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Helmet detection is of great significance for realizing the automated management of industrial safety. To ad-
dress the problem that existing object detection methods have insufficient ability to detect helmet small objects 
under surveillance images, this paper proposes a helmet detection based on context enhancement pyramid un-
der surveillance images to realize the automatic detection task of helmet objects. The method helps the net-
work improve position localization for small-scale helmet objects by adding a high-resolution detection layer 
to YOLOv5. Also, the proposed context enhancement pyramid reduces the semantic differences between dif-
ferent scale features and generates rich contextual features to enhance the network’s discriminative learning 
ability for helmet small object features. In addition, the proposed multi-scale attention module improves the 
feature fusion effect in the pyramid network to further capture multi-scale features and expand the receptive 
field to enhance the network’s detection precision of helmet objects under surveillance images. The experi-
mental analysis shows that the proposed method has good detection effect compared to existing object detec-
tion methods on the Safety Helmet Wearing Dataset (SHWD) as well as the customized dataset.
KEYWORDS: Surveillance images, Helmet detection, YOLOv5, Context enhancement pyramid, Multi-scale 
attention.
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1. Introduction
Due to the rapid development of convolutional neural 
networks, deep learning based methods have not only 
achieved remarkable results in the field of computer vi-
sion [15, 18], but also been rapidly developed and widely 
applied in the fields of atmospheric monitoring [6, 44], 
wireless transmission [45-47] and health assistance 
[16, 19, 26, 32]. And in the field of industrial safety mon-
itoring, the use of deep learning based object detection 
methods to realize the automated detection of helmets 
has become one of the urgent problems to be solved in 
the current industrial safety management.
As we know, in the process of industrial production, 
the helmet can effectively avoid workers’ head injury 
[39], thus protecting the safety of workers’ lives [30]. 
However, the current situation of workers wearing 
helmets still relies on manual methods for on-site su-
pervision [5]. This is very inefficient for complex con-
struction sites and a large number of workers, and can 
easily lead to safety accidents. With the development 
of object detection technology based on deep learning, 
some scholars have begun to utilize advanced object 
detection methods and make various improvements 
based on them to realize the automatic detection task 
of helmet objects [8-9, 12, 20]. However, for specific 
scenes such as surveillance images, the helmet ob-
ject has a low imaging resolution and is susceptible to 
interference from the complex background environ-
ment as well as the influence of easy changes in the 
color of the target, which leads to the lack of discrim-
inative learning ability of the existing deep learning 
based object detection methods on the features of 
small-scale helmet objects, which affects the detec-
tion model to differentiate between the small-scale 
helmet objects in the complex background environ-
ment. This affects the ability of the detection model 
to distinguish small-scale helmet objects in complex 
background environments, which in turn leads to the 
insufficient detection ability of the existing detection 
methods for small helmet objects.
In order to be able to improve the detection precision 
of small helmet objects under surveillance images, 
this paper proposes a context enhancement pyra-
mid based helmet detection method under surveil-
lance images. The method utilizes YOLOv5 [34] as a 
baseline and adds a high-resolution detection layer 
on top of it to help the detection network improve 

the positional spatial localization of helmet objects. 
Meanwhile, the proposed context enhancement pyr-
amid structure is utilized to enhance the network’s 
discriminative learning ability for helmet object fea-
tures. In addition, the multi-scale attention module 
is used to further refine and capture the multi-scale 
context to help the detection network to predict the 
helmet object. Results of the experiments show that 
the method in this paper has good detection perfor-
mance compared to mainstream object detection 
methods on both publicly available helmet datasets 
and custom datasets. The main contributions of this 
paper are as follows:
1 Add a high-resolution detection layer to the 

YOLOv5 network to reduce the feature loss of hel-
met small object targets during downsampling.

2 Propose a context enhancement pyramid to inter-
actively fuse image features from shallow and deep 
layers to generate context-rich features, reduce 
semantic differences existing between features at 
different scales, and improve the discriminative 
learning ability of the network.

3 Propose a multi-scale attention module to further 
capture multi-scale features as well as expand the 
receptive field to improve the network’s detection 
precision for small helmet objects.

The remainder of this paper is organized as follows. 
Section 2 presents the work related to helmet detec-
tion. Section 3 describes the baseline YOLOv5 meth-
od and the proposed method in this paper. Section 4 
gives the experimental results and analysis. Section 5 
concludes the paper.

2. Related Work
In recent years, thanks to the rapid development of 
deep learning in various fields [48], computer vision 
technology has been widely used. At present, deep 
learning based object detection technology is widely 
used in the fields of intelligent manufacturing [25] 
and industrial automation [17, 35, 49] due to its excel-
lent detection performance. In the field of industrial 
production safety monitoring, with the increasing 
popularity of the current video surveillance system, 
the use of object detection technology to realize the 
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automatic detection of workers’ helmet wearing [24] 
has become more and more important. In the ear-
ly days, most of the helmet object detection utilized 
manual feature extraction to detect the helmet object 
[41]. However, these traditional methods are more 
complicated and inefficient for helmet object detec-
tion. In recent years, many scholars have begun to use 
advanced object detection methods to realize the au-
tomatic detection task for helmets.
Wang [38] et al. propose a real-time helmet wear detec-
tion method by introducing a cross-stage localized net-
work CSP [37] and a spatial pyramid pooling structure 
in the YOLOv3 [29] backbone to improve the learning 
ability of the network, and combining top-down and 
bottom-up feature fusion strategies to improve the 
detection of helmet objects at construction sites. Yang 
[42] et al. enhanced the multi-scale feature extraction 
capability of the YOLOv4 [1] backbone network and 
introduced a channel attention mechanism to dynam-
ically focus on the channel features of helmet objects, 
thus improving the network’s detection performance 
for small helmet objects. Fang [7] et al. added an atten-
tion mechanism to the backbone of YOLOv5 to make 
the network pay more attention to the region of inter-
est, and at the same time combined the BiFPN [31] 
network structure in YOLOv5 to better fuse the fine-
grained features of the helmet object and to improve 
the detection accuracy of the helmet object under the 
condition of combining with migration learning. Chen 
[3] et al. reduced the computational complexity of the 
model by introducing a lightweight Ghost module into 
the backbone and neck feature extraction portions of 
the YOLOv5-S network, and combined it with a BiFPN 
structure to reconfigure the network for the helmet de-
tection task. Gao [10] et al. propose a real-time helmet 
detection method based on the YOLOX [11] method, 
which strengthens the feature extraction capability of 
the network by adopting the recursive gated volume 
and BiFPN structure, and at the same time, adopts 
the training strategy of the SIOU cross-entropy loss 
function to further improve the detection precision of 
helmets. Lin [22] et al. added CBAM and super-resolu-
tion modules to YOLOX to extract foreground features 
and optimize image features as much as possible, and 
added a detection head for small objects of helmets 
to further improve the detection accuracy of helmets. 
Yu [43] et al. propose an improved helmet detection 
model based on YOLOv4, which significantly reduc-

es the computational effort of the model by adding a 
depth-separable convolution to the YOLOv4 network 
to replace the traditional 3×3 convolution, and at the 
same time combines with multiscale prediction to 
realize real-time detection of helmets. Although the 
above methods can improve the detection precision 
of helmets to a certain extent and effectively increase 
the detection speed, they still do not propose effective 
solutions for the automated detection of small objects 
of helmets in surveillance image scenes. Therefore, the 
current mainstream target detection methods are still 
challenging for detecting small objects of helmets in 
surveillance image scenes.

