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Abstract. Based on the bilinear inverse Diffie-Hellman problem (BIDHP), we first propose a provably secure 
probabilistic signature scheme. Furthermore, we extend it into two universal designated verifier signature (UDVS) 
schemes under the same computational assumption. The first one is a conventional UDVS scheme for one designated 
verifier while the other is designed for cooperative multi-verifier. UDVS schemes aim at protecting the privacy of 
signature holders and have practical benefits to the applications, e.g., the certificate for medical records and income 
summary, etc. The comparison results demonstrate that the signature generation and designation of our scheme are 
both pairing-free, which could benefit the application of devices with constrained computation. We also give formal 
security proofs of unforgeability against existential forgery under adaptive chosen-message attacks (EF-CMA) in the 
random oracle model. 
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1. Introduction 
In the digitalized world, digital signature schemes 

[1-5] are commonly applied mechanisms, which can 
be used to ensure the integrity, the authenticity [6] and 
the non-repudiation [7]. To be precise, any third party 
can first acquire the signer’s public key and then 
verify the corresponding signatures. Since only the 
one who owns the private key can create a valid 
signature, the signer cannot repudiate his generated 
signatures later. There are usually two types of digital 
signature schemes, i.e., deterministic [1] and 
probabilistic [6]. A deterministic signature scheme has 
the unique signature for the same message while a 
probabilistic one always generates different signatures 
for an identical message. 

Consider the privacy issue in some special 
applications such as the electronic voting [8, 9]. It is 
not desired for anyone to verify the resulting 
signature. To realize the notion, in 1990, Chaum and 
Antwerpen [10] proposed the undeniable signature 
scheme in which a verifier must interactively 
cooperate with the signer to verify generated 
signatures. In other words, the signer has the ability to 
determine which verifier is able to check the validity 
of his signatures. Hence the privacy requirement is 
fulfilled in the undeniable signature scheme. 

In 1996, Jakobsson et al. [11] introduced the idea 
of non-interactive designated verifier proof and 
addressed the designated verifier signature (DVS) 
scheme without non-repudiation. In a DVS scheme, 
the signer does not have to participate in every 
signature verification process. When creating the 
DVS, the signer directly incorporates the designated 
verifier’s public key with the signing process. A 
special property of the DVS scheme is that the 
designated verifier can use his private key to generate 
another valid DVS intended for himself, which is 
referred to as the transcript simulation. Owing to this 
property, the designated verifier cannot persuade any 
third party of the DVS’s authenticity. Consequently, 
only the intended verifier will believe the signature’s 
validity. Note that although the DVS is publicly 
verifiable with the designated verifier’s public key, it 
is difficult for any third party to identify the actual 
signer and verify the authenticity for a given DVS.  

In 2003, however, Wang [12] and Saeednia et al. 
[13] separately found out the security weakness in 
Jakobsson et al.’s scheme. Saeednia et al. not only 
gave a countermeasure, but also further proposed the 
strong designated verifier signature (SDVS) scheme 
which removes the property of public verifiability by 
taking the designated verifier’s private key as a crucial 
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parameter in the signature verification equality. 
Therefore, without the designated verifier’s private 
key, no one can even check the validity of an SDVS. 
Since then, lots of researchers have devoted 
themselves to the study of SDVS variants [14-19].  

The universal designated verifier signature 
(UDVS) schemes were introduced by Steinfeld et al. 
[20, 21], in which the signer and the signature holder 
are different persons. Focusing on protecting the 
signature holders’ privacy, a UDVS scheme allows 
any signature holder to non-interactively designate a 
publicly verifiable signature (PV-signature) to an 
intended verifier using the verifier’s public key. The 
designated verifier can validate the UDVS with his 
private key, but can not transfer the conviction to any 
third party, which is also referred to as non-
transferability. The UDVS schemes are useful in 
stopping the verifier from arbitrarily disseminating the 
signature and therefore applicable to the applications 
such as the certificate for medical records and income 
summary. In 2005, Zhang et al. [22] proposed a 
UDVS scheme based on the strong Diffie-Hellman 
problem (SDHP). In 2008, Huang et al. [23] proposed 
another UDVS scheme based on the gap bilinear 
Diffie-Hellman problem (GBDHP). Both Zhang et 
al.’s and Huang et al.’s schemes provide the provable 
security. Nevertheless, the computational costs of their 
schemes are rather high and many similar variants 
[24-26] only consider the conventional setting of 
single designated verifier. 

