
217

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr. 3

Robust Intelligent Construction Procedure for Job-Shop Scheduling

Majid Abdolrazzagh-Nezhada, Salwani Abdullahb

aDepartment of Computer and Software Engineering, University of Birjand, Birjand, Iran

e-mail: abdolrazzagh@birjand.ac.ir

bData Mining and Optimization Research Group, Centre for Artificial Intelligence Technology

Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia

e-mail: salwani@ukm.edu.my

 http://dx.doi.org/10.5755/j01.itc.43.3.3536

Abstract. This paper proposes a robust intelligent technique to produce the initial population close to the optimal

solution for the job-shop scheduling problem (JSSP). The proposed technique is designed by a new heuristic based on

an intelligent skip from the primal point of the solution space to a better one that considers a new classification of jobs

on machines. This new classification is named mPlates-Jobs. The main advantages of the proposed technique are its

capability to produce any size of the initial population, its proximity to the optimal solution, and its capability to observe

the best-known solution in the generated initial population for benchmark datasets. The comparison of the experimental

results with those of Kuczapski’s, Yahyaoui’s, Moghaddam and Giffler’s, and Thompson’s initialization techniques,

which are considered the four state-of-the-art initialization techniques, proves the abovementioned advantages. In this

study, the proposed intelligent initialization technique can be considered a fast and intelligent heuristic algorithm to solve

the JSSP based on the quality of its results.

Keywords: Job-shop scheduling; population-based algorithms; initialization procedures; approximation algorithms;

intelligent techniques.

1. Introduction

The job-shop scheduling problem (JSSP) is one of

the most difficult non-deterministic polynomial hard

combinatorial complexity optimization problems [1, 2].

Since the mid-50s, research on JSSP has continued

given its widespread applications in industry, manage-

ment, transportation, business, and service sectors. Its

history is characterized by the proposal of exact

methods, such as branch and bound algorithms [3] and

integer programming [4]. Although exact algorithms

for very small-size instances of combinatorial optimi-

zation problems are guaranteed to find an optimal

solution in bounded time, an exact algorithm to solve

JSSP in polynomial time is unavailable. Current

algorithms are applicable only for small-size instances.

Thus, researchers focused on heuristic and meta-

heuristic algorithms as approximation methods. These

algorithms, namely, memetic algorithm [5], genetic

algorithm [6, 7], bee colony optimization [8], ant

colony optimization [9], particle swarm optimization

[10], artificial immune system [11], electromagnetic-

like mechanism [12], chemical reaction optimization

[13], DNA computing [14], and others [15–17], are

mostly population-based algorithms. These algorithms

require the production of an initial population to start

the exploration and exploitation of the solution space.

A high-quality initial population would speed up these

algorithms, but the attention of researchers is often

focused on other steps of the meta-heuristic algorithm.

Thus, studies on the subject are limited.

The initialization of JSSP has been performed using

various methods, such as random methods, priority

rules, and heuristic algorithms. Based on published

literature, most of the previous researchers used

random techniques, such as random keys, to produce an

initial population ([6], [18], [10], [14], and [19]).

However, the quality of the random points produced is

far below that of optimal points. Algorithms that use

random initialization require more computation time to

reach an optimal solution than those that use guided

techniques in the initialization section. Priority

dispatching rules simulated by Moghaddam and

Daneshmand [20] and Canbolat and Gundogar [21] are

ranked second in the initialization techniques,

according to the number of their applications in

previous literature. Considering that priority rules are

easy to execute and have low requirements for

computational power, they have fascinated many

researchers. Giffler and Thompson’s (G&T) algorithm

M. Abdolrazzagh-Nezhad, S. Abdullah

218

[22] is one of the most important and original

executions of priority rules. Kuczapski et al. [7]

proposed an efficient initialization procedure to

enhance genetic algorithm by generating near-optimal

initial populations. Yahyaoui et al. [23] also proposed a

heuristic initialization procedure based on integer linear

programming; their results are comparable with those

of other proposed initialization procedures [24].

This paper proposes a novel intelligent initialization

technique to enhance population-based algorithms by

generating initial populations close to the optimal

solution in an acceptably short computational time. To

achieve this goal, a novel heuristic is designed to

generate any size of the initial population. A new

intelligent skipping strategy (ISS) is embedded in the

proposed heuristic to enable skipping from a primal

point of solution space to a better one. The ISS is

designed by first introducing a new classification of

jobs, called mPlates-Jobs, to machines based on the

operation number of jobs. Second, a novel set of rules,

namely, the activator rules of mPlates (ARs), is

designed to activate the mPlates-Jobs. Finally, ISS–

ARs is produced based on the ISS and ARs of mPlates.

The rest of the paper is organized as follows:

Section 2 describes and formulates JSSP. Section 3

presents the pre-processing of JSSP. Section 4 proposes

a generic heuristic to produce an initial population and

elaborates on the ISS embedded in the proposed

heuristic. Section 5 reports the experimental and

comparative results. Section 6 discusses the

conclusions and future work.

2. JSSP Description

A JSSP, which is considered in this study, can be

formulated as follows: A set of jobs 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛} is
provided on a set of machines 𝑀 = {𝑀1, 𝑀2, … ,𝑀𝑚}.

The operations of the jobs 𝑂 = {𝑂𝑖𝑗 , 𝑖 = 1,2, … ,

𝑛 & 𝑗 = 1,2, … ,𝑚} have to be processed in the

machines under three types of constraints, namely,

precedence, capacity, and release and due date

constraints. Precedence constraints include three

limitations: each job should be processed through the

sequence of machines in a predetermined order (𝑆𝑂𝐽);
the machine orders among different jobs are

unconfined; and no precedence constraints exist among

the operations of different jobs. Capacity constraints

comprise five restraints: machines are independent of

one another; machines cannot remain idle while an

operation is waiting for processing; each machine can

only handle at most one operation at a time; each job

can be processed only once on a given machine; and

jobs are independent of one another. Finally, release

and due date constraints contain three restrictions. First,

no negative starting time is observed. Second, the

processing time of operations is given a length. Finally,

the processing of each operation must not be

interrupted. Therefore, to satisfy these constraints and

to achieve the objective of JSSP, the starting time of the

processing operation is considered the decision variable

of JSSP. A feasible schedule is assigned time slots on

the machines for operations by satisfying the

constraints of the problem and by finding a sequence of

jobs on machines (𝑆𝐽𝑀); the corresponding schedule

should minimize the maximum completion time of the

last completed operation (makespan/𝐶𝑚𝑎𝑥) [25] as the

standard objective function of JSSP. Therefore, the

problem target is in finding a sequence of jobs on

machines (𝑆𝐽𝑀) whereby its corresponding schedule

satisfies all constraints and, at the same time, minimizes

the makespan.

3. Pre-processing of the JSSP

One of the key issues in successfully applying

meta-heuristics to JSSP is in encoding a schedule to

search space [26], that is, a suitable selection of

encoding scheme is extremely important in enhancing

the search effectiveness of any meta-heuristic. In

addition, all of the encoding schemes proposed for the

JSSP can generate an active schedule through the

decoder.

3.1. Encoding Solution Space

In this study, a modified version of the preference

list-based representation [26] is considered in a matrix

format as the encoding scheme. One condition is

designed over the encoded points to satisfy the

feasibility and escape the loop of consecutive

operations. Thus, the sequence of jobs on machines

matrix, called 𝑆𝐽𝑀 , is considered as the encoding

scheme that represents the points of the solution space.

Each row of the 𝑆𝐽𝑀 matrix represents a permutation

of jobs to be processed in a given machine. Therefore,

the entries of 𝑆𝐽𝑀 are jobs. Each job on each row

(machine) has to be viewed only once. This limitation

comes from precedence and capacity constraints (i.e.,

processing of each operation must not be interrupted,

and each job can be processed only once on a given

machine).

JSSP has (𝑛!)𝑚 different 𝑆𝐽𝑀𝑠 with 𝑚 machines

and 𝑛 jobs. Some of these 𝑆𝐽𝑀𝑠 do not have a feasible
schedule because they have at least one loop of

operations. If an 𝑆𝐽𝑀 does not have at least one of the

first processed operations of jobs (𝑂𝑖1) with the lowest

order (the first to process) on each machine as the

source operation and does not have at least one of the

last processed operations of jobs (𝑂𝑖𝑚) with the highest

order (the last to process) on each machine as the sink

operation, then at least one loop from operations is

created in 𝑆𝐽𝑀. There are ((𝑛 − 2)(𝑛 − 1)!)
𝑚
different

𝑆𝐽𝑀𝑠 with at least one loop from operations; these

types of 𝑆𝐽𝑀 are rejected.

3.2. Decoder Algorithm

An encoded point is not a schedule, but it has a

corresponding active feasible schedule. A feasible

schedule that includes no idle time is called active.

Robust Intelligent Construction Procedure for Job-Shop Scheduling

219

Constructing another schedule with at least one

operation finishing earlier and that with no operation

finishing later is not possible [27]. Therefore, a decoder

algorithm should be designed to construct an active

feasible schedule that corresponds to a given encoding.

