑀1. Meanwhile, ISS–ARs should be simultaneously 

run on two machines to generate one point (𝑆𝐽𝑀 ) of  

the initial population. Thus, to generate a new point  

of the initial population from 𝑆𝐽𝑀2
𝐹𝑡06  as the primal 

𝑆𝐽𝑀, ISS–ARs should be performed on other machines 

except 𝑀1. 

5. Experimental Results 

ISS–ARs is tested on benchmark datasets available 

in the OR library [30] and Willem [24] to evaluate  

the proposed intelligent construction procedure. The 
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dataset details and parameters, which are used to 

execute ISS–ARs, include programming, processor, 

population size, 𝑅𝑒𝑥𝑝𝑒𝑐𝑡  , 𝑅𝑟𝑒𝑝𝑒𝑎𝑡  , and others. These 

details and parameters are presented in Table 13. The 

experimental results of ISS–ARs are presented in 

Table 14, based on the makespan as the objective 

function (Ran. 𝐶𝑚𝑎𝑥). 𝐺𝑛 is the number of generations 

required to reach the solution, and T is the CPU  

time to produce the initial population. The experi-

mental results are also compared with the best-known 

solution (BKS), simulated G&T algorithm [22], 

heuristic initialization (IPG) proposed in [7], GA  

with IPG (IPG + GA), and without IPG as evaluated  

in [7]. 

 

 

Table 13. Experimental details and parameters 

Programming Matlab9 

Processor Intel Core2 Due P8600 2.4 GHz 

Population size Twice the number of jobs (2 𝑛) 

𝑅𝑒𝑥𝑝𝑒𝑐𝑡 80% of the number of jobs (0.8 𝑛) 

𝑅𝑟𝑒𝑝𝑒𝑎𝑡 Number of machines (𝑚) 

Number of runs of ISS–

ARs over datasets 
10 times 

Main criterion in the 

experiment 

Makespan as quality of generated 

points 

Second calculated 

measure 

CPU time as computational time 

to produce initial population 

 

 

Table 14. Experimental results and their comparison with the results of G&T, GA, and Kuczapski’s algorithm [7] 

Instance BKS 

ISS–ARs G&T GA IPG + GA IPG 

Ran. 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑪𝒎𝒂𝒙 𝑮𝒏 𝑪𝒎𝒂𝒙 𝑮𝒏 𝑪𝒎𝒂𝒙 𝑮𝒏 

Ft06 55 71–57 ≤ 12 0.49 61 55 112 55 124 55 23 

Ft10 930 1509–1046 ≤ 20 6.65 1228 1051 178 1007 187 1043 27 

Ft20 1165 1739–1206 ≤ 40 14.79 1565 1295 200 1223 151 1230 29 

La01 666 892–666 ≤ 20 2.26 772 676 154 668 195 701 36 

La02 655 878–655 ≤ 20 2.12 899 697 26 677 149 704 26 

La03 597 1001–597 ≤ 20 2.09 771 628 141 640 179 653 31 

La26 1218 2023–1325 ≤ 40 65.34 1433 1479 200 1316 166 1348 35 

La27 1235 1806–1395 ≤ 40 66.92 1593 1556 186 1426 224 1460 32 

La28 1216 1928–1357 ≤ 40 65.60 1557 1506 238 1403 206 1460 35 

La29 1157 1934–1351 ≤ 40 66.58 1496 1481 208 1385 287 1449 38 

La30 1355 2110–1512 ≤ 40 65.09 1614 1595 210 1492 269 1560 35 

La36 1268 1752–1447 ≤ 30 15.85 1546 1500 191 1434 221 1543 38 

La37 1397 2120–1579 ≤ 30 15.13 1579 1623 195 1554 194 1580 29 

La38 1196 1830–1381 ≤ 30 16.50 1466 1442 185 1338 202 1370 33 

La39 1233 1767–1401 ≤ 30 15.89 1532 1460 220 1397 177 1417 34 

La40 1222 1844–1361 ≤ 30 14.92 1539 1438 96 1288 170 1297 35 

 

Table 15. Experimental results and their comparison with the results of Yahyaoui’s algorithm [23] 

Ins. 

ISS–ARs CSANN FM SM YTPM 

𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑮𝒏 T 

Ft06 57 ≤ 12 0.49 55 85.2 472 156.4 129.1 2725 578.4 67.4 393 81.89 

Willem 94 ≤ 20 5.06 95 142 1596 34562 256 4562 45869 107 1358 27994 

An interesting point in Table 14 is the observation 

of the BKS among the initial populations generated by 

ISS–ARs for La01, La02, and La03. Although ISS–

ARs is designed to generate the initial population, the 

results can challenge GA based on the results presented 

in Table 14. 

Table 15 includes the simulation results by 

Yahyaoui et al. [23] and compares the best point 

produced in the initial population generated by ISS–

ARs. Three initialization methods are proposed for the 

neural network to solve JSSP [23]. The authors 

considered two initialization methods based on random 

techniques, namely, first method (FM) and second 
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method (SM), and proposed a new heuristic 

initialization method, namely “the third new proposed 

method” (YTPM). They also considered the results of 

a constraint satisfaction adaptive neural network 

(CSANN) to evaluate their results. Table 15 shows that 

ISS–ARs succeeded in generating a point better than 

BKS for Willem’s dataset [24], which belonged to Yang 

and Wang [31].  

Finally, Table 16 shows the experimental results of 

ISS–ARs that are compared with those of the 

simulating priority rules proposed by Moghadam and 

Daneshmand-Mehr [20]: first in first out (FIFO), last in 

first out (LIFO), low-value function (LVF), and high-

value function (HVF). 

The advantages of ISS–ARs are clearly proven by 

the quality of solutions and the lower computational 

times obtained through the comparisons presented in 

Tables 14 to 16. 

Table 16. Comparison of the experimental results with 

simulated priority rules by Moghaddam [20] 

Instance FIFO LIFO HVF LVF ISS–ARs 

Ft06 61 69 68 69 57 

Ft10 1184 1283 1240 1370 1046 

Ft20 1645 1291 1656 1336 1206 

 

6. Conclusion 

A novel intelligent initialization technique is 

proposed to generate an initial population close to the 

optimal solution. The technique is based on an ISS from 

a primal point to a better one. The ISS is designed based 

on a new classification of jobs, called mPlates-Jobs, 

which considers a predetermined precedence constraint 

(𝑆𝑂𝐽). A set of rules, namely, ARs, is proposed to acti-

vate and formulate the training of the mPlates-Jobs. 

ISS–ARs can produce any size of initial population. 

Based on the experimental results and the comparison 

with other available valid methods in Tables 14 to 16, 

ISS–ARs generate an initial population in a signifi-

cantly short computation time. The best point of the 

produced initial population is close to an optimal 

solution. The important result that shows the advantage 

of the ISS–ARs is the observation of the BKS among 

the initial populations of La01, La02, and La03 in 

Table 14. Another important result is the successful 

generation of a point that is better than the BKS of 

Willem’s dataset [24] among the initial population, as 

shown in Table 15. The ISS–AR of this study is a fast, 

intelligent heuristic algorithm for solving the JSSP, 

based on the quality of the experimental results.  

This study has created the perfect foundation 

through which a more effective procedure to produce 

the initial population with a shorter computation time 

and better quality than ISS–AR can be designed. The 

implementation of ISS–ARs in other cases of JSSPs 

and other scheduling problems is the recommended 

second phase of future studies. 
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