1.1. Our contributions 

It is known that a UDVS scheme can be extended 
from any general digital signature scheme, meaning 
that a security weakness of a digital signature will also 
be inherited by its UDVS extension. It is therefore 
crucial to construct a UDVS scheme from secure 
probabilistic signatures which provide randomness 
with respect to even identical messages. In this paper, 
we first propose a novel and secure probabilistic 
signature based on the bilinear inverse Diffie-Hellman 
problem (BIDHP) and then extend it into two UDVS 
schemes. One is a conventional UDVS scheme 
allowing one intended verifier to validate the signature 
while the other is a universal designated multi-verifier 
signature (UDMVS) scheme in which all verifiers 
must cooperatively check the signature. Compared 
with previous schemes, the proposed schemes are 
especially suitable for computation-constrained 
devices, since the signature generation and designation 
are pairing-free. Moreover, the formal security proofs 
of unforgeability against existential forgery under 
adaptive chosen-message attacks (EF-CMA) are 
proved in the random oracle model. 

2. Preliminaries 
In this section, we briefly review some used 

security notions and the computational assumptions. 

Bilinear Pairing 
Let (G1, +) and (G2, ×) be two groups of the same 

prime order q and e: G1 × G1 → G2 a bilinear map 
which satisfies the following properties: 

i. Bilinearity: 
e (P1 + P2, Q) = e (P1, Q) e (P2, Q); 
e (P, Q1 + Q2) = e (P, Q1) e (P, Q2); 

ii. Non-degeneracy: 
If P is a generator of G1, then e (P, P) is a genera-
tor of G2. 

iii. Computability: 
Given P, Q ∈ G1, the value of e(P, Q) can be 
efficiently computed by a polynomial-time 
algorithm. 

Bilinear Diffie-Hellman Problem; BDHP 
The BDHP is, given P, aP, bP, cP ∈ G1 for some 

a, b, c ∈ Zq, to compute e (P, P)abc ∈ G2. 

Bilinear Diffie-Hellman (BDH) Assumption 
For every probabilistic polynomial-time algorithm 

A, every positive polynomial F(⋅) and all sufficiently 
large k, the algorithm A can solve the BDHP with an 
advantage of at most 1/F(k), i.e.,  

Pr [A (P, aP, bP, cP) = e (P, P)abc; a, b, c ← Zq,  

(P, aP, bP, cP) ← G1
4] ≤ 1/F (k). 

The probability is taken over the uniformly and 
independently chosen instance and over the random 
choices of A. 

Definition 1. The (t, ε)-BDH assumption holds if 
there is no polynomial-time adversary 
that can solve the BDHP in time at most 
t and with an advantage ε. 

Bilinear Inverse Diffie-Hellman Problem; BIDHP 
The BIDHP is, given P, aP, bP ∈ G1 for some  

a, b ∈ Zq, to compute e (P, P)a
−1

b ∈ G2. 

Bilinear Inverse Diffie-Hellman (BIDH) Assumption 
For every probabilistic polynomial-time algorithm 

A, every positive polynomial F(⋅) and all sufficiently 
large k, the algorithm A can solve the BIDHP with an 
advantage of at most 1/F (k), i.e.,  

Pr [A(P, aP, bP) = e (P, P)a
−1

b; a, b ← Zq,  

(P, aP, bP) ← G1
3] ≤ 1/F (k). 

The probability is taken over the uniformly and 
independently chosen instance and over the random 
choices of A. 

Definition 2. The (t, ε)-BIDH assumption holds if 
there is no polynomial-time adversary 
that can solve the BIDHP in time at 
most t and with an advantage ε. 
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In fact, BIDHP is one variation of BDHP and both 
are polynomial-time equivalent. Interested readers 
could refer to the proof in Zhang et al.’s 
literature [27]. 