The most famous decoder algorithm was proposed by

Giffler and Thompson [22] and later improved by many

other researchers [10, 19, 28]. In the present study, a

new heuristic decoder algorithm, called the switching

function, is designed to construct an active feasible

schedule that corresponds to a given 𝑆𝐽𝑀 . The

algorithm has a simple structure and guarantees the

satisfaction of all constraints. A brief outline of the

switching function is as follows:

Step 0: 0 → 𝑖 and 0 → 𝑗.

Step 1: Consider operations of jobs (𝑂𝑖𝑗 , 𝑖 = 1,… , 𝑛

and 𝑗 = 1,… ,𝑚) one by one. If (𝑖 = 𝑛 and 𝑗 =
𝑚), then terminate the progress; else if (𝑖 ≠ 𝑛

and 𝑗 = 𝑚), then 𝑖 + 1 → 𝑖; else 𝑗 + 1 → 𝑗.

Step 2: 𝑖 → 𝑖′ and 𝑗 → 𝑗′

Step 3: If 𝑂𝑖′𝑗′ is not processed, then proceed to

Step 4, else return to Step 1.

Step 4: Let 𝛺′ be the set of operations of 𝐽𝑖′ with

smaller index than 𝑗′ that have not been

processed. Consider 𝑀𝑘 as the machine to

process 𝑂𝑖′𝑗′ , and let 𝛺 be the set of

operations with jobs (that have not been

processed) having lower order to be processed

on 𝑀𝑘 compared with 𝐽𝑖′ .

Step 5: If 𝛺 and 𝛺′ are empty, evaluate 𝑂𝑖′𝑗′ based on

its constraints with the earliest possible

starting time and proceed to Step 6. else if 𝛺 is

non-empty and 𝛺′ is empty, then consider the

operation with the minimum order to process

in 𝛺 (for example, it is 𝑂𝑟𝑠) instead of 𝑂𝑖′𝑗′

(i.e., 𝑟 → 𝑖′ and 𝑠 → 𝑗′), and return to Step 4.

else if 𝛺 is empty and 𝛺′ is non-empty, then

consider 𝑂𝑖′𝑗′−1 instead of 𝑂𝑖′𝑗′ (i.e., 𝑗′ −

1 → 𝑗′), and return to Step 4.

Step 6: If 𝑖 = 𝑖′ and 𝑗 = 𝑗′ , then return to Step 1, else

𝑖 → 𝑖′, 𝑗 → 𝑗′, then return to Step 4.

For a better presentation of the procedure of the

switching function, a small instance, including three

jobs and three machines, is considered in Table 1.

Table 1. Original data for the small instance

Machine (Processing Time)

 Operation

Job 1 2 3

1 3(1) 1(3) 2(6)

2 2(3) 3(5) 1(7)

3 3(5) 2(4) 1(3)

The predetermined sequence of operations (𝑆𝑂𝐽) of
the instance is as follows:

𝑆𝑂𝐽 = [
3 1 2
2 3 1
3 2 1

]. (1)

A feasible encoded point of solution space (𝑆𝐽𝑀1)

is arbitrarily (randomly) considered:

𝑆𝐽𝑀1 = [
1 3 2
3 2 1
1 3 2

]. (2)

The procedure of the algorithm for generating the

corresponding feasible active schedule of 𝑆𝐽𝑀1 is

explained in Table 2 and Fig. 1. Table 2 shows that

𝑆𝑇(𝑂𝑖𝑗) is a starting time of 𝑂𝑖𝑗.

4. Initialization Technique

4.1. Heuristic to Generate an Initial Population

In this study, a new heuristic is proposed to generate

the initial population. The algorithm of the heuristic is

elaborated in Fig. 2, where two main parts are included.

The first part, which uses the priority rule (shortest

remaining time first, SRTF) generates one primal

𝑆𝐽𝑀1. The literature on constructing initial schedules

directly uses the priority rules, but in the present study,

these rules are used in generating the primal 𝑆𝐽𝑀1. The

rule used to design 𝑆𝐽𝑀1 is the SRTF. The second step

includes producing the remaining 𝑆𝐽𝑀𝑖 , where 𝑖 =
2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒. The second part considers the

calculation of the remaining 𝑝𝑜𝑝 𝑠𝑖𝑧𝑒 − 1 of 𝑆𝐽𝑀 s,

the 𝑆𝐽𝑀𝑖−1 generated earlier, as a source or primal

𝑆𝐽𝑀. The ISS is then performed to find an

improved 𝑆𝐽𝑀 on two machines of the primal

𝑆𝐽𝑀consecutively. Before running ISS, a machine (or a

row of 𝑆𝐽𝑀𝑖−1) is randomly selected from all machines

(called 𝛼) by randomly drawing a number from among
[1… 𝑚]. The ISS is designed based on a new
classification of jobs on machines (mPlates-Jobs) and

the AR of mPlates as an activator of mPlates. The ISS

aims to find a new 𝑆𝐽𝑀 with better quality and more

difference than the primal 𝑆𝐽𝑀𝑖−1. ISS focuses on 𝑀𝛼,

which is located in row 𝛼 of 𝑆𝐽𝑀𝑖−1 . ISS will then

modify the orders of jobs on 𝑀𝛼 and the other

machines. Next, the 𝑆𝐽𝑀𝑖 reconsiders the primal 𝑆𝐽𝑀

to generate further 𝑆𝐽𝑀 by randomly selecting another

machine, except 𝑀𝛼, and performing ISS on the 𝑆𝐽𝑀𝑖.

The ISS procedure on 𝑀𝛼 states that if a new

improved 𝑆𝐽𝑀 cannot be found after 𝑅𝑒𝑥𝑝𝑒𝑐𝑡 times,

where 𝑅𝑒𝑥𝑝𝑒𝑐𝑡 relates to the number of jobs, then the

value of 𝛼 is randomly reselected from [1… 𝑚] by
excluding the current value of 𝛼. Next, the ISS is re-run
based on the new value of 𝛼. Reselecting the value of 𝛼
is valid depending on the number of machines, and it is

signified by 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 . If the procedure for finding a new

improved 𝑆𝐽𝑀𝑖 by reselecting the value of 𝛼 is
unsuccessful after 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 times, 𝑆𝐽𝑀𝑖−2 is considered

M. Abdolrazzagh-Nezhad, S. Abdullah

220

Table 2. Sample of the procedure of the switching function

algorithm

Proc. Operations Note

Step 1 1 → 𝑖, 1 → j

Step 2 1 → 𝑖′, 1 → 𝑗′

Step 3
𝑆𝐽𝑀(1,1) → 𝑂12

𝑆𝑂𝐽(𝑂12) = 1: 𝑀1

𝑂12 is not processed

and go to Step 4

Step 4 𝛺′ = {𝑂11}, 𝛺 = ∅

Step 5

𝑂11 = 𝑆𝐽𝑀(3,1)

3 → 𝑖′, 1 → 𝑗′

𝑆𝑂𝐽(𝑂11) = 3: 𝑀3

Consider 𝑂11 instead

𝑂12 and go to Step 4

Step 4 𝛺′ = ∅, 𝛺 = ∅

Step 5

𝑆𝑇(𝑂11) = 0

𝑆𝑇(𝑂11) = 1

𝑆𝐽𝑀(3,1) processed

Evaluate 𝑂11

Figure 1.a

Step 6

Due to 𝑖 ≠ 𝑖′
So 𝑖 → 𝑖′, 𝑗 → 𝑗′ and

Return to Step 4

𝑆𝐽𝑀(1,1) → 𝑂12

𝑆𝑂𝐽(𝑂12) = 1: 𝑀1

Step 4 𝛺′ = ∅, 𝛺 = ∅

Step 5

𝑆𝑇(𝑂12) = 1

𝑆𝑇(𝑂12) = 4

𝑆𝐽𝑀(1,1) processed

Evaluate 𝑂12

Figure 1.b

Step 6
Duo to 𝑖 = 𝑖′ & 𝑗 = 𝑗′

So go to Step 1

Step 1 2 → 𝑖, 1 → 𝑗

Step 2 2 → 𝑖′, 1 → 𝑗′

Step 3
𝑆𝐽𝑀(2,1) → 𝑂32

𝑆𝑂𝐽(𝑂32) = 2: 𝑀2
𝑂32 is not processed

and go to Step 4

Step 4 𝛺′ = {𝑂31}, 𝛺 = ∅

Step 5

𝑂31 → 𝑆𝐽𝑀(3,2)