3. Method
3.1. Overview of the YOLOv5
According to the depth and width of the network, the 
YOLOv5 method can be divided into four different 
versions: YOLOv5-S, YOLOv5-M, YOLOv5-L, and 
YOLOv5-X. The YOLOv5 method continues the net-
work structure of the YOLOv4 method, which consists 
of a backbone network, a neck structure, and a predic-
tion network, respectively. Foucs, CSP structure, and 
SPP [13] modules are used in the backbone network 
for image feature extraction. The CSP structure en-
hances the learning expression of the backbone using 
cross-stage connectivity. Meanwhile, the SPP mod-
ule is able to perform multi-scale feature mapping so 
as to fuse feature information from different scales. 
The neck structure adopts the PANet [23] structural 
idea to build a pyramid network by top-down and bot-
tom-up paths, which further enhances the network’s 
ability to extract image features. The prediction net-
work is able to detect objects of different sizes with 
three different scales of features extracted from the 
neck, and calculate the object class, confidence score, 
and predicted object frame information.

3.2. Network Framework of the Proposed 
Method
The network structure of the proposed context en-
hancement pyramid based helme detection method 
under surveillance images is shown in Figure 1. The 
method extends the network structure of the YOLOv5 
method by the proposed context enhancement pyra-
mid and multi-scale attention module. Also, in order to 
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Figure 1  
Network framework of the proposed method
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wear detection method by introducing a cross-stage 
localized network CSP [37] and a spatial pyramid 
pooling structure in the YOLOv3 [29] backbone to 
improve the learning ability of the network, and 
combining top-down and bottom-up feature fusion 
strategies to improve the detection of helmet objects 
at construction sites. Yang [42] et al. enhanced the 
multi-scale feature extraction capability of the 
YOLOv4 [1] backbone network and introduced a 
channel attention mechanism to dynamically focus 
on the channel features of helmet objects, thus 
improving the network's detection performance for 
small helmet objects. Fang [7] et al. added an 
attention mechanism to the backbone of YOLOv5 to 
make the network pay more attention to the region 
of interest, and at the same time combined the 
BiFPN [31] network structure in YOLOv5 to better 
fuse the fine-grained features of the helmet object 
and to improve the detection accuracy of the helmet 
object under the condition of combining with 
migration learning. Chen [3] et al. reduced the 
computational complexity of the model by 
introducing a lightweight Ghost module into the 

backbone and neck feature extraction portions 
of the YOLOv5-S network, and combined it 
with a BiFPN structure to reconfigure the 
network for the helmet detection task. Gao [10] 
et al. propose a real-time helmet detection 
method based on the YOLOX [11] method, 
which strengthens the feature extraction 
capability of the network by adopting the 
recursive gated volume and BiFPN structure, 
and at the same time, adopts the training 
strategy of the SIOU cross-entropy loss 
function to further improve the detection 
precision of helmets. Lin [22] et al. added 
CBAM and super-resolution modules to 
YOLOX to extract foreground features and 
optimize image features as much as possible, 
and added a detection head for small objects 
of helmets to further improve the detection 
accuracy of helmets. Yu [43] et al. propose an 
improved helmet detection model based on 
YOLOv4, which significantly reduces the 
computational effort of the model by adding a 
depth-separable convolution to the  

Figure 2   
Different feature pyramid structures 

be able to accurately localize the position of small-scale 
helmet objects under surveillance images, this paper 
adds a high-resolution detection layer to the YOLOv5 
network. Among them, the context enhancement pyr-
amid can reduce the semantic differences between dif-
ferent scales and generate rich contextual features to 
improve the network’s discriminative learning ability 
for helmet objects. The multi-scale attention module 
can further refine the features and establish multi-
scale mapping and expand the receptive field to im-
prove the network’s detection precision for helmets.

3.3. High-resolution Detection Layer
Since the backbone network of YOLOv5 needs to per-
form multiple down-sampling processes when fea-
ture extraction of helmet objects is carried out, which 

is likely to lead to the gradual loss of spatial location 
information of the helmet objects in the surveillance 
image, thus reducing the accurate localization of the 
detection network for helmet small objects. There-
fore, this paper adds a high-resolution detection layer 
P2 to the original 3-level detection layer of YOLOv5, 
as shown in Figure 1, in order to improve the accurate 
localization ability of the detection network for hel-
met objects. Specifically, the shallow image features 
N2 extracted from the backbone are extended and the 
proposed context enhancement pyramid network is 
utilized to obtain the high-resolution detection lay-
er P2, which enables the detection layer P2 to retain 
richer spatial detail information of the helmet objects 
as much as possible, making the network more sensi-
tive in dealing with small-scale helmet objects.
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3.4. Context Enhancement Pyramid

The YOLOv5 method adopts the idea of PANet (Fig-
ure 2(b)) network structure to construct the pyramid 
network, although it can improve the feature infor-
mation transfer of small objects in the FPN [21] (Fig-
ure 2(a)) structure in the network to a certain extent, 
the semantic differences that exist between features 
of different scales are still ignored. The deeper fea-
tures in the PANet structure need to undergo many 
times of up-sampling in order to be fused with the 
shallowest features, and a large amount of abundant 
abstract semantics is gradually diluted, which in turn 
causes the lack of semantic information of shallow 
features. Meanwhile, the deep features lack sufficient 
contextual information around the object, resulting 
in the inability to precisely localize small-scale ob-
jects, which leads to the insufficient discriminative 
learning ability of the detection network for the hel-
met objects. 
Therefore, inspired by the literature [5, 14], we pro-
pose the context enhancement pyramid in this pa-
per, as shown in Figure 2©. This structure is able to 
transfer shallow image features to deeper feature 
layers, and transfer the rich semantics contained in 
deeper image features to shallower feature layers, so 
as to generate rich contextual semantics, reduce the 
semantic differences between features of different 
scales in the pyramid network, and then guide the fea-
ture construction process of the pyramid network, in 
order to improve the network’s discriminative learn-
ing ability for the helmet objects. Among them, the 
semantic refinement module is used to eliminate the 

redundant contexts in the deep image features and re-
fine the helmet object feature information.
1 Context enhancement pyramid: The context en-

hancement pyramid is able to inject shallow image 
features containing a large number of helmet ob-
ject spatial details directly into the deeper feature 
layer, so that smaller scale helmet object features 
will not be easily lost. Moreover, deep image fea-
tures containing rich semantics are up-sampled 
across stages and transferred to shallow image 
features to make up for the lack of semantic infor-
mation of shallow image features and generate rich 
contextual features to reduce the semantic differ-
ences of features of different scales and improve 
the network’s discriminative learning ability of the 
helmet objects. Specifically, in order to interactive-
ly fuse the shallow features with the deeper ones, 
this paper adds a bottom-up extended path and two 
top-down extended cross-stage paths to the PANet 
network structure, so that the deeper feature lay-
er and the shallower one can effectively obtain the 
required spatial information of the target location 
as well as sufficient abstract semantics. The fusion 
approach uses Concat to preserve as many contex-
tual features as possible. It can be described as:
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pyramid network is utilized to obtain the high-
resolution detection layer P2, which enables the 
detection layer P2 to retain richer spatial detail 
information of the helmet objects as much as 
possible, making the network more sensitive in 
dealing with small-scale helmet objects. 
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guide the feature construction process of the 
pyramid network, in order to improve the 
network's discriminative learning ability for the 

helmet objects. Among them, the semantic 
refinement module is used to eliminate the 
redundant contexts in the deep image features 
and refine the helmet object feature 
information. 