3. Probabilistic Signature Scheme based on 
BIDHP 

In this section, we first address involved parties 
and composed algorithms of our proposed 
probabilistic signature scheme and then give a detailed 
construction. 

3.1. Involved parties 

A probabilistic signature scheme has two involved 
parties: a signer and a verifier. Each one is a 
probabilistic polynomial-time Turing machine 
(PPTM). The signer generates a publicly verifiable 
signature (PV-signature) such that the verifier can 
validate it with signer’s public key. 

3.2. Algorithms 

The proposed scheme consists of three algorithms 
(including Setup, PSG and PSV). We describe these 
algorithms as follows: 
• Setup: Taking as input 1k where k is a security 

parameter, the algorithm generates the system’s 
public parameters params. 

• PV-Signature-Generation (PSG): The PSG 
algorithm takes as input the system parameters 
params, a message and the private key of signer. It 
generates a PV-signature Ω. 

• PV-Signature-Verification (PSV): The PSV 
algorithm takes as input the system parameters 
params, a PV-signature Ω along with the 
corresponding message m, and the public key of 
signer. It outputs True if Ω is a valid PV-signature 
for m. Otherwise, the error symbol ¶ is returned as 
a result. 

3.3. Construction of Probabilistic Signature 
Scheme 

We detail the construction of our probabilistic 
signature scheme as follows: 
• Setup: Taking as input 1k, the system authority 

(SA) selects two groups (G1, +) and (G2, ×) of the 
same prime order q where |q| = k. Let P be a 
generator of order q over G1, e: G1 × G1 → G2 a 
bilinear pairing and h1: G1 → G1 and h2: {0, 1}* × 
G1 → Zq collision resistant hash functions. The 
system publishes the public parameters params = 
{G1, G2, q, P, e, h1, h2}. Each user Ui chooses his 
private key xi ∈ Zq and registers the public key as 
Yi = xi P. 

• PV-Signature-Generation (PSG): Let Us be the 
signer. For signing a message m ∈R {0, 1}*, Us 
chooses r ∈R Zq to compute 

R = rP, (1) 
T = xs

−2h1 (R), (2) 
ρ = r + h2 (m, R) xs

−1 mod q. (3) 
The PV-signature for the message m is Ω = (R, T, 
ρ). 

• PV-Signature-Verification (PSV): To check the 
validity of the PV-signature Ω = (R, T, ρ), anyone 
can verify whether 
e (ρP − R, h1 (R)) = e (Ys, h2 (m, R)T). (4) 
If the quality holds, the PV-signature is valid. We 
show that the verification of Eq. (4) works 
correctly. From the left-hand side of Eq. (4), we 
have 
e (ρP − R, h1 (R)) 
= e (rP + h2 (m, R) xs

−1P – R, h1 (R))  
= e (h2 (m, R) xs

−1P, xs
2T) (by Eq. (2)) 

= e (Ys, T)h2(m, R)  

= e (Ys, h2 (m, R)T) 
which leads to the right-hand side of Eq. (4). 

4. Extensions into UDVS and UDMVS 
schemes 

In this section, we present UDVS and UDMVS 
schemes based on the proposed probabilistic signature 
scheme. We first address involved parties and 
composed algorithms of our UDVS/UDMVS scheme 
and then give concrete constructions. 

4.1. Involved parties 

A conventional UDVS scheme has three involved 
parties including a signer, a designator (signature 
holder) and a designated verifier. Unlike the 
conventional UDVS scheme, UDMVS scheme has 
designated multi-verifier, say, consisting of n verifiers. 
In our proposed UDVS and UDMVS schemes, each 
party is a probabilistic polynomial-time Turing 
machine (PPTM). The signer will generate a PV-
signature and send it along with the message to the 
designator. After validating the PV-signature, the 
designator further creates a designated verifier/multi-
verifier signature (DV/DMV-signature) and deliveries 
it together with the message to the designated 
verifier/multi-verifier. Consequently, the DV/DMV-
signature can only be verified by the designated 
verifier/multi-verifier with his/their private key(s). 
Besides, the designated verifier/multi-verifier can not 
transfer the conviction to any third party, since he/they 
is/are also capable of generating another 
computationally indistinguishable transcript. 