3 → 𝑖′, 2 → 𝑗′

𝑆𝑂𝐽(𝑂31) = 3: 𝑀3

Consider 𝑂31 instead

𝑂32 and go to Step 4

Step 4 𝛺′ = ∅, 𝛺 = ∅

Step 5

𝑆𝑇(𝑂31) = 1

𝑆𝑇(𝑂31) = 6

𝑆𝐽𝑀(3,2) processed

Evaluate 𝑂31

Figure 1.c

Step 6

Due to 𝑖 ≠ 𝑖′ & 𝑗 ≠ 𝑗′
So 𝑖 → 𝑖′, 𝑗 → 𝑗′ &

Go to Step 4

𝑆𝐽𝑀(2,1) → 𝑂32

𝑆𝑂𝐽(𝑂32) = 2: 𝑀2

Step 4 𝛺′ = ∅, 𝛺 = ∅

Step 5

𝑆𝑇(𝑂32) = 6

𝑆𝑇(𝑂32) = 10

𝑆𝐽𝑀(2,1) processed

Evaluate 𝑂32

Figure 1.d

Step 6
Duo to 𝑖 = 𝑖′ & 𝑗 = 𝑗′

So go to Step 1

Step 1 3 → 𝑖, 1 → 𝑗

Step 2 3 → 𝑖′, 1 → 𝑗′

Step 3 𝑆𝐽𝑀(3,1) → 𝑂11
𝑂11 is processed and

go to Step 1

⋮ ⋮ ⋮

Step 1 3 → 𝑖, 3 → 𝑗

Step 2 3 → 𝑖′, 3 → 𝑗′

Step 3 𝑆𝐽𝑀(3,3) → 𝑂22
𝑂22 is processed and

go to Step 1

Step 1 Terminate the progress
Terminate when 𝑖 =

3 & 𝑗 = 3

Figure 1. Procedure of the switching function on 𝑆𝐽𝑀1

the primal 𝑆𝐽𝑀 to generate 𝑆𝐽𝑀𝑖. If 𝑖 equals 2 (𝑖 = 2),
then the primal 𝑆𝐽𝑀 is generated by the priority rule,

which has not yet been applied in the construction

procedure. For example, 𝑆𝐽𝑀1 is produced by SRTF. In

addition, unsuccessful 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 times occur when

finding a new improved 𝑆𝐽𝑀2 by reselecting the value

of 𝛼 . Thus, a new primal 𝑆𝐽𝑀 is generated by the

earliest due date. The abovementioned procedure is

completed to produce 𝑆𝐽𝑀𝑖 , given that the new

sequence of jobs can be found on two machines/rows

of the primal 𝑆𝐽𝑀. The new concept of mPlates-Jobs is

first explained in the rest of this section. Next, the ARs

of mPlates are designed, and finally, a brief outline of

𝑖′ = 3, 𝑗′ = 2,

𝑆𝑂𝐽(𝑂31) = 3: 𝑀3

𝛺′ = ∅, 𝛺 = ∅

𝑖′ = i, 𝑗′ = j,

𝑆𝐽𝑀(2,1) → 𝑂32

𝑆𝑂𝐽(𝑂32) = 2: 𝑀2

𝛺′ = ∅, 𝛺 = ∅

𝑀2

𝑀1

𝑀3

1

a: Evaluating 𝑂11

𝑀2

𝑀1

𝑀3

1 4

b: Evaluating 𝑂12

𝑀2

𝑀1

𝑀3

1 4 6

c: Evaluating 𝑂31

𝑀2

𝑀1

𝑀3

1 4 6 10

d: Evaluating 𝑂32

e: Corresponding feasible active schedule of 𝑆𝐽𝑀1

Robust Intelligent Construction Procedure for Job-Shop Scheduling

221

ISS based on the first generation rules of mPlates (ISS–

ARs) is described. The procedure of the heuristic

algorithm to produce an initial population is presented

in Fig. 2. The items used in Fig. 2 are explained in

Table 3.

Table 3. Items used in Figure 1

Items Description

Θ

Set of machines that is used to

generate 𝑆𝐽𝑀𝑖 based on the primal

SJM.

r_index
It shows that the primal SJM is

improved twice on two machines.

k_index

It presents that the primal SJM is

improved while ISS–AR runs on

α.

primal_index

It presents the index number of

SJM that is considered as primal

SJM.

𝑓 (
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑
 𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀

)

The quality (makespan) of the

corresponding active feasible

schedule to the exchanged primal

SJM, which is obtained from

running ISS–AR on 𝛼.

𝑓(𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀)

The quality (makespan) of the

corresponding active feasible

schedule to the primal SJM.

𝑅𝑒𝑥𝑝𝑒𝑐𝑡
The upper bound on the number of

iterations to find an improved

SJM. while ISS–AR runs on 𝛼.

𝑅𝑟𝑒𝑝𝑒𝑎𝑡
The upper bound on the number of

iterations to find a new improved

SJM based on the primal SJM.

SRTF
The priority rule of the shortest

remaining time first.

EDD
The priority rule of the earliest due

date.

LPT
The priority rule of the longest

processing time.

4.2. Plates-Jobs and mPlates-Jobs

Two new job classifications are proposed, namely,

Plates-Jobs and mPlates-Jobs, which are based on the

concepts and structures of 𝑆𝑂𝐽 and 𝑆𝐽M, respectively.

In these classifications of jobs, the dependent rules,

which are presented in the next subsection, create a

range of candidates of processing orders for each job in

𝑆𝐽𝑀. The range reduces the dimension of the search

space; thus, a better and new 𝑆𝐽𝑀 can be determined in

a shorter period. In Plates-Jobs, jobs are classified

based on machine number and should be processed in

the same operation. The classification of jobs in Plates-

Jobs is obtained from 𝑆𝑂𝐽. Each row of Plates-Jobs is
assigned to a given operation. Each available machine

in a given operation creates one class of jobs, which is

named Plate-Jobs, and includes at least one job. Each

Plate-Jobs is indexed through the generated machine

number. The classification of jobs generated in Plates-

Generating Initial Population Procedure ()

1 for 𝑖 = 1 ∶ 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

2 if (𝑖 == 1)

3 Generate 𝑆𝐽𝑀𝑖 based on the priority rule (SRTF)

4 else

5 Consider 𝑆𝐽𝑀𝑖−1 as the primal 𝑆𝐽𝑀

6 𝑖 − 1 → primal_index

7 1 → 𝑗

8 ∅ → Θ

9 while (𝑗 ≤ 2)

10 1 → 𝑟

11 0 → r_index

12 Select a machine randomly from [1. . . 𝑚]/𝛩 → 𝛼

13 𝛼 ∪ Θ → Θ

14 while ((𝑟 ≤ 𝑅𝑟𝑒𝑝𝑒𝑎𝑡)&(𝑗 ≤ 2))

15 1 → 𝑘

16 0 → k_index

17 while ((𝑘 ≤ 𝑅𝑒𝑥𝑝𝑒𝑐𝑡)&(𝑗 ≤ 2))

18 Run the ISS–ARs on 𝛼 from the primal 𝑆𝐽𝑀

19 if (𝑓(𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀)

 < 𝑓(𝑝𝑟𝑖𝑚𝑎𝑙 𝑆𝐽𝑀))

20 The exchanged primal 𝑆𝐽𝑀 → the primal 𝑆𝐽𝑀

21 𝑅𝑒𝑥𝑝𝑒𝑐𝑡 + 1 → 𝑘

22 𝑗 + 1 → 𝑗

23 1 → k_index

24 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 + 1 → 𝑟

25 1 → r_index

26 else

27 𝑘 + 1 → 𝑘

28 end if

29 end while

30 if (k_index=0)

31 Select a machine randomly from [1. . . 𝑚]/𝛩 → 𝛼

33 𝛼 ∪ Θ → Θ

34 𝑟 + 1 → 𝑟

35 else

36 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 + 1 → 𝑟

37 1 → r_index

38 end if

39 end while

40 if (r_index = 0)

41 if (primal_index> 1)

42 𝑆𝐽𝑀𝑝𝑟𝑖𝑚𝑎𝑙 𝑖𝑛𝑑𝑒𝑥−1 → the primal 𝑆𝐽𝑀

43 primal_index-1 → primal_index

44 else if (primal_index = 1)

45 Generate the primal 𝑆𝐽𝑀 based on EDD

46 primal_index-1 → primal_index

47 else if (primal_index = 0)

48 Generate the primal 𝑆𝐽𝑀 based on LPT

49 primal_index-1 → primal_index

50 else

51 drop generating initial population and go to 56

52 end if

53 end if

54 end while

55 end if

56 end for

Figure 2. Heuristic algorithm to produce an initial

population

M. Abdolrazzagh-Nezhad, S. Abdullah

222

Generating Plates-Jobs and mPlates-Jobs Procedure

1 for 𝑗 = 1 𝑡𝑜 𝑚 (Operations)

2 1 → 𝑏𝑒𝑡𝑎(𝑗)

3 1 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗))

4 for 𝑖 = 1 𝑡𝑜 𝑛 (Jobs)

5 if (𝑖 == 1)

6 ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗)) → 𝑡

7 𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{1,1}

8 𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{2, 𝑡}
9 1 + 𝑡 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗))

10 1 + 𝑏𝑒𝑡𝑎(𝑗) → 𝑏𝑒𝑡𝑎(𝑗)

11 else

12 0 → 𝑖𝑛𝑑𝑒𝑥

13 1 → 𝑘

14 while (𝑘 ≤ 𝑏𝑒𝑡𝑎(𝑗) − 1)

15 if (𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑘}{1,1} == 𝑆𝑂𝐽(𝑂𝑖𝑗))

16 1 + 𝑖𝑛𝑑𝑒𝑥 → 𝑖𝑛𝑑𝑒𝑥

17 𝑘 → 𝑎𝑙𝑝ℎ𝑎

18 𝑘 + 𝑏𝑒𝑡𝑎(𝑗) + 1 → 𝑘

19 else

20 𝑘 + 1 → 𝑘

21 end if

22 end while

23 if (𝑖𝑛𝑑𝑒𝑥 == 0)