(1) Context enhancement pyramid: The 
context enhancement pyramid is able to inject 
shallow image features containing a large 
number of helmet object spatial details directly 
into the deeper feature layer, so that smaller 
scale helmet object features will not be easily 
lost. Moreover, deep image features 
containing rich semantics are up-sampled 
across stages and transferred to shallow image 
features to make up for the lack of semantic 
information of shallow image features and 
generate rich contextual features to reduce the 
semantic differences of features of different 
scales and improve the network's 
discriminative learning ability of the helmet 
objects. Specifically, in order to interactively 
fuse the shallow features with the deeper ones, 
this paper adds a bottom-up extended path 
and two top-down extended cross-stage paths 
to the PANet network structure, so that the 
deeper feature layer and the shallower one can 
effectively obtain the required spatial 
information of the target location as well as 
sufficient abstract semantics. The fusion 
approach uses Concat to preserve as many 
contextual features as possible. It can be 
described as: 
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Figure 4   
(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM). 
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Figure 4   
(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM). 
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(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM). 

(3)

Where 4Upsample×  indicates a 4x upsampling oper-
ation using nearest neighbor interpolation.
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YOLOv4 network to replace the traditional 3×3 
convolution, and at the same time combines with 
multiscale prediction to realize real-time detection 
of helmets. Although the above methods can 
improve the detection precision of helmets to a 
certain extent and effectively increase the detection 
speed, they still do not propose effective solutions 
for the automated detection of small objects of 
helmets in surveillance image scenes. Therefore, the 
current mainstream target detection methods are 
still challenging for detecting small objects of 
helmets in surveillance image scenes. 

3. Method 
3.1 Overview of the YOLOv5 

According to the depth and width of the network, 
the YOLOv5 method can be divided into four 
different versions: YOLOv5-S, YOLOv5-M, 
YOLOv5-L, and YOLOv5-X. The YOLOv5 method 
continues the network structure of the YOLOv4 
method, which consists of a backbone network, a 
neck structure, and a prediction network, 
respectively. Foucs, CSP structure, and SPP [13] 
modules are used in the backbone network for 
image feature extraction. The CSP structure 
enhances the learning expression of the backbone 
using cross-stage connectivity. Meanwhile, the SPP 
module is able to perform multi-scale feature 
mapping so as to fuse feature information from 
different scales. The neck structure adopts the 
PANet [23] structural idea to build a pyramid 
network by top-down and bottom-up paths, which 
further enhances the network's ability to extract 
image features. The prediction network is able to 
detect objects of different sizes with three different 
scales of features extracted from the neck, and 
calculate the object class, confidence score, and 
predicted object frame information. 

3.2 Network Framework of the Proposed Method 

The network structure of the proposed context 
enhancement pyramid based helme detection 
method under surveillance images is shown in 
Figure 1. The method extends the network 
structure of the YOLOv5 method by the 
proposed context enhancement pyramid and 
multi-scale attention module. Also, in order to 
be able to accurately localize the position of 
small-scale helmet objects under surveillance 
images, this paper adds a high-resolution 
detection layer to the YOLOv5 network. 
Among them, the context enhancement 
pyramid can reduce the semantic differences 
between different scales and generate rich 
contextual features to improve the network's 
discriminative learning ability for helmet 
objects. The multi-scale attention module can 
further refine the features and establish multi-
scale mapping and expand the receptive field 
to improve the network's detection precision 
for helmets. 

3.3 High-resolution Detection Layer 

Since the backbone network of YOLOv5 needs 
to perform multiple down-sampling processes 
when feature extraction of helmet objects is 
carried out, which is likely to lead to the 
gradual loss of spatial location information of 
the helmet objects in the surveillance image, 
thus reducing the accurate localization of the 
detection network for helmet small objects. 
Therefore, this paper adds a high-resolution 
detection layer P2 to the original 3-level 
detection layer of YOLOv5, as shown in Figure 
1, in order to improve the accurate localization 
ability of the detection network for helmet 
objects. Specifically, the shallow image 
features N2 extracted from the backbone are 
extended and the proposed context 
enhancement  
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2 Semantic refinement module (SRM): In order 
to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
background information from the shallow fea-
tures, thus causing feature confusion and resulting 
in a reduction in the network’s ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range depen-
dencies on the original deep image features and 
generate spatial attention weights to refine the hel-
met object information in the image features, thus 
enabling the network to improve the discrimina-
tive learning ability for the helmet object. Among 
them, the SPP module is used to fuse multi-scale 
spatial features to mine richer small-scale helmet 
object feature information.

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extract-
ed by the backbone are regarded as C H WX × ×∈� , and 
they are convolutionally transformed using 1×1 con-
volutional layers  qW  and  kW  to obtain  qQ W X=  
and kK W X= , respectively. Then Q  and K  are 
multiplied by matrix to obtain the similarity matrix  

N NE ×∈�  and N H W= × , which is expressed by the 
formula: 
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 
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semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
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helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 
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module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
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and then  1max H CE     and  1avg H CE     are 
obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
convolution and using Sigmoid to obtain 
attention weights and weighting to feature R5. 
Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
during the construction of the pyramid 
network, while capturing the multi-scale 
information inside the image features of 
different scales and further expanding the 
receptive field as a way to improve the feature 
fusion effect in the pyramid network and 
increase the network's detection precision for 
helmet objects. (4)
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using nearest neighbor interpolation. 
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thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
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and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as C H WX    , and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  
and K  are multiplied by matrix to obtain the 
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is expressed by the formula:   
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and then  1max H CE     and  1avg H CE     are 
obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
convolution and using Sigmoid to obtain 
attention weights and weighting to feature R5. 
Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
during the construction of the pyramid 
network, while capturing the multi-scale 
information inside the image features of 
different scales and further expanding the 
receptive field as a way to improve the feature 
fusion effect in the pyramid network and 
increase the network's detection precision for 
helmet objects. 

(5)

  

Conv3×3
rate=5

Conv3×3
rate=3

Conv1×1

Co
nc

at
C

on
v1

×1

Adaptive
AvgPool

Conv1×1
Upsample

CB
A

M

(a) Multi-scale attention module(MSAM)

CBAM

AvgPool

MaxPool Sh
ar

ed
 M

LP AvgPool

MaxPool

C
on

ca
t

Sigmoid Sigmoid

Channel attention Spatial attention

C×H×W

C×1×1

C×1×1

1×H×W

1×H×W

C×H×W

Conv 7×7
1×H×W

2×H×W

(b) Convolutional block attention module(CBAM)

Fi Ui

Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 
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to avoid the original rich semantics in the deep 
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background information from the shallow features, 
thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as C H WX    , and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  
and K  are multiplied by matrix to obtain the 
similarity matrix  N NE    and  N H W  , which 
is expressed by the formula:   
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obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
convolution and using Sigmoid to obtain 
attention weights and weighting to feature R5. 
Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
during the construction of the pyramid 
network, while capturing the multi-scale 
information inside the image features of 
different scales and further expanding the 
receptive field as a way to improve the feature 
fusion effect in the pyramid network and 
increase the network's detection precision for 
helmet objects. 

(6)

Where σ  is a Sigmoid function, while 7 7f ×   denotes 
a convolutional operation with a convolutional kernel 
size of 7 × 7.

3.5. Multi-scale Attention Module (MSAM)
In order to improve the effect of feature fusion in the 
pyramid network and avoid the region where the hel-
met object is located in the image features from be-
ing affected by redundant information, we proposed 
the multi-scale attention module, as shown in Figure 
4(a). This module is able to refine the fused features 
during the construction of the pyramid network, 
while capturing the multi-scale information inside 
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pyramid network is utilized to obtain the high-
resolution detection layer P2, which enables the 
detection layer P2 to retain richer spatial detail 
information of the helmet objects as much as 
possible, making the network more sensitive in 
dealing with small-scale helmet objects. 