4.2. Algorithms 

The proposed UDVS/UDMVS scheme consists of 
five algorithms (including Setup, PSG, PSV, DSG and 
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DSV). The first three algorithms are defined the same 
as those in our probabilistic signature scheme. We 
only describe others as follows: 
• DV-Signature-Generation (DSG): The DSG 

algorithm takes as input a PV-signature Ω along 
with the corresponding message m, and the public 
key of designated verifier. It generates a DV-
signature δ. 

• DV-Signature-Verification (DSV): The DSV 
algorithm takes as input a DV-signature δ along 
with the corresponding message m, the private key 
of the designated verifier, and the public key of 
signer. It outputs True if δ is a valid DV-signature 
for m. Otherwise, the error symbol ¶ is returned as 
a result. 

• DMV-Signature-Generation (DMSG): The 
DMSG algorithm takes as input a PV-signature Ω 
along with the corresponding message m, and the 
public keys of designated multi-verifier. It 
generates a DMV-signature δ. 

• DMV-Signature-Verification (DMSV): The 
DMSV algorithm takes as input a DMV-signature 
δ along with the corresponding message m, the 
private keys of the designated multi-verifier, and 
the public key of signer. It outputs True if δ is a 
valid DMV-signature for m. Otherwise, the symbol 
is returned as a result. 

4.3. Concrete construction of UDVS scheme 

We demonstrate the proposed UDVS scheme in 
the subsection. This scheme is a conventional UDVS 
which only allows the signature holder to solely 
designate the PV-signature to one intended designated 
verifier without further interactions. For simplicity, we 
only detail phases of DSG and DSV below: 
• DV-Signature-Generation (DSG): Let Uv be the 

designated verifier with public key Yv. To create a 
DV-signature for a given message m and its PV-
signature Ω = (R, T, ρ), the designator computes  
W = ρYv, (5) 
and then deliveries the DV-signature δ = (R, T, W) 
along with the corresponding message m to Uv. 

• DV-Signature-Verification (DSV): Upon 
receiving (δ, m), Uv verifies whether 

𝑒 �𝑥𝑣−1𝑊 − 𝑅, ℎ1(𝑅)� = 𝑒 (𝑌𝑠 , ℎ2(𝑚,𝑅)𝑇). (6) 
If the quality holds, the DV-signature is valid. We 
show that the verification of Eq. (6) works 
correctly. From the left-hand side of Eq. (6), we 
have 

𝑒 �𝑥𝑣−1𝑊 − 𝑅, ℎ1(𝑅)�  
= 𝑒 (𝜌𝜌 − 𝑅, ℎ1(𝑅))  (by Eq. (5)) 

= 𝑒 �𝑟𝜌 + ℎ2(𝑚,𝑅) 𝑥𝑠−1𝜌 − 𝑅, ℎ1(𝑅)�  

= 𝑒 (ℎ2(𝑚,𝑅)𝑥𝑠−1𝜌, 𝑥𝑠2𝑇 (by Eq. (2)) 
= 𝑒 (𝑌𝑠,𝑇)ℎ2(𝑚,𝑅)  

= 𝑒 (𝑌𝑠, ℎ2(𝑚,𝑅)𝑇)   
which leads to the right-hand side of Eq. (6).  

4.4. Concrete construction of UDMVS scheme 

We introduce the proposed UDMVS scheme in the 
subsection. In this scheme, all designated verifiers 
must cooperatively check the validity of received 
DMV-signature. Since the algorithms of Setup, PSG 
and PSV are the same to the above, we only describe 
the others below: 
• DMV-Signature-Generation (DMSG): Without 

lost of generality, let V = {Uv1
, Uv2

, …, Uvn
} be the 

group composed of n designated verifiers. To 
create a DMV-signature for a given message m 
and its PV-signature Ω = (R, T, ρ), the designator 
first chooses k ∈R Zp to compute  

W = ρP + ,
1
∑
=

n

i
vi

Yk  (7) 

K = kP, (8) 
and then deliveries the DMV-signature δ = (R, T, 
W, K) along with the corresponding message m to 
V. 