24 ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗)) → 𝑡

25 𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{1,1}

26 𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑏𝑒𝑡𝑎(𝑗)}{2, 𝑡}
27 1 + 𝑡 → ℎ(𝑗, 𝑏𝑒𝑡𝑎(𝑗))
28 1 + 𝑏𝑒𝑡𝑎(𝑗) → 𝑏𝑒𝑡𝑎(𝑗)

29 else

30 ℎ(𝑗, 𝑎𝑙𝑝ℎ𝑎) → 𝑡

31 𝑆𝑂𝐽(𝑂𝑖𝑗) → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑎𝑙𝑝ℎ𝑎}{1,1}

32 𝐽𝑖 → 𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑎𝑙𝑝ℎ𝑎}{2, 𝑡}
33 1 + 𝑡 → ℎ(𝑗, 𝑎𝑙𝑝ℎ𝑎)
34 end if

35 end if

36 end for

37 end for

38 for 𝑗 = 1 𝑡𝑜 𝑚 (Machines)

39 1 → 𝑝ℎ𝑖(𝑗)

40 1 → 𝑟_𝑜𝑟𝑑𝑒𝑟

41 for 𝑘 = 1 𝑡𝑜 𝑚 (Operations)

42 1 → 𝑖
43 while (𝑖 ≤ 𝑏𝑒𝑡𝑎(𝑘) − 1)

44 if (𝑃𝑙𝑎𝑡𝑒𝑠{𝑘, 𝑖}{1,1} == 𝑀𝑗)

45 𝑂𝑘 → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{1,1}
46 for 𝑡 = 1 𝑡𝑜 ℎ(𝑘, 𝑖) − 1

47 𝑃𝑙𝑎𝑡𝑒𝑠{𝑘, 𝑖}{2, 𝑡} → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{2, 𝑡}
48 𝑟_𝑜𝑟𝑑𝑒𝑟 → 𝑚𝑃𝑙𝑎𝑡𝑒𝑠{𝑗, 𝑝ℎ𝑖(𝑗)}{2, 𝑟_𝑜𝑟𝑑𝑒𝑟}
49 𝑟_𝑜𝑟𝑑𝑒𝑟 + 1 → 𝑟_𝑜𝑟𝑑𝑒𝑟

50 end for

51 𝑝ℎ𝑖(𝑗) + 1 → 𝑝ℎ𝑖(𝑗)

52 𝑖 + 𝑏𝑒𝑡𝑎(𝑘) → 𝑖
53 else

54 𝑖 + 1 → 𝑖
55 end if

56 end while

57 end for

58 end for

Figure 3. Algorithm to produce Plates-Jobs

and mPlates-Jobs

Jobs is reorganized based on the operation number

applied over the same machine and is called

mPlates-Jobs. Each row of mPlates-Jobs is assigned to

a given machine. Fig. 3 shows the algorithm that

produces Plates-Jobs and mPlates-Jobs. Lines 1 to 37

of the algorithm generate Plates-Jobs, and lines 38

to 58 produce mPlates-Jobs. For a clear presentation of

the proposed new concepts, a benchmark instance of

six-job six-machine (Ft06) by Fisher and Thompson

[25] is considered:

Table 4. Original data for Ft06

Machine (Processing Time)

 Operation

Job 1 2 3 4 5 6

1 3(1) 1(3) 2(6) 4(7) 6(3) 5(6)

2 2(8) 3(5) 5(10) 6(10) 1(10) 4(4)

3 3(5) 4(4) 6(8) 1(9) 2(1) 5(7)

4 2(5) 1(5) 3(5) 4(3) 5(8) 6(9)

5 3(9) 2(3) 5(5) 6(4) 1(3) 4(1)

6 2(3) 4(3) 6(9) 1(10) 5(4) 3(1)

Based on Table 4, 𝑆𝑂𝐽 of Ft06 can be easily
presented as follows:

𝑆𝑂𝐽 =

[

𝟑 𝟏 𝟐
𝟐 𝟑 𝟓
𝟑 𝟒 𝟔

𝟒 𝟔 𝟓
𝟔 𝟏 𝟒
𝟏 𝟐 𝟓

𝟐 𝟏 𝟑
𝟑 𝟐 𝟓
𝟐 𝟒 𝟔

𝟒 𝟓 𝟔
𝟔 𝟏 𝟒
𝟏 𝟓 𝟑]

. (3)

The first column/operation of 𝑆𝑂𝐽 to be considered
has two machines (𝑀2 𝑎𝑛𝑑 𝑀3), and the second has

four machines (𝑀1 , 𝑀2 , 𝑀3 , and 𝑀4). Thus, 𝑂𝑖1 has

two Plates-Jobs: one indexed with 𝑀2 that includes

three jobs (𝐽2, 𝐽4 , and 𝐽6) and another indexed with 𝑀3,

which has three other jobs (𝐽1, 𝐽3 , and 𝐽5). 𝑂𝑖2 has four

Plates-Jobs: the first belongs to 𝑀1 and consists of two

jobs (𝐽1 and 𝐽4); the second depends on 𝑀2 and has only

one job (𝐽5); the third depends on 𝑀3 and has one job

(𝐽2); and the last belongs to 𝑀4 and consists of two jobs

(𝐽3 and 𝐽6). Other Plates-Jobs are created with different
job numbers for the remaining operations/columns

of 𝑆𝑂𝐽, as presented in Table 5. For example, 𝑂𝑖5 has

four Plates-Jobs: the first consists of one job (𝐽1); the
second, two jobs (𝐽2and 𝐽5); the third, one job (𝐽3); and
the last, two jobs (𝐽4 and 𝐽6).

The Plates-Jobs of Ft06 (Table 5) are individually

reorganized, based on machine numbers, to create

mPlates-Jobs. In the first step, 𝑀1 is selected. 𝑀1 has
three Plates-Jobs on 𝑂𝑖2 (𝐽1 and 𝐽4), 𝑂𝑖4 (𝐽3 and 𝐽6), and
𝑂𝑖5 (𝐽2 and 𝐽5) because these jobs are indexed by 𝑀1.

These jobs are moved to the first row of mPlates-Jobs.

This movement is repeated for the rest of the machines

and their Plates-Jobs (Table 6).

Robust Intelligent Construction Procedure for Job-Shop Scheduling

223

Table 5. Plates-Jobs based on 𝑆𝑂𝐽

Operation Plates-Jobs

𝑂𝑖1 𝑀3: 𝐽1, 𝐽3, 𝐽5 𝑀2: 𝐽2, 𝐽4, 𝐽6

𝑂𝑖2 𝑀1: 𝐽1, 𝐽4 𝑀3: 𝐽2 𝑀4: 𝐽3, 𝐽6 𝑀2: 𝐽5

𝑂𝑖3 𝑀2: 𝐽1
𝑀5 : 𝐽2,

𝐽5
𝑀6 : 𝐽3,

𝐽6
𝑀3 : 𝐽4

𝑂𝑖4 𝑀4: 𝐽1, 𝐽4 𝑀6 : 𝐽2, 𝐽5 𝑀1 : 𝐽3, 𝐽6

𝑂𝑖5 𝑀6: 𝐽1
𝑀1 ∶ 𝐽2,

𝐽5
𝑀2 ∶
𝐽3

𝑀5 ∶ 𝐽4,
𝐽6

𝑂𝑖6 𝑀5: 𝐽1,𝐽3
𝑀4: 𝐽2,

𝐽5
𝑀6: 𝐽4 𝑀3: 𝐽6

For example, to create mPlates-Jobs related to 𝑀4,

Plates-Jobs should be found indexed by 𝑀4 over

operations on Plates-Jobs (Table 5). Three Plates-Jobs,

namely, (𝑂𝑖2: 𝐽3 , 𝐽6), (𝑂𝑖4: 𝐽1 , 𝐽4) and (𝑂𝑖6: 𝐽2 , 𝐽5) are
available to fill up the fourth row of mPlates-Jobs (see

Table 6).

Table 6. mPlates-Jobs by reorganizing the Plates-Jobs based

on the machine numbers

Machine mPlates-Jobs

𝑀1
𝑂𝑖2: 𝐽1, 𝐽4 𝑂𝑖4: 𝐽3, 𝐽6 𝑂𝑖5: 𝐽2, 𝐽5

𝑀2
𝑂𝑖1: 𝐽2, 𝐽4, 𝐽6 𝑂𝑖2: 𝐽5 𝑂𝑖3: 𝐽1 𝑂𝑖5: 𝐽3

𝑀3
𝑂𝑖1: 𝐽1, 𝐽3, 𝐽5 𝑂𝑖2: 𝐽2 𝑂𝑖3: 𝐽4 𝑂𝑖6: 𝐽6

𝑀4
𝑂𝑖2: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽1, 𝐽4 𝑂𝑖6: 𝐽2, 𝐽5

𝑀5
𝑂𝑖3: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽4, 𝐽6 𝑂𝑖6: 𝐽1,𝐽3

𝑀6
𝑂𝑖3: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽1 𝑂𝑖6: 𝐽4

The number of rows and their elements on the lower

floor of mPlates-Jobs are similar to those on 𝑆𝐽𝑀. For

example, mPlate-Jobs1 on 𝑀2 has three jobs (𝐽2, 𝐽4, and

𝐽6). Three empty cells are found on its lower floor that

can be loaded by any permutation of these three jobs,

which are exactly similar to those of the first three cells

of 𝑆𝐽𝑀 on 𝑀2 /row2. Each mPlate-Jobs represents a

limitation on the exchange of the processing orders of

its jobs on 𝑆𝐽𝑀.