3.4 Context Enhancement Pyramid 

The YOLOv5 method adopts the idea of PANet 
(Figure 2(b)) network structure to construct the 
pyramid network, although it can improve the 
feature information transfer of small objects in the 
FPN [21] (Figure 2(a)) structure in the network to a 
certain extent, the semantic differences that exist 
between features of different scales are still ignored. 
The deeper features in the PANet structure need to 
undergo many times of up-sampling in order to be 
fused with the shallowest features, and a large 
amount of abundant abstract semantics is gradually 
diluted, which in turn causes the lack of semantic 
information of shallow features. Meanwhile, the 
deep features lack sufficient contextual information 
around the object, resulting in the inability to 
precisely localize small-scale objects, which leads to 
the insufficient discriminative learning ability of the 
detection network for the helmet objects.  

Therefore, inspired by the literature [5, 14], we 
propose the context enhancement pyramid in this 
paper, as shown in Figure 2©. This structure is able 
to transfer shallow image features to deeper feature 
layers, and transfer the rich semantics contained in 
deeper image features to shallower feature layers, 
so as to generate rich contextual semantics, reduce 
the semantic differences between features of 
different scales in the pyramid network, and then 
guide the feature construction process of the 
pyramid network, in order to improve the 
network's discriminative learning ability for the 

helmet objects. Among them, the semantic 
refinement module is used to eliminate the 
redundant contexts in the deep image features 
and refine the helmet object feature 
information. 

(1) Context enhancement pyramid: The 
context enhancement pyramid is able to inject 
shallow image features containing a large 
number of helmet object spatial details directly 
into the deeper feature layer, so that smaller 
scale helmet object features will not be easily 
lost. Moreover, deep image features 
containing rich semantics are up-sampled 
across stages and transferred to shallow image 
features to make up for the lack of semantic 
information of shallow image features and 
generate rich contextual features to reduce the 
semantic differences of features of different 
scales and improve the network's 
discriminative learning ability of the helmet 
objects. Specifically, in order to interactively 
fuse the shallow features with the deeper ones, 
this paper adds a bottom-up extended path 
and two top-down extended cross-stage paths 
to the PANet network structure, so that the 
deeper feature layer and the shallower one can 
effectively obtain the required spatial 
information of the target location as well as 
sufficient abstract semantics. The fusion 
approach uses Concat to preserve as many 
contextual features as possible. It can be 
described as: 

   ' , 3,4,5Ni Concat Di Ni i ，         (1) 

  '' '4N3 Concat Upsample P5 N3 ，      (2) 

  ' 4N2 Concat Upsample P4 N2 ，       (3) 

Figure 4   
(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM). 
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 

(2) Semantic refinement module (SRM): In order 
to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
background information from the shallow features, 
thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as 𝑋𝑋 𝑋 ℝ�×�×�, and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  and 
K  are multiplied by matrix to obtain the similarity 

matrix  N NE   and  N H W  , which is 
expressed by the formula:   
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Then,  𝐸𝐸 𝑋 ℝ�×�  is adjusted to N H WE   , 
and then  1max H CE    and  1avg H CE    are 
obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
convolution and using Sigmoid to obtain 
attention weights and weighting to feature R5. 
Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  

   7 7 ;max avgS R5 f Concat E E  ⊙      (5)  
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 

(2) Semantic refinement module (SRM): In order 
to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
background information from the shallow features, 
thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as 𝑋𝑋 𝑋 ℝ�×�×�, and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  and 
K  are multiplied by matrix to obtain the similarity 
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obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
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Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  

   7 7 ;max avgS R5 f Concat E E  ⊙      (5)  

 P5 S R5 M5                           (6) 

Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
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Figure 4  
(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM)

the image features of different scales and further ex-
panding the receptive field as a way to improve the 
feature fusion effect in the pyramid network and in-
crease the network’s detection precision for helmet 
objects.
Specifically, the multi-scale attention module first 
refines the features from both the channel and spa-
tial dimensions using CBAM (Figure 4(b)) [40] from 
channel attention and spatial attention, respectively, 
so as to filter out a large amount of noise and redun-
dant information contained in the image features and 
to highlight the key helmet object features, which can 
be described as:
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Then, for the image features that have been refined 
by CBAM, adaptive global average pooling is then 
used to aggregate the global semantic information, 
while the input features are mapped using 1×1 
convolution as well as 3×3 convolution with 
different dilation rates, and then the output features 
are subjected to the elemental summation operation 
in order to avoid the loss of helmet object feature 
information. Finally, the output features from the 
four branches are fused using Concat and 1×1 
convolution. One long residual edge is used to 
maintain the integrity of the information inside the 
image features. 

4. Experiments 
4.1 Experimental Datasets 

4.1.1 Safety Helmet Wearing Dataset (SHWD) 

The publicly available Safety Helmet Wearing 
Dataset (SHWD) [27] has 7581 images containing a 
total of two categories of labels, hat and person. 
person labels are derived from the SCUT-HEAD 
[28] dataset to simulate the unworn helmet objects. 
Among them, there are 9047 hat tags and 111514 
person tags. In this paper, we divide the dataset into 
training and test sets according to the ratio of 8:2, 
and 10% of the training set is classified as the 
validation set for validation. There are 5457 images 
in the training set, 607 images in the validation set, 
and 1517 images in the test set. Where, the training 
set, validation set as well as the test set contains the 

number of hat labels and person labels as 
shown in the table 2. 

Table 1 

Comparison of the number of images in the 
training set, validation set, and test set in 
SHWD and Custom dataset 

Datasets 
Number of images 

train val test Total 
SHWD 5457 607 1517 7581 

Custom dataset 7617 847 2117 10581 

4.1.2 Custom Dataset 

To further evaluate the effectiveness of the 
proposed method in detecting helmet objects 
in surveillance image scenarios, this paper 
expands 3000 surveillance images on the basis 
of SHWD. The expanded surveillance images 
are all from real industrial production 
environments and manually labeled according 
to the Pascal VOC data format, as shown in 
Figure 5. The expanded dataset has 10581 
images containing 131586 labeled frames. 
Among them, there are 20072 hat labels and 
111,514 person labels. We divide the dataset 
into training set and test set according to the 
ratio of 8:2, while 10% of the training 
validation set is randomly divided into 
validation set.  Table 1 demonstrates the 
comparison of the number of images in the 
custom dataset and the SHWD dataset, the 
training set in the final divided custom dataset 
has a total of 7,617 have images, the validation 
set has 847 images, and the test set has a total 
of 2,117 images. Among them, the number of 
hat labels and person labels included in the 
training set, validation set, and test set are 
shown in Table 2. 
In addition, since the expanded surveillance 
images are all from real construction 
environments, this paper utilizes mosaics in 
the detection effect images shown to obscure 
textual information such as the construction 
location and time displayed in the upper left 
corner of the surveillance images. 