• DMV-Signature-Verification (DMSV): Upon 
receiving (δ, m), Uvi

 ∈V computes 

KxZ
ivi = , (9) 

and then sends it to a clerk Uck ∈V. After collecting 
all Zj’s, Uck verifies whether 
 

)),(,())(,( 21
1

TRmhYRhRZWe s

n

j
j =−−∑

=

. (10) 

If it holds, Uck announces the DMV-signature δ for 
m is valid. We show that the verification of Eq. 
(10) works correctly. From the left-hand side of 
Eq. (10), we have 

))(,( 1
1

RhRZWe
n

j
j∑

=

−−  

))(,( 1
1

RhRKxWe
n

j
v j∑

=

−−=  (by Eq. (9)) 

))(,( 1
1

RhRYkWe
n

j
v j∑

=

−−=  (by Eq. (8)) 

))(,( 1 RhRPe −= ρ  (by Eq. (7)) 

))(,),(( 1
1

2 RhRPxRmhrPe s −+= −  

),),(( 21
2 TxPxRmhe ss

−=  (by Eq. (2)) 

),(2),( Rmh
s TYe=  

)),(,( 2 TRmhYe s=  
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which leads to the right-hand side of Eq. (10).  

5. Security proof and comparison 
In this section, we first define the essential security 

model and then prove the security of our proposed 
schemes. Some comparisons with related schemes are 
also made. 

5.1. Security Model 

A common security requirement of the proposed 
probabilistic signature scheme and its UDVS/UDMVS 
extensions is unforgeability against existential forgery 
under adaptive chosen-message attacks (EF-CMA). 
According to [19], it is sufficient to prove the 
unforgeability of DV/DMV-signature, since the 
property of PV-unforgeability is implied by it. As for a 
secure UDVS/UDMVS scheme, we have to further 
consider the security requirement of non-
transferability, i.e., the designated verifier/multi-
verifier cannot transfer the conviction to any third 
party. We define these security notions as Definitions 
3 and 4. 

Definition 3. (Strong DV/DMV-Unforgeability) A 
DV/DMV-signature of the 
UDVS/UDMVS scheme is said to 
achieve the security requirement of 
unforgeability against existential 
forgery under adaptive chosen-message 
attacks (EF-CMA) if there is no 
probabilistic polynomial-time adversary 
A with a non-negligible advantage in 
the following game played with a 
challenger B: 

Setup: B first runs the Setup(1k) algorithm and 
sends the system’s public parameters params to the 
adversary A. 

Phase 1: The adversary A can issue several kinds 
of queries adaptively, i.e., each query might be based 
on the result of previous queries: 
• PV-Signature-Generation (PSG) queries: A makes 

a PSG query for a message m. B returns the 
corresponding PV-signature Ω. 

• DV/DMV-Signature-Verification (DSV/DMSV) 
queries: A makes a DSV/DMSV query for a pair 
(δ, m) with respect to the signer and the designated 
verifier/multi-verifier. B returns True if δ is a valid 
DV/DMV-signature for m. Otherwise, the error 
symbol ¶ is returned as a result. 
Forgery: Finally, A produces a new pair (m*, δ*) 

such that the query of PSG (m*) has never been made. 
The adversary A wins if δ* is a valid DV/DMV-
signature for m*. 

Definition 4. (Non-Transferability) A UDVS/UDMVS 
scheme is said to achieve the security 
requirement of non-transferability if the 

designated verifier/multi-verifier can 
simulate a computationally indistin-
guishable transcript intended for 
him/them with his/their private key(s). 

5.2. Security proof 

We prove that the proposed scheme achieves the 
above defined security models as Theorems 1 to 4. 

Theorem 1. (Strong DV-Unforgeability) The DV-
signature of our proposed UDVS 
scheme is (t, qh1

, qh2
, qPSG, qDSV, ε)-

secure against existential forgery under 
adaptive chosen-message attacks (EF-
CMA) in the random oracle model if 
there is no probabilistic polynomial-
time adversary A that can (t', ε')-break 
the BIDHP, where 

ε' ≥ (ε − 2−|G1|), 

t' ≈ t + tλ (2qDSV). 

Here tλ is the time for performing one bilinear pairing 
computation. 