The empty lower floors of mPlates-Jobs are

randomly filled up by the available jobs on each

mPlate. An example is shown in Table 7.

The SJM randomly produced from the lower floors

of mPlates-Jobs in Table 7 is presented as follows:

Table 7. Loaded mPlates-Jobs by a random permutation of

available jobs in each mPlate-Jobs

Machine mPlates-Jobs

𝑀1
𝑂𝑖2: 𝐽1, 𝐽4 𝑂𝑖4: 𝐽3, 𝐽6 𝑂𝑖5: 𝐽2, 𝐽5

𝑱𝟏 𝑱𝟒 𝑱𝟔 𝑱𝟑 𝑱𝟐 𝑱𝟓

𝑀2
𝑂𝑖1: 𝐽2, 𝐽4, 𝐽6 𝑂𝑖2: 𝐽5 𝑂𝑖3: 𝐽1 𝑂𝑖5: 𝐽3

𝑱𝟐 𝑱𝟔 𝑱𝟒 𝑱𝟓 𝑱𝟏 𝑱𝟑

𝑀3
𝑂𝑖1: 𝐽1, 𝐽3, 𝐽5 𝑂𝑖2: 𝐽2 𝑂𝑖3: 𝐽4 𝑂𝑖6: 𝐽6

𝑱𝟑 𝑱𝟏 𝑱𝟓 𝑱𝟐 𝑱𝟒 𝑱𝟔

𝑀4
𝑂𝑖2: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽1, 𝐽4 𝑂𝑖6: 𝐽2, 𝐽5

𝑱𝟑 𝑱𝟔 𝑱𝟒 𝑱𝟏 𝑱𝟐 𝑱𝟓

𝑀5
𝑂𝑖3: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽4, 𝐽6 𝑂𝑖6: 𝐽1,𝐽3

𝑱𝟐 𝑱𝟓 𝑱𝟔 𝑱𝟒 𝑱𝟑 𝑱𝟏

𝑀6
𝑂𝑖3: 𝐽3, 𝐽6 𝑂𝑖4: 𝐽2, 𝐽5 𝑂𝑖5: 𝐽1 𝑂𝑖6: 𝐽4

𝑱𝟔 𝑱𝟑 𝑱𝟐 𝑱𝟓 𝑱𝟏 𝑱𝟒

𝑆𝐽𝑀 =

[

1 4 6
2 6 4
3 1 5

3 2 5
5 1 3
2 4 6

3 6 4
2 5 6
6 3 2

1 2 5
4 3 1
5 1 4]

. (4)

The makespan of the 𝑆𝐽𝑀 based on Eq. (4) is 60,

whereas the optimal makespan of Ft06 is 55. 𝑆𝐽𝑀 (Eq.

(4)) is randomly generated based on available real

processing orders for candidate jobs on their mPlates.

This finding shows the capability and efficiency of the

proposed classification of jobs (mPlates-Jobs).

4.3. The Activators Rules of mPlates (ARs)

An mPlates-Jobs is designed as a classification of

jobs over machines based on 𝑆𝑂𝐽 and when matched

with the structure of 𝑆𝐽𝑀. This classification is gene-

rated just once in the proposed intelligent initialization

technique and possesses a fixed structure. Three rules

are proposed to activate and to make up training on the

mPlates-Jobs. These rules, which are regarded as the

ARs of mPlates, are as follows:

Rule 1: Two consecutive mPlates before and two

consecutive mPlates after for each mPlate that belongs

to consecutive operations on a given machine (if it

exists) should combine together and generate a range

of candidate orders based on three-layer priority,

namely, central layer (CL), first layer (FL), and second

layer (SL).

Rule 2: For jobs on a given machine in SJM based

on the abovementioned rule, a range of candidates to

the three-layer priority will exist in which the

probability of the orders of the CL is higher than those

of the other layers and can be selected between 55%

and 75%. For the next layer (FL), the probability is

M. Abdolrazzagh-Nezhad, S. Abdullah

224

between 25% and 40%, and for the last layer (SL), it is

between 5% and 10%.

Rule 3: If an mPlate has only one job but does not

have any consecutive mPlates before or after it with

consecutive operations, the nearest mPlate before and

after is considered as the FL by a probability between

20% and 30%; the probability of selecting the order of

the CL is between 70% and 80%.

Figure 4. Implementations of the ARs of mPlates on 𝑀3 and

𝑀6 for 𝐽6

The range of candidate orders for each job on a

given machine becomes limited based on the ARs. In

this range, each order has a different selection probabi-

lity. For example, mPlates-Jobs related to 𝑀6 and 𝑀3

are considered to explain the ARs (Fig. 4). The

mPlates-Jobs related to 𝑀6 include four mPlates (𝑂𝑖3,

𝑂𝑖4 , 𝑂𝑖5, and 𝑂𝑖6), which consecutively operate. With

regard to Rules 1 and 2, the range of candidate orders

for 𝐽3 or 𝐽6 on 𝑀6 (the sixth row of 𝑆𝐽𝑀) is (1, 2, 3, 4,

5) such that orders 1 and 2 have 55% to 75% chances

of sitting 𝐽3 or 𝐽6 on them. The chances of orders 3 and

4 to select are 25% to 40%, and order 5 has 5% to 10%

chance of selecting 𝐽3 or 𝐽6. According to Rule 3, 𝐽6 can
obtain order 5 with 20% to 30% probability, and it can

sit on order 6 with 70% to 80% chances. However, the

mPlates of 𝑂𝑖3 and 𝑂𝑖6 are not consecutive. Reducing

the search space of the solution space by using ARs

depends on the dimensions of the dataset (number of

jobs and machines) and the complexity of the process.

For datasets with larger dimensions, more reduction in

the search space from the solution space will occur. For

instance, the search space of La19 [29] with 10 jobs:10

machines has to reduce 3.9594e + 64 points to 1.8092e

+ 40 based on the ARs.

4.4. ISS Based on the ARs

The robust intelligent initialization technique is

completed by designing an ISS based on the ARs. The

technique is called ISS–ARs. For ISS–ARs, one condi-

tion with two equations (Eqs. (5) and (6)) is considered

as the threshold for performing ARs. If the jobs on a

given machine satisfy the thresholds for performing

ARs, their processing orders are exchanged in relation

to ARs. Finally, the processing orders of the jobs, which

have moved, on the other machines are modified. A

brief outline of ISS–ARs is as follows:

Step 1: Focus on a given machine/row (𝑀𝛼) of the

primal 𝑆𝐽𝑀 , recognize the current orders of

jobs on 𝑀𝛼 , and identify the mPlates-Jobs,

which can be combined based on Rule 1.

Step 2: Classify the list candidate orders of jobs and

the probability that the jobs will be selected

based on Rule 2 or Rule 3 in three or two

layers.

Step 3: Focus on each of the mPlates of the primal

𝑆𝐽𝑀 (𝑚𝑃𝑙𝑎𝑡𝑒(𝑀𝛼 , 𝑘)), and for each job (𝐽𝑟)

on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀𝛼 , 𝑘) with the 𝑐_𝑜𝑟𝑑𝑒𝑟 𝜌,
randomly select a new order based on the

probability of the candidate orders for 𝐽𝑟 as a

target order 𝜏 . If 𝐽𝑟 and its consecutive jobs

can satisfy Condition 1 and Eq. (5) or Eq. (6),

then 𝐽𝑟 is moved to the target order 𝜏.

To choose the target order randomly, one layer from

CL, FL, and SL should be selected based on their

probability. Subsequently, one order from the selected

layer is kept random.

Step 4: Simultaneously, move jobs from their current

order to a new order (Step 3). The movement

should be made with certainty that the order of

these jobs in their other operations has settled

on other machines with the best value.

Otherwise, exchange the order during its

mPlate, if jobs satisfy Condition 1 and Eq. (5).

Steps 3 and 4 are repeated for all mPlates-Jobs on

𝑀𝛼 and are created as an exchanged version of the

primal 𝑆𝐽𝑀 . To check the quality of the exchanged

version of the primal 𝑆𝐽𝑀 after Steps 2 to 4, and to

determine whether it has improved or not, the switching

function should be run over the exchanged version of

the primal 𝑆𝐽𝑀. The initialization procedure that works

based on this strategy is called ISS–ARs.