4.2 Training Setup 

In this paper, the experiments are conducted 
in the Pytorch deep learning framework, and 
the GPU used is an Nvidia RTX 3090.The 
proposed method is implemented on top of 
the original YOLOv5 network, and thus  
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Where, σ  is the Sigmoid function, MLP is the 
multi-layer perceptron, and 7 7f ×  is the 7×7 convolu-
tion operation. max C 1 1
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iF × ×∈�  denote 

the maximum pooling and average pooling process 
from the channel dimension. And max 1 H W

iL × ×∈�  and 
avg 1 H W
iL × ×∈�  denote the maximum pooling and aver-

age pooling process from the spatial dimension.
Then, for the image features that have been refined by 
CBAM, adaptive global average pooling is then used to 
aggregate the global semantic information, while the 
input features are mapped using 1×1 convolution as 
well as 3×3 convolution with different dilation rates, 
and then the output features are subjected to the el-
emental summation operation in order to avoid the 
loss of helmet object feature information. Finally, 
the output features from the four branches are fused 
using Concat and 1×1 convolution. One long residual 
edge is used to maintain the integrity of the informa-
tion inside the image features.
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 

(2) Semantic refinement module (SRM): In order 
to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
background information from the shallow features, 
thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as C H WX    , and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  
and K  are multiplied by matrix to obtain the 
similarity matrix  N NE    and  N H W  , which 
is expressed by the formula:   

   TE Q X K X                           (4) 

Then,  N NE    is adjusted to N H WE    , 
and then  1max H CE     and  1avg H CE     are 
obtained using the max pooling and average 
pooling process, followed by fusion using 7×7 
convolution and using Sigmoid to obtain 
attention weights and weighting to feature R5. 
Then, they are output after element summing 
with feature R5 and feature M5, respectively, 
expressed by the formula:  

   7 7 ;max avgS R5 f Concat E E  ⊙      (5)  

 P5 S R5 M5                           (6) 

Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
during the construction of the pyramid 
network, while capturing the multi-scale 
information inside the image features of 
different scales and further expanding the 
receptive field as a way to improve the feature 
fusion effect in the pyramid network and 
increase the network's detection precision for 
helmet objects. 
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helmet object feature information. 
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denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 
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where the helmet object is located in the image 
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during the construction of the pyramid 
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information inside the image features of 
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receptive field as a way to improve the feature 
fusion effect in the pyramid network and 
increase the network's detection precision for 
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 
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to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
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thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
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thus enabling the network to improve the 
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Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 
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in the pyramid network and avoid the region 
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Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 
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to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
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thus causing feature confusion and resulting in a 
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semantic features of the helmet target. Therefore, 
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thus enabling the network to improve the 
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in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 

  

(a)Multi-scale attention module(MSAM).(b)Convolutional block attention module(CBAM). 

(a) Multi-scale attention module(MSAM) 
(b) Convolutional block attention module(CBAM) 

Conv3×3
rate=5

Conv3×3
rate=3

Conv1×1

Co
nc

at
Co

nv
1×

1

Adaptive
AvgPool

Conv1×1
Upsample

CB
A

M

(a) Multi-scale attention module(MSAM)

CBAM

AvgPool

MaxPool Sh
ar

ed
 M

LP AvgPool

MaxPool

C
on

ca
t

Sigmoid Sigmoid

Channel attention Spatial attention

C×H×W

C×1×1

C×1×1

1×H×W

1×H×W

C×H×W

Conv 7×7
1×H×W

2×H×W

(b) Convolutional block attention module(CBAM)

Fi Ui

Where  4Upsample  indicates a 4x upsampling operation 
using nearest neighbor interpolation. 

(2) Semantic refinement module (SRM): In order 
to avoid the original rich semantics in the deep 
image features being interfered by the redundant 
background information from the shallow features, 
thus causing feature confusion and resulting in a 
reduction in the network's ability to learn the 
semantic features of the helmet target. Therefore, 
this paper proposes a semantic refinement module 
based on the literature [2], as shown in Figure 3. 
This module is able to establish long-range 
dependencies on the original deep image features 
and generate spatial attention weights to refine the 
helmet object information in the image features, 
thus enabling the network to improve the 
discriminative learning ability for the helmet object. 
Among them, the SPP module is used to fuse multi-
scale spatial features to mine richer small-scale 
helmet object feature information. 

Specifically, for the fused feature M5 first, the SPP 
module is utilized for multi-scale mapping to obtain 
the feature R5. Then, the deep features N5 extracted 
by the backbone are regarded as 𝑋𝑋 𝑋 ℝ�×�×�, and 
they are convolutionally transformed using 1×1 
convolutional layers   qW  and   kW  to obtain   

qQ W X  and  kK W X , respectively. Then  Q  and 
K  are multiplied by matrix to obtain the similarity 
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Where    is a Sigmoid function, while 7 7f     
denotes a convolutional operation with a 
convolutional kernel size of 7 × 7. 

3.5 Multi-scale Attention Module (MSAM) 

In order to improve the effect of feature fusion 
in the pyramid network and avoid the region 
where the helmet object is located in the image 
features from being affected by redundant 
information, we proposed the multi-scale 
attention module, as shown in Figure 4(a). 
This module is able to refine the fused features 
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4. Experiments
4.1. Experimental Datasets
4.1.1. Safety Helmet Wearing Dataset (SHWD)
The publicly available Safety Helmet Wearing Data-
set (SHWD) [27] has 7581 images containing a total 
of two categories of labels, hat and person. person la-
bels are derived from the SCUT-HEAD [28] dataset 
to simulate the unworn helmet objects. Among them, 
there are 9047 hat tags and 111514 person tags. In this 
paper, we divide the dataset into training and test sets 
according to the ratio of 8:2, and 10% of the training 
set is classified as the validation set for validation. 
There are 5457 images in the training set, 607 images 
in the validation set, and 1517 images in the test set. 
Where, the training set, validation set as well as the 
test set contains the number of hat labels and person 
labels as shown in the Table 2.

Table 1
Comparison of the number of images in the training set, 
validation set, and test set in SHWD and Custom dataset

Datasets
Number of images

train val test Total

SHWD 5457 607 1517 7581

Custom dataset 7617 847 2117 10581

lance images on the basis of SHWD. The expanded 
surveillance images are all from real industrial pro-
duction environments and manually labeled accord-
ing to the Pascal VOC data format, as shown in Figure 
5. The expanded dataset has 10581 images containing 
131586 labeled frames. Among them, there are 20072 
hat labels and 111,514 person labels. We divide the 
dataset into training set and test set according to the 
ratio of 8:2, while 10% of the training validation set is 
randomly divided into validation set. Table 1 demon-
strates the comparison of the number of images in the 
custom dataset and the SHWD dataset, the training 
set in the final divided custom dataset has a total of 
7,617 have images, the validation set has 847 images, 
and the test set has a total of 2,117 images. Among 
them, the number of hat labels and person labels in-
cluded in the training set, validation set, and test set 
are shown in Table 2.
In addition, since the expanded surveillance imag-
es are all from real construction environments, this 
paper utilizes mosaics in the detection effect imag-
es shown to obscure textual information such as the 
construction location and time displayed in the upper 
left corner of the surveillance images.

Table 2
Comparison of the number of labels included in the training 
set, validation set, and test set in SHWD and Custom dataset

Labels
SHWD Custom dataset

train val test train val test

hat 6379 596 2072 14449 1800 3823

person 78973 9257 23284 81475 8670 21369

Figure 5 
Example of labeling
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follows the original YOLOv5 tuning strategy for the 
depth and width of the network. Stochastic 
Gradient Descent (SGD) is used to optimize the 
weights of the network during the training process, 
and a strategy of cosine annealing learning rate 
decay and Mosaic data augmentation is used, while 
the backbone CSPDarkNet, which has been pre-
trained on ImageNet, is loaded during the training. 
in addition, the initial learning rate is set to 1e-2, and 
the minimum learning rate is set to 1e-4. 
furthermore, the batch size is set to 4, epochs is set 
to 100, momentum is set to 0.937, and weight_decay 
is set to 5e-4. For a fair comparison, the same 
training settings are used for each method. 