Proof. Suppose that a probabilistic polynomial-
time adversary A can forge a valid DV-signature of 
our proposed UDVS scheme with a non-negligible 
advantage ε under the adaptive chosen message attack 
after running in time at most t and asking at most qhi

 hi 
random oracle (for i = 1 and 2), qPSG PSG and qDSV 
DSV queries. Then we can construct another 
algorithm B that (t', ε')-breaks the BIDHP with a non-
negligible advantage by taking A as a subroutine. Let 
all involved parties and notations be defined the same 
as those in Section 4.3. The objective of B is to obtain 

e (P, P)a
−1

b by taking (P, aP, bP) as inputs. In this 
proof, B simulates a challenger to A in the following 
game. 

Setup: The challenger B runs the Setup(1k) 
algorithm to obtain the system’s public parameters 
params = {G1, G2, q, P, e}. Then B chooses d ∈R Zq, 
sets the public keys of the signer Us and the 
designated verifier Uv as Ys = aP and Yv = dP, 
respectively, and sends (params, Ys, Yv) to the 
adversary A. 

Phase 1: A makes the following kinds of queries 
adaptively: 
• h1 oracle: When A queries an h1 oracle of h1 (R), B 

first checks the h1_list for a matched entry. 
Otherwise, B chooses c ∈R Zq and adds the entry 
(R, c, cbP) to the h1_list. Finally, B returns cbP as 
a result. 

• h2 oracle: When A queries an h2 oracle of 
h2 (m, R), B first checks the h2_list for a matched 
entry. Otherwise, B chooses v2 ∈R Zq and adds the 
entry (m, R, v2) to the h2_list. Finally, B returns v2 
as a result. 
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• PSG queries: When A makes a PSG query for 
some message m, B first chooses f, ρ, v2 ∈R Zq, 
computes R = ρP − f ⋅ v2 ⋅ (aP), adds the entry (m, 
R, v2) to the h2_list, and sets T = f ⋅ h1(R) = fcbP. 
Finally, B returns Ω = (R, T, ρ) as the PV-signature 
for m. 

• DSV queries: When A makes a DSV query for 
some pair (δ, m), B runs the DSV algorithm with 
his chosen private key d ∈R Zq to return the result. 
Forgery: At last, A outputs a forged DV-signature 

δ* = (R*, T*, W*) for his arbitrarily chosen message 
m*. 

Analysis of the game: For each PSG query, B 
returns a valid PV-signature without being 
accidentally terminated. Moreover, B answers each hi 
random oracle with a computationally 
indistinguishable value without collision. Let VLD 
and QH1 separately be the events that the outputted 
DV-signature δ* = (R*, T*, W*) is valid and A has 
ever asks the corresponding h1(R*) random oracle. 
The probability that A can guess the correct random 
value without asking the random oracle is not greater 
than 2−|G1|. Since A has a non-negligible advantage ε to 
break the proposed scheme under adaptive chosen-
message attacks, we have 

ε = Pr [VLD] 
≤ Pr [VLD | QH1] + Pr [VLD | ¬QH1] 
≤ Pr [VLD | QH1] + 2−|G1|. 

⇒ Pr [VLD | QH1] ≥ ε − 2−|G1|.  

If the forged DV-signature δ* = (R*, T*, W*) for 
m* is valid, it will satisfy 

.*),(*))(*,*( *),(
1

1 2 Rmh
s TYeRhRWde =−−  

When the event (VLD | QH1) occurs, we claim that  
T* = a−2h1(R*) = a−2(cbP). B first searches the h1_list 
for a match entry (R, c, cbP) where R = R* and then 
further computes 

11
2 *),(

1
1 *))(*,*(

−−
−− cRmhRhRWde  

*),(*),( 2
11

2*),( RmhcRmh
s TYe

−−
=  

1
*),(

−
= c

s TYe  
1

))(,( 2 −−= ccbPaaPe  

.),(
1baPPe
−

=  

Therefore, we can express the probability of B to 
solve the BIDHP as ε' ≥ (ε − 2−|G1|). The running time 
required for B is t' ≈ t + tλ(2qDSV). 

Q.E.D. 