Condition 1: Suppose that the 𝑐_𝑜𝑟𝑑𝑒𝑟 of 𝐽𝑟 with
operation (𝑂𝑟𝑠) is 𝜌 on the primal 𝑆𝐽𝑀 and the nearest

𝑟_𝑜𝑟𝑑𝑒𝑟 based on its mPlate equals 𝜏 . To match the

𝑐_𝑜𝑟𝑑𝑒𝑟 of 𝐽𝑟 with its nearest 𝑟_𝑜𝑟𝑑𝑒𝑟 , 𝐽𝑟 should be
moved by one unit to the left or right depending on the

value of 𝜏 . If 𝜌 > 𝜏 , jobs with 𝑐_𝑜𝑟𝑑𝑒𝑟 𝜌 − 2 , 𝜌 − 1,
and 𝜌 + 1 are 𝐽𝑝 with operation 𝑂𝑝𝑞 , 𝐽𝑖 with operation

𝑂𝑖𝑗, and 𝐽𝑎 with operation 𝑂𝑎𝑏 , respectively. If these

operations satisfy Eq. (5), then the orders of 𝐽𝑟 and 𝐽𝑖
should be swapped, and the makespan of the exchanged

primal 𝑆𝐽𝑀 should be recalculated. Subsequently, the

procedure should be repeated until the current order of

𝐽𝑟 reaches 𝜏.

{

𝜃 ≤ 𝐶𝑇(𝑂𝑟𝑠+1)
𝑎𝑛𝑑
𝑚𝑎𝑥(𝐶𝑇(𝑂𝑖𝑗−1), 𝜃) + 𝑃𝑇(𝑂𝑖𝑗) ≤ 𝐶𝑇(𝑂𝑎𝑏)

 (5)

In the abovementioned equation, 𝜃 =

𝑚𝑎𝑥 (𝐶𝑇(𝑂𝑟𝑠−1), 𝐶𝑇(𝑂𝑝𝑞)) + 𝑃𝑇(𝑂𝑟𝑠) and CT and

PT are completion time and processing time,

respectively.. If no 𝐽𝑎 is found, then 𝐶𝑇(𝑂𝑎𝑏) equals

Robust Intelligent Construction Procedure for Job-Shop Scheduling

225

the makespan of the primal 𝑆𝐽𝑀. If 𝐽𝑝 is not available,

then 𝐶𝑇(𝑂𝑝𝑞) equals zero. Conversely, if 𝜌 < 𝜏 , jobs

with 𝑐_𝑜𝑟𝑑𝑒𝑟 s 𝜌 − 1 , 𝜌 + 1, and 𝜌 + 2 are 𝐽𝑝 with

operation 𝑂𝑝𝑞 , 𝐽𝑖 with operation 𝑂𝑖𝑗 , and 𝐽𝑎 with

operation 𝑂𝑎𝑏 , respectively. If these operations satisfy

Eq. (6), then the 𝑐_𝑜𝑟𝑑𝑒𝑟 s of 𝐽𝑟 and 𝐽𝑖 should be
swapped, the makespan of the exchanged primal 𝑆𝐽𝑀

should be recalculated, and then the procedure should

be repeated until the current order of 𝐽𝑟 reaches 𝜏.

{
𝛿 ≤ 𝐶𝑇(𝑂𝑖𝑗+1)

𝑎𝑛𝑑
𝑚𝑎𝑥(𝐶𝑇(𝑂𝑟𝑠−1), 𝛿) + 𝑃𝑇(𝑂𝑟𝑠) ≤ 𝐶𝑇(𝑂𝑎𝑏)

 (6)

In the abovementioned equation, 𝛿 =

𝑚𝑎𝑥 (𝐶𝑇(𝑂𝑖𝑗−1), 𝐶𝑇(𝑂𝑝𝑞)) + 𝑃𝑇(𝑂𝑖𝑗). If 𝐽𝑎 does not

exist, then 𝐶𝑇(𝑂𝑎𝑏) equals the makespan of the primal

𝑆𝐽𝑀. If 𝐽𝑝 is not available, then 𝐶𝑇(𝑂𝑝𝑞) equals zero.

To illustrate the execution of the ISS–ARs on a given

machine clearly, a numerical sample is presented as

follows: 𝑆𝐽𝑀2
𝐹𝑡06 in Eq. (7) with a makespan of 72 is

supposed as a primal 𝑆𝐽𝑀 for Ft06 and is focused on

𝑀1:

𝑆𝐽𝑀2
𝐹𝑡06 =

[

1 4 5
6 4 2
1 3 5

6 3 2
1 5 3
2 4 6

6 3 1
5 2 1
6 3 1

4 5 2
4 6 3
5 2 4]

 (7)

The current orders (𝑐_𝑜𝑟𝑑𝑒𝑟) of jobs on 𝑀1 should

be recognized in relation to Step 1, and the mPlates,

which can be combined based on Rule 1 of ARs, should

be identified. 𝑀1 has three mPlates-Jobs:

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), which includes 𝐽1 and 𝐽4 and indexed
by 𝑂𝑖1 ; 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) , which consists of 𝐽3 and 𝐽6
and is referred to as 𝑂𝑖4; and 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3), which is
composed of 𝐽2 and 𝐽5 and cited by 𝑂𝑖5 . Given

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) and 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3) , jobs are indexed
by consecutive operations, and they can be combined

as the FL. Meanwhile, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), which remains

as one layer, is the CL. The 𝑐_𝑜𝑟𝑑𝑒𝑟 layer for each
mPlate and the list of candidate orders with their

probabilities for jobs based on Rules 2 and 3 of ARs,

which are in accordance with Step 2, are shown in

Table 8.

In Step 3, the first 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1) includes 𝐽1 and
𝐽4. Next, order1 and order2 are randomly selected for 𝐽4
and 𝐽1 , respectively. 𝐽4 and 𝐽1 can be swapped with
each other (𝐽4 can be moved to order 1) because these

conditions satisfy Eq. (6). Thus, the exchanged

sequence of jobs on 𝑀1 is equal to (4 1 5 6 3 2).

Moreover, given the movement of 𝐽4 to the right side,
the current orders of 𝐽4 on other machines should be

simultaneously controlled. If the condition of Eq. (5) is

satisfied, then the current orders should be exchanged,

and the makespan of the exchanged primal 𝑆𝐽𝑀 should

be recalculated based on Step 4. 𝐽1 should not be
moved because its target and current orders are similar.

Newly exchanged primal 𝑆𝐽𝑀, a result of performing

Table 8. List of candidate orders for jobs on 𝑀1

J
o

b

m
P

la
te

m
P

la
te

s
in

ea
ch

 l
a
y

er

candidate

orders

probability

of

candidate

orders

current

order

of jobs

o
p

er
a

ti
o
n

o
f

jo
b

s

𝐽1 1

CL: 1 1, 2 100%

1 𝑂12 FL: - - -

SL: - - -

𝐽2 3

CL: 3 5, 6 85%

6 𝑂25 FL: 2 3, 4 15%

SL: - - -

𝐽3 2

CL: 2 3, 4 85%

5 𝑂34 FL: 3 5, 6 15%

SL: - - -

𝐽4 1

CL: 1 1, 2 100%

2 𝑂42 FL: - - -

SL: - - -

𝐽5 3

CL: 3 5, 6 85%

3 𝑂55 FL: 2 3, 4 15%

SL: - - -

𝐽6 2

CL: 2 3, 4 85%

4 𝑂64 FL: 3 5, 6 15%

SL: - - -

Steps 3 and 4 on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1), has six swaps and is
presented in 𝑆𝐽𝑀3

𝐹𝑡06 (Eq. (8)) with a makespan of 72.

The results of the movement to other operations of 𝐽4
on another machine based on Step 4 are presented

in Table 9.

𝑆𝐽𝑀3
𝐹𝑡06 =

[

4 1 5
4 6 2
1 3 4

6 3 2
1 5 3
5 2 6

6 3 4
5 2 4
6 3 1

1 5 2
1 6 3
5 2 4]

 (8)

Table 9. Results of movement of 𝐽4 based on Step 4

O
p

er
a

ti
o

n

M
a

ch
in

e

C
u

rr
en

t

o
rd

er

C
a

n
d

id
a

t

e
o

rd
er

E
q

.
(5

)

m
a

k
es

p
a

n

𝑂41 𝑀2 2 1 Satisfied 72

𝑂43 𝑀3

5 4 Satisfied 72

4 3 Satisfied 72

3 2 Unsatisfied -

𝑂44 𝑀4
4 3 Satisfied 72

3 2 Unsatisfied -

𝑂45 𝑀5
4 3 Satisfied 72

3 2 Unsatisfied -

𝑂46 𝑀6 6 5 Unsatisfied -

M. Abdolrazzagh-Nezhad, S. Abdullah

226

The movements of jobs on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 1) are thus
completed. As such, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) is considered the
next mPlate. Steps 3 and 4 are repeated for jobs on

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2), whereas Step 3, executed on

𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2), begins on 𝐽3 . The target order of 𝐽3
is chosen from two layers. CL includes order3 and

order4 with 85% probability, and FL consists of

order5 and order6 with 15% probability (Table 8).

Therefore, based on the probability of the orders,

order3 is randomly selected for 𝐽3. The 𝑐_𝑜𝑟𝑑𝑒𝑟 of 𝐽3 is
order5. If 𝐽3 and the jobs in the right side can
satisfy Eq. (5), then first, 𝐽3 should be moved to order4

and the next one should be moved to order3. Thus, 𝐽3
and 𝐽6 are swapped with each other (𝐽3 is moved to

order4) once they satisfy Eq. (5). Subsequently, the

makespan value is recalculated. Therefore, the

exchanged sequence of jobs on 𝑀1 equals (4 1 5 3 6 2).

Next, the order of 𝐽3 on other machines should be

checked based on Step 4. The results are presented

in Table 10.