4.3 Evaluation Metrics 

This paper uses average precision (AP), mean 
average precision (mAP) and Frames Per Second 
(FPS) as evaluation metrics. Where AP is denoted as 
the area under the curve after the multiplication of 
precision(P) and recall(R), and mAP is denoted as 
the average of the AP of the two object categories. 
The formulas for precision(P) and recall(R) are 
denoted as: 

;

;

TPP
TP FP

TPR
TP FN

  

 
 

                         (9) 

where, TP denotes the number of samples that were 
detected as correct and were actually positive 
samples. FP denotes the number of samples that 
were detected as correct but were actually negative 

samples. FN denotes the number of samples 
that were categorized as negative samples but 
were actually positive samples. mAP is 
calculated using an IoU threshold of 0.5. 

4.4 Experiments on SHWD 

To verify the detection effect of the proposed 
method for the helmet objects, the proposed 
method is compared with different methods 
on the SHWD in this paper, and the 
experimental results are shown in Table 3. 

From Table 3, the proposed method shows 
good detection results on SHWD. The 
proposed Ours-S method improves the mAP 
of YOLOv3 and YOLOv4 by 4.36% and 3.14%, 
respectively, compared to the YOLOv3 and 
YOLOv4 with an input size of 416 × 416, and 
the mAP value of Ours-S can be improved by 
7.11% compared to the CenterNet [50] method 
with an input size of 512 × 512. Also, the mAP 
of Ours-S can be improved by 1.22% and 0.7% 
compared to the baseline method YOLOv5-S 
and the advanced YOLOX-S method, 
respectively. For the Ours-M, Ours-L, and 
Ours-X methods, the mAP can be improved by 
1.88%, 1.38%, and 1.45% compared to the 
baseline methods YOLOv5-M, YOLOv5-L, 
and YOLOv5-X, respectively. In addition, 
Ours-X was able to increase the mAP by 4.12% 
and 2.68% compared to the YOLOv3 and 
YOLOv4 methods with input size of 608 × 608, 
respectively, and by 7.96% compared to the 
FCOS [33] method, and Ours-X was able  

Figure 6  
The detection effect of Ours-X in the test set with custom dataset 

4.1.2. Custom Dataset
To further evaluate the effectiveness of the proposed 
method in detecting helmet objects in surveillance 
image scenarios, this paper expands 3000 surveil-
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4.2. Training Setup
In this paper, the experiments are conducted in the 
Pytorch deep learning framework, and the GPU used 
is an Nvidia RTX 3090.The proposed method is imple-
mented on top of the original YOLOv5 network, and 
thus follows the original YOLOv5 tuning strategy for 
the depth and width of the network. Stochastic Gradi-
ent Descent (SGD) is used to optimize the weights of 
the network during the training process, and a strate-
gy of cosine annealing learning rate decay and Mosaic 
data augmentation is used, while the backbone CSP-
DarkNet, which has been pre-trained on ImageNet, 
is loaded during the training. in addition, the initial 
learning rate is set to 1e-2, and the minimum learning 
rate is set to 1e-4. furthermore, the batch size is set to 
4, epochs is set to 100, momentum is set to 0.937, and 
weight_decay is set to 5e-4. For a fair comparison, the 
same training settings are used for each method.

4.3. Evaluation Metrics
This paper uses average precision (AP), mean aver-
age precision (mAP) and Frames Per Second (FPS) 
as evaluation metrics. Where AP is denoted as the 
area under the curve after the multiplication of pre-
cision(P) and recall(R), and mAP is denoted as the av-
erage of the AP of the two object categories. The for-
mulas for precision(P) and recall(R) are denoted as:
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where, TP denotes the number of samples that were 
detected as correct and were actually positive samples. 
FP denotes the number of samples that were detected 
as correct but were actually negative samples. FN de-
notes the number of samples that were categorized as 
negative samples but were actually positive samples. 
mAP is calculated using an IoU threshold of 0.5.

4.4. Experiments on SHWD
To verify the detection effect of the proposed method 
for the helmet objects, the proposed method is com-
pared with different methods on the SHWD in this 
paper, and the experimental results are shown in Ta-
ble 3.

Table 3
Different methods for comparison of results on SHWD

Method Input size AP(hat)/% AP(person)/% mAP/%

YOLOv3 416×416 83.42 80.42 81.92

YOLOv3 608×608 87.76 90.74 89.25

YOLOv4 416×416 86.82 79.45 83.14

YOLOv4 608×608 91.08 90.30 90.69

FCOS 640×640 86.29 84.54 85.41

CenterNet 512×512 83.14 75.21 79.17

YOLOv5-S 640×640 84.56 85.56 85.06

YOLOv5-M 640×640 87.91 88.61 88.26

YOLOv5-L 640×640 90.41 90.63 90.52

YOLOv5-X 640×640 91.65 92.19 91.92

YOLOX-S 640×640 83.99 87.18 85.58

YOLOX-M 640×640 85.16 88.82 86.99

YOLOX-L 640×640 87.04 90.09 88.56

YOLOX-X 640×640 88.23 92.76 90.50

YOLOv7 640×640 91.78 92.64 92.21

Ours-S 640×640 85.07 87.50 86.28

Ours-M 640×640 89.55 90.72 90.14

Ours-L 640×640 91.48 92.33 91.90

Ours-X 640×640 93.50 93.25 93.37

From Table 3, the proposed method shows good de-
tection results on SHWD. The proposed Ours-S 
method improves the mAP of YOLOv3 and YOLOv4 
by 4.36% and 3.14%, respectively, compared to the 
YOLOv3 and YOLOv4 with an input size of 416 × 416, 
and the mAP value of Ours-S can be improved by 
7.11% compared to the CenterNet [50] method with 
an input size of 512 × 512. Also, the mAP of Ours-S can 
be improved by 1.22% and 0.7% compared to the base-
line method YOLOv5-S and the advanced YOLOX-S 
method, respectively. For the Ours-M, Ours-L, and 
Ours-X methods, the mAP can be improved by 1.88%, 
1.38%, and 1.45% compared to the baseline methods 
YOLOv5-M, YOLOv5-L, and YOLOv5-X, respective-
ly. In addition, Ours-X was able to increase the mAP 
by 4.12% and 2.68% compared to the YOLOv3 and 
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Figure 6 
Training and validation loss curves and mAP change curves of the proposed method on SHWD and custom dataset
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to increase the mAP by 2.87% and 1.87% compared 
to the advanced YOLOX-X and YOLOv7 [36] 
methods, respectively.  

Figure 6(a) shows the training and validation loss 
curves and the mAP variation curves of the 
proposed method on SHWD, respectively, and it 
can be seen that with the adoption of a more 
powerful baseline network, it can make the training 

and validation loss converge faster and make 
the mAP value increase continuously. Figure 7 
shows the detection results of Ours-X method 
on the test set classified in this paper. 