Theorem 2. (Strong DMV-Unforgeability) The 
DMV-signature of our proposed 

UDMVS scheme is (t, qh1
, qh2

, qPSG, 
qDMSG, ε)-secure against existential 
forgery under adaptive chosen-message 
attacks (EF-CMA) in the random oracle 
model if there is no probabilistic 
polynomial-time adversary A2 that can 
(t', ε')-break the BIDHP, where 

 ε' ≥ (ε − 2−|G1|), 
 t' ≈ t + tλ(2qDMSV). 

Here tλ is the time for performing one bilinear pairing 
computation. 

Proof: Suppose that a probabilistic polynomial-
time adversary A can forge a valid DMV-signature of 
our proposed UDMVS scheme with a non-negligible 
advantage ε under the adaptive chosen message attack 
after running in time at most t and asking at most qhi

 hi 
random oracle (for i = 1 and 2), qPSG PSG and qDMSV 
DMSV queries. Then we can construct another 
algorithm B that (t', ε')-breaks the BIDHP with a non-
negligible advantage by taking A as a subroutine. Let 
all involved parties and notations be defined the same 
as those in Section 4.4. The objective of B is to obtain 

e(P, P)a
−1

b by taking (P, aP, bP) as inputs. In this 
proof, B simulates a challenger to A in the following 
game. 

Setup: The challenger B runs the Setup(1k) 
algorithm to obtain the system’s public parameters 
params = {G1, G2, q, P, e}. Then B chooses d1, d2, …, 
dn ∈R Zq, sets the public keys of the signer Us and the 
designated verifier Uvi

 as Ys = aP and Yvi
 = diP, 

respectively, and sends (params, Ys, Yvi
’s) to the 

adversary A. 
Phase 1: A adaptively makes queries. For h1, h2 

and PSG queries, B responds as those in Theorem 1. 
When A makes a DMSV query for some pair (δ, m), B 
runs the DMSV algorithm with his chosen private 
keys d1, d2, …, dn ∈R Zq to return the result. 

Forgery: At last, A outputs a forged DMV-
signature δ* = (R*, T*, W*, K*) for his arbitrarily 
chosen message m*. 

Analysis of the game: Let VLD and QH1 be the 
events defined as those in Theorem 1. According to 
the analyses of Theorem 1, we can derive that 

ε  = Pr [VLD] 
≤ Pr [VLD | QH1] + Pr [VLD | ¬QH1] 
≤ Pr [VLD | QH1] + 2−|G1|. 

⇒ Pr [VLD | QH1] ≥ ε − 2−|G1|. 

If the forged DMV-signature δ* = (R*, T*, W*, 
K*) for m* is valid, it will satisfy 

.*),(*))(*,**( *),(
1

1

2 Rmh
s

n

i
i TYeRhRKdWe =−−∑

=
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When the event (VLD | QH1) occurs, we claim that  
T* = a−2h1(R*) = a−2(cbP). B first searches the h1_list 
for a match entry (R, c, cbP) where R = R* and then 
further computes 

11
2 *),(

1
1

*))(*,**(
−−

−−∑
=

cRmh
n

i
i RhRKdWe  

*),(*),( 2
11

2*),( RmhcRmh
s TYe

−−
=  

1
*),(

−
= c

s TYe  
1

))(,( 2 −−= ccbPaaPe  

.),(
1baPPe
−

=  

Consequently, we can express the probability of B 
to solve the BIDHP as ε' ≥ (ε − 2−|G1|). The running 
time required for B is t' ≈ t + tλ(2qDMSV). 

Q.E.D. 

Theorem 3. (Non-Transferability) The proposed 
UDVS scheme satisfies the security 
requirement of non-transferability. 

Proof: To generate a DV-signature δ* intended for 
himself, any designated verifier first chooses R* ∈R G1 
and f ∈R Zq to compute 

T* = f ⋅ h1(R*), (11) 

*)*),((* 2 RYRmhfxW Av +⋅= . (12) 

Here, δ* = (R*, T*, W*) is a valid DV-signature 
for m. The generated δ* is computationally 
indistinguishable from the received δ. To be precise, 
the probability that the computed δ* = (R*, T*, W*) 
and the received δ = (R, T, W) are identical is at most 
2−(|G1| + k), i.e., Pr [δ* = δ] ≤ 2−(|G1| + k).  