Table 10. Results of movement of 𝐽3 based on Step 4

O
p

er
a

ti
o

n

M
a

ch
in

e

C
u

rr
en

t

o
rd

er

C
a

n
d

id
a

te

o
rd

er

E
q

.(
5

)

m
a

k
es

p
a

n

𝑂31 𝑀3 2 1 Satisfied 72

𝑂32 𝑀4 2 1 Satisfied 72

𝑂33 𝑀6 2 1 Satisfied 72

𝑂35 𝑀2 6 5 Unsatisfied -

𝑂36 𝑀5

6 5 Satisfied 72

5 4 Satisfied 72

4 3 Unsatisfied -

Step 3 is repeated over 𝐽3 to check the capability of
𝐽3 to move to order 3. 𝐽3 and the jobs in the right side
(𝐽5) satisfy Eq. (5) and therefore can be swapped with
each other. The exchanged sequence of jobs on 𝑀1

equals (4 1 3 5 6 2). The makespan of the exchanged

𝑆𝐽𝑀 is 68. Next, the order of 𝐽3 on other machines is

checked based on Step 4. The results are shown in

Table 11.

Table 11. Results of movement of 𝐽3 based on Step 4

O
p

er
a

ti
o

n

M
a

ch
in

e

C
u

rr
en

t

o
rd

er

C
a

n
d

id
a

te

o
rd

er

E
q

.
(5

)

m
a

k
es

p
a

n

𝑂31 𝑀3 1 - - -

𝑂32 𝑀4 1 - - -

𝑂33 𝑀6 1 - - -

𝑂35 𝑀2 6 5 Unsatisfied -

𝑂36 𝑀5
4 3 Satisfied 68

3 2 Unsatisfied -

The implementations of Steps 3 and 4 on 𝐽3 are
then completed, and 𝐽3 reaches the target order. 𝐽6
is then considered the next job of 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) ,
and order 4 is randomly selected as the target order

for 𝐽6. The current order of 𝐽6 is order5 on the last
exchanged version of the primal 𝑆𝐽𝑀 . The results of

checking the order of 𝐽6 on other machines in Step 4

are presented in Table 12. The implementations of

Steps 3 and 4 over jobs on 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 2) and
𝑆𝐽𝑀4

𝐹𝑡06 are completed, and the exchanged version of

𝑆𝐽𝑀 with a makespan of 67 is available based on

Eq. (9).

𝑆𝐽𝑀4
𝐹𝑡06 =

[

4 1 3
4 6 2
3 1 4

6 5 2
1 5 3
5 6 2

6 3 4
5 2 3
6 3 1

1 5 2
4 6 1
5 2 4]

 (9)

Table 12. Results of movement of 𝐽6 based on Step 4

O
p

er
a

ti
o

n

M
a

ch
in

e

C
u

rr
en

t

o
rd

er

C
a

n
d

id
a

te

o
rd

er

E
q

.
(5

)

m
a

k
es

p
a

n

𝑂61 𝑀2 2 1 Unsatisfied -

𝑂62 𝑀4 2 1 Satisfied 68

𝑂63 𝑀6 2 1 Satisfied 68

𝑂65 𝑀5
6 5 Satisfied 67

5 4 Unsatisfied -

𝑂66 𝑀3
6 5 Satisfied 67

5 4 Unsatisfied -

Finally, 𝑚𝑃𝑙𝑎𝑡𝑒(𝑀1, 3) and its jobs (𝐽2 and 𝐽5)
are considered in Step 2. Orders 5 and 6 are selected

as the target orders of 𝐽2 and 𝐽5 , respectively. Given
that the current and target orders of 𝐽2 and 𝐽5 in the
last exchanged version of the primal 𝑆𝐽𝑀 (𝑆𝐽𝑀4

𝐹𝑡06)

are similar, the procedure of ISS–ARs is completed

for all jobs on 𝑀1. The comparison of 𝑆𝐽𝑀2
𝐹𝑡06 as the

primal 𝑆𝐽𝑀 with 𝑆𝐽𝑀4
𝐹𝑡06 as the exchanged 𝑆𝐽𝑀

produces 16 variations (44.4% exchanges based on

the overall exchanges), although 19 movements (52.8%

exchanges) occur during the performance of ISS–ARs

on 𝑀1. Meanwhile, ISS–ARs should be simultaneously

run on two machines to generate one point (𝑆𝐽𝑀) of

the initial population. Thus, to generate a new point

of the initial population from 𝑆𝐽𝑀2
𝐹𝑡06 as the primal

𝑆𝐽𝑀, ISS–ARs should be performed on other machines

except 𝑀1.

5. Experimental Results

ISS–ARs is tested on benchmark datasets available

in the OR library [30] and Willem [24] to evaluate

the proposed intelligent construction procedure. The

Robust Intelligent Construction Procedure for Job-Shop Scheduling

227

dataset details and parameters, which are used to

execute ISS–ARs, include programming, processor,

population size, 𝑅𝑒𝑥𝑝𝑒𝑐𝑡 , 𝑅𝑟𝑒𝑝𝑒𝑎𝑡 , and others. These

details and parameters are presented in Table 13. The

experimental results of ISS–ARs are presented in

Table 14, based on the makespan as the objective

function (Ran. 𝐶𝑚𝑎𝑥). 𝐺𝑛 is the number of generations

required to reach the solution, and T is the CPU

time to produce the initial population. The experi-

mental results are also compared with the best-known

solution (BKS), simulated G&T algorithm [22],

heuristic initialization (IPG) proposed in [7], GA

with IPG (IPG + GA), and without IPG as evaluated

in [7].

Table 13. Experimental details and parameters

Programming Matlab9

Processor Intel Core2 Due P8600 2.4 GHz

Population size Twice the number of jobs (2 𝑛)

𝑅𝑒𝑥𝑝𝑒𝑐𝑡 80% of the number of jobs (0.8 𝑛)

𝑅𝑟𝑒𝑝𝑒𝑎𝑡 Number of machines (𝑚)

Number of runs of ISS–

ARs over datasets
10 times

Main criterion in the

experiment

Makespan as quality of generated

points

Second calculated

measure

CPU time as computational time

to produce initial population

Table 14. Experimental results and their comparison with the results of G&T, GA, and Kuczapski’s algorithm [7]

Instance BKS

ISS–ARs G&T GA IPG + GA IPG

Ran. 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑪𝒎𝒂𝒙 𝑮𝒏 𝑪𝒎𝒂𝒙 𝑮𝒏 𝑪𝒎𝒂𝒙 𝑮𝒏

Ft06 55 71–57 ≤ 12 0.49 61 55 112 55 124 55 23

Ft10 930 1509–1046 ≤ 20 6.65 1228 1051 178 1007 187 1043 27

Ft20 1165 1739–1206 ≤ 40 14.79 1565 1295 200 1223 151 1230 29

La01 666 892–666 ≤ 20 2.26 772 676 154 668 195 701 36

La02 655 878–655 ≤ 20 2.12 899 697 26 677 149 704 26

La03 597 1001–597 ≤ 20 2.09 771 628 141 640 179 653 31

La26 1218 2023–1325 ≤ 40 65.34 1433 1479 200 1316 166 1348 35

La27 1235 1806–1395 ≤ 40 66.92 1593 1556 186 1426 224 1460 32

La28 1216 1928–1357 ≤ 40 65.60 1557 1506 238 1403 206 1460 35

La29 1157 1934–1351 ≤ 40 66.58 1496 1481 208 1385 287 1449 38

La30 1355 2110–1512 ≤ 40 65.09 1614 1595 210 1492 269 1560 35

La36 1268 1752–1447 ≤ 30 15.85 1546 1500 191 1434 221 1543 38

La37 1397 2120–1579 ≤ 30 15.13 1579 1623 195 1554 194 1580 29

La38 1196 1830–1381 ≤ 30 16.50 1466 1442 185 1338 202 1370 33

La39 1233 1767–1401 ≤ 30 15.89 1532 1460 220 1397 177 1417 34

La40 1222 1844–1361 ≤ 30 14.92 1539 1438 96 1288 170 1297 35

Table 15. Experimental results and their comparison with the results of Yahyaoui’s algorithm [23]

Ins.

ISS–ARs CSANN FM SM YTPM

𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑮𝒏 T 𝑪𝒎𝒂𝒙 𝑮𝒏 T

Ft06 57 ≤ 12 0.49 55 85.2 472 156.4 129.1 2725 578.4 67.4 393 81.89

Willem 94 ≤ 20 5.06 95 142 1596 34562 256 4562 45869 107 1358 27994

An interesting point in Table 14 is the observation

of the BKS among the initial populations generated by

ISS–ARs for La01, La02, and La03. Although ISS–

ARs is designed to generate the initial population, the

results can challenge GA based on the results presented

in Table 14.

Table 15 includes the simulation results by

Yahyaoui et al. [23] and compares the best point

produced in the initial population generated by ISS–

ARs. Three initialization methods are proposed for the

neural network to solve JSSP [23]. The authors

considered two initialization methods based on random

techniques, namely, first method (FM) and second

M. Abdolrazzagh-Nezhad, S. Abdullah

228

method (SM), and proposed a new heuristic

initialization method, namely “the third new proposed

method” (YTPM). They also considered the results of

a constraint satisfaction adaptive neural network

(CSANN) to evaluate their results. Table 15 shows that

ISS–ARs succeeded in generating a point better than

BKS for Willem’s dataset [24], which belonged to Yang

and Wang [31].