4.5 Experiments on Custom Dataset 

To further verify the proposed method's 
detection effect for small-scale helmet objects  

Figure 7  
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Figure 7 
The detection effect of Ours-X in the SHWD test set
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Table 4 

Different methods for comparing results on custom dataset 
Method Input size AP(hat)/% AP(person)/% mAP/% FPS 

YOLOv3 608×608 81.98 89.92 85.95 65.9 
YOLOv4 608×608 83.13 91.33 87.23 43.7 

FCOS 640×640 82.36 88.13 85.25 36.1 
CenterNet 512×512 76.55 79.32 77.94 54.5 

YOLOv5-S 640×640 75.15 87.63 81.39 75.0 
YOLOv5-M 640×640 80.33 89.98 85.16 55.1 
YOLOv5-L 640×640 85.06 91.92 88.49 45.3 
YOLOv5-X 640×640 87.51 92.84 90.17 37.9 
YOLOX-S 640×640 77.82 86.95 82.39 52.9 
YOLOX-M 640×640 81.86 88.05 84.96 44.4 
YOLOX-L 640×640 86.64 91.67 89.15 37.5 
YOLOX-X 640×640 87.22 92.08 89.65 34.8 
YOLOv7 640×640 87.31 93.13 90.22 61.4 
Ours-S 640×640 80.23 89.75 84.99 37.3 
Ours-M 640×640 84.45 91.62 88.03 31.2 
Ours-L 640×640 88.88 93.39 91.13 25.2 
Ours-X 640×640 91.06 94.24 92.65 20.3 

under surveillance images, the proposed method is 
compared with different detection methods on the 
custom dataset in this paper, and the experimental 
results are shown in Table 4. 

From Table 4, it can be seen that the proposed 
method achieves the best detection performance in 
terms of mAP values on Custom dataset as well as 
for helmet objects AP values. It can be seen that the 
proposed methods Ours-S, Ours-M, Ours-L, and 
Ours-X are able to improve the mAP values by 
3.6%, 2.87%, 2.64%, and 2.48% compared to the 
baseline methods YOLOv5-S, YOLOv5-M, 
YOLOv5-L, and YOLOv5-X, respectively, and for 
the helmet objects the AP values can be improved 
by 5.08%, 4.12%, 3.82%and 3.55%, but the detection 
speed is slightly reduced with FPS values of 37.3, 
31.2, 25.2, and 20.3 respectively. The proposed 
method Ours-X was able to improve the mAP by 

6.7% and 5.42% compared to the YOLOv3 and 
YOLOv4 methods with input size of 608 × 608, 
and it was able to improve the AP for the 
helmet objects by 9.08% and 7.93%, 
respectively. Also, the proposed method Ours-
X has a detection speed FPS value of 20.3, 
which is slightly reduced compared to the 
YOLOv3 and YOLOv4 methods that exhibit 
FPS values of 65.9 and 43.7. Ours-X was able to 
improve the mAP values by 3% and 2.43% 
compared to the state-of-the-art YOLOX-X 
and YOLOv7 methods, and was able to 
improve the AP values by 3.84% and 3.75% for 
the helmet objects, respectively. In addition, 
although the proposed method Ours-X 
exhibits slightly lower FPS values of 34.8 and 
61.4 compared to the advanced YOLOX-X and 
YOLOv7 methods, the  

YOLOv4 methods with input size of 608 × 608, re-
spectively, and by 7.96% compared to the FCOS [33] 
method, and Ours-X was able to increase the mAP by 
2.87% and 1.87% compared to the advanced YOLOX-X 
and YOLOv7 [36] methods, respectively. 
Figure 6(a) shows the training and validation loss 
curves and the mAP variation curves of the proposed 

method on SHWD, respectively, and it can be seen 
that with the adoption of a more powerful baseline 
network, it can make the training and validation loss 
converge faster and make the mAP value increase 
continuously. Figure 7 shows the detection results 
of Ours-X method on the test set classified in this 
paper.
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4.5. Experiments on Custom Dataset

To further verify the proposed method’s detection ef-
fect for small-scale helmet objects under surveillance 
images, the proposed method is compared with differ-
ent detection methods on the custom dataset in this pa-
per, and the experimental results are shown in Table 4.
From Table 4, it can be seen that the proposed meth-
od achieves the best detection performance in terms 
of mAP values on Custom dataset as well as for hel-
met objects AP values. It can be seen that the pro-
posed methods Ours-S, Ours-M, Ours-L, and Ours-X 
are able to improve the mAP values by 3.6%, 2.87%, 
2.64%, and 2.48% compared to the baseline methods 
YOLOv5-S, YOLOv5-M, YOLOv5-L, and YOLOv5-X, 
respectively, and for the helmet objects the AP values 
can be improved by 5.08%, 4.12%, 3.82%and 3.55%, 
but the detection speed is slightly reduced with FPS 
values of 37.3, 31.2, 25.2, and 20.3 respectively. The 
proposed method Ours-X was able to improve the 

mAP by 6.7% and 5.42% compared to the YOLOv3 
and YOLOv4 methods with input size of 608 × 608, 
and it was able to improve the AP for the helmet ob-
jects by 9.08% and 7.93%, respectively. Also, the pro-
posed method Ours-X has a detection speed FPS val-
ue of 20.3, which is slightly reduced compared to the 
YOLOv3 and YOLOv4 methods that exhibit FPS val-
ues of 65.9 and 43.7. Ours-X was able to improve the 
mAP values by 3% and 2.43% compared to the state-
of-the-art YOLOX-X and YOLOv7 methods, and was 
able to improve the AP values by 3.84% and 3.75% for 
the helmet objects, respectively. In addition, although 
the proposed method Ours-X exhibits slightly lower 
FPS values of 34.8 and 61.4 compared to the advanced 
YOLOX-X and YOLOv7 methods, the proposed meth-
od is able to significantly improve the detection accu-
racy for the helmet objects.
Figure 6(b) further demonstrates the training and 
validation loss curves as well as the mAP variation 
curves of the proposed method on Custom dataset. 

Method Input size AP(hat)/% AP(person)/% mAP/% FPS

YOLOv3 608×608 81.98 89.92 85.95 65.9

YOLOv4 608×608 83.13 91.33 87.23 43.7

FCOS 640×640 82.36 88.13 85.25 36.1

CenterNet 512×512 76.55 79.32 77.94 54.5

YOLOv5-S 640×640 75.15 87.63 81.39 75.0

YOLOv5-M 640×640 80.33 89.98 85.16 55.1

YOLOv5-L 640×640 85.06 91.92 88.49 45.3

YOLOv5-X 640×640 87.51 92.84 90.17 37.9

YOLOX-S 640×640 77.82 86.95 82.39 52.9

YOLOX-M 640×640 81.86 88.05 84.96 44.4

YOLOX-L 640×640 86.64 91.67 89.15 37.5

YOLOX-X 640×640 87.22 92.08 89.65 34.8

YOLOv7 640×640 87.31 93.13 90.22 61.4

Ours-S 640×640 80.23 89.75 84.99 37.3

Ours-M 640×640 84.45 91.62 88.03 31.2

Ours-L 640×640 88.88 93.39 91.13 25.2

Ours-X 640×640 91.06 94.24 92.65 20.3

Table 4
Different methods for comparing results on custom dataset
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Figure 8  
The detection effect of Ours-X in the test set with custom dataset
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respectively, indicating that P2 can enhance the 
network's location localization of helmet objects. 
Adding CEP containing SRM to the baseline can 
improve the AP of mAP and helmet by 2.44% and 
3.09% respectively, indicating that CEP can utilize 
the generated rich context to enhance the network's 
discriminative learning ability for helmet objects. 
However, when CEP without SRM is added, it only 
enhances the mAP and the AP of helmet by 1.86% 
and 2.76%, respectively, indicating that without the 

help of SRM, a large amount of redundant 
contextual information will semantically 
interfere with the deep image features and 
reduce the network's ability to learn about the 
helmet objects. When MSAM is added to the 
baseline, it can make the mAP and the AP 
value for helmet improve by 1.71% and 2.59%, 
respectively, indicating that MSAM can 
improve the feature fusion effect during the 
construction of pyramid network and increase 

Figure 8 demonstrates some of the detection results 
of Ours-X on the test set, and it can be seen that the 
proposed method is able to better detect the distant 

small-scale helmet objects in the surveillance im-
ages in different construction operation environ-
ments.
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Table 5
The results of the ablation experiments