Q.E.D. 

Theorem 4. (Non-Transferability) The proposed 
UDMVS scheme satisfies the security 
requirement of non-transferability. 

Proof: To generate another DMV-signature δ* 
intended for the group V, the clerk Uck first chooses 
R*, K* ∈R G1 and then delivers K* to each Uvi

 ∈V. 
Upon receiving K*, Uvi

 ∈V computes 

** KxZ
ivi = , (13) 

and then sends it back to Uck. After receiving all Zj*’s, 
Uck chooses f ∈R Zq and further computes 

T* = f ⋅ h1(R*), (14) 

∑
=

++⋅=
n

j
js ZRYRmhfW

1
2 ***),(* . (15) 

Here, δ* = (R*, T*, W*, K*) is a valid DMV-
signature for m. The generated δ* is computationally 
indistinguishable from the received δ. To be precise, 

the probability that the computed δ* = (R*, T*, W*, 
K*) and the received δ = (R, T, W, K) are identical is 
at most 2−(2|G1| + k), i.e., Pr [δ* = δ] ≤ 2−(2|G1| + k).  

Q.E.D. 

5.3. Comparisons 

In this subsection, we compare the proposed 
schemes with some related ones including Steinfeld et 
al.’s (St-DV for short) [20], the Laguillaumie-
Vergnaud (La-DV for short) [28] and Ng et al.’s (Ng-
DMV for short) [29] schemes in terms of signature 
type, security assumption and computational 
efficiency. For convenience, we only evaluate the 
most time-consuming operations, i.e., the bilinear 
pairing computation in the following comparisons. 
Other operations can be ignored, since they are 
negligible as compared with it. Let TB be the time for 
performing one bilinear pairing. The detailed 
evaluation is demonstrated as Table 1. From the table, 
it can be seen that the proposed schemes are pairing-
free in PSG and DSG/DMSG phases, which benefits 
to the computation limited devices. Most importantly, 
the proposed schemes are probabilistic, which means 
that our schemes have different signatures for the 
identical message. 

Table 1. Comparisons of the proposed and related schemes 

         Scheme 
Item 

St-
DV La-DV Ng 

-DMV 
Ours-DV 

/DMV 

Signature  
Type Deterministic Probabilistic 

#Private Key  
of Each User 1 1 2 1 

Security  
Assumption  

of PV-
signature 

co-CDH1 BDH BIDH 

#Pairings  
for PSG 

0 0 0 0 

#Pairings  
for PSV 2TB 2TB 2TB 2TB 

Security  
Assumption  

of  
DV/DMV-
signature 

BDH GBDH2 BDH BIDH 

#Pairings for 
DSG/DMSG 

1TB 1TB 1TB 0 

#Pairings for 
DSV/DMSV 1TB 1TB nTB

 3 2TB 

Security Proof  
Model 

Random Oracle 

Remarks: 1. The term “co-CDH” denotes 
Computational co-Diffie-Hellman [1]. 

 2. The term “GBDH” denotes Gap-
Bilinear Diffie-Hellman [28]. 

 3. n is the number of designated verifiers. 
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6. Conclusions 
In this paper, we proposed a novel and provably 

secure probabilistic signature scheme and its 
extensions into UDVS and UDMVS schemes. In a 
UDVS/UDMVS scheme, the designated 
verifier/multi-verifier can only check the validity of a 
DV/DMV-signature, but can not transfer the 
conviction to any third party, so as to protect the 
privacy of any signature holder. The underlining 
security of our proposed signature scheme and its 
extensions is based on the bilinear inverse Diffie-
Hellman problem (BIDHP) which is polynomial-time 
equivalent to the well-known bilinear Diffie-Hellman 
problem (BDHP). Compared with previous works, our 
schemes have crucial benefits to computation 
constrained devices, as the PV-signature generation 
and designation are pairing-free. Moreover, we also 
proved that the proposed schemes achieve the security 
requirement of unforgeability against existential 
forgery under adaptive chosen-message attacks (EF-
CMA) in the random oracle model.  
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