Finally, Table 16 shows the experimental results of

ISS–ARs that are compared with those of the

simulating priority rules proposed by Moghadam and

Daneshmand-Mehr [20]: first in first out (FIFO), last in

first out (LIFO), low-value function (LVF), and high-

value function (HVF).

The advantages of ISS–ARs are clearly proven by

the quality of solutions and the lower computational

times obtained through the comparisons presented in

Tables 14 to 16.

Table 16. Comparison of the experimental results with

simulated priority rules by Moghaddam [20]

Instance FIFO LIFO HVF LVF ISS–ARs

Ft06 61 69 68 69 57

Ft10 1184 1283 1240 1370 1046

Ft20 1645 1291 1656 1336 1206

6. Conclusion

A novel intelligent initialization technique is

proposed to generate an initial population close to the

optimal solution. The technique is based on an ISS from

a primal point to a better one. The ISS is designed based

on a new classification of jobs, called mPlates-Jobs,

which considers a predetermined precedence constraint

(𝑆𝑂𝐽). A set of rules, namely, ARs, is proposed to acti-

vate and formulate the training of the mPlates-Jobs.

ISS–ARs can produce any size of initial population.

Based on the experimental results and the comparison

with other available valid methods in Tables 14 to 16,

ISS–ARs generate an initial population in a signifi-

cantly short computation time. The best point of the

produced initial population is close to an optimal

solution. The important result that shows the advantage

of the ISS–ARs is the observation of the BKS among

the initial populations of La01, La02, and La03 in

Table 14. Another important result is the successful

generation of a point that is better than the BKS of

Willem’s dataset [24] among the initial population, as

shown in Table 15. The ISS–AR of this study is a fast,

intelligent heuristic algorithm for solving the JSSP,

based on the quality of the experimental results.

This study has created the perfect foundation

through which a more effective procedure to produce

the initial population with a shorter computation time

and better quality than ISS–AR can be designed. The

implementation of ISS–ARs in other cases of JSSPs

and other scheduling problems is the recommended

second phase of future studies.

References

[1] B. J. Lageweg, J. K. Lenstra, A. Rinnooy Kan. Job-

shop scheduling by implicit enumeration. Management

Science, 1977, 441-450.

[2] D. Applegate, W. Cook. A computational study of the

job shop scheduling problem. ORSA Journal on

Computing, 1991, Vol. 3, 149-156.

[3] P. Brucker, B. Jurisch, B. Sievers. A Branch and

Bound Algorithm for the Job-Shop Scheduling

Problem. Discrete Appl. Math., 1994, Vol. 49, 107-127.

[4] M. L. Fisher. Optimal solution of scheduling problems

using Lagrange multipliers: Part I. Operation Research,

1973, Vol. 21, 1114-1127.

[5] H. C. Cheng, T. C. Chiang, L. C. Fu. Multiobjective

job shop scheduling using memetic algorithm and

shifting bottleneck procedure. In: Proceedings of

Symposium on Computational Intelligence in

Scheduling, 2009, 15-21.

[6] K. P. Dahal, G. M. Burt, J. R. McDonald, A. Moyes.
A case study of scheduling storage tanks using a hybrid

genetic algorithm. IEEE Transactions on Evolutionary

Computation, 2001, Vol. 5, No. 3, 283-294.

[7] A. M. Kuczapski, M. V. Micea, L. A. Maniu,

V. I. Cretu. Efficient Generation of Near Optimal

Initial Populations to Enhance Genetic Algorithms for

Job Shop Scheduling. Information Technology and

Control, 2010, Vol. 39, No. 1, 32-37.

[8] L. Wang, G. Zhou, Y. Xu, S. Wang, M. Liu. An

effective artificial bee colony algorithm for the flexible

job-shop scheduling problem. The International

Journal of Advanced Manufacturing Technology, 2012,

Vol. 60, No. 1, 303-315.

[9] L. Deng, V. Lin, M. Chen. Hybrid ant colony optimiza-

tion for the resource-constrained project scheduling

problem. Journal of Systems Engineering and

Electronics, 2010. Vol. 21, No. 1, 67-71.

[10] G. Hong-Wei, S. Liang, L. Yan-Chun, Q. Feng. An

Effective PSO and AIS-Based Hybrid Intelligent

Algorithm for Job-Shop Scheduling. IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and

Humans, 2008, Vol. 38, No. 2, 358-368.

[11] R. Zhang, C. Wu. A hybrid immune simulated

annealing algorithm for the job shop scheduling

problem. Applied Soft Computing, 2010, Vol. 10, No. 1,

79-89.

[12] V. Roshanaei, A. K. G. Balagh, M. M. S. Esfahani,

B. Vahdani. A mixed-integer linear programming

model along with an electromagnetism-like algorithm

for scheduling job shop production system with

sequence-dependent set-up times. The International

Journal of Advanced Manufacturing Technology, 2010,

Vol. 47, No. 5, 783-793.

[13] J. Q. Li, Q. Pan. Chemical-reaction optimization for

flexible job-shop scheduling problems with

maintenance activity. Applied Soft Computing, 2012,

Vol. 12, No. 9, 2896-2912.

[14] Y. Zhixiang, C. Jianzhong, Y. Yan, M. Ying. Job shop

scheduling problem based on DNA computing. Journal

of Systems Engineering and Electronics, 2006, Vol. 17,

No. 3, 654-659.

Robust Intelligent Construction Procedure for Job-Shop Scheduling

229

[15] Z. Jie, L. Xiaoping, An Effective Meta-Heuristic for

No-Wait Job Shops to Minimize Makespan. IEEE

Transactions on Automation Science and Engineering,

2012, Vol.9, No.1, 189-198.

[16] S. Rong-Lei, L. Han-Xiong, X. Youlun. Performance-

oriented integrated control of production scheduling.

IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 2006, Vol. 36, No. 4,

554-562.

[17] S. S. Walker, R. W. Brennan, D. H. Norrie. Holonic

job shop scheduling using a multiagent system.

Intelligent Systems, 2005, Vol. 20, No.1, 50-57.

[18] K. Krishna, K. Ganeshan, D. J. Ram. Distributed

simulated annealing algorithms for job shop scheduling.

IEEE Transactions on Systems, Man and Cybernetics,

1995, Vol. 25, No. 7, 1102-1109.

[19] D. Y. Sha, H. H. Lin. A Multi-Objective PSO for Job

Shop Scheduling Problems. Int. J. of Expert System with

Application, 2010, Vol.37, 1065-1070.

[20] R. T. Moghaddam, M. Daneshmand-Mehr. A Com-

puter Simulation Model for Job Shop Scheduling

Problems Minimizing Makespan. Computers &

Industrial Engineering, 2005, Vol. 48, 811-823.

[21] Y. B. Canbolat, E. Gundogar. Fuzzy priority rule for

job shop scheduling. J. Intell. Manuf, 2004, Vol.15,

No. 4, 527-533.

[22] B. Giffler, G. L. Thompson. Algorithms for solving

production-scheduling problems. Operations Research,

1960, Vol. 8, No. 4, 487-503.

[23] A. Yahyaoui, N. Fnaiech, F. Fnaiech. A Suitable

Initialization Procedure for Speeding a Neural Network

Job-Shop Scheduling. IEEE Transactions on Industrial

Electronics, 2011, Vol. 58, No. 3, 1052-1060.

[24] T. M. Willems, L. W. Brandts. Implementing

Heuristics as an Optimization Criterion in Neural

Networks for Job Shop Scheduling. Int. J. Manuf., 1995,

Vol. 6, 377-387.

[25] H. Fisher, G. L. Thompson. Probabilistic Learning

Combinations of Local Job-Shop Scheduling Rules.

Eds. J.F. Muth and G.L. Thompson. 1963, Industrial

Scheduling, Prentice Hall, Englewood Cliffs: New

Jersey. 225-251.

[26] R. Cheng, M. Gen, Y. Tsujimura. A tutorial survey of

job-shop scheduling problems using genetic

algorithms—I. Representation. Computers & industrial

engineering, 1996, Vol. 30, No. 4, 983-997.

[27] M. L. Pinedo. Scheduling, Theory, Algorithm and

Systems. 3rd. ed., Springer: New York, 2008.

[28] V. Sels, K. Craeymeersch, M. Vanhoucke. A hybrid

single and dual population search procedure for the job

shop scheduling problem. European Journal of

Operational Research, 2011, Vol. 215, No. 3, 512-523.

[29] S. Lawrence. Resource constrained project scheduling:

an experimental investigation of heuristic scheduling

techniques (Supplement), in Graduate School of

Industrial Administration., Carnegie-Mellon

University, Pittsburgh, Pennsylvania, 1984.

[30] J. E. Beasley. OR-Library. Available from:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopin

fo.html.

[31] S. Yang, D. Wang. Constraint satisfaction adaptive

neural network and heuristics combined approaches for

generalized job-shop scheduling. IEEE Transactions on

Neural Networks, 2000, Vol. 11, No. 2, 474-486.

Received February 2013.