Method AP(hat)/% AP(person)/% mAP/% FPS

Baseline 75.15 87.63 81.39 75.0

Baseline+P2 77.44 89.22 83.33 58.4

Baseline+CEP(W/o SRM) 77.91 88.78 83.35 61.2

Baseline+CEP(W/ SRM) 78.24 89.41 83.83 58.3

Baseline+MSAM 77.74 88.45 83.10 51.3

Baseline+P2+CEP(W/o SRM) 78.98 89.35 84.16 57.5

Baseline+P2+CEP(W/ SRM) 79.55 89.40 84.47 55.8

Baseline+P2+MSAM 79.30 88.95 84.12 38.9

Baseline+CEP(W/o SRM)+MSAM 77.65 88.66 83.15 40.4

Baseline+CEP(W/ SRM)+MSAM 77.64 89.01 83.33 39.1

Baseline+P2+CEP(W/o SRM)+MSAM 79.50 89.57 84.53 38.5

Baseline+P2+CEP(W/ SRM)+MSAM 80.23 89.75 84.99 37.3

4.6. Ablation Analysis
1 Impact of different modules: In order to evaluate 

the effects of context enhancement pyramid (CEP), 
multi-scale attention module (MSAM), and the 
addition of high-resolution detection layer on the 
baseline YOLOv5 detection performance, we con-
duct ablation experiments on a customized dataset 
using YOLOv5-S as the baseline, and the results of 
the experiments are shown in Table 5. Where, P2 de-
notes for the added high resolution detection layer 
and SRM denotes semantic refinement module.

From Table 5, it can be seen that adding the high-reso-
lution detection layer P2 to the baseline can make the 
APs of mAP and helmet improve by 1.94% and 2.29%, 
respectively, indicating that P2 can enhance the net-
work’s location localization of helmet objects. Adding 
CEP containing SRM to the baseline can improve the 
AP of mAP and helmet by 2.44% and 3.09% respec-
tively, indicating that CEP can utilize the generated 
rich context to enhance the network’s discriminative 
learning ability for helmet objects. However, when 
CEP without SRM is added, it only enhances the mAP 
and the AP of helmet by 1.86% and 2.76%, respective-
ly, indicating that without the help of SRM, a large 
amount of redundant contextual information will se-

mantically interfere with the deep image features and 
reduce the network’s ability to learn about the helmet 
objects. When MSAM is added to the baseline, it can 
make the mAP and the AP value for helmet improve 
by 1.71% and 2.59%, respectively, indicating that 
MSAM can improve the feature fusion effect during 
the construction of pyramid network and increase the 
detection precision of the network for helmet objects. 
In addition, when the CEP containing SRM is add-
ed on top of P2, the mAP can be improved by 3.08%, 
indicating that the context enhancement pyramid 
combined with the high-resolution detection layer 
P2 can further improve the detection effect of hel-
met objects. And when MSAM is added to P2, it can 
make the mAP improve by 2.73%, which illustrates 
the contribution of MSAM to improve the pyramid 
network construction. Adding CEP and MSAM con-
taining SRM to the baseline only improves the mAP 
and helmet AP by 1.94% and 2.49%, respectively, indi-
cating that the network is not capable of localizing the 
position of small-scale helmet objects in the absence 
of a high-resolution detection layer. In comparison, 
the proposed method in this paper is able to improve 
the mAP and the AP for helmet by 3.6% and 5.08%, re-
spectively, which further illustrates the effectiveness 
of the proposed method.
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Table 6
Comparison of experimental results on whether to load a 
pre-trained backbone on custom dataset

Method pre-trained 
CSPDarket AP(hat)/% AP(person)/% mAP/%

Ours-S
× 67.39 86.02 76.70

√ 80.23 89.75 84.99

Ours-M
× 69.80 87.46 78.63

√ 84.45 91.62 88.03

Ours-L
× 71.85 88.03 79.94

√ 88.88 93.39 91.13

Ours-X
× 75.22 89.68 82.45

√ 91.06 94.24 92.65

Table 7
Comparison of experimental results with hyper-parameters settings on custom dataset

Method Mosaic data 
augmentation

Cosine annealing
scheduler AP(hat)/% AP(person)/% mAP/%

Ours-S

× × 74.93 83.76 79.35

√ × 75.72 87.59 81.66

× √ 78.72 87.85 83.28.

√ √ 80.23 89.75 84.99

2 Impact of pre-trained backbone networks: In 
addition, in order to further evaluate the impact of 
loading the pre-trained backbone network during 
the training process of the proposed method on 
the experimental results, this paper analyzes the 
proposed method experimentally on a custom 
dataset, and the experiment results are shown in 
Table 6.

From Table 6, it can be seen that the proposed Ours-S, 
Ours-M, Ours-L, and Ours-X methods were able to 
improve the mAP values by 8.29%, 9.4%, 11.19%, and 
10.2% under the condition of loading the pre-trained 
backbone network as compared to the training with-
out loading the pre-trained backbone, respectively. 
Meanwhile, the AP values for the helmet target were 
able to increase by 12.84%, 14.65%, 17.03%, 15.84% 
respectively. Therefore, it can be inferred that load-
ing the pre-trained backbone network for migration 
learning during the training process can significantly 

improve the detection performance of the proposed 
method for helmets compared to not loading the pre-
trained backbone network.
3 Impact of different hyper-parameter settings: 

In order to further evaluate the impact of hyper-pa-
rameters settings of the proposed method on the 
experimental results during the training process, 
this paper evaluates the adopted strategies of Mon-
saic data augmentation as well as cosine annealing 
learning rate, and the experimental analysis is car-
ried out on a custom dataset, and the results are 
shown in Table 7.

From the Table 7, it can be seen that when the pro-
posed method does not use the Monsaic data aug-
mentation and Cosine annealing learning rate strat-
egy, the mAP can only reach 79.35%, and the AP of the 
helmet can only reach 74.93%, which indicates that 
the network does not fully learn the complex fea-
ture information of the helmet objects in the dataset 
during the training process and does not converge to 
the optimal solution. When only Monsaic data aug-
mentation is used for training, the mAP can reach 
81.66%, which indicates that the Monsaic data aug-
mentation strategy can help the network to improve 
the learning ability of the helmet objects. When only 
the Cosine annealing learning rate is used, the mAP 
reaches 83.28%, which indicates that the Cosine an-
nealing learning rate can help the network to find the 
optimal solution during the training process and im-
prove the training effect and detection performance 
of the network. In contrast, the proposed method 
in this paper uses both Monsaic data augmentation 
and Cosine annealing learning rate training strategy, 
which can make the mAP reach 84.99%, and further 
improve the network’s detection performance for 
helmet objects.
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5. Conclusion
This paper proposes a helmet detection based on con-
text enhancement pyramid under surveillance imag-
es to realize the automatic detection task for helmets 
in industrial production processes. The method helps 
the network to accurately localize the helmet objects 
by adding a high-resolution detection layer to the 
YOLOv5 network. Meanwhile, the proposed context 
enhancement pyramid interactively fuses image fea-
tures from both shallow and deep layers to enhance 
the network’s discriminative learning ability for hel-
met object features. In addition, the proposed multi-
scale attention module is used to improve the feature 
fusion effect during the construction of the pyramid 
network, which further improves the detection preci-
sion of the network for helmet. Experimental results 
show that the method proposed in this paper has good 
detection performance for helmet objects in surveil-
lance image scenarios compared with mainstream 

object detection methods. Future work will further 
consider automated helmet object detection tasks in 
more complex environments.